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Abstract 

The uneven geographical distribution of the novel coronavirus epidemic (COVID-19) in Italy is a 

puzzle given the intense flow of movements among the different geographical areas before lockdown 

decisions. To shed light on it, we test the effect of the quality of air (as measured by particulate matter 

and nitrogen dioxide) and lockdown restrictions on daily adverse COVID-19 outcomes at province 

level. We find that air pollution is positively correlated with adverse outcomes of the epidemic, with 

lockdown being strongly significant and more effective in reducing deceases in more polluted areas. 

Results are robust to different methods including cross-section, pooled and fixed-effect panel 

regressions (controlling for spatial correlation), instrumental variable regressions, and difference-in-

differences estimates of lockdown decisions through predicted counterfactual trends. They are 

consistent with the consolidated body of literature in previous medical studies suggesting that poor 

quality of air creates chronic exposure to adverse outcomes from respiratory diseases. The estimated 

correlation does not change when accounting for other factors such as temperature, commuting flows, 

quality of regional health systems, share of public transport users, population density, the presence of 

Chinese community, and proxies for industry breakdown such as the share of small (artisan) firms. 

Our findings provide suggestions for investigating uneven geographical distribution patterns in other 

countries, and have implications for environmental and lockdown policies. 
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1. Introduction 

Viruses do not travel alone. They take human beings as means of transport. For this reason, the 

heterogeneity of the diffusion of the novel coronavirus (SARS-CoV-2, thereafter coronavirus) in Italy 

is puzzling. As is well known contagions and deaths in Italy are disproportionately concentrated in 

some provinces of a single region (Lombardia) and, more in general, in the North of Italy (Piemonte 

and Emilia-Romagna).1 Several authors emphasize that the coronavirus has been circulating at least 

since early January and well before late February, when the first cases were detected (e.g. Zehender 

et al. 2020).2 The month before the country lockdown, when the government limited people 

movement around the country3, the flow of commuting between Rome and Milan has been intense, 

as it has always been in these last years with flight and especially high-speed train connections 

allowing to move from one city to another in slightly less than 3 hours. If the virus easily jumped 

from the remote Wuhan to Milan, it is reasonable to wonder why it did not across a much shorter 

distance, i.e. that between Milan and Rome or, more in general, between the North and the South of 

Italy.4,5 

An interesting research question is therefore why the intensity of the epidemic (hereon 

COVID-19) has been so different between the two cities, and in general between different Italian 

provinces. A first tentative answer is that the virus was not spreading in Rome or in the Center-South 

before the government restrictions. Those restrictions were therefore crucial to limit the epidemic in 

these areas, although the anecdotal evidence reported above casts some doubts about this first 

hypothesis. The second tentative answer is that the virus travelled way before the lockdown, and some 

concurring factors like pollution, weather conditions, or less intense economic activity made it weaker 

in areas different from the “epicenter”. 

Our paper aims to shed light on this puzzle by investigating the relative role of quality of air 

in explaining the spread of epidemic in Italy, and its interaction with lockdown decisions. The focus 

                                                 
1 As of June 17th 2020, Lombardia accounted for 38.8 percent of reported contagions and 49 percent of registered COVID-

19 deaths. 
2 The authors show that epidemiological tracing, based on phylogenetic analysis of 

the first three complete genomes of SARS-CoV-2 isolated from three patients involved in 

the first outbreak of COVID-19 in Lombardy, provided evidence that SARS-CoV-2 was present in Italy weeks before the 

first reported cases of infection. 
3 The decree on the full restriction of movement among regions was enacted only on 11th March 2020. The information 

spillover before the decree was operating led to mass escape from Milan train station toward Southern Italy the days 

before (see https://www.milanopost.info/2020/03/09/234982/). 
4 On 31st January 2020 a couple of Chinese tourists who had spent some days in Milan, Parma and Rome (since 28 th of 

January) was recovered in serious conditions at the Spallanzani hospital in Rome 

(https://www.ilgiornale.it/news/roma/allarme-albergo-mio-marito-ha-febbre-1819431.html). 
5The flow of passengers moving from Rome to Milan (airplane plus train) was around 5.14 million in 2018. 3.6 million 

by train, which is the 70% of the total passengers, the others are by plane (20%) and by car (10%). Sources: 

https://www.fsitaliane.it/content/dam/fsitaliane/Documents/fsnews/comunicati-

stampa/2019/dicembre/2019_12_05_NS_2_FS_Italiane_10_anni_AV_cambiato_Paese_e_vita_persone.pdf; 

https://www.ilsole24ore.com/art/roma-milano-7-passeggeri-10-scelgono-treno-AEOuGl5.  

https://www.milanopost.info/2020/03/09/234982/
https://www.ilgiornale.it/news/roma/allarme-albergo-mio-marito-ha-febbre-1819431.html
https://www.fsitaliane.it/content/dam/fsitaliane/Documents/fsnews/comunicati-stampa/2019/dicembre/2019_12_05_NS_2_FS_Italiane_10_anni_AV_cambiato_Paese_e_vita_persone.pdf
https://www.fsitaliane.it/content/dam/fsitaliane/Documents/fsnews/comunicati-stampa/2019/dicembre/2019_12_05_NS_2_FS_Italiane_10_anni_AV_cambiato_Paese_e_vita_persone.pdf
https://www.ilsole24ore.com/art/roma-milano-7-passeggeri-10-scelgono-treno-AEOuGl5
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of our research has relevant implications on several dimensions such as subjective wellbeing, health 

policies, economic conditions and economic policies, not ultimately since – as of June, 17th 2020 – 

the epidemic in Italy caused 34,448 official deaths, stressed the national health system and produced 

a paralysis of economic activity6.  

Our empirical approach rests on a multivariate analysis which aims to add original insights 

from at least three points of view. First, assessing the relative strength of different concurring factors 

– i.e. demographic structure, human mobility, health system efficiency, quality of air, climate 

conditions, economic activity and lockdown measures – is fundamental to understand the 

heterogeneous evolution of the epidemic across the country. This approach is a necessary complement 

to deterministic models, in which nonlinear dynamics of the diffusion emerge as a unique driver. 

Second, lockdown decisions have highlighted the trade-off between health and economic 

development goals.  

Our findings suggest that the lockdown mitigates contagions and mortality, especially for the 

more polluted areas. Conversely, poor quality of air and the share of small business activity are 

positively correlated with both outcomes. Finally, the heterogeneity of diffusion does not seem to 

depend on other pre-virus factors that we test, i.e. commuting and public transport use, health system 

efficiency, density and the share of Chinese immigrants.  

The paper is divided into eight sections. In the second section we present our research 

hypotheses and the related literature. In the third section we illustrate data and econometric model. In 

the fourth we present descriptive and econometric findings. In the fifth section, using pre-lockdown 

data we build a counterfactual trend and use a difference-in-differences approach to evaluate the 

impact of lockdown, and its interaction with pollution, at municipality level. In the sixth section we 

implement a series of robustness checks including instrumental variable regressions. In the seventh 

section we discuss our results (limits, policy implications and directions for future research). The 

eighth section concludes.  

 

 

2. Background and research hypotheses 

The first hypothesis we test is that the lockdown measures proved effective in limiting deceases and 

contagion (H1). Human mobility restrictions are considered among the most effective policies to 

reduce contagion in absence of a vaccine, but their economic costs are huge (Bajardi et al., 2011; 

Wang and Taylor, 2016; Charu et al., 2017). Fang et al. (2020) calculate that contagion cases would 

                                                 
6 According to the National Institute of Statistics preliminary estimates, the Italian GDP fell by 4,7% in the first quarter 

causing around 8 million temporary layoffs (https://www.istat.it/it/archivio/242084). 

https://www.istat.it/it/archivio/242084
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be 64.81% higher in the 347 Chinese cities outside Hubei province, and 52.64% higher in the 16 non-

Wuhan cities inside Hubei, without the Wuhan lockdown. The coronavirus mean incubation period, 

defined as the time from infection to illness onset, has been estimated at 5.2 days (4.1-7.0), with the 

95th percentile of the distribution at 12.5 days (Li et al., 2020). Moreover, the majority of people 

were tested with severe symptoms only (as International guidelines suggested) and with some delay 

with respect to the day in which the test was recorded (3.6 days according to Cereda et al. 2020). We 

therefore expect that governmental restrictions reducing the flow of human interactions and imposing 

physical distance among people have an impact, which may be distributed over around 17 days. Thus, 

we test the effect of the different national, regional, and provincial measures enacted in Italy in the 

months of coronavirus outbreak. Table 1 lists the restrictions adopted at different governmental levels. 

