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Abstract

We propose a portfolio selection model based on a class of monotone pref-
erences that coincide with mean-variance preferences on their domain of
monotonicity, but differ where mean-variance preferences fail to be monotone
and are therefore not economically meaningful. The functional associated to
this new class of preferences is the best approximation of the mean-variance
functional among those which are monotonic.
We solve the portfolio selection problem and we derive a monotone ver-

sion of the CAPM, which has two main features: (i) it is, unlike the standard
CAPM model, arbitrage free, (ii) it has empirically testable CAPM-like rela-
tions. The monotone CAPM has thus a sounder theoretical foundation than
the standard CAPM and a comparable empirical tractability.

JEL classification: G11, G12

Keywords: Mean-Variance Preferences, CAPM
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1 Introduction

Since the seminal contributions of Markowitz [Ma] and Tobin [To], mean-
variance preferences have been extensively used to model the behavior of
economic agents choosing among uncertain prospects and have become one
of the workhorses of portfolio selection theory.1 These preferences, denoted
by ºmv, assign to an uncertain prospect f the following utility score:

Uθ (f) = E
P [f ]− θ

2
VarP [f ] ,

where P is a given probability measure and θ is an index of the agent’s
aversion to variance.
The success of this specification of preferences is due to its analytical

tractability and clear intuitive meaning. Mean-variance preferences have,
however, a major theoretical drawback: they may fail to be monotone. It
may happen that an agent with mean-variance preferences strictly prefers
less to more, thus violating one of the most compelling principles of economic
rationality. This is especially troublesome in Finance because monotonicity
is the crucial assumption on preferences that arbitrage arguments require
(see Dybvig and Ross [DR] and Ross [R]).

The lack of monotonicity of mean-variance preferences is a well known
problem (see, e.g., Dybvig and Ingersoll [DI] and Jarrow and Madan [JM])
and not a minor one, since it can be (partly) bypassed only under very
restrictive assumptions about the statistical distribution of asset returns (see,
e.g., Bigelow [Bi]).
The non-monotonicity of mean-variance preferences can be illustrated

with a simple example. Consider a mean-variance agent with θ = 2. Suppose
she has to choose between the two following prospects f and g:

States of Nature s1 s2 s3 s4
Probabilities 0.25 0.25 0.25 0.25
Payoff of f 1 2 3 4
Payoff of g 1 2 3 5

Prospect g yields a higher payoff than f in every state. Any rational agent
should prefer g to f . However, it turns out that our mean-variance agent
strictly prefers f to g. In fact:

U2 (f) = 1.25 > 0.5625 = U2 (g) .

1See, e.g., Bodie, Kane, and Marcus [BKM], Britten-Jones [Br], Gibbons, Ross, and
Shanken [GRS], Kandel and Stambaugh [KS], and MacKinlay and Richardson [MR].
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The reason why monotonicity fails here is fairly intuitive. By choosing g
rather than f , the payoff in state s4 increases by one unit. This additional
unit increases the mean payoff, but it also makes the distribution of payoffs
more spread out, thus increasing the variance. The increase in the mean is
more than compensated by the increase in the variance, and this makes our
mean-variance agent worse off.

In this paper we consider the minimal modification of mean-variance pref-
erences needed to overcome their lack of monotonicity. This amended version,
based on the variational preferences of Maccheroni, Marinacci, and Rustichini
[MMR], is not only sounder from an economic rationality viewpoint, but, be-
ing as close as possible to the original, also maintains the basic intuition and
tractability of mean-variance preferences.
Specifically, we consider the variational preference ºmmv represented by

the choice functional

Vθ (f) = min
Q

½
EQ [f ] +

1

2θ
C (Q||P )

¾
∀f ∈ L2 (P ) ,

where Q ranges over all probability measures with square-integrable density
with respect to P , and C (Q||P ) is the relative Gini concentration index (or
χ2-distance), a concentration index that enjoys properties similar to those of
the relative entropy.
The preferences ºmmv have the following key properties:

• They are monotone and they agree with mean-variance preferences
where the latter are monotone, that is, economically meaningful.2

• Their choice functional Vθ is the minimal, and so the most cautious,
monotone functional that extends the mean-variance functional Uθ out-
side its domain of monotonicity.

• The functional Vθ is also the best possible monotone approximation of
Uθ: that is, if V 0

θ is any other monotone extension of Uθ outside its
domain of monotonicity, then

|Vθ (f)− Uθ (f)| ≤ |V 0
θ (f)− Uθ (f)|

for each prospect f .

Moreover:
2This is the set where ∇Uθ is positive, called domain of monotonicity of Uθ.
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• The functional relation between Vθ and Uθ can be explicitly formulated.

• The parameter θ retains the usual interpretation in terms of uncertainty
aversion.

• The functional Vθ preserves second order stochastic dominance.

All these features make the preferences ºmmv a natural adjusted version of
mean-variance preferences that satisfies monotonicity. For this reason we call
them monotone mean-variance preferences.

In view of all this, it is natural to wonder what happens in a portfolio
problem à la Markowitz when we use monotone mean-variance preferences
in place of standard mean-variance preferences. This is the main subject
matter of this paper. Markowitz’s well-known optimal allocation rule under
mean-variance preferences is:

α∗mv =
1

θ
VarP [X]−1 EP

h
X −�1R

i
,

where α∗mv is the optimal portfolio of risky assets, X is the vector of gross
returns on the risky assets, R is the gross return on the risk-free asset, and
�1 is a vector of 1s. We show that with monotone mean-variance preferences
the optimal allocation rule becomes:

α∗mmv =
1

θP (W ≤ κ)
VarP [X |W ≤ κ ]−1 EP

h
X −�1R |W ≤ κ

i
,

where W is future wealth and κ is a constant determined along with α∗mmv

by solving a suitable system of equations.
Except for a scaling factor, the difference between Markowitz’s optimal

portfolio α∗mv and the above portfolio α
∗
mmv is that in the latter conditional

moments of asset returns EP [· |W ≤ κ ] and VarP [· |W ≤ κ ] are used instead
of unconditional moments, so that the allocation α∗mmv ignores the part of
the distribution where wealth is higher than κ. As a result, a monotone
mean-variance agent does not take into account those high payoff states that
contribute to increase the mean return, but give an even greater contribution
to increase the variance. By doing so, this agent does not incur in violations
of monotonicity caused for mean-variance preferences by an exaggerate pe-
nalization of “positive deviations from the mean.” This is a key feature of
monotone mean-variance preferences. We further illustrate this point in Sec-
tion 6 by showing how this functional avoids some pathological situations in
which the more the payoff to an asset is increased in some states, the more a
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mean-variance agent reduces the quantity of it in her portfolio, until in the
limit she ends up holding none.

In the last part of the paper we derive a monotone CAPMmodel based on
the above portfolio analysis with our monotone mean-variance preferences.
We first show that in our model optimal portfolios satisfy the classic two
fund separation principle: (i) portfolios of risky assets optimally held by
agents with different degrees of uncertainty aversion are all proportional to
each other, (ii) at an optimum the only difference between two agents is the
amount of wealth invested in the risk-free asset. This separation has signif-
icant theoretical implications because it allows to identify the equilibrium
market portfolio with the optimal portfolio of risky assets held by any agent
(as in [Sh], [Sh-2] and [To]), and it allows to derive a monotone version of
the classic CAPM.
In Section 5 we show that the monotone CAPM that we derive has the em-

pirical tractability of the standard CAPM. Moreover, thanks to monotonicity
of the preference functional Vθ, in the monotone CAPM there are no arbitrage
opportunities. This is a key property of the monotone CAPM and is in stark
contrast with what happens with the standard CAPM. In fact, as observed by
Dybvig and Ingersoll [DI], the lack of monotonicity of mean-variance pref-
erences generates arbitrage opportunities in the standard CAPM. In turn,
these arbitrage opportunities make impossible to have CAPM equilibrium
prices of all assets in a complete-markets economy. This is, instead, possible
in our arbitrage free monotone CAPM, which can thus be integrated in the
classic Arrow-Debreu complete-markets framework.

The paper is organized as follows. Section 2 illustrates in detail monotone
mean-variance preferences. Sections 3 and 4 state and solve the portfolio se-
lection problem under the proposed specification of preferences. Section 5
contains the CAPM analysis. Section 6 presents some examples that illus-
trate the difference between the optimal allocation rule proposed here and
Markowitz’s. Section 7 concludes. All proofs are collected in the appendices,
along with some general results on monotone approximations of concave func-
tionals.

2 Monotone Mean-Variance Preferences

We consider a measurable space (S,Σ) of states of nature. An uncertain
prospect is a Σ-measurable real valued function f : S → R, that is, a sto-
chastic monetary payoff.
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The agent’s preferences are described by a binary relation º on a set of
uncertain prospects. [MMR] provides a set of simple behavioral conditions
that guarantee the existence of an increasing utility function u : R→ R and
a convex uncertainty index c : ∆ → [0,∞] on the set ∆ of all probability
measures, such that

f º g ⇔ inf
Q∈∆

©
EQ [u (f)] + c (Q)

ª
≥ inf

Q∈∆

©
EQ [u (g)] + c (Q)

ª
(1)

for all (simple) prospects f, g.
Preferences having such a representation are called variational, and two

important special cases of variational preferences are the multiple priors pref-
erences of Gilboa and Schmeidler [GS], obtained when c only takes on values
0 and ∞, and the multiplier preferences of Hansen and Sargent [HS], ob-
tained when c (Q) is proportional to the relative entropy of Q with respect
to a reference probability measure P .3

Variational preferences satisfy the basic tenets of economic rationality. In
particular, they are monotone, that is, given any two prospects f and g, we
have f º g whenever f (s) ≥ g (s) for each s ∈ S.4

For concreteness, given a probability measure P on (S,Σ), we consider
the set L2 (P ) of all square integrable uncertain prospects. A relation ºmv

on L2 (P ) is a mean-variance preference if it is represented by the choice
functional

Uθ (f) = E
P [f ]− θ

2
VarP [f ] ∀f ∈ L2 (P ) ,

for some θ > 0.
The subset Gθ of L2 (P ) where the Gateaux differential of Uθ is positive

is called domain of monotonicity of Uθ. The preference ºmv is monotone on
the set Gθ, which has the following properties.

Lemma 1 The set Gθ is convex, closed, and

Gθ =
½
f ∈ L2 (P ) : f − EP [f ] 6 1

θ

¾
. (2)

Moreover, for all f /∈ Gθ and every ε > 0 there exists g ∈ L2 (P ) that is
ε-close to f (i.e., |f (s)− g (s)| < ε for all s ∈ S), and such that g > f and
Uθ (g) < Uθ (f).