 

[Table 1 here] 

 

The second hypothesis we test is that (historical levels of) particulate matter has a positive and 

significant role in explaining the geographic variation of the epidemic (H2). There are two hypotheses 

on pollution as a pull factor of COVID-19. The first is that individuals living in highly polluted areas 

have weaker lungs and reduced capacity to react to respiratory diseases and/or pneumonias and, 

therefore, also to COVID-19. The second is that particular matter is a carrier of the virus slowing 

down its falls from the air (Piazzalunga-Expert, 2020). The rationale for the first hypothesis is that 

lung reaction to pneumonia depends on the pulmonary surfactant (a surface-active lipoprotein 

complex formed by type II alveolar cells). The pulmonary surfactant contributes with minimal 

diffusion distance and large surface area to the optimal exchange of gases. In essence, a healthy 

surfactant protects lung collapse at low volumes and tissue damage at high volume levels and allows 

lungs to inflate much more easily, thereby reducing the work of breathing. Pollution and heavy smoke 

produce abnormalities in surfactant composition, thereby making ventilation more problematic and 

reducing lung “efficiency” (Pastva et al. 2007).  

The hypothesis has been tested and not rejected by a large body of literature finding 

correlations between pollution and pneumonia not only for the children but also for the elders. 

Neupane et al. (2010) find that PM2.5 is significantly associated with hospitalization for pneumonia 

in Canada, Medina-Ramon et al. (2006) find that PM10 is associated with hospitalization for 

respiratory diseases in 36 US cities. Xu et al. (2016) obtain similar results in a Chinese sample, while 

Zanobetti and Schwartz (2006) in Boston. Luginaah et al. (2005) report significant correlation 

between (PM10 and PM2.5), NO2, SO2, and disease exacerbations, emergency admissions, 

hospitalizations and mortality in Ontario. 
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Some of this research has been conducted before the coronavirus outbreak in the areas where 

the epidemic has been more severe. Zhang et al. (2015) find that local PM2.5 has an acute adverse 

effect on lung function in young healthy adults in Wuhan, with temperature also playing an important 

role. Santus et al. (2012) find an acute effect of CO, SO2 and PM10 on Emergency Rate Admissions 

for pneumonia in Milan at short daily lags. Zeng et al. (2016) find that smaller particles have been 

shown to have stronger effects on multiple respiratory diseases and increased hospitalization rates 

than larger ones; their sedimentation speed is, indeed, lower and exposition to them higher for the 

human body. Larger particles are filtered by nostrils while smaller ones can reach alveolar cells (Zeng 

et al., 2016). Pope et al. (2016) resume findings from this literature in their survey on more than 500 

past studies arguing that the body of evidence on the nexus between particulate matter and respiratory 

and pulmonary diseases is stronger if we look at long run exposure. 

A few very recent working papers focus directly on the relationship between pollution and COVID-

19 disease. Wu et al. (2020) find that long-term average exposure to fine particulate matter (PM2.5) 

increases the risk of COVID-19 deaths in the United States (in terms of economic magnitude they 

find that an increase of 1 μg/m3 in PM2.5 is associated with a 15% increase in the COVID-19 death 

rate). Conticini, Frediani and Caro (2020) argue that pollution can be a co-determinant of the 

abnormal number of deaths registered in Lombardia and Emilia Romagna. The authors emphasize 

how the composed air quality index including five pollutants (PM10, PM2.5, O3, SO2 and NO2.9 

show that Lombardia and Emilia Romagna are the most polluted in Italy and among the most polluted 

in Europe). The authors provide medical details on how poor air quality leads to inflammation, 

eventually leading to an innate immune system hyper-activation which has been observed in COVID-

19 patients. They also report how particulate matter (PM2.5 and PM10) can lead to systemic 

inflammation consisting of an overexpression of PDGF, VEGF, TNFa, IL-1 and IL-6 which can arise 

even in healthy, non-smoker and young subjects (Pope et al., 2016). The effect is directly related to 

the length of pollutant exposure (Tsai et al., 2019). They conclude that the elderly who live in the 

regions with higher intensity of particulate suffered from chronic exposure to air pollution and have 

higher probability of being affected by virus invasion due to the weakened upper airways defenses. 

Figure 1 shows the geographical distribution of COVID-19 related outcomes and of average 

levels of PM10 and PM2.5 in Italy. Indeed, the cumulative number of positive cases and deaths per 

1000 inhabitants as of April 15th 2020 tend to concentrate in provinces that witnessed high levels of 

pollution in 2018, i.e. those in the North of Italy. 

 

[Figure 1 here] 
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Finally, we also test the relative role of other pre-virus factors that might be associated with 

the COVID-19 outbreak and with its outcomes. We look at human mobility and density since these 

factors increase the chances of social interaction and hence the spread of the virus. In addition, we 

account for the heterogeneous efficiency of the local health system across Italian provinces. We also 

control for the demographic structure of the virus by including in the multivariate analysis also the 

share of residents aged over 65, because this age group has been shown to be more vulnerable to the 

virus. Finally, we also test the role of the Chinese community in Italy, since its presence could capture 

some of the socio-economic exchanges between Italy and China before the outbreak of the virus. It 

has also to be noted that the Chinese presence in Italy has been connected to the spread of the virus 

in Italian provinces by anti-immigration supporters. Moreover, Chinese people residing in Italy have 

been frequently witnessed discrimination during the first days of the COVID-19 outbreak, under the 

form of physical and verbal violence.   

 

 

3. Data and econometric model  

Our database includes two dependent variables related to outcomes of the coronavirus disease and 

regressors including province time invariant characteristics, national or regional restriction events 

and time varying variables related to temperature and lockdown measures. As dependent variables 

we consider the daily number of deaths (released by the Italian National Statistics Institute, ISTAT) 

and new positive cases of COVID-19 at province level (from the Italian Civil Protection, ICP) per 

1,000 inhabitants. 

The number of deaths is the daily number of deceases in 87% Italian municipalities covering 

86% of Italian population.7 We use the daily number of deaths per 1,000 inhabitants of the 

municipality, from February 24th 2020 to April 15th 2020 (the last date for which ISTAT data are 

available), averaged at province level. 

The second dependent variable is the number of new daily confirmed COVID-19 cases, that 

is the number of new infected patients detected each day. We use this measure instead of the number 

of net infected patients, where deaths and recoveries of the day are subtracted from the gross value, 

because ICP does not provide the breakdown of infected patients at the province level (i.e. our main 

unit of analysis). Notwithstanding possible measurement errors that make the accounting more or less 

conservative (e.g. due to the region-specific testing capacity), one advantage of our research is that 

we limit the analysis to the Italian case, and therefore we avoid measurement bias arising from the 

different approaches followed in different countries. Since the accounting of positive cases is not 

                                                 
7 See https://www.istat.it/it/files//2020/05/Rapporto_Istat_ISS.pdf. 

https://www.istat.it/it/files/2020/05/Rapporto_Istat_ISS.pdf
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voluntarily provided by provinces, but officially managed by a national institution and its local 

branches (ICP), we therefore expect that this potential source of measurement bias might not affect 

our estimates.  

The fully-augmented model we consider is detailed in the following equation: 

 

CV19-Outcome𝑖𝑡

= 𝛼0 + 𝛼1 𝑃𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛𝑖 + 𝛼2UrbanGreen𝑖+𝛼3𝐻𝑖𝑔ℎ𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑖𝑡 + 𝛼4𝐴𝑟𝑡𝑖𝑠𝑎𝑛𝑖

+ 𝛼5𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑖 + 𝛼6𝐼𝑛𝑐𝑜𝑚𝑒𝑖 + 𝛼7𝑂𝑣𝑒𝑟65𝑖 + 𝛼8𝐻𝑒𝑎𝑙𝑡ℎ𝑝𝑐𝑎𝑖

+ 𝛼9𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝐶𝑜𝑚𝑚𝑢𝑡𝑖𝑛𝑔𝑖 + 𝛼10𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙𝐶𝑜𝑚𝑚𝑢𝑡𝑖𝑛𝑔𝑖

+ 𝛼11𝑃𝑢𝑏𝑙𝑖𝑐𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑈𝑠𝑒𝑖+ 𝑢𝑖𝑡 

Eq.1 

 

where CV19-Outcome is, in turn, the number of contagions over local population (cases_pc) or, 

alternatively, the number of deceases over local population (deaths_pc), both per 1,000 inhabitants 

in province i, and day t. 

To test our research hypothesis on the impact of exposure to pollution before the outbreak of 

the virus, we use PM measures, that is, alternatively, PM2.5 and PM10, which are the two fine 

particulate matter variables measuring average values in μg/m3 registered by environmental 

monitoring units at province level in 2018. In alternative models, we also test the role of nitrogen 

dioxide (NO2) in μg/m3 as registered by environmental monitoring units at province level in 2018. 

Pollution variables are introduced as time-invariant local characteristics based on the research 

hypothesis H2 arguing that the variable affecting lung weakness is pollution history, and not the 

current level of pollution8. As an additional proxy for quality of air, we also use UrbanGreen, i.e. 

square meters of green per 100 m2 surface of urban centers in the province main city.  

We control for temperature in the specification with a dummy taking value one if the three 

days moving average of minimum temperature was higher than 12°C (𝐻𝑖𝑔ℎ𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒), 

considering the 3-day lag of the variable to take into account the time between a possible effect and 

                                                 
8 The EU identifies as dangerous for lung diseases particulate matter (PM2.5, PM10), sulphur dioxide (Sox) and nitrogen 

dioxide (NOx) (see: https://op.europa.eu/webpub/eca/special-reports/air-quality-23-2018/it/). The levels of these 

polluters in the air depends on the combination of activity of emission sources (house heating, transportation, sources of 

energy, manufacturing and agricultural activity) with weather and geographical conditions (i.e. Pianura Padana has for its 

geographical structure lower air circulation). The importance of polluting sources also varies significantly. When 

averaged at EU level house heating is by far the most important source for PM (42 percent for PM10 and 57% for PM2.5), 

while transportation (39 percent) and energy sources (31 percent) for sulphur dioxide. However, these shares may vary 

significantly in different regions. In the North of Italy house heating accounts for 37% while 17% from intensive farming 

(ISPRA, 2020). 

https://op.europa.eu/webpub/eca/special-reports/air-quality-23-2018/it/
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the illness onset9. The reason why we control for this factor is that previous studies have shown that 

virus outbreaks are significantly reduced by high temperature (Lowen et al. 2007; Barreca et al. 2012; 

Shaman et al 2009, Zuk et al. 2009)10.  

We also introduce a variable measuring the share of artisan firms at province level (Artisan), 

in order to account for potential association between pre-virus levels of intensity of local small 

business activity and COVID-19 outcomes. Small business employers and entrepreneurs live in a 

competitive environment with reduced social protection in Italy. In most cases they are suppliers of 

large companies in relationships where they have lower bargaining power that translates into worse 

trade credit conditions. Moreover, micro and artisan firms are in a higher proportion in the 

manufacturing sector, with reduced opportunity to convert their activities to smart working. Hence, 

small businesses may have a relatively lower propensity to stop their operations during the epidemic 

for the expected higher risk of adverse economic consequences from that decision. 

To measure the efficiency of the local health system (𝐻𝑒𝑎𝑙𝑡ℎ𝑝𝑐𝑎), we extract the first factor 

from a principal component analysis which includes the number of many different medical devices 

(i.e. the number of lung ventilators, diving chambers, ecographs, computed tomography scanners, 

hemodyalisis machines, medical monitors, nuclear magnetic resonance tomographs, operating rooms, 

radiology devices, portable radiology devices, linear particle accelerators, remote control radiology 

tables, immune-based automatic analysers, computerized gamma cameras, anesthetic machines, 

surgical lighthead, automatic coulter counters) per 1,000 inhabitants.  

As additional controls we use population density, average household disposable income and 

the share of individuals aged over 65 (Over65), both per 1,000 inhabitants. In an alternative 

specification, we also include the share of Chinese residents to the total number of immigrants at the 

province level. 

Another important proxy for contagion power concerns the speed and the amount of individual 

movements. We therefore include among controls a measure of internal commuting flow 

                                                 
9 Results are not significantly affected either by the days of the moving average or by the lagged days considered. Results 

from a further investigation on delayed effects of temperature on the virus will be published in a new version of this 

working paper. 
10 Research on past coronaviruses show that they belong to the family of “enveloped viruses” as they are surrounded by 

an oily coat (a lipid bilayer). Enveloped viruses are more sensitive to temperature since low temperature hardens the coat 

into a rubber-like state that protects the virus longer when it outside the body. Sayadi et al. (2020) show that areas at 

higher risk of coronavirus outbreak are those with an average temperature between 5 and 11 C degrees. Bannister-Tyrrel 

et al. (2020) provide preliminary evidence that higher temperature is associated with lower incidence of COVID-19. 

Notari (2020) by looking at nonsynchronous data from 42 countries finds a peak of the growth rate of contagion around 

7.7  +/- 3.6 C temperature. Bukhari and Jameel (2020) show that 90 percent of cases until March 22, 2020 have been 

recorded in the 3-17C temperature range and in the 3-9g/m3 humidity range. The authors emphasize how virus diffusion 

in warmer and more humid areas (regions of the United states such as Texas, New Mexico and Arizona, Asian countries 

such as Malaysia and Thailand and Middle East countries such as Saudi Arabia), while stronger in others with colder and 

drier climate (Iran, South Korea, New York and Washington).  
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(InternalCommuting), which is calculated with Census data movement within province i, as well as 

a measure of imported commuting flow (ExternalCommuting) with Census data movements into 

province i from other provinces (both variables are computed per 1,000 inhabitants). We also include 

another proxy for the frequency of human contacts, i.e. the number of passengers on public transport 

divided by the total number of residents in the province (PublicTransportUse) and multiplied by 

1,000.  

Standard errors are clustered at regional level in order to account for error correlation within 

the region where our unit of observation (province) is located. Further details on the construction of 

all the variables are in Table 2.  

 

[Table 2 here] 

 

 

4. Empirical findings 

Summary descriptive findings of the variables used in our specification are presented in Table 3.  

 

[Table 3 here] 

 

The first model we estimate implements maximum likelihood estimators for the parameters of a linear 

cross-section spatial-autoregressive model with spatial-autoregressive disturbances (SAC)11. More 

specifically, we estimate the following equation: 

 

CV19-Outcome𝑖 = 𝛼0 + 𝜆 ∑ 𝑤𝑖𝑗

𝑖≠𝑗

CV19-Outcome𝑖 +  ∑ 𝛼𝑟

𝑟

𝑋𝑖 + 𝑢𝑖    

Eq.2 

 

where the dependent variable is the cumulative (contagion or death) outcome at a given date, X are 

the controls described in Eq.1, and wij coefficients are the inverse distance spatial-weighting elements 

using province latitude and longitude, for each of the n provinces i and j; 𝑢𝑖 are modelled as  𝑢𝑖 =

𝜌 ∑ 𝑤𝑖𝑖≠𝑗 + 𝜀𝑖.  

SAC cross-sections estimates take a snapshot of the phenomenon at the beginning and at the 

end of our sample period and using as dependent variable the cumulative number of contagions (Table 

4) and deaths (Table 5).  

                                                 
11 All results are confirmed also in less strict OLS models that do not account for spatial autocorrelation (available upon 

request).  
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[Tables 4-5 here] 

 

Results show that economic activity and quality of air are significantly (and consistently across model 

specifications) correlated with the COVID-19 outcomes. More specifically, provinces with high 

levels of PM10 (Tables 4-5, Column 1) or PM2.5 (Tables 4-5, Column 2), as well as with high 

economic activity tend to have also worse outcomes in terms of contagion and deceases; density of 

urban green is significantly and negatively correlated with mortality. Results for NO2 are similar to 

those for PM, though with higher p-values in the estimates with contagion as dependent variable. 