3The relative entropy of Q given P is EP
h
dQ
dP ln

dQ
dP

i
if Q¿ P and ∞ otherwise.

4In the special case in which u is linear, some recent finance papers (e.g., Filipovic
and Kupper [FK] and Kupper and Cheridito [KC]) call monetary utility functions the
functionals representing variational preferences.
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The domain of monotonicity has thus nice properties. More importantly,
the last part of the lemma shows why Gθ is where the mean-variance pref-
erence ºmv is economically meaningful. In fact, it says that if we take any
prospect f outside Gθ, then in every its neighborhood, however small, there
is at least a prospect g that is statewise better than f , but ranked by ºmv

below f .
The mean-variance preference ºmv thus exhibits irrational non-monotone

behavior in every neighborhood, however small, of prospects f outside Gθ.
For this reason ºmv has no economic meaning outside Gθ.

It can be shown that the restriction of ºmv to Gθ is a variational prefer-
ence, and

Uθ (f) = min
Q∈∆2(P )

½
EQ [f ] +

1

2θ
C (Q||P )

¾
∀f ∈ Gθ,

where ∆2 (P ) is the set of all probability measures with square-integrable
density with respect to P , and

C (Q||P ) =
(
EP
h¡

dQ
dP

¢2i− 1 if Q¿ P

+∞ otherwise

is the relative Gini concentration index (or χ2-distance).5

This suggests to call monotone mean-variance preference the relation
ºmmv on L2 (P ) represented by the choice functional

Vθ (f) = min
Q∈∆2(P )

½
EQ [f ] +

1

2θ
C (Q||P )

¾
∀f ∈ L2 (P ) . (3)

Our first result is the following:6

Theorem 2 The functional Vθ : L2 (P ) → R defined by (3) is the minimal
monotone functional on L2 (P ) such that Vθ (g) = Uθ (g) for all g ∈ Gθ; that
is,

Vθ (f) = sup {Uθ (g) : g ∈ Gθ and g 6 f} ∀f ∈ L2 (P ) . (4)

Moreover, Vθ (f) ≥ Uθ (f) for each f ∈ L2 (P ).
5Along with the Shannon entropy, the Gini index is the most classic concentration

index. For discrete distributions it is given by
Pn

i=1Q
2
i −1, and C (Q||P ) is its continuous

and relative version. We refer to [LV] for a comprehensive study of concentration indices.
6The proof of this theorem builds on a general result on the minimal monotone func-

tional that dominates a concave functional on an ordered Banach space, which we prove
in Appendix A (Proposition 12).
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The functional Vθ is concave, continuous, and in view of this theorem it
has the following fundamental properties:

(i) Vθ coincides with the mean-variance choice functional Uθ on its domain
of monotonicity Gθ.

(ii) Vθ is the minimal monotone extension of Uθ outside the domain of
monotonicity Gθ, and so it is the most cautious monotone adjustment
of the mean-variance choice functional.

(iii) Vθ is the best possible monotone approximation of Uθ: if V 0
θ is any other

monotone extension of Uθ outside the domain of monotonicity Gθ, then
V 0
θ (f) ≥ Vθ (f) ≥ Uθ (f) and so

|Vθ (f)− Uθ (f)| ≤ |V 0
θ (f)− Uθ (f)| ∀f ∈ L2 (P ) .

Next theorem shows explicitly the functional relation between Vθ and Uθ.

Theorem 3 Let f ∈ L2 (P ). Then:

Vθ (f) =

½
Uθ (f) if f ∈ Gθ,
Uθ (f ∧ κf) else,

where
κf = max {t ∈ R : f ∧ t ∈ Gθ} . (5)

A monotone mean-variance agent can thus be regarded as still using the
mean-variance functional Uθ even in evaluating prospects outside the domain
of monotonicity Gθ. In this case, however, the agent no longer considers the
original prospects, but rather their truncations at κf , the largest constant t
such that f ∧ t belongs to Gθ.
Besides depending on the given prospect f , the constant κf also depends

on the parameter θ. Corollary 16 in Appendix B shows that κf decreases as θ
increases, and it is the unique solution of the equation EP

£
(f − κ)−

¤
= 1/θ.

Given two preferences over uncertain prospects, we say that º1 is more
uncertainty averse than º2 if and only if

f º1 c =⇒ f º2 c

for all f ∈ L2 (P ) and c ∈ R. That is, Agent 1 is more uncertainty averse
than Agent 2 if, whenever Agent 1 prefers the uncertain prospect f to a sure
payoff c, so does Agent 2.7

7We refer the interested reader to [MMR] for a discussion of this notion, and its inter-
pretation in terms of risk aversion and ambiguity aversion (not mentioned here in order
to keep the paper focused).
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A mean-variance preference ºθ
mv is more uncertainty averse than another

mean-variance preferenceºγ
mv if and only if θ > γ. Thus, θ can be interpreted

as an uncertainty aversion coefficient.
The next result, a variation of [MMR, Cor. 21], shows that the same is

true for monotone mean-variance preferences.

Proposition 4 The preference ºθ
mmv is more uncertainty averse than ºγ

mmv

if and only if θ > γ.

We conclude this section by observing that, unlike Uθ, the preference
functional Vθ preserves second order stochastic dominance (ºSSD).8 This is
a further proof of the sounder economic meaning of monotone mean-variance
preferences relative to mean-variance ones.

Theorem 5 Let f, g ∈ L2 (P ). If f ºSSD g, then Vθ (f) ≥ Vθ (g).

Summing up, the monotone choice functional Vθ provides a natural ad-
justment of the mean-variance choice functional. It also has the remarkable
feature of involving, like multiplier preferences ([HS]), a classic concentration
index. This ensures to Vθ a good analytical tractability, as the next sections
show.

3 The Portfolio Selection Problem

We consider the one-period allocation problem of an agent who has to decide
how to invest a unit of wealth at time 0, dividing it among n+1 assets. The
first n assets are risky, while the (n+ 1)-th is risk-free. The gross return
on the i-th asset after one period is denoted by Xi. The (n × 1) vector of
the returns on the first n assets is denoted by X and the (n × 1) vector of
portfolio weights, indicating the fraction of wealth invested in each of the
risky assets, is denoted by α. The return on the (n+ 1)-th asset is risk-free
and equal to a constant R.
The end-of-period wealth Wα induced by a choice of α is given by:

Wα = R+ α ·
³
X −�1R

´
.

We assume that there are no frictions of any kind: securities are perfectly
divisible; there are no transaction costs or taxes; agents are price-takers, in

8Recall that f ºSSD g iff EP
h
(f − t)

−i ≤ EP h(g − t)
−i for all t ∈ R. We refer to

Dana [Da], to which the proof of Theorem 5 is inspired, for references on second order
stochastic dominance.
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that they believe that their choices do not affect the distribution of asset
returns; there are no institutional restrictions, so that agents are allowed to
buy, sell or short sell any desired amount of any security.9 As a result, α can
be chosen in Rn.
We adopt ºmmv as a specification of preferences, and so portfolios are

ranked according to the preference functional:

Vθ (Wα) = min
Q∈∆2(P )

µ
EQ [Wα] +

1

2θ
C (Q||P )

¶
,

where P is the reference probability measure. Hence, the portfolio problem
can be written as:

max
α∈Rn

min
Q∈∆2(P )

µ
EQ [Wα] +

1

2θ
C (Q||P )

¶
. (6)

Notice that, if the agent’s initial wealth is w > 0, then her end-of-period
wealth is wWα, therefore she solves the problem

max
α∈Rn

min
Q∈∆2(P )

µ
EQ [wWα] +

1

2θ
C (Q||P )

¶
which — dividing the argument by w — reduces to (6) up to replacement of θ
with θw.

4 The Optimal Portfolio

In this section we give a solution to the portfolio selection problem outlined
in the previous section. The characterization of the optimal portfolio is given
by the following theorem.10

Theorem 6 The vector α∗ ∈ Rn is a solution of the portfolio selection prob-
lem (6) if and only if there exists κ∗ ∈ R such that (α∗, κ∗) satisfies the
system of equations:(

θP (Wα ≤ κ)VarP [X |Wα ≤ κ ]α = EP
h
X −�1R |Wα ≤ κ

i
,

EP
£
(Wα − κ)−

¤
= 1/θ.

9This assumption can be weakened, by simply requiring that at an optimum institu-
tional restrictions are not binding.
10EP [· |Wα ≤ κ ] and VarP [· |Wα ≤ κ ] are the expectation and variance conditional on

the event {Wα ≤ κ}. Note that VarP [· |Wα ≤ κ ] is an (n× n) matrix.
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As observed in Section 2, the second displayed equation guarantees that κ∗

is the largest constant such thatWα∗∧κ∗ belongs to the domain of monotonic-
ity of the mean-variance functional Uθ. The optimal portfolio α∗ is thus de-
termined along with the threshold κ∗ by solving a system of n+1 equations
in n+ 1 unknowns.
Although it is not generally possible to find explicitly a solution of the

above system of equations, numerical calculation with a standard equation
solver is straightforward: given an initial guess (α, κ), one is able to cal-
culate the first two moments of the conditional distribution of wealth; if
the moments thus calculated, together with the initial guess (α, κ), satisfy
the system of equations, then (α, κ) = (α∗, κ∗) and numerical search stops;
otherwise, the search procedure continues with a new initial guess for the pa-
rameters.11 In the next section we will solve in this way few simple portfolio
problems in order to illustrate some features of the model.

The optimal allocation rule of Theorem 6 is easily compared to the rule
that would obtain in a classic Markowitz’s setting. In the traditional mean-
variance model we would have:

α∗ =
1

θ

£
VarP [X]

¤−1
EP
h
X −�1R

i
. (7)

The monotone mean-variance model yields:

α∗ =
1

θP (Wα∗ ≤ κ∗)
VarP [X |Wα∗ ≤ κ∗ ]−1 EP

h
X −�1R |Wα∗ ≤ κ∗

i
.

Relative to Markowitz’s optimal allocation (7), here the unconditional mean
and variance of the vector of returns X are replaced by a conditional mean
and a conditional variance, both calculated by conditioning on the event
{Wα∗ ≤ κ∗}. Furthermore a scaling factor is introduced, which is inversely
proportional to the probability of not exceeding the threshold κ∗.
Roughly speaking, when computing the optimal portfolio we ignore that

part of the distribution where wealth is higher than κ∗. To see why it is
optimal to ignore the part of the distribution where one obtains the high-
est returns, recall the example of non-monotonicity of mean-variance illus-
trated in the Introduction. In that example, high payoffs were increasing
the variance more than the mean, thus leading the mean-variance agent to
irrationally prefer a strictly smaller prospect. With monotone mean-variance
preferences, this kind of behavior is avoided by artificially setting the prob-
ability of some high payoff states equal to zero. In our portfolio selection
problem we set the probability of the event {Wα∗ > κ∗} equal to zero.
11A R (S-Plus) routine to calculate the optimal portfolio in an economy with finitely

many states of nature is available upon request.
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When there is only one risky asset, the optimal quantities α∗mmv and α
∗
mv

prescribed, respectively, by our model and by the mean-variance model can
be compared by means of the following result.

Proposition 7 Suppose that S is finite, with P (s) > 0 for all s ∈ S, and
that there is only one risky asset. Then, either

α∗mmv ≥ α∗mv ≥ 0

or
α∗mmv ≤ α∗mv ≤ 0.

If, in addition, P
¡
Wα∗mmv

> κ∗
¢
> 0, then:

α∗mmv > α∗mv if α∗mmv > 0,

α∗mmv < α∗mv if α∗mmv < 0.

That is, an investor with monotone mean-variance preferences always
holds a portfolio which is more leveraged than the portfolio held by a mean-
variance investor. If she buys a positive quantity of the risky asset, this
is greater than the quantity that would be bought by a mean-variance in-
vestor; on the contrary, if she sells the risky asset short, she sells more than
a mean-variance investor would do. This kind of behavior will be thor-
oughly illustrated by the examples in the next section: the intuition behind
it is that in some cases a favorable investment opportunity is discarded by a
mean-variance investor because of non-monotonicity of her preferences, while
a monotone mean-variance investor exploits the opportunity, thus taking a
more leveraged position.

5 Monotone CAPM

In this section we show how the standard CAPM analysis can be carried out
in the monotone mean-variance setup.
We begin by establishing a two-funds separation result, which shows that

agents’ optimal investment choices can be done in two stages: first agents
decide the amount of wealth to invest in the risk-free asset; then, they decide
how to allocate the remaining wealth among the risky assets. The outcome
of this second decision is the same for all agents, regardless of their initial
wealth or aversion to uncertainty.

Proposition 8 Let θ, γ > 0. If
¡
αθ, κθ

¢
solves the portfolio selection problem

(6) for an investor with uncertainty aversion θ, then
³
θ
γ
αθ, θ

γ
κθ +

³
1− θ

γ

´
R
´

solves it for an investor with uncertainty aversion γ.
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Given a θ > 0 with αθ ·�1 > 0, define m = θαθ ·�1. Hence,

αm =
αθ

αθ ·�1
and Proposition 8 guarantees that m and αm do not depend on the choice of
θ. The equality αm ·�1 = 1 implies that αm is the portfolio held by an investor
who does not invest any of her wealth in the risk-free asset. Following the
majority of the literature, we call αm the market portfolio and denote by
Xm = αm ·X its payoff. In particular, Wαm = R+ αm ·

³
X −�1R

´
= Xm.

In an economy consisting of monotone-mean variance agents, all investors
hold a portfolio of risky assets proportional to the market portfolio. Specifi-
cally, an investor with uncertainty aversion θ will invest m/θ in the market
portfolio and the rest of her wealth in the risk free asset. Like in the standard
mean-variance setting, also here the amount of wealth invested in the market
portfolio only depends on the coefficient θ of the agent.

All this has strong empirical implications. From market data — more
precisely, by observing the market values of the assets in the economy — it
is possible to determine the equilibrium composition of the market portfolio
αm. Once we know the equilibrium αm, and so its equilibrium payoff Xm,
thanks to the next result we can find the values of m and κm by solving a
system of equations with observable coefficients.12

Proposition 9 The pair (x∗, y∗) ≡ (m,κm) solves the following system of
equations½

P (Xm ≤ y)VarP [Xm |Xm ≤ y ]x = EP [Xm −R |Xm ≤ y ] ,
EP
£
(Xm − y)−

¤
= 1/x.

The knowledge ofm and κm makes it possible to determine the equilibrium
pricing kernel ∇Vm (Xm), which will become very important momentarily
when discussing the monotone CAPM. To see why this is the case, we need
the following lemma, which gives some properties of ∇Vm (Xm).

Lemma 10 The quantity ∇Vm (Xm) has the following properties:

(i) ∇Vm (Xm) = m (Xm − κm)− = ∇Vθ (Wαθ) for all θ > 0.

12Notice that, like in the standard mean-variance setting, it can also be shown that the
uncertainty aversion coefficient m is a mean of the uncertainty aversion coefficients of the

agents. Specifically, m = ρ
³P

j

¡
θj
¢−1´−1

where θj is the uncertainty aversion coefficient

of agent j and ρ is the market value of all assets.
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(ii) EP [Xi∇Vm (Xm)] = R for all i = 1, ..., n.

(iii) EP [∇Vm (Xm)] = 1.

By property (i) of this lemma, once we know the values of m and κm

we can determine the value of ∇Vm (Xm) via the equation m (Xm − κm)−.
The value of ∇Vm (Xm) can thus be determined from market data. To ease
notation, in what follows we set ∇V ≡ ∇Vm (Xm).

Lemma 10 also makes it possible to derive our monotone version of the
CAPM. In fact, by Lemma 10.(ii), EP [Xm∇V ] = αm · EP [X∇V ] = R.
Together with Lemma 10.(iii), this implies

CovP [Xi,∇V ] = R− EP [Xi] and CovP [Xm,∇V ] = R− EP [Xm] ,

which proves the following theorem, the main result of this section.

Theorem 11 (Monotone CAPM) Let Xm be defined as above. Then,

EP [Xi]−R = βi
¡
EP [Xm]−R

¢
, ∀i = 1, ..., n, (8)

where

βi =
CovP [Xi,∇V ]
CovP [Xm,∇V ]

. (9)

Theorem 11 gives our monotone CAPM, with security market line (8),
and shows its key theoretical and empirical features.
On the theoretical side, the pricing rule delivered by our CAPM is arbi-

trage free: there are no portfolios with strictly negative prices and positive
final payoffs. In fact, let Yi the end-of-period payoff per share of asset i and
pi its current price. Then, Xi = Yi/pi and (8) becomes

EP [Yi]

pi
−R =

1

pi

CovP [Yi,∇V ]
CovP [Xm,∇V ]

¡
EP [Xm]−R

¢
This delivers the pricing rule:

pi =
1

R
EP [Yi∇V ] .

This pricing rule is a positive linear functional. For, the price of a portfolio
consisting of qi shares of asset i is

nX
i=1

qipi =
1

R
EP

"Ã
nX
i=1

qiYi

!
∇V

#
,

13



which is positive as long as
nX
i=1

qiYi is positive (∇V is positive because Vm is

monotone).
The absence of arbitrage opportunities in our monotone CAPM is a key

theoretical feature of our model. As observed in the Introduction, this is in
stark contrast with their presence in the standard CAPM model, caused by
the lack of monotonicity of mean-variance preferences. This was observed
by Dybvig and Ingersoll [DI], who show that if Xm /∈ Gm and the market
is complete, then the pricing rule obtained from standard CAPM is not a
positive linear functional, and it thus allows arbitrages.
Inter alia, this means that, differently from the standard CAPM, our

monotone CAPM pricing rule can be integrated in a standard Arrow-Debreu
complete-markets economy, with all assets in such an economy priced in
equilibrium according to our CAPM.

On the empirical side, our monotone CAPM model can be fully analyzed
from market data. First observe that the values of the betas (9) can be
derived from market data because we just observed that, besides those of Xi,
also the values of Xm and ∇V can be determined from market data.
Second, Theorem 11 suggests that, by regressing the excess returns to the

single assets on the excess return to the market portfolio, the empirical betas
of the single assets can be estimated by instrumental variables, using ∇V as
an instrument. In fact, define εi = Xi −R− βi (Xm −R), so that:

Xi = R+ βi (Xm −R) + εi.

By Lemma 10.(ii), ∇V is easily seen to be orthogonal to εi, and so ∇V can
be used as an instrument.
We cannot use, instead, ordinary least squares because, in general,Xm−R

is not orthogonal to εi. For:

EP [εi (Xm −R)] = EP [(Xi −R) (Xm −R)]− βiE
P
£
(Xm −R)2

¤
= EP [(Xi −R) (Xm −R)]− CovP [∇V,Xi]

CovP [∇V,Xm]
EP
£
(Xm −R)2

¤
.

Summing up, the monotone CAPM is arbitrage free and its betas can be
inferred from market data. The monotone CAPM has thus a sounder theo-
retical foundation than the standard CAPM, while retaining its remarkable
empirical tractability.
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6 Some Examples

In this section we present three simple examples to illustrate the optimal
portfolio rule we derived above. In every example there are five possible
states of Nature. Each of them obtains with a probability P (si) that remains
fixed throughout the examples. In all examples we also set θ = 10.
Example 1 is a case in which our model and the traditional mean-variance

model deliver the same optimal composition of the portfolio. This is not
interesting per se, but it serves as a benchmark and it helps to introduce
Example 2, where the two optimal portfolios differ. In Example 1 there is
only one risky asset, whose gross return is denoted by X1 and is reported in
the next table, and a risk-free asset, whose gross return R is equal to 1 across
all states. In this example, the optimal portfolio α∗mmv calculated according
to our rule is equal to the mean-variance optimal portfolio α∗mv. Wmv and
Wmmv represent the overall return to the two optimal portfolios for each state
of the world. The table also displays the value of the constant κ∗ at which it
is optimal to truncate the distribution of the return to the portfolio of risky
assets.