In order to exploit the time dimension of the data, we first perform a pooled OLS estimate 

including also the time trend (and its square). The dependent variable is now the daily number of new 

cases or deaths alternatively. Regressors include a linear and a quadratic time trend (Day and Day2). 

Findings (Table 6) reveal that the COVID-19 outcomes follow an inverse U-shape exponential 

dynamic (the Day2 variable is negative and significant). As in the previous estimates, other significant 

variables are exposure to particulate matter and the share of artisan firms. In some specifications, the 

share of over-65 individuals is negatively correlated with contagion, yet not with mortality. This could 

be explained by the fact that this age class might have responded more quickly to the restrictions 

and/or by the advices provided by central and local authorities. In terms of magnitude, coefficients 

from pooled estimates are broadly consistent with those from cross-section estimates implying a 

difference from the highest to the lowest PM province of 2,940 contagions and 1,361 deaths per 

month per million inhabitants for PM10, and a difference of 3,160 contagions and 1,456 deaths per 

month per million inhabitants for PM2.5.12 

 

[Table 6 here] 

 

The second panel-data approach rests on SAC fixed-effect model. In these models, province time-

invariant characteristics are absorbed in the intercept. This is, however, an important feature since it 

allows us to partial out heterogeneous omitted factors such as industry characteristics or structural 

differences in regional health policies (i.e. prevalence of elders in nursing homes) that might be 

correlated with the dynamics of contagion and mortality. We therefore test whether the above-

mentioned province-specific fixed characteristics differentially affect the trend of contagion and 

                                                 
12 Our model outperforms the purely autoregressive model that include among regressors only time trends (R2 = 0.105 vs 

R2 = 0.271 for PM10, R2 = 0.265 for PM2.5, and R2 = 0.277 for NO2). The differences in the goodness of fit and the 

significance of our regressors are similar when we consider a cubic trend model, which captures the convexity of the 

initial increasing trend. Results are available upon request. 
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mortality in our provinces. To this purpose, we interact the time-trend variable (day) with each time-

invariant control included in Eq.1.   

 

[Table 7 here] 

 

Results are reported in Table 7. The role of pollution (PM10, PM2.5 or NO2) is confirmed also under 

this stricter analysis. More specifically, this interaction captures separately the “slope” effect on 

COVID-19 outcomes of the variables measuring pre-virus quality of air; in other terms, it measures 

the differential trends of contagion and mortality by levels of pollution. Note that the average effects 

are absorbed into the intercept and not identifiable in this kind of estimates. Results suggest that – net 

of all other province time-invariant factors – contagion and mortality tend to grow more rapidly in 

provinces that were highly polluted before the outbreak of COVID-19.  

Overall, our empirical findings show a negative and significant correlation between pollution 

and both the COVID-19 outcomes under scrutiny. Moreover, the share of artisan firms has a positive 

and significant effect on both dependent variables. As argued above, our interpretation to this result 

(consistent with anecdotal evidence13) is that micro-firms are the most fragile part of the productive 

environment and therefore less likely to stop down after the beginning of the epidemic to avoid the 

risk of default. Moreover, a higher proportion of them operates in the manufacturing industry and 

have relatively lower chances to shift to smart working during the epidemic. We cannot however 

exclude that the positive and significant coefficient of the artisan variable conceals the effect of 

different dynamics of human interactions at province level during the estimation period, which are 

typical of areas with higher economic activity, and therefore correlated with the spread of the virus.  

 As a final test, we assess the relative role of the presence of the Chinese community in the 

spread of the disease. In the pooled regressions of contagion (Table 6), we also include among 

regressors the share of Chinese immigrants to total population at the province level. The coefficient 

is negative and not statistically significant, with 𝛽 = −0.0659  and 𝑝 = 0.544 in the estimate with 

PM10, 𝛽 = −0.698 and 𝑝 = 0.597 in the estimate with PM2.5, and = −0.0491 and 𝑝 = 0.566 in 

the estimate with NO2  (available upon request).  

 

 

                                                 
13 A well-known case here is that of Arzano Lombardo where at end February appeared the first contagion cases in the 

province of Bergamo. Due to the strong relevance in terms of small-medium business the authorities decided not to create 

a red zone there, differently from what happened in Codogno. The outcome has been a strong diffusion of contagion and 

a number of deaths largely exceeding those of the previous year in the same month (100 against 10). Beyond authorities’ 

decision we interpret the significance of this variable as the push from small corporate owners not to close their activities 

due to the fear of default and the effect of this decision on the number of adverse COVID-19 outcomes 

(https://www.ilpost.it/2020/04/01/disastro-alzano-lombardo-nembro/). 

https://www.ilpost.it/2020/04/01/disastro-alzano-lombardo-nembro/
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5. Lockdown and mortality 

In this section, we take into account the correlation between lockdown decisions and COVID-19 

related outcomes (research hypothesis H1). It has to be noticed here that correlation does not imply 

causation, yet a perfectly randomized experiment – as discussed in section 7 – is not feasible in the 

present context. A second-best approach rests on a reasonable approximation to this counterfactual, 

which could be done in several ways, e.g. by building synthetic controls or by exploiting out-of-

sample predictions from (in-sample) pre-lockdown estimated parameters. Synthetic controls might 

be difficult to be built here since one has to exploit post-lockdown trends of regions that are most 

similar the Italian ones in many dimensions (e.g. institutional arrangements, cultural background, 

economic conditions, etc.). Other EU regions could be natural candidates, yet Italy was the first in 

implementing social-distancing measures, while other countries did it later and in different ways, 

thereby making it hard to obtain good matches on pre-lockdown characteristics.  

We therefore follow the second approach and construct a counterfactual trend through out-of-

sample predictions. This approach seems particularly advisable given that epidemiologic dynamics 

are often modelled using deterministic approaches14. More specifically, we first estimate the 

following equation:  

 

Mortality
𝑚𝑡

= 𝛾0 + 𝛾1𝐷𝑎𝑦𝑚𝑡 + 𝛾2𝐷𝑎𝑦𝑚𝑡
2 + 𝛾3𝐶𝑎𝑠𝑒𝑠𝑖𝑡−4+ 𝜂𝑚𝑡 

Eq.3 

 

where Mortality is the number of deaths per 1000 inhabitants in day t and municipality m, and Cases  

is the one week (4-day) lagged number of positive cases per 1000 inhabitants in province i (where 

municipality m is located)15. Notice that here we use data at the municipality level, which is the 

smallest Italian geographic unit; in fact, mortality is the only COVID-19 related outcome available at 

such a geographic level. We perform an OLS fixed effects panel regression16, clustering standard 

errors at regional level to account for intra-regional error correlation. Hence, we extract the predicted 

values 𝑇_𝑀𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦𝑚𝑡
̂ , which capture our “real” mortality trend. As argued above, fixed-effects 

                                                 
14 Given the small share of population contagions during the estimation period (far lower than 10 percent even with the 

less conservative forecast applying an exogenous fixed 2 percent mortality rate) we may reasonably assume that we are 

far from the herd immunity, and therefore our deterministic model continues to be valid to predict the counterfactual in 

this time period. 
15 Although the time window from illness onset to death is larger, we set it at 4 to maximize the number of time periods 

in the sample. The inclusion of high order lags reduces the number of observed time periods, thereby hindering the 

goodness of fit, especially for the prediction of the counterfactual trend (which is based on fewer time periods).  
16 We decided to opt for OLS fixed-effects regressions since they seem to perform better in terms of AIC and BIC criteria 

than Poisson fixed-effects ones. Under the same criteria, the chosen specification also outperforms other specifications 

that instead use the number of deaths (and cases) or their log.  
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panel models have the advantage of partialling out time-invariant unobserved factors that might 

explain different trends of contagion and mortality across municipalities such as quality of local 

health system, number of elderly individuals in nursing homes and human mobility.  

To build a “counterfactual” trend, we re-estimate Eq. 3 by restricting the sample to t ≤ l, where 

l is March, 12th 2020, i.e. the day after full lockdown is introduced in the entire country. Hence, we 

compute the predicted values also for t > l, which provide us with the out-of-sample linear prediction 

of the post-lockdown mortality trend, i.e. 𝐶_𝑀𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦𝑚𝑡
̂ . The latter can be thought of an 

approximation to the counterfactual trend of mortality, which describes how mortality would have 

evolved over time had lockdown not been introduced.  

Figure 2 shows the two trends averaged across municipalities. This figure highlights that the 

two trends start diverging significantly from March, 20th 2020, i.e. 8 days after full lockdown, when 

the real mortality trend began to decrease slightly. To further evaluate whether the two trends are 

statistically different after March, 12th 2020 we first compute their difference as 𝑀𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦_𝑑𝑖𝑓𝑓𝑚𝑡 =

𝐶_𝑀𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦𝑚𝑡
̂ − 𝑇_𝑀𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦𝑚𝑡

̂  and regress it through fixed-effects OLS on a series of time 

dummies. Estimated marginal means from this regression are plotted in Figure 3 and confirm the 

previous findings, with the gap between counterfactual and real mortality trend starting to increase 

after lockdown.  

 

[Figures 2 and 3 here] 

 

To assess the role of past exposure to pollution, we perform OLS fixed-effects regressions of 

𝑀𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦_𝑑𝑖𝑓𝑓𝑚𝑡 on lockdown decisions, and interact the latter with PM2.5, PM10 and NO2. More 

specifically, we introduce a dummy variable equal to one if the municipality is in a province with 

average concentration of PM2.5 (or, in a separate model, PM10 or NO2) in 2018 equal or above their 

sample mean, and zero otherwise. As for lockdown, we create a dummy variable (Lockdownit) equal 

to one if the municipality m in province i in day t was under the total block, and zero otherwise17.  In 

alternative specifications, we also consider a different definition of lockdown by including an 

indicator (After_12/3t) for t > l. Regression results are reported in Table 7. The positive and significant 

coefficient of the lockdown indicators suggest that mortality would have been larger if lockdown 

were not implemented. The lockdown effects range from about -0.12 to -0.15 percentage points 

(Table 7, column 1 and 4). Hence, our estimates suggest that lockdown decisions are on average 

                                                 
17 The total lockdown decision was taken on the 8th of March in Lombardia and 18 provinces of Piemonte, Emilia 

Romagna and Marche, while on the 10th of March it was extended to the rest of Italy (see Table 1). We consider March 

10th as the decree has been issued on the evening of March 9th and, therefore, it has been operating since March 10th. 
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associated with a decline in the number of deaths per 1,000 inhabitants by 80-100 percent if we 

consider the sample mean of the overall predicted mortality (i.e. 0.15), which includes both 

𝐶_𝑀𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦𝑚𝑡 and 𝑇_𝑀𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦𝑚𝑡.  

Importantly, the positive association between lockdown and mortality is larger in less polluted 

areas as documented by the significant interaction between lockdown and the pollution variables 

(Table 8, columns 2-3 and 5-6). The positive coefficient of the interaction, if interpreted jointly with 

the trends plotted in Figure 3, suggests that without lockdown mortality would have grown more in 

the highly polluted cities.    

 

[Table 8 here] 

 

As a final check for the joint role of lockdown decisions and pollution in mortality, we replicate this 

analysis by duplicating the municipalities in our sample. The artefactually “cloned” observations take 

on the previously estimated counterfactual trend in mortality (𝐶_𝑀𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦𝑚𝑡
̂ ), whereas the original 

observations take on the real trend in mortality ( 𝑇_𝑀𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦𝑚𝑡
̂ ). By doing so, we artificially create 

two groups of municipalities, namely the “treated” municipalities, i.e. those with the real predicted 

trend, and the “control” municipalities, i.e. those with the predicted counterfactual trend. Of course, 

the latter is a “synthetic” control since observations with a counterfactual trend do not really exist; 

they have been imputed by duplicating the observations in our sample and assigning them the values 

of the counterfactual estimated trend. This trick should deliver the same results as the previous ones, 

while providing us at the same time with a quasi-experimental sample on which we could implement 

the Differences-in-Differences approach (DiD).  

Hence, we create a treatment indicator (Real_trendm) which is equal to one for municipalities 

with the real mortality trend, and zero for their “clones” receiving the counterfactual trend. Figure 

A1 in the appendix report estimated margins from a regression of the overall mortality trend, i.e. 

𝑀𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦𝑚𝑡
̂ , on time dummies and their interaction with the treatment indicator (Real_trendm). As 

expected, the two trends mirror those plotted in Figure 2, with the real trend in mortality decreasing 

after a about a week from the day when full lockdown was introduced in the country. 

To obtain DiD estimates, we regress the overall mortality trend on our treatment indicator 

(Real_trendm), our post-treatment indicator, i.e. the lockdown dummy (Lockdownit or After_12/3t), 

and the interactions between these two variables. In augmented models we also interact these two 

indicators with the aforementioned pollution dummies for PM10, PM2.5 or NO2. Results are reported 

in Appendix, Table A1. Consistent with previous results, lockdown seems effective in reducing 

mortality as shown by our DiD coefficient, i.e. the negative and significant interaction between 
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treatment and post-treatment indicator in column 1 (Lockdownit*Real_trendm) or 4 

(After_12/3t*Real_trendm). 

The interpretation of the results with the triple interaction including the pollution indicator 

(columns 3 and 6) is slightly more complicated. For this reason, we plot the estimated margins (Figure 

A2 in Appendix), which overall suggest that the adverse effects of COVID-19 on mortality would 

have been hasher without lockdown, especially in highly polluted provinces.    

Three main robustness checks have been implemented by augmenting Eq.3 with other 

covariates capturing the potential unobserved heterogeneity in the level of economic activity, the 

quality of the health system and mobility patterns. First, we include to the baseline model described 

in Eq.3, two interaction terms, i.e. between the time-varying lagged contagion (𝐶𝑎𝑠𝑒𝑠𝑖𝑡−4) and i) the 

share of micro-enterprises in the province (Artisani), and ii) the normalized first extracted component 

from a principal component analysis including our three human mobility proxies measured at the 

province level, i.e. InternalCommutingi, ExternalCommutingi, and PublicTransportUsei. These 

interactions allow us to mitigate unobserved heterogeneity that could be induced by time-variant 

behavior of firms and individuals in complying with lockdown decisions. The underlying assumption 

behind the choice of these variables is that the likelihood of incompliance would be higher in 

provinces with a high fraction of firms that cannot easily adopt smart-work solutions as well as in 

provinces characterized by large human mobility.  

In the second alternative specification, we include the interaction between 𝐶𝑎𝑠𝑒𝑠𝑖𝑡−4 and the 

aforementioned proxy for efficiency of the local health system (𝐻𝑒𝑎𝑙𝑡ℎ𝑝𝑐𝑎), jointly with the 

interaction between 𝐶𝑎𝑠𝑒𝑠𝑖𝑡−4 and the first extracted factor human mobility component introduced 

above. These new interactions should capture the differential role pre-virus mobility and health 

system efficiency may have played in mortality for areas with high vs. low levels of contagion. 

In the third model specification, relying on Pepe et al. (2020), we introduce a time-varying 

variable named “potential encounter network”, which is a proxy for the average contact rate (at the 

province level), or the number of unique contacts made by a person on a typical day18. The inclusion 

of this variable should account for (time-varying) unobserved differences in compliance with 

lockdown and social distancing measures across Italian provinces, which might affect the geographic 

                                                 
18 This variable has been computed by the authors exploiting daily geocoded data at province level on individuals’ 

mobility in order to create a time-varying proximity network among users based on time and location of their visits. The 

mobility data used by Pepe et al. (2020) are based on Cuebiq, a location intelligence, and measurement platform. We used 

the variable named “time series of the daily average degree of the potential encounter network”, which has been made 

available by the authors here: https://data.humdata.org/dataset/covid-19-mobility-italy. The time series of individual 

mobility patterns is available from Feb. 7th 2020 to March 21st 2020. When we matched this variable with our mortality 

data, we imputed missing values for the period March 21st – April 15th with the individual mobility patterns as averaged 

across March 15th and March 21st, assuming that – during the lockdown period – mobility after March 21st was similar to 

mobility as measured few days before that date.  

https://data.humdata.org/dataset/covid-19-mobility-italy
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distribution of mortality over time. In addition to this variable, we include the interaction between the 

time trend (and its square) and 𝐻𝑒𝑎𝑙𝑡ℎ𝑝𝑐𝑎 also in this model. To control for differences across 

provinces in pre-lockdown mobility patterns that could have influenced the mortality trend 

afterwards, we also include the interaction between the time trend (and its square) and the (time-

invariant) potential encounter network before the outbreak of the virus. The latter is computed by 

averaging the potential encounter network in the time period Feb. 7th 2020 - Feb. 24h 2020.  