P (si) P (si |Wmmv ≤ κ∗ ) R X1 Wmv Wmmv

s1 0.1 0.1 1 0.97 0.9375 0.9375
s2 0.2 0.2 1 0.99 0.9791 0.9791
s3 0.4 0.4 1 1.01 1.0208 1.0208
s4 0.2 0.2 1 1.03 1.0620 1.0620
s5 0.1 0.1 1 1.05 1.1041 1.1041
α∗mv = 2.083
α∗mmv = 2.083 κ∗ = 1.1211

Example 2 is a slight modification of Example 1. We increase the payoff
to the risky asset in state s5 from 1.05 to 1.10, leaving everything else un-
changed. The effect of this change is an increase in both the mean and the
variance of X1, the payoff to the risky asset. The optimal behavior according
to the mean-variance model is to reduce the fraction of wealth invested in the
risky asset from 2.083 to 1.3574. According to our model it is also optimal
to decrease the position in the risky asset, but less, from 2.083 to 1.8382.
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P (si) P (si |Wmmv ≤ κ∗ ) R X1 Wmv Wmmv

s1 0.1 0.1111 1 0.97 0.9592 0.9448
s2 0.2 0.2222 1 0.99 0.9864 0.9816
s3 0.4 0.4444 1 1.01 1.0135 1.0183
s4 0.2 0.2222 1 1.03 1.0407 1.0551
s5 0.1 0 1 1.10 1.1357 1.1838
α∗mv = 1.3574
α∗mmv = 1.8382 κ∗ = 1.1213

In both cases the optimal behavior might seem puzzling at a first sight:
when the payoff of an asset increases in one state, it is optimal to hold less of
that asset. This behavior can be understood by looking at the distributions
of the overall return in the two tables. By reducing the fraction of wealth
invested in the risky asset, the overall return increases in the states where
the risky asset pays less than the risk-free asset. On the contrary, the overall
return decreases in the states where the risky asset pays more than the risk-
free asset. In state s5, however, the effect of this decrease is compensated
by the fact that we have raised the payoff to the risky asset from 1.05 to
1.10. Hence, by reducing the amount of wealth invested in the risky asset,
the investor gives up some of the extra payoff received in state s5 in order
to guarantee himself a higher overall return in the states where the risky
asset has a low payoff. The problem with this kind of behavior is that it can
become pathological with mean-variance preferences. The next table shows
what happens if we further increase the payoff in state s5.

X1 (s5) 1.05 1.10 1.15 1.20 1.50 2 3
α∗mv 2.0830 1.3574 0.9174 0.6747 0.2465 0.1175 0.0572
α∗mmv 2.0830 1.8382 1.8382 1.8382 1.8382 1.8382 1.8382

The more we increase the payoff in state s5, the more the mean-variance
optimal fraction α∗mv of wealth invested in the risky asset decreases, until it
goes to zero when the payoff in state s5 becomes very large. In our model this
does not happen. At first α∗mmv decreases, but it then stops decreasing and
it remains fixed at the same value, though the payoff in state s5 is further
increased. The reason why this happens is that, once probabilities have been
optimally reassigned to states and a zero probability has been assigned to
state s5, any further increases of the payoff in s5 are disregarded and have
no influence on the formation of the optimal portfolio.
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Example 3 is slightly more complicated. Everything is as in Example 2,
but a second risky asset is added. The payoff to this new asset, denoted by
X2, is high in the states where X1 is low and low where X1 is high.

P (si) P (si |Wmmv ≤ κ∗ ) R X1 X2 Wmv Wmmv

s1 0.1 0.1111 1 0.97 1.05 1.002 1.0231
s2 0.2 0.2222 1 0.99 1.00 0.9833 0.9570
s3 0.4 0.4444 1 1.01 0.99 1.0061 1.0125
s4 0.2 0.2222 1 1.03 0.99 1.0393 1.0985
s5 0.1 0 1 1.10 0.99 1.1556 1.3994
α∗mv = (1.6613, 1.0495)
α∗mmv = (4.2989, 3.0423) κ∗ = 1.1316

Also in this case the optimal portfolios suggested by our model and by the
traditional model are different. To get an intuitive idea of what is happening,
note that, although the market is still arbitrage-free, asset 2 allows to hedge
away almost completely the risks taken by investing in asset 1. Consider for
example a portfolio formed by 0.5 units of asset 1 and 0.5 units of asset 2.
Its payoffs in the five states are collected in the following vector:

(1.01, 0.995, 1, 1.01, 1.045)

A qualitative inspection of this payoff vector reveals that in state s2 this
portfolio pays off slightly less than the risk-free asset, while in all other states
it pays off more and in some states considerably more. Roughly speaking, if
it was not for the slightly low payoff in state s2, there would be an arbitrage
opportunity because the portfolio would pay off more than the risk-free asset
in every state. As a consequence, we would expect an optimal portfolio
rule to exploit this favorable configuration of payoffs by prescribing to take
a highly levered position. As reported in the last table, according to our
model it is optimal to take a highly levered position in the risky assets in
order to exploit this opportunity, at the cost of facing a low payoff in state
s2. In contrast, with the mean-variance model the optimal portfolio is much
less aggressive, and the investor is overly concerned with the unique state in
which the payoff is lower than the payoff to the risk-free asset.

7 Conclusions

We have derived a portfolio allocation rule using a corrected version of the
mean-variance principle, which avoids the problem of non-monotonicity. In
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the cases where mean-variance preferences are well-behaved (i.e., monotone)
the optimal portfolios suggested by our rule do not differ from standard
mean-variance efficient portfolios.
The important property of separability in two funds still holds in our set-

ting, and this allows to derive a monotone CAPM that retains the empirical
tractability of the standard CAPM, but, unlike the latter, is arbitrage free.
We close by observing thatMaccheroni, Marinacci, and Rustichini [MMR-2]

recently extended [MMR] to a dynamic setting, and for this reason we expect
that also our analysis can be extended to an intertemporal framework. This
will be the subject of future research, along with an empirical analysis of the
monotone CAPM.

A Monotone Fenchel Duality

In this section we recall some important definitions of Convex Analysis, and
we prove some properties of monotone extensions of concave functionals that
pave the way for the proof of Theorem 2.
Let (E, k·k ,>) be an ordered Banach space, i.e., an ordered vector space

endowed with a Banach norm such that the positive cone E+ is closed and
generates E. Denote by E0 the norm dual of E, and by E0

+ the cone of all
positive, linear, and continuous functionals on E. (See [Ch].)
Let ψ : E → R be a concave and continuous functional. The directional

derivative of ψ at x is

d+ψ (x) (v) = lim
t→0+

ψ (x+ tv)− ψ (x)

t
∀v ∈ E.

If the above limit exists for t→ 0 and all v ∈ E, ψ is Gateaux differentiable at
x, and the functional ∇ψ (x) : v 7→ d+ψ (x) (v) is called Gateaux differential.
(See [Ph]). The superdifferential of ψ at x is the subset of E0 defined by

∂ψ (x) = {x0 ∈ E0 : ψ (y)− ψ (x) ≤ hy − x, x0i ∀y ∈ E} ;

while its Fenchel conjugate ψ∗ : E0 → [−∞,∞) is given by

ψ∗ (x0) = inf
x∈E

{hx, x0i− ψ (x)} ∀x0 ∈ E0.

Finally, the domain of monotonicity of ψ is the set Gψ ⊆ E given by

Gψ =
©
x ∈ E : ∂ψ (x) ∩E0

+ 6= ∅
ª
.

Next proposition confirms the intuition that the set Gψ is where the func-
tional ψ is monotone.
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Proposition 12 Let E be an ordered Banach space and ψ : E → R be a
concave and continuous functional with Gψ 6= ∅.

(i) The functional ψ̃ : E → R, given by

ψ̃ (x) = min
x0∈E0+

{hx, x0i− ψ∗ (x0)} ∀x ∈ E, (10)

is the minimal monotone functional that dominates ψ; that is,

ψ̃ (x) = sup {ψ (y) : y ∈ E and y 6 x} ∀x ∈ E. (11)

(ii) Let x ∈ E, x ∈ Gψ ⇔ d+ψ (x) (v) ≤ 0 ∀v 6 0⇔ ψ̃ (x) = ψ (x) .

(iii) Let x0 ∈ E0, ³
ψ̃
´∗
(x0) =

½
ψ∗ (x0) if x0 ∈ E0

+,
−∞ otherwise.

(12)

(iv) If ψ∗ is strictly concave on the intersection of its domain with E0
+, then

ψ̃ is Gateaux differentiable and∇ψ̃ (x) = argminx0∈E0+ {hx, x
0i− ψ∗ (x0)}

for all x ∈ E.

Moreover, if Gψ is convex, for all x ∈ E there exists y ∈ Gψ such that
y 6 x, and there exists a linear subspace F ⊆ Gψ such that ψ|F is linear and
ψ∗ (x0) is attained for all x0 ∈ E0

+ with x0|F = ψ|F ; then, ψ̃ is the minimal
monotone functional that extends ψ|Gψ

from Gψ to E. In this case,

ψ̃ (x) = sup {ψ (y) : y ∈ Gψ and y 6 x} = min
x0∈E0+:x0|F=ψ|F

{hx, x0i− ψ∗ (x0)}

(13)
for all x ∈ E.

By (i) and (ii), ψ̃ is the minimal monotone extension of ψ|Gψ
from Gψ

to E that dominates ψ on E; in particular, ψ̃ (x) ≥ ψ (x) for each x ∈ E
and ψ̃ (x) = ψ (x) for all x ∈ Gψ. Moreover, (iii) shows that the Fenchel
conjugates of ψ̃ and ψ coincide on the coneE0

+. (iv) is a useful differentiability
property. The final part, shows that, under additional assumptions (satisfied,
e.g., by the mean-variance functional), the extension ψ̃ has even stronger
minimality properties.13

13Similar results can be obtained in greater generality, e.g., in the case of a proper
concave, and upper semicontinuous function ψ : E → [−∞,∞) on a ordered locally
convex space. Details are available upon request.
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Proof. By the Fenchel-Moreau Theorem, ψ (x) = infx0∈E0 {hx, x0i− ψ∗ (x0)}
for all x ∈ E. Set

ψ̃ (x) = inf
x0∈E0+

{hx, x0i− ψ∗ (x0)} ∀x ∈ E. (14)

Let x0 ∈ Gψ (6= ∅) and x00 ∈ ∂ψ (x0) ∩E0
+ (6= ∅), then

ψ (x) ≤ ψ (x0) + hx, x00i− hx0, x00i ∀x ∈ E.

Therefore, the functional x00 + (ψ (x0)− hx0, x00i) is affine, monotone, and it
dominates ψ. Notice that

hx0, x00i− ψ (x0) ≤ hx, x00i− ψ (x) ∀x ∈ E and ψ∗ (x00) = hx0, x00i− ψ (x0) .
(15)

In particular, x00 ∈ E0
+ and ψ∗ (x00) ∈ R, hence, for all x ∈ E,

−∞ < ψ (x) ≤ inf
x0∈E0+

{hx, x0i− ψ∗ (x0)} <∞.