Results from all these alternative model specifications are similar to those obtained from the 

baseline model in Eq.3, and are available upon request.  

 

 

6. Robustness checks 

Our results are robust to a series of alternative checks.  

First, the nature of our dependent variable, a non-negative count of a relatively rare event, 

may call for a non-negative binomial regression. Results from this model are presented in Table A2 

and confirm our main findings. Since we do not know the true exposed population (and we take into 

account the overall population in our dependent variable), we set the time dimension (i.e., the 

logarithm of the day variable) as our offset variable. A further investigation may look at the actual 

number of people tested as offset. These data are not currently available at province level, and those 

at regional level suffer from multiple counting because of repeated testing of positive cases. 

Furthermore, since our analysis is based on daily data, two additional concerns can arise. First, 

provinces may differ among themselves in testing efficiency during a week. Second, there are a few 

provinces that have reallocated some positive cases to other provinces because of health facilities 

capacities or registration errors (note, however, that this problem concerns estimates on positive cases 

while not those on deaths). In order to address these concerns, we aggregate our data at weekly level 

and rerun our main estimates. In particular, we run pooled OLS and panel fixed-effects OLS models 

with a dummy for each week in our observed period. Table A3 and A4 in Appendix confirm our 

findings on the positive and significant link between the pollutant measures and our outcome 

measures, as well as the presence of a non-linear time trend.  

An additional possible source of bias can be introduced by potential outliers. Results could 

potentially be driven by a few provinces that exhibit a number of new cases or deaths that is 

exceptionally far from the average. In Appendix B we provide a detailed analysis of potential outliers 

by identifying the most “influential” provinces. However, our findings are robust to the exclusion of 

these provinces. 
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In an additional robustness check we compute the reproduction number (R0) for each province 

on each day. To this purpose, we rely on the SIR (Susceptible Infected Recovered) methodology as 

proposed by Gu et al. (2020), and summarized by Agosto et al. (2020). The theoretical framework is 

based on the computation of the baseline reproduction number as 𝑅0 =
𝑓(1−𝛼)∗𝔼(𝑇)

ℎ
, where f is the 

probability of getting infected; 𝔼(𝑇) is the mean incubation time in case of infection; h is the 

probability of detecting the infected cases; and 𝛼 is the probability of isolating the contacts of the 

infected case. For the spread of COVID-19 in France, Gu et al. (2020) uses the Gamma distribution 

for T, with 𝔼(𝑇)= 7.5 (based on contagion data from China), and simulate how R0 changes in response 

to different values of 𝛼 and h. Since such a simulation is out of the scope of this paper, we just estimate 

R0 using the exponential growth models employed in the SIR literature (Biggerstaff et al. 2014), and 

applied to COVID-19 by Agosto et al. (2020). More specifically, the exponential growth model of 

contagion assumes that the number of positive cases follow a Poisson distribution, with a growth 

parameter 𝛾. This parameter can be estimated through the following regression: 𝑙𝑜𝑔𝑁𝑡 = 𝑘 +  𝛾 ∗ 𝑡, 

where 𝑁𝑡 is the cumulative number of positive cases up to t; t is the time trend since the outbreak of 

the epidemic. Then the “instantaneous” reproduction rate 𝑟0 =
𝑓(1−𝛼)

ℎ
 (Agosto et al. 2020) can be 

computed as the ratio between the fitted cases at t and the total number of fitted cases in the previous 

8 days (assuming an incubation time equal to 7.5 days), i.e. 𝑟0̂ =
𝛾𝑡̂

∑ 𝛾𝑡̂
𝑡−1
𝑡−8

 . Finally, the estimated 

baseline R0 can be computed as 𝑅0̂ = 𝔼(𝑇) ∗ 𝑟0̂ = 7.5 ∗ 𝑟0̂ . To get an estimate of 𝑅0 for each time 

period and province in our sample, we estimate a multilevel mixed-effects linear regression model of 

the cumulative number of cases in each province19, i.e.  𝑙𝑜𝑔𝑁𝑖𝑡 = 𝑘𝑖 + 𝛾𝑖 ∗ 𝑡. We then extract 𝛾𝑖̂ and 

multiply it by t to get the predicted province-specific level of positive cases at each day, 𝛾𝑖𝑡̂. We 

repeat this step for each of the 8 days before the time periods t in our sample, and get ∑ 𝛾𝑖𝑡̂
𝑡−1
𝑡−8  . With 

these numbers, following the formulae above, we finally compute the province-specific instantaneous 

reproduction rate as 𝑟0𝑖̂
=

𝛾𝑖𝑡̂

∑ 𝛾𝑖𝑡̂
𝑡−1
𝑡−8

 , and the baseline estimated reproduction rate as 𝑅0𝑖
̂ = 7.5 ∗ 𝑟0𝑖̂

. We 

therefore use the latter as a new measure of contagion, and re-estimate our pooled and fixed effect 

models using 𝑅0𝑖
̂  as dependent variable. Results are reported in Table A5 in Appendix, and suggest 

that the positive relationship between pollution and contagion is confirmed also using this alternative 

dependent variable.  

Our main estimates showed a robust association between quality of air and COVID-19 related 

outcomes. While we control for several characteristics of provinces, there might still be unobserved 

                                                 
19 In an alternative specification of the contagion model, we also controlled for human mobility during the epidemic as 

computed by Pepe et al. (2020) (see footnote 17). Results do not change (available upon request).   
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factors that are correlated both with pollution and the spread of the disease, thereby biasing our results. 

To mitigate this concern, we implement an instrumental variable (IV) approach relying on average 

wind speed in 2018 (the same year we consider for the pollution variables), in each province20. Our 

instrument is reasonably relevant since the wind level is negatively associated with pollution as 

highlighted by previous studies (Keary et al., 1998; Chaloulakou et al., 2003; Aldrin and Haff, 2005; 

Akyüz and Çabuk, 2009; Pateraki et al., 2012). We assume that the exclusion restriction is satisfied 

since deceases and contagion during the COVID-19 epidemics in 2020 are hardly affected by wind 

speed in 2018, unless through pollution. It can be argued that the omission of wind speed in 2020 

might invalidate the exclusion restriction, provided that historical wind speed is positively correlated 

with current wind speed, and that the current wind speed positively predicts the spread of contagion 

or mortality (Chen et al. 2020; Şahin et al. 2020). However, this does not seem to be a major concern 

in our case. Results from cross-section regressions of total deaths and total positive cases on the same 

factors as in Table 5 plus wind speed in 2018 show that the coefficient of the latter is negative and 

not statistically significant (available upon request). If wind speed in 2018 was serially correlated 

with current wind speed, and if the latter was also positively associated with the spread of the disease, 

we should have expected instead a positive and significant effect of wind speed in 2018 on COVID-

19 outcomes in 2020. Yet, this is not the case in our data.  

To implement the IV strategy, we estimate a pooled 2SLS regression instrumenting pollution 

with the natural logarithm of wind speed in 2018. In addition to the baseline controls, we stepwise 

include the three proxies for mobility – aggregated into one single variable (mobility (pca)) through 

a principal component analysis so to increase degrees of freedom – and economic activity, which in 

first-stage estimates turned out to be positively associated with pollution. First-stage estimates with 

all controls highlight a negative and significant effect of average wind speed in 2018 on PM levels 

(𝛽 = -2.78, p = 0.019 for PM10; 𝛽 = -2.56, p = 0.019  for PM2.5); the instrument is not statistically 

significant for NO2 (𝛽 = -1.47, p = 0.335 for NO2), yet it becomes statistically significant (𝛽 = -

3.32, p = 0.038) when we remove economic activity and mobility from the regressors.  