Then ψ̃ dominates ψ and it takes finite values (i.e. it is a functional). Obvi-
ously, ψ̃ is concave and monotone.
(i) Let ϕ : E → R be a concave and monotone functional such that

ϕ ≥ ψ. Then ϕ is continuous,14 and ϕ (x) = infx0∈E0+ {hx, x
0i− ϕ∗ (x0)} for

all x ∈ E.15 In addition, since ϕ ≥ ψ, then ϕ∗ ≤ ψ∗ and

ϕ (x) = inf
x0∈E0+

{hx, x0i− ϕ∗ (x0)} ≥ inf
x0∈E0+

{hx, x0i− ψ∗ (x0)} = ψ̃ (x) ∀x ∈ E.

This shows that ψ̃ is the minimal concave and monotone functional that
dominates ψ. It is easy to check that the function defined by Eq. (11) is the
minimal monotone functional that dominates ψ, and it is concave, hence it
coincides with ψ̃.
(iii) Follows from the definition of ψ̃ (Eq. 14) and the observation that

the function defined by Eq. (12) is proper, concave, and weak* upper semi-
continuous.
14If ϕ : Ω → R is concave and monotone on an open subset Ω of an ordered Banach

space, then it is continuous.
15If ϕ : E → [−∞,∞] is monotone and not identically −∞, then ϕ∗ (x0) = −∞ for all

x0 /∈ E0+.
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Since ψ̃ is concave and continuous, for all x0 ∈ E,16 (iii) delivers

x00 ∈ ∂ψ̃ (x0) ⇔ x00 ∈ arg min
x0∈E0

n
hx0, x0i− ψ̃∗ (x0)

o
⇔ x00 ∈ arg min

x0∈E0+
{hx0, x0i− ψ∗ (x0)} .

This shows that the infimum in Eq. (14) is attained, and that (iv) holds.
(ii) If x ∈ Gψ, then there is x00 ∈ ∂ψ (x) ∩E0

+, and for all v 6 0

d+ψ (x) (v) = min
x0∈∂ψ(x)

hv, x0i ≤
D
v, x

0
0

E
≤ 0.

Conversely, assume that d+ψ (x) (v) ≤ 0 for all v 6 0 and, by contradiction,
that x /∈ Gψ, that is ∂ψ (x)∩E0

+ = ∅. Since E0
+ is a weak* closed and convex

cone and ∂ψ (x) is weak* compact, convex, and nonempty, there exists v ∈ E
such that

hv, y0i ≤ 0 < hv, x0i ∀y0 ∈ E0
+, x

0 ∈ ∂ψ (x) . (16)

Since E+ is closed, then E+ =
©
x ∈ E : hx, y0i ≥ 0 ∀y0 ∈ E0

+

ª
. The left

hand side of Eq. (16) amounts to say that v 6 0, the right hand side that
minx0∈∂ψ(x) hv, x0i > 0, which is absurd.
If x ∈ Gψ, then there is x00 ∈ ∂ψ (x) ∩ E0

+ that is

x00 ∈ arg min
x0∈E0

{hx, x0i− ψ∗ (x0)} and x00 ∈ E0
+, then

x00 ∈ arg min
x0∈E0+

{hx, x0i− ψ∗ (x0)} .

The first line implies ψ (x) = hx, x00i − ψ∗ (x00), the second that ψ̃ (x) =
hx, x00i − ψ∗ (x00). Conversely, if ψ (x) = minx0∈E0+ {hx, x

0i− ψ∗ (x0)}, then
there exists x00 ∈ E0

+ such that

hx, x00i− ψ∗ (x00) = ψ (x) = min
x0∈E0

{hx, x0i− ψ∗ (x0)} , then

x00 ∈ arg min
x0∈E0

{hx, x0i− ψ∗ (x0)} and x00 ∈ E0
+,

therefore, x00 ∈ ∂ψ (x) ∩ E0
+ and x ∈ Gψ.

Finally, assume Gψ is convex, for all x ∈ E there exists y ∈ Gψ such that
y 6 x, and there exists a linear subspace F ⊆ Gψ such that ψ|F is linear and
ψ∗ (x0) is attained for all x0 ∈ E0

+ with x0|F = ψ|F . Set

ψ̂ (x) = sup {ψ (y) : y ∈ Gψ and y 6 x} ∀x ∈ E.

16If ϕ : E → R is concave and continuous, then, for all x0 ∈ E,

∂ϕ (x0) = arg min
x0∈E0

{hx0, x0i− ϕ∗ (x0)} 6= ∅.
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It is easy to check that ψ̂ : E → R is the minimal monotone functional
that extends ψ|Gψ

from Gψ to E, and that convexity of Gψ implies that it
is concave. Therefore, ψ̂ ≤ ψ̃, ψ̂ (x) = ψ (x) for all x ∈ Gψ, ψ̂ is concave,
monotone, and linear on F (where it coincides with ψ). Hence, for all x ∈
E,17

ψ̂ (x) = inf
x0∈E0

n
hx, x0i− ψ̂∗ (x0)

o
= inf

x0∈E0+:x0|F=ψ̂|F

n
hx, x0i− ψ̂∗ (x0)

o
= inf

x0∈E0+:x0|F=ψ|F

n
hx, x0i− ψ̂∗ (x0)

o
.

For all x0 ∈ E0
+ such that x

0
|F = ψ|F ,

ψ̂∗ (x0) = inf
x∈E

n
hx, x0i− ψ̂ (x)

o
≤ inf

x∈Gψ

n
hx, x0i− ψ̂ (x)

o
= inf

x∈Gψ

{hx, x0i− ψ (x)} .
(17)

Analogously, since ψ is linear on F then, for all x ∈ E,

ψ̃ (x) = min
x0∈E0+:x0|F=ψ|F

{hx, x0i− ψ∗ (x0)} . (18)

Since ψ∗ (x0) is attained for all x0 ∈ E0
+ such that x

0
|F = ψ|F , for every x0 with

these properties there exists x0 ∈ E such that

hx0, x0i− ψ (x0) ≤ hx, x0i− ψ (x) ∀x ∈ E.

Then x0 ∈ ∂ψ (x0)∩E0
+ and x0 ∈ Gψ, in particular, ψ∗ (x0) is attained in Gψ.

That is, for x0 ∈ E0
+ such that x

0
|F = ψ|F ,

ψ∗ (x0) = inf
x∈Gψ

{hx, x0i− ψ (x)} ≥ ψ̂∗ (x0)

where the last inequality descends from Eq. (17). We conclude that

ψ̂ (x) = inf
x0∈E0+:x0|F=ψ|F

n
hx, x0i− ψ̂∗ (x0)

o
≥ inf

x0∈E0+:x0|F=ψ|F
{hx, x0i− ψ∗ (x0)} = ψ̃ (x)

for all x ∈ E, as wanted. ¥

These results have been recently extended in Filipovic and Kupper [FK-2].

17If ϕ : E → [−∞,∞] is linear on a subspace F , then ϕ∗ (x0) = −∞ if x0|F 6= ϕ|F .
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B Proofs

Let f ∈ L (P ), we denote by Ff (t) = P (f ≤ t) its cumulative distribution
function and by gf (t) =

R t
−∞ Ff (z) dz its integral distribution function.

Next two lemmas regroup some useful properties of integrated distribution
functions. We report the proofs for the sake of completeness.

Lemma 13 For all z ∈ R,

gf (z) =

Z
(f − z)− dP

= zP (f ≤ z)−
Z

f1{f≤z}dP

= zP (f < z)−
Z

f1{f<z}dP

=

Z
z − (f ∧ z) dP

=

Z z

−∞
P (f < t) dt.

Proof. Let z ∈ R. (f − z)− = (z − f) 1{f≤z}, henceZ
(f − z)− dP = zP (f ≤ z)−

Z
f1{f≤z}dP.

Moreover,

zP (f ≤ z)−
Z

f1{f≤z}dP = zP (f < z) + zP (f = z)−
Z
{f<z}

fdP −
Z
{f=z}

fdP

= zP (f < z) + zP (f = z)−
Z
{f<z}

fdP − zP (f = z)

= zP (f < z)−
Z

f1{f<z}dP.

Since f1{f≤z} = (f ∧ z)− z1{f>z}, then

zP (f ≤ z)−
Z

f1{f≤z}dP = zP (f ≤ z)−
Z ¡

f ∧ z − z1{f>z}
¢
dP

= zP (f ≤ z)−
Z
(f ∧ z) dP + z

Z
1{f>z}dP

= zP (f ≤ z) + zP (f > z)−
Z
(f ∧ z) dP

=

Z
z − (f ∧ z) dP.
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Observe that z − (f ∧ z) ≥ 0, and soZ
z − (f ∧ z) dP =

Z ∞

0

P (z − (f ∧ z) ≥ u) du.

On the other hand, {z − (f ∧ z) ≥ u} = {f ≤ z − u} for all u > 0. In fact,

z − (f ∧ z) ≥ u⇒ (f ∧ z) ≤ z − u < z ⇒ (f ∧ z) = f ⇒ f ≤ z − u

and

f ≤ z − u⇒ f ∧ z ≤ (z − u) ∧ z ⇒ f ∧ z ≤ z − u⇒ z − (f ∧ z) ≥ u.

Hence,Z
z − (f ∧ z) dP =

Z ∞

0

P (z − (f ∧ z) ≥ u) du

=

Z ∞

0

P (f ≤ z − u) du =

Z z

−∞
P (f ≤ t) dt = gf (z) ,

thus the first four equalities hold.
Finally, notice that P (f < t) = limu→t− P (f ≤ u) 6= P (f ≤ t) for at

most a countably many ts. ¥

Lemma 14 The function gf : R→ [0,∞) is continuous and

Ff (z) = lim
ε→0+

·
gf (z + ε)− gf (z)

ε

¸
∀z ∈ R.

That is, Ff is the right derivative of gf , and Ff (z) is the derivative of gf at
every point z at which Ff is continuous. Moreover, setting ζ = essinf (f), gf
is strictly increasing on (ζ,∞), gf ≡ 0 on (−∞, ζ],18 limz→ζ+ gf (z) = 0+,
and limz→∞ gf (z) =∞.

Proof. The Fundamental Theorem of Calculus guarantees the continuity
and derivability properties of gf . Recall that

essinf (f) = sup {α ∈ R : P (f < α) = 0} .

If z ∈ R and z ≤ essinf (f), for all t < z there exists α > t such that
P (f < α) = 0. Then,

0 ≤ P (f < t) ≤ P (f < α) = 0.