Results from the second stage are reported in Table A6-A7 in the Appendix. The negative 

association between poor quality of air and new cases (Table A6) or new deaths (Table A7) is 

confirmed in most IV-estimates. Notice, however, that the inclusion of small-firms’ economic activity 

(Artisan) weakens the effects of pollution; economic activity, moreover, turns insignificant in these 

                                                 
20 More specifically, we use as an instrument the natural logarithm of average wind speed in 2018 (meter/second) as 

registered by local environmental monitoring units. Data from the monitoring units have then been aggregated at the 

province level using municipality population weights so to give more importance to larger cities. Population weights are 

built considering the municipality where the monitoring units are located. Wind data have been obtained by ISPRA 

(“SCIA-ISPRA Ambiente” dataset), and complemented with data from the Italian Air Force in order to expand geographic 

coverage.   
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estimates. These two results, jointly considered, suggest that the level of small-firms economic 

activity plays an indirect role in COVID-19 outcomes ---it affects contagion and mortality mostly 

through pollution. Our preferred specifications are those in which neither mobility nor economic 

activity is controlled for. In facts, these model specifications outperform in terms of weak-instrument 

statistics. More specifically, the specifications excluding the two aforementioned regressors produce 

Kleibergen-Paap rk Wald F-statistics that are generally higher and closer to the Stock-Yogo weak ID 

test critical values allowing for a 10% maximal IV size. Moreover, in such specifications simple F-

statistics from the first-stage regression reach the critical value of 10, while in models controlling also 

for mobility and economic activity first-stage F-statistics are well below that threshold. 

We also replicate the IV approach exploiting the time dimension of the data. We estimate a 

fixed-effects panel 2SLS model adding the time trend, the squared time trend and the same 

interactions as in Table 7. We instrument the interaction between pollution and the time trend with 

the interaction between wind speed in 2018 (in logarithm) and the time trend. We also instrument the 

interaction between pollution and the squared time trend with the interaction between wind speed in 

2018 (in logarithm) and the squared time trend. Results are reported in Tables A7 and A8 for 

contagion and mortality, respectively. The interactions between pollution and the time trend variables 

are always statistically significant, and go in the same direction as those estimated in Table 7. Because 

province-specific fixed effects have been averaged out, we consider this model as the one that best 

controls for time-invariant unobserved cofactors. Thus, the robustness of our results to the IV 

approach also in this model lead us to interpret the estimated statistical associations as causal.  

 

 

7. Discussion 

Our findings have several limitations and implications for future research. The statistical significance 

of our regressors does not necessarily imply causality and, based on the characteristics of our data, 

we do not have the possibility to test causality through a proper counterfactual trend or through RCTs. 

Indeed, it is impossible to build a properly randomized control group for a phenomenon that is already 

occurring at the time of the evaluation. In other words, we cannot create treatment and control groups 

with balanced baseline characteristics, “inoculate” the virus into the former group and compare the 

reactions among the two groups. However, the statistical significance of the three significant 

predictors (quality of air, economic activity and lockdown) withstands a barrage of robustness checks, 

including – most noticeably – instrumental variable estimates. Furthermore, the aforementioned 

predicted counterfactual analysis is, to the best of our knowledge, the closest approach to the first-

best comparison between actual and counterfactual dynamics. 
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We also acknowledge a number of limitations in the quality of data. First, the COVID-19 test 

policy in Italy was different over time and across regions. Initially, tests were performed to suspected 

patients who present to hospital and/or people who have been in contact with positive cases; then, 

only patients with severe symptoms were tested. More recently, tests were also performed to 

suspected people with no severe symptoms. In addition, some regions and provinces, adopted a policy 

to test only patients with severe symptoms in different periods21. Second, the available data on 

mortality record aggregate deaths and, therefore, we cannot disentangle COVID-19 deaths from 

deaths due to other diseases. More research is needed on the refinement of our dependent variables.  

Finally, our estimates of the lockdown effects at municipality level might also be subject to 

bias. First, fixed-effects estimates, while netting out important unobserved fixed confounders, might 

not consider time-invariant factors that could influence mortality over time, such as, for instance, the 

ability of local administrations to effectively respond to the dynamic of the virus, the decision of firms 

and individuals to comply or not with the restrictions, or the behavior of citizens regarding social 

interactions and sanitation measures (independently from lockdown). Responsive and efficient local 

administrations or the presence of highly prudent citizens might reduce the distance between the 

actual and the estimated counterfactual trend. While we run a series of robustness checks controlling 

for variables that could potentially address these concerns, we cannot be entirely sure that these 

factors capture all potential sources of unobserved (time-varying) heterogeneity across 

municipalities.  Moreover, measurement error and non-perfect forecasting might also be an issue for 

our estimates; unfortunately, in spite of several requests, we did not get access to more precise data 

neither on contagion and recovery at the municipality level nor on mortality specifically due to 

COVID-19. Notwithstanding all these problems, our estimates, overall, seem to suggest that the 

lockdown decisions might have been effective in reducing mortality. 

 

 

8. Conclusions 

Our investigation originates from the observation of the uneven distribution of contagion across 

Italian provinces. The survey of the literature on drivers of COVID-19 and other respiratory diseases 

suggests that lockdown decisions and quality of air can play a role. 

Our findings show that spread and severity of contagion is significantly associated with 

lockdown decisions, to factors affecting the quality of air and to the intensity of small business 

activity. These findings are robust to the use of different methodological approaches such as cross-

                                                 
21 For instance, in the municipality of Vo’ all population was tested on 28 February 2020 (source: 

https://www.ansa.it/sito/notizie/cronaca/2020/02/28/zaia-da-test-vo-studio-epidemiologico_2c3d88f3-6a4a-4e00-b255-

9e1e2feb2768.html). 

https://www.ansa.it/sito/notizie/cronaca/2020/02/28/zaia-da-test-vo-studio-epidemiologico_2c3d88f3-6a4a-4e00-b255-9e1e2feb2768.html
https://www.ansa.it/sito/notizie/cronaca/2020/02/28/zaia-da-test-vo-studio-epidemiologico_2c3d88f3-6a4a-4e00-b255-9e1e2feb2768.html
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section, pooled, fixed-effect OLS and instrumental variable regressions as well as to DiD estimates 

exploiting a simulated counterfactual trend, against which we benchmark the effect of lockdown and 

of its interaction with past levels of pollution.  

The presence of micro (artisan) firms is positively correlates with contagion and mortality, 

suggesting, on the one hand, a certain degree of resistance by small business to lockdown policies, 

and, on the other, the presence of high economic activity, which conceals human interactions (and 

hence the spread of the disease). We also find evidence of an indirect effect of the presence of such 

firms on COVID-19 outcomes, i.e. through increased pollution.  

Two important conclusions can be drawn from our findings. First, notwithstanding the 

aforementioned methodological caveats, lockdowns seem to be rather effective in limiting contagion 

and mortality. Second, the quality of air is a strong predictor of contagion and mortality, suggesting 

that particulate “matters”: pre-existing levels of PM10, PM2.5 and NO2 are positively correlated with 

both the COVID-19 outcomes under investigation.  

Several policy implications can be drawn if our estimates can be interpreted as causal. Some of 

the factors significantly correlated with COVID-19 outcomes are under human controls: lockdown 

policies, economic activity and, for most part, pollution. With reference to the latter, sources of 

particulate matter are for the most part (urban heating, transportation; energy; industry and 

agriculture) under our control, with only a small share depending on factors outside our control, such 

as atmospheric dusts (see footnote 8).  