18With the convention (−∞,−∞] = ∅.
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This implies gf (z) = 0 for all z ∈ (−∞, ζ].
On the other hand, if ζ < z < z0, then

gf (z
0)− gf (z) =

Z z0

z

P (f < t) dt ≥ P (f < z) (z0 − z) .

But P (f < z) = 0 would imply z ≤ ζ, a contradiction. Therefore, gf (z0)−
gf (z) > 0. That is, gf is strictly increasing on (ζ,∞).
Notice that limt→∞ Ff (t) = 1. Then, for all n > 1 there exists k ≥ 1

(n, k ∈ N) such that Ff (t) > 1− 1
n
for all t ≥ k. Therefore,

gf (k + n) =

Z k+n

−∞
Ff (t) dt ≥

Z k+n

k

Ff (t) dt

≥ n

µ
1− 1

n

¶
= n− 1.

Since gf is increasing on R, then limz→∞ gf (z) =∞.
If ζ > −∞, gf (ζ) = 0, continuity and nonnegativity imply limz→ζ+ gf (z) =

0+. Let ζ = −∞, for all n > 1,

gf (−n) =
Z
(−n− (f ∧ (−n))) dP =

Z
(((−f) ∨ n)− n) dP

=

Z
((−f)− ((−f) ∧ n)) dP.

The Monotone Convergence Theorem guarantees that limn→∞ gf (−n) = 0.
Monotonicity and nonnegativity imply limz→ζ+ gf (z) = 0

+. ¥

For the rest of the Appendix we indifferently write EP or just E. Denoting
by > the relation ≥ P -a.s., (L2 (P ) , k·k2 ,>) is an ordered Banach space,
and its norm dual can be identified with L2 (P ), with the duality relation
hf, Y i = E [fY ]. Simple computation shows that, for all θ > 0,

©
f ∈ L2 (P ) : ∇Uθ (f) > 0

ª
=

½
f ∈ L2 (P ) : f − EP [f ] 6 1

θ

¾
(19)

this set is denoted by Gθ.

Lemma 15 Let f ∈ L2 (P )− Gθ and t ∈ R. Then

f ∧ t ∈ Gθ ⇔ gf (t) ≤
1

θ
. (20)
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Proof. Notice that

f ∧ t− E [f ∧ t] = f1{f≤t} + t1{f>t} − tP (f > t)− E
£
f1{f≤t}

¤
= f1{f≤t} + t1{f>t} − t+ tP (f ≤ t)− E

£
f1{f≤t}

¤
= (f − t) 1{f≤t} + gf (t) .

Since (f − t) 1{f≤t} 6 0,

gf (t) ≤
1

θ
⇒ f ∧ t− E [f ∧ t] 6 1

θ
,

i.e., gf (t) ≤ 1
θ
⇒ f ∧ t ∈ Gθ.

For the converse implication, notice that we are assuming f /∈ Gθ. Then,
being f ∧ t ∈ Gθ, it cannot be f ∧ t = f P -a.s.. Hence, essup (f ∧ t) = t. It
follows that:

f ∧ t− E [f ∧ t] 6 1

θ
⇒ essup (f ∧ t)− tP (f > t)− E

£
f1{f≤t}

¤
≤ 1

θ

⇒ t− tP (f > t)− E
£
f1{f≤t}

¤
≤ 1

θ

⇒ tP (f ≤ t)− E
£
f1{f≤t}

¤
≤ 1

θ

⇒ gf (t) ≤
1

θ
,

i.e., f ∧ t ∈ Gθ ⇒ gf (t) ≤ 1
θ
. ¥

Lemmas 14 and 15 immediately yield the following:

Corollary 16 Let f ∈ L2 (P )−Gθ, then g−1f
¡
1
θ

¢
= max {t ∈ R : f ∧ t ∈ Gθ} .

Lemma 17 For all θ > 0,

(i) Gθ is convex, closed, and for all f ∈ L2 (P )− Gθ and every ε > 0 there
exists g ∈ L2 (P ) such that |f (s)− g (s)| < ε for all s ∈ S, g > f , and
Uθ (g) < Uθ (f).

(ii) Uθ is linear on the subspace T ⊆ Gθ of all P -a.s. constant functions.

(iii) For all Y ∈ L2 (P ),

U∗θ (Y ) =

½
− 1
2θ
(E [Y 2]− 1) if E [Y ] = 1,

−∞ otherwise.
(21)

(iv) {Y ∈ L2 (P ) : E [Y ] = 1} =
n
Y ∈ L2 (P ) : h·, Y i|T = Uθ|T

o
and U∗θ is

attained and strictly concave on this set.
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Proof. (i) Convexity of Gθ is trivial. Next we show closure. If fn ∈ Gθ
and fn → f in L2 (P ), then there exists a subsequence gn of fn such that
gn (s)→ f (s) for P -almost all s in S. Let A0 = {s ∈ S : gn (s)→ f (s)}, and
for all n ≥ 1, An = {s ∈ S : gn (s)− E [gn] ≤ 1/θ}, then P

¡T
n≥0An

¢
= 1

and for all s ∈
T

n≥0An,

f (s)− E [f ] = lim
n→∞

(gn (s)− E [gn]) ≤
1

θ

that is f − E [f ] 6 1/θ.
Moreover, if f /∈ Gθ, then ∇Uθ (f) is not positive and there exists A with

P (A) > 0 such that
R
1A∇Uθ (f) dP < 0, then

lim
t→0

Uθ (f + t1A)− Uθ (f)

t
=

Z
1A∇Uθ (f) dP < 0

that is, there exists ε > 0 such that

Uθ (f + t1A)− Uθ (f)

t
< 0

for all t ∈ (0, ε). As a consequence for all such ts, f+t1A > f , Uθ (f + t1A) <
Uθ (f) (set g = f + (ε/2) 1A).
(ii) is trivial.
For convenience, (iii) and (iv) are proved together. For all t ∈ R, Uθ (t1S) =

t, then for all Y ∈ L2 (P )n
Y ∈ L2 (P ) : h·, Y i|T = Uθ|T

o
=
©
Y ∈ L2 (P ) : E [Y ] = 1

ª
,

and U∗θ (Y ) = −∞ for all Y that does not belong to this set.
If E [Y ] = 1, the functional Wθ : L2 (P )→ R given, for all f ∈ L2 (P ), by

Wθ (f) = hf, Y i− Uθ (f) = hf, Y i− hf, 1i+
θ

2
hf − E [f ] , f − E [f ]i

is well defined, convex, and Gateaux differentiable. Its Gateaux differential
is

∇Wθ (f) = Y − 1 + θ (f − E [f ]) . (22)

Notice that f̂ = −θ−1Y solves ∇Wθ

³
f̂
´
= 0 (since E [Y ] = 1), and Wθ at-

tains its minimum onL2 (P ) at f̂ . This implies that U∗θ (Y ) = inff∈L2(P )Wθ (f)
is attained, and

U∗θ (Y ) = min
f∈L2(P )

Wθ (f) =Wθ

³
f̂
´
=

¿
−1
θ
Y, Y

À
−
¿
−1
θ
Y, 1

À
+

θ

2
Var

·
−1
θ
Y

¸
= −1

θ
E
£
Y 2
¤
+
1

θ
E [Y ] +

θ

2

1

θ2
Var [Y ] = − 1

2θ

¡
E
£
Y 2
¤
− 1
¢
.
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This concludes the proof of Eq. (21). Strict concavity of U∗θ in its domain is
a straightforward application of the the Cauchy-Schwartz inequality. ¥

Proof of Lemma 1. It is an immediate consequence of Eq. (19) and part
(i) of the above Lemma 17. ¥

Proof of Theorem 2. As observed, Uθ : L2 (P ) → R is a concave and
continuous functional on an ordered Banach space, Gθ = GUθ , Lemma 17
and Corollary 16, guarantee that all the hypotheses of Proposition 12 are
satisfied. For all f ∈ L2 (P ),

Ũθ (f) = min
Y ∈L2+(P ):E[Y ]=1

½
E [fY ] +

1

2θ

¡
E
£
Y 2
¤
− 1
¢¾

= min
Q∈∆2(P )

½
EQ [f ] +

1

2θ
C (Q||P )

¾
= Vθ (f) ,

and Vθ has all the desired properties. ¥

Remark 18 Proposition 12.(iv) and Lemma 17.(iv) guarantee that Vθ is
Gateaux differentiable, and

∇Vθ (f) = arg min
Y ∈L2+(P ):E[Y ]=1

½
E [fY ] +

1

2θ

¡
E
£
Y 2
¤
− 1
¢¾

∀f ∈ L2 (P ) .

(23)

Theorem 19 Let f ∈ L2 (P ). Then

Vθ (f) =

½
E [f ]− θ

2
Var [f ] if f ∈ Gθ,

E [f ∧ κ]− θ
2
Var [f ∧ κ] else,

where κ = g−1f
¡
1
θ

¢
. Moreover, the Gateaux differential of Vθ at f is

∇Vθ (f) = θ (κ− f) 1{f≤κ}.

Proof. For all f ∈ L2 (P ), Vθ (f) = minQ∈∆2(P )

©
EQ (f) + 1

2θ
C (Q||P )

ª
.

That is, Vθ (f) is the value of the problem: min
©
E [fY ] + 1

2θ
E [Y 2]− 1

2θ

ª
Y > 0
E [Y ] = 1

. (24)

Remark 18 guarantees that the solution of such problem exists, is unique,
and it coincides with the Gateaux derivative of Vθ at f . Notice that Y is
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a solution of problem (24) if and only if it is a solution of the constrained
optimization problem:  min

©
E [fY ] + 1

2θ
E [Y 2]

ª
Y > 0
E [Y ] = 1

. (25)

The Lagrangian is

L (Y, µ, λ) = E (fY ) +
1

2θ
E
¡
Y 2
¢
− E (µY )− λ (E (Y )− 1) ,

with µ ∈ L2+ (P ), λ ∈ R. The Kuhn-Tucker optimality conditions are:

f +
1

θ
Y − µ− λ = 0 (P -a.s.)

E(µY ) = 0

Y > 0, µ > 0
E (Y ) = 1

Since µ, Y > 0, they are equivalent to:

f +
1

θ
Y − µ− λ = 0 (P -a.s.)

µY = 0 (P -a.s.)

Y > 0, µ > 0
E (Y ) = 1

that is,

f +
1

θ
Y − λ ≥ 0 P -a.s. (26)·

f +
1

θ
Y − λ

¸
Y = 0 P -a.s. (27)

Y ≥ 0 P -a.s. (28)

E [Y ] = 1 (29)

It is sufficient to find (Y ∗, λ∗) that satisfy (26) - (29) everywhere (not
only P -a.s.).
If s ∈ {Y ∗ > 0}, then by (27) f (s) + 1

θ
Y ∗ (s)− λ∗ = 0 and

Y ∗ (s) = θ (λ∗ − f (s)) . (30)
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In particular, λ∗ − f (s) > 0, and s ∈ {f < λ∗}. Conversely, if s ∈ {f < λ∗},
then by (26) Y ∗ (s) ≥ θ (λ∗ − f (s)) > 0 and s ∈ {Y ∗ > 0}. In sum,

{Y ∗ > 0} = {f < λ∗} and
Y ∗ = θ (λ∗ − f) 1{f<λ∗} .

By (29),

1 = E [Y ∗] = E
£
θ (λ∗ − f) 1{f<λ∗}

¤
= θ

¡
λ∗P (f < λ∗)− E

£
f1{f<λ∗}

¤¢
,

that is,

gf (λ
∗) = λ∗P (f < λ∗)− E

£
f1{f<λ∗}

¤
=
1

θ
.

In other words,

λ∗ = g−1f

µ
1

θ

¶
≡ κ, (31)

and λ∗ is unique. A fortiori, Y ∗ is unique and

Y ∗ = θ (κ− f) 1{f<κ}. (32)

By construction, the pair (Y ∗, λ∗) defined by (31) and (32) is a solution of
(26) - (29). Since the solution of (24) exists and it is unique, we conclude
that Y ∗ defined as in Eq. (32) is the unique solution of (24).
Notice that Y ∗ = θ (κ− f) 1{f<κ} + θ (κ− f) 1{f=κ} = θ (κ− f) 1{f≤κ},

(Y ∗)2 = θ2
¡
f21{f≤κ} + κ21{f≤κ} − 2κf1{f≤κ}

¢
and

E
£
(Y ∗)2

¤
= θ2

µZ
f21{f≤κ}dP + κ2P (f ≤ κ)− 2κ

Z
f1{f≤κ}dP

¶
.

Moreover,

E [fY ∗] = E
£
fθ (κ− f) 1{f≤κ}

¤
= E

£
θκf1{f≤κ} − θf21{f≤κ}

¤
= θκ

Z
f1{f≤κ}dP − θ

Z
f21{f≤κ}dP.
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Therefore,

Vθ (f) = E [fY
∗] +

1

2θ
E
£
(Y ∗)2

¤
− 1

2θ

= θκ

Z
f1{f≤κ}dP − θ

Z
f21{f≤κ}dP+

+
θ

2

µZ
f21{f≤κ}dP + κ2P (f ≤ k)− 2κ

Z
f1{f≤κ}dP

¶
− 1

2θ

= −θ
2

Z
f21{f≤κ}dP +

θ

2
κ2P (f ≤ k)− 1

2θ

Also observe that f1{f≤κ} + κ1{f>κ} = f ∧ κ, whence

E [f ∧ κ] = E
£
f1{f≤κ}

¤
+ κP (f > κ) = E

£
f1{f≤κ}

¤
− κP (f ≤ κ) + κ

= −gf (κ) + κ = κ− 1
θ
,

and

Var [f ∧ κ] = E
h¡
f1{f≤κ} + κ1{f>κ}

¢2i−µκ− 1
θ

¶2
=

Z
f21{f≤κ}dP + κ2P (f > k)− κ2 − 1

θ2
+ 2

κ

θ

=

Z
f21{f≤κ}dP − κ2P (f ≤ k)− 1

θ2
+ 2

κ

θ
.

Finally,

E [f ∧ κ]− θ

2
Var [f ∧ κ] = κ− 1

θ
− θ

2

µZ
f21{f≤κ}dP − κ2P (f ≤ k)− 1

θ2
+ 2

κ

θ

¶
= κ− 1

θ
−
µ
θ

2

Z
f21{f≤κ}dP −

θ

2
κ2P (f ≤ k)− 1

2θ
+ κ

¶
= −θ

2

Z
f21{f≤κ}dP +

θ

2
κ2P (f ≤ k)− 1

2θ

= Vθ (f) .

¥

Proof of Theorem 3. It is now enough to combine Corollary 16 and
Theorem 19. ¥

Remark 20 Inspection of the proof of Theorem 19 shows that:
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• For all f ∈ L2 (P ) (not only for f ∈ L2 (P )−Gθ), setting κ = g−1f
¡
1
θ

¢
we

have

Vθ (f) = E [f ∧ κ]−
θ

2
Var [f ∧ κ] ,

∇Vθ (f) = θ (κ− f) 1{f≤κ} = θ (f − κ)− ,

∇Vθ (f) = argminQ∈∆2(P )

½
EQ (f) +

1

2θ
C (Q||P )

¾
.

• The properties of gf guarantee that κ exists, it is unique, and 1
θ
=

κP (f ≤ κ)−
R
f1{f≤κ}dP ; therefore, P (f ≤ κ) > 0.

• Moreover, 1
θ
= κP (f ≤ κ)−

R
f1{f≤κ}dP implies 1

θP (f≤κ)+
R
fdP{f≤κ} =

κ, and so

∇Vθ (f) = θ (κ− f) 1{f≤κ} =

µ
1

P (f ≤ κ)
+ θ

Z
fdP{f≤κ} − θf

¶
1{f≤κ}

=

µ
1

P (f ≤ κ)
− θ (f − E [f |f ≤ κ])

¶
1{f≤κ}.

N

Proof of Theorem 5. By Theorem 13.8 of Chong and Rice [CR], for all
f, Y ∈ L2 (P ), the set

©R
fY 0dP : Y 0 ∈ L2 (P ) and Y 0 ºc Y

ª
coincides with

the interval·Z 1

0

F−1f (1− u)F−1Y (u) du,

Z 1

0

F−1f (u)F−1Y (u) du

¸
,

where ºc is the concave order and F−1f is the quantile function of f .19 Con-
sider the function Γ : L2 (P )→ [0,∞] defined by

Γ (Y ) =

½
1
2θ
(E [Y 2]− 1) if Y > 0 and E [Y ] = 1,

∞ otherwise.

It is easy to check that Y 0 ºc Y implies Γ (Y 0) ≤ Γ (Y ).20 Let f ∈ L2 (P ),

Vθ (f) = min
Y ∈L2(P )

{E [fY ] + Γ (Y )} ≥ inf
Y ∈L2(P )

½Z 1

0

F−1f (1− u)F−1Y (u) du+ Γ (Y )

¾
.

19I.e. Y 0 ºc Y iff
R
φ (Y 0) dP ≥

R
φ (Y ) dP for all concave φ : R→ R ([CR]

and [Cn] denote this relation by Y 0 ≺ Y and call it majorization), and F−1f (t) =
inf {z ∈ R : Ff (z) ≥ t} for all t ∈ [0, 1] .
20Let Y 0 ºc Y . If Γ (Y ) =∞, then Γ (Y 0) ≤ Γ (Y ). Else Y > 0 and E [Y ] = 1, then also

Y 0 > 0 and E [Y 0] = 1 (see [CR, p. 62]). The function φ (t) = − 1
2θ

¡
t2 − 1

¢
is concave,

whence E [φ (Y 0)] ≥ E [φ (Y )], and Γ (Y ) = −E [φ (Y )] ≥ −E [φ (Y 0)] = Γ (Y 0).
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Moreover, for all Y ∈ L2 (P ) there exists Y 0 ∈ L2 (P ) with Y 0 ºc Y such
that

R 1
0
F−1f (1− u)F−1Y (u) du =

R
fY 0dP . Since Γ (Y 0) ≤ Γ (Y ), thenZ 1

0

F−1f (1− u)F−1Y (u) du+Γ (Y ) =

Z
fY 0dP +Γ (Y ) ≥

Z
fY 0dP +Γ (Y 0) ,

hence

Vθ (f) = inf
Y ∈L2(P )

½Z 1

0

F−1f (1− u)F−1Y (u) du+ Γ (Y )

¾
.

If f ºc g, an inequality of Hardy (see, e.g., [CR, p. 57-58]) deliversZ 1

0

F−1f (1− u)F−1Y (u) du ≥
Z 1

0

F−1g (1− u)F−1Y (u) du ∀Y ∈ L2 (P ) ,

and Vθ (f) ≥ Vθ (g). Let f ºSSD g , Theorem 1.1 of [Cn] guarantees that
f − h ºc g for some h ∈ L2+ (P ). Since Vθ is monotone, then Vθ (f) ≥
Vθ (f − h) ≥ Vθ (g). ¥

Proof of Theorem 6. The maximization problem is

sup
α∈R

Vθ (Wα)

whereWα = R+α·
³
X −�1R

´
(remember that α ∈ Rn, X ∈ L2 (P )n, and �1 is

a vector of 1s). From Theorem 19 we know that Vθ is Gateaux differentiable
and

∇Vθ (Wα) =

µ
1

P (Wα ≤ κα)
− θ (Wα − E [Wα|Wα ≤ κα])

¶
1{Wα≤κα},

where κα solves:

P (Wα ≤ κα)
¡
κα − EP [Wα |Wα ≤ κα ]

¢
=
1

θ
. (33)

Since for all i = 1, . . . , n

∂Vθ (Wα)

∂αi
= E [∇Vθ (Wα) (Xi −R)] ,

the first order conditions for an optimum are:

E [X∇Vθ (Wα)] = �1R. (34)
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Substituting ∇Vθ (Wα):

E

·
1{Wα≤κα}

P (Wα ≤ κα)
X − θ

¡
(α ·X) 1{Wα≤κα}X − E [α ·X |Wα ≤ κα ] 1{Wα≤κα}X

¢¸
= �1R

set A = {Wα ≤ κα} to obtain

E [X |A ]− θP (A) (E [(α ·X)X |A ]− E [X |A ] E [α ·X |A ]) = �1R

the observation that E [(α ·X)X |A ] − E [X |A ] E [α ·X |A ] = Var [X |A ]α
yields:

E
h
X −�1R |Wα ≤ κα

i
= θP (Wα ≤ κα)Var [X |Wα ≤ κα ]α.

These are the first n equations. The (n+ 1)-th is the equation which deter-
mines κα, that is (33) or (see Lemma 13)

E
£
(Wα − κα)

−¤ = 1

θ
.

Concavity of Vθ guarantees the sufficiency of first order conditions. ¥

Proof of Proposition 7. Set α∗ = α∗mmv. The maximization problem it
solves is

max
α∈R

min
Y ∈Y

µ
E [(R+ α (X −R))Y ] +

1

2θ
E
£
Y 2
¤
− 1

2θ

¶
(35)

where Y =
©
Y ∈ RS

+ : E [Y ] = 1
ª
. Clearly, Y is convex and compact, and

(α∗, Y ∗) is a solution of (35) if and only if it is a solution of

max
α∈R

min
Y ∈Y

G (α, Y )

where G (α, Y ) = E [(R+ α (X −R))Y ] + 1
2θ
E [Y 2]. Moreover, notice that

G : R×Y→ R is continuous, it is affine in α (for each fixed Y ) and strictly
convex in Y (for each fixed α). Set v = maxα∈RminY ∈YG (α, Y ), by (a
version of) the Min-Max Theorem (e.g. [Au, p. 134]) there exists Ȳ ∈ Y
such that

v = sup
α∈R

G
¡
α, Ȳ

¢
.

Moreover,

G
¡
α∗, Ȳ

¢
≥ min

Y ∈Y
G (α∗, Y ) = G (α∗, Y ∗) = v = sup

α∈R
G
¡
α, Ȳ

¢
≥ G

¡
α∗, Ȳ

¢
,
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therefore, G
¡
α∗, Ȳ

¢
= minY ∈YG (α

∗, Y ), strict convexity implies Ȳ = Y ∗.
In turn, this yields supα∈RG (α, Y

∗) = v 6=∞ and it cannot be

sup
α∈R

µ
R+ αE [(X −R)Y ∗] +

1

2θ
E
£
(Y ∗)2

¤¶
=∞,

therefore
E [Y ∗ (X −R)] = 0. (36)

Y ∗ is the solution of problem (25) in the proof of Theorem 19 with f =
R + α∗ (X −R) = Wα∗. Therefore, there exist λ∗ ∈ R and µ ∈ L2 (P )
(= RS) such that Y ∗ satisfies the following conditions:

R+ α∗ (X −R) +
1

θ
Y ∗ − µ− λ∗ = 0, (37)

E [Y ∗] = 1, (38)

Y ∗ > 0, µ > 0, µY ∗ = 0. (39)

Taking the expectation of both sides of (37) we obtain:

(1− α∗)R+ α∗E [X] +
1

θ
E [Y ∗]− E [µ]− λ∗ = 0 (40)

and, subtracting (40) from (37):

α∗ (X − E [X]) + 1
θ
(Y ∗ − E [Y ∗])− (µ− E [µ]) = 0.

Rearranging and using (38):

Y ∗ = 1− θα∗ (X − E [X]) + θ (µ− E [µ]) . (41)

Multiply both sides by µ, take expectations and use (39) to get:

E [µ]− θα∗Cov [µ,X] + θVar [µ] = 0

and, rearranging terms:

θα∗Cov [µ,X] = E [µ] + θVar [µ] . (42)

Since µ > 0, then E [µ] ≥ 0 thus:

α∗ = 0⇒ µ = 0⇒ Cov [µ,X] = 0, (43)

α∗ > 0⇒ Cov [µ,X] ≥ 0, (44)

α∗ < 0⇒ Cov [µ,X] ≤ 0. (45)
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Now, plugging (41) into (36) we obtain:

E [(1− θα∗ (X − E [X]) + θ (µ− E [µ]))X] = R

or:
E [X]− θα∗Var [X] + θCov [µ,X] = R

which becomes:

α∗ =
1

θ

E [X −R]

Var [X]
+
Cov [µ,X]

Var [X]

Recalling that:

α∗mv =
1

θ

E [X −R]

Var [X]

we obtain:

α∗ = α∗mv +
Cov [µ,X]

Var [X]
(46)

Using (43) - (45), it is now obvious that:

α∗ = 0⇒ α∗ = α∗mv = 0, (47)

α∗ > 0⇒ α∗ ≥ α∗mv, (48)

α∗ < 0⇒ α∗ ≤ α∗mv. (49)

From the proof of Theorem 19 — Eq. (31) — we know that λ∗ = g−1Wα∗
¡
1
θ

¢
= κ∗.

Furthermore, if P (Wα∗ > κ∗) > 0, since S is finite, there exists s such that

R+ α∗ (X (s)−R) =Wα∗ (s) > κ∗ = λ∗,

that is R+ α∗ (X (s)−R)− λ∗ > 0. Since Y ∗ (s) ≥ 0, by (37), we have

µ (s) = R+ α∗ (X (s)−R)− λ∗ +
1

θ
Y ∗ > 0,

and E [µ] > 0. Thus, in this case (42) implies α∗Cov [µ,X] > 0 and the
inequalities in (48) and (49) become strict.
Finally, we want to show that α∗α∗mv ≥ 0. By contradiction, suppose

α∗α∗mv < 0. Then, either α∗ > 0 and α∗mv < 0 or α∗ < 0 and α∗mv > 0.
Suppose α∗ > 0 and α∗mv < 0, since

α∗mv =
1

θ

E [X −R]

Var [X]
,

it must be E [X −R] < 0 and

α∗E [X −R] < 0. (50)
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Clearly, if α∗ < 0 and α∗mv > 0, (50) still holds. Remember that (α∗, Y ∗) is
a saddle point for

G (α, Y ) = E [(R+ α (X −R))Y ] +
1

2θ
E
£
Y 2
¤

and so:
G (α∗, Y ∗) ≤ G (α∗, 1S) = R+ α∗E [X −R] < R

where the last inequality follows from (50). But,

min
Y ∈Y

G (0, Y ) = R+min
Y ∈Y

1

2θ
E
£
Y 2
¤
≥ R

> G (α∗, Y ∗) = max
α∈R

min
Y ∈Y

G (α, Y ) ≥ min
Y ∈Y

G (0, Y ) ,

which is impossible. ¥

Proof of Proposition 8. Assume θP
¡
Wαθ ≤ κθ

¢
Var

£
X
¯̄
Wαθ ≤ κθ

¤
αθ = E

h
X −�1R

¯̄
Wαθ ≤ κθ

i
,

E
h¡
Wαθ − κθ

¢−i
= 1

θ
.

(51)

Set

αγ =
θ

γ
αθ and κγ =

θ

γ

¡
κθ −R

¢
+R.

Then,

Wαθ = R+ αθ ·
³
X −�1R

´
= R+

γ

θ
αγ ·X − γ

θ
αγ ·�1R

= R− γ

θ
R+

γ

θ
R+

γ

θ
αγ ·X − γ

θ
αγ ·�1R

=
γ

θ
Wαγ +R

³
1− γ

θ

´
,

and so

Wαθ =
γ

θ
Wαγ +R

³
1− γ

θ

´
and κθ =

γ

θ
κγ +R

³
1− γ

θ

´
. (52)

Equation (51) becomes θP (Wαγ ≤ κγ)Var [X |Wαγ ≤ κγ ] γ
θ
αγ = E

h
X −�1R |Wαγ ≤ κγ

i
,

EP
h¡

γ
θ
(Wαγ − κγ)

¢−i
= 1

θ
.
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that is(
γP (Wαγ ≤ κγ)Var [X |Wαγ ≤ κγ ]αγ = E

h
X −�1R |Wαγ ≤ κγ

i
,

E
£
(Wαγ − κγ)−

¤
= 1

γ
.

so that (αγ, κγ) solves the portfolio selection problem for an investor with
uncertainty aversion γ. ¥

Proof of Lemma 9. Consider the portfolio selection problem (6) with
θ = 1. Next we show that

max
α∈Rn

V1 (Wα) = max
ζ∈R

V1 (ζXm + (1− ζ)R)

and m ∈ argmaxζ∈R V1 (ζXm + (1− ζ)R).
First observe that, for all ζ ∈ R,

ζXm + (1− ζ)R = ζ (αm ·X) +
³
1− ζαm ·�1

´
R =Wζαm

hence maxζ∈R V1 (ζXm + (1− ζ)R) ≤ maxα∈Rn V1 (Wα). Conversely, if α1 ∈
argmaxα∈Rn V1 (Wα), then m = α1 · �1 and αm = α1/

³
α1 ·�1

´
or α1 = mαm.

Hence

max
α∈Rn

V1 (Wα) = V1 (Wα1) = V1 (Wmαm) = V1
³
mαm ·X +

³
1−mαm ·�1

´
R
´

= V1 (mXm + (1−m)R) ≤ max
ζ∈R

V1 (ζXm + (1− ζ)R)

≤ max
α∈Rn

V1 (Wα)

as wanted. Now, applying Theorem 6 with Xm instead of X, m must satisfy
the following conditions:(

P (mXm + (1−m)R ≤ ν)Var [Xm |mXm + (1−m)R ≤ ν ]m = E [Xm −R |mXm + (1−m)R ≤ ν ] ,

E
h
(mXm + (1−m)R− ν)−

i
= 1.

(53)

Moreover, since Xm is the (optimal) final wealth of an agent with initial
wealth 1 and uncertainty aversion coefficient m, again by Theorem 6 applied
to such an agent it must be the case that

E
£
(Xm − κm)−

¤
= 1/m. (54)

But the second equation of previous system is equivalent to

E

"µ
Xm −

µ
ν

m
− (1−m)

m
R

¶¶−#
=
1

m
(55)

38



and since gXm is strictly increasing (see Lemma 14), then

ν

m
− (1−m)

m
R = κm. (56)

By (56), {mXm + (1−m)R ≤ ν} =
n
Xm ≤ ν

m
− (1−m)

m
R
o
= {Xm ≤ κm}

and (55) is equivalent to (54), thus (53) amounts to½
P (Xm ≤ κm)Var [Xm |Xm ≤ κm ]m = E [Xm −R |Xm ≤ κm ] ,
E
£
(Xm − κm)−

¤
= 1/m,

as wanted. ¥

Proof of Lemma 10. (i) First observe that by Remark 20 and Eq. (52) in
the proof of Proposition 8, for all θ > 0

∇Vθ (Wαθ) = θ
¡
κθ −Wαθ

¢
1{Wαθ

≤κθ} = θ
³m
θ
κm − m

θ
Wαm

´
1{Wαm≤κm}

= m (κm −Xm) 1{Xm≤κm} = m (Xm − κm)− = ∇Vm (Xm) .

(ii) The first order conditions for an optimum are E [X∇Vm (Wαm)] = �1R
(see Eq. 34).
(iii) Descends from Remark 18. ¥
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