Hence it is in our power to reduce exposure of the global community to this risk factor. The 

most effective action concerns improved ecological efficiency of urban heating, and efforts to reduce 

the impact of mobility on pollution; sources of energy and production in industry and agriculture are 

also important. 
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Figure 1 – COVID-19 contagion, mortality and pre-existing pollution levels 

 

Panel A: Total cases per 1000 inhabitants               Panel B: Total deaths per 1000 inhabitants 
[April 15th 2020] 

 
 

Panel C: average levels of PM10 in 2018               Panel D: average levels of PM2.5 in 2018 
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Figure 2 – COVID-19 mortality: real and counterfactual trend 

 
 

Figure 3 – COVID-19 mortality: difference between real and counterfactual trend 
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Figure 4 – COVID-19 mortality: difference between real and counterfactual trend by pollution 

 

          Panel A: lockdown effect & PM2.5            Panel B: lockdown effect & PM10 

  
 

          Panel C: lockdown effect & NO2             
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Table 1 – Restriction policies 

 
Date Restriction Location Source 

February 23rd  Full lockdown at district level Lombardia (Bertonico, 

Casalpusterlengo; Castelgerundo; 

Castiglione D'Adda; Codogno; 

Fombio, Maleo; San Fiorano, 

 Somaglia, Terranova dei Passerini), 

Veneto (Vo'). 

https://www.gazz

ettaufficiale.it/eli

/id/2020/02/23/2

0A01228/sg  

February 25th  All public and private events and 

sport activities suspended; all school 

trips, monthly free access to 

museum suspended (national level) 

Emilia Romagna, Friuli Venezia 

Giulia, Lombardia, Veneto, Liguria, 

Piemonte 

https://www.gazz

ettaufficiale.it/eli

/id/2020/02/25/2

0A01278/sg 

March 1st  Partial lockdown (public events and 

schools suspended; other activities 

must ensure no big groups) 

Emilia Romagna, Lombardia, Veneto; 

Pesaro e Urbino, Savona, 

https://www.gazz

ettaufficiale.it/eli

/id/2020/03/01/2

0A01381/sg 
Medium and Big-size enterprise 

closed on weekends 

Bergamo, Lodi, Piacenza, Cremona 

March 4th  Public and private events suspended, 

smart working highly encouraged, 

elderly and unhealthy recommended 

to stay home, Lockdown of schools 

and universities and partial 

limitations 

Italy https://www.gazz

ettaufficiale.it/eli

/id/2020/03/04/2

0A01475/sg 

March 8th  Full lockdown Lombardia, Modena, Parma, Piacenza, 

Reggio nell’Emilia, Rimini, Pesaro e 

Urbino, Alessandria, Asti, Novara, 

Verbano-Cusio-Ossola, Vercelli, 

Padova, Treviso, Venezia. 

https://www.gazz

ettaufficiale.it/eli

/id/2020/03/08/2

0A01522/sg 

March 10th  Full lockdown Italy http://www.gove

rno.it/it/articolo/f

irmato-il-dpcm-

9-marzo-

2020/14276# 
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Table 2 – Variable legend 

 
Dependent variables Description 

Cases_pc Cumulative number of COVID-19 daily cases over 2018 population (at province 

level), per 1,000 inhabitants. 

New_cases_pc Number of daily new COVID-19 daily cases over 2018 population (at province level), 

per 1,000 inhabitants. 

Deaths_pc Cumulative number of daily deaths over 2018 population  (at province level), per 

1,000 inhabitants. 

New deaths_pc Average number of daily new deaths over 2018 population  (at province level), per 

1,000 inhabitants. 

Day Number of days since the first case was detected (24 February 2020). 

Lockdown Dummy = 1 if the province was on full lockdown (as for Table 1). 

PM10 Average of yearly mean values in mg/mc registered by city monitoring posts in the i-

th province (ISPRA 2018), and aggregated at province level by weighing observations 

by the population size of the municipality where the monitoring post is located. 

PM2.5 Average of yearly mean values in mg/mc registered by city monitoring posts in the i-

th province (ISPRA 2018) and aggregated at province level by weighing observations 

by the population size of the municipality where the monitoring post is located. 

NO2 Average of yearly mean values in mg/mc registered by city monitoring posts in the i-

th province (ISPRA 2018) and aggregated at province level by weighing observations 

by the population size of the municipality where the monitoring post is located. 

Urban green Square meters of green per 100 m2 of surface area of urban centers (BES, 2016). 

High temperature Dummy = 1 if the three days moving average of minimum temperature was higher 

than 12°C. 

Density Population density in the province (number of residents in 2018 in the province 

divided by province area) 

Over65 Number of residents aged 65+ over 2018 population (at province level), per 1,000 

inhabitants. 

Income Average household disposable income in the province. 

Health (pca) First factor extracted from a principal component analysis which includes the 

number of the following medical devices (i.e. the number of lung ventilators, 

diving chambers, ecographs, computed tomography scanners, hemodyalisis 

machines, medical monitors, nuclear magnetic resonance tomographs, operating 

rooms, radiology devices, portable radiology devices, linear particle accelerators, 

remote control radiology tables, immune-based automatic analysers, 

computerized gamma cameras, anesthetic machines, surgical lightheads, 

automatic coulter counters, per 1,000 inhabitants. 
Public transport use Number of people using public transports per 1,000 inhabitants. 

Internal commuting Total (work and education) internal commuting flows in the i-th province (Census 

data, ISTAT). 

External commuting Total (work and education) commuting flows in the i-th province from other 

provinces (Census data, ISTAT). 

Day Days since first case detected in Italy (24 February 2020). 

Artisan Percent of micro (artisan) firms on total enterprises (Unioncamere-Movimprese, 

2017). 

 

 



 31 

Table 3 – Summary statistics 

 
Variable   Mean Std. Dev. Min Max Observations 

       

Cases_pc overall 1.196 1.951 0 14.810 N = 5,081 

 between  1.362 0.076 7.244 n = 96 

 within  1.404 -5.901 8.762 T = 52.927 

       

New_cases_pc overall 0.056 0.093 -0.672 1.708 N = 5,081 

 between  0.053 0.004 0.279 n = 96 

 within  0.077 -0.671 1.709 T = 52.927 

       

New_deaths_pc  overall 0.021 0.028 0 0.209 N = 3,570 

 between  0.024 0.001 0.112 n = 92 

 within  0.015 -0.072 0.123 T = 38.804 

       

Deaths_pc  overall 0.434 0.631 0 4.480 N = 3,152 

 between  0.449 0 2.043 n = 85 

 within  0.443 -1.479 2.963 T = 37.082 

       

PM10 overall 24.416 5.238 13.164 35.509 N = 5,081 

 between  5.267 13.164 35.509 n = 96 

 within  0.000 24.416 24.416 T = 52.927 

       

PM2.5  overall 15.455 4.526 5.450 26.423 N = 4,763 

 between  4.548 5.450 26.423 n = 90 

 within  0.000 15.455 15.455 T = 52.922 

       

NO2 overall 23.851 7.998 3.000 47.090 N = 5,028 

 between  8.037 3.000 47.090 n = 95 

 within  0.000 23.851 23.851 T = 52.926 

       

Urban green overall 1.796 2.869 0.100 19.500 N = 5,081 

 between  2.884 0.100 19.500 n = 96 

 within  0.000 1.796 1.796 T = 52.927 

       

Day overall 26.973 15.288 1 53 N = 5,081 

 between  0.306 24 27.038 n = 96 

 within  15.285 0.934 53.973 T = 52.927 

       

High temperature overall 0.030 0.170 0 1 N = 5,081 

 between  0.103 0 0.774 n = 96 

 within  0.136 -0.744 1.011 T = 52.927 

       

Density overall 262.084 350.217 37.166 2623.520 N = 5,081 

 between  351.788 37.166 2623.520 n = 96 

 within  0.000 262.084 262.084 T = 52.927 

       

Over65 overall 235.746 24.052 173.927 290.665 N = 5,081 

 between  24.190 173.927 290.665 n = 96 

 within  0.000 235.746 235.746 T = 52.927 

       

Income overall 0.109 0.070 0.011 0.406 N = 5,081 

 between  0.070 0.011 0.406 n = 96 

 within  0.000 0.109 0.109 T = 52.927 

       

Health (pca) overall 0.233 2.683 -5.006 9.682 N = 5,081 

 between  2.695 -5.006 9.682 n = 96 

 within  0.000 0.233 0.233 T = 52.927 

       

Public transport use overall 0.171 0.193 0.010 1.397 N = 5,081 
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 between  0.194 0.010 1.397 n = 96 

 within  0.000 0.171 0.171 T = 52.927 

       

Internal commuting overall 0.432 0.049 0.286 0.577 N = 5,081 

 between  0.049 0.286 0.577 n = 96 

 within  0.000 0.432 0.432 T = 52.927 

       

External commuting overall 0.035 0.021 0.004 0.113 N = 5,081 

 between  0.021 0.004 0.113 n = 96 

 within  0.000 0.035 0.035 T = 52.927 

       

Artisan overall 0.267 0.061 0.118 0.382 N = 5,081 

 between  0.061 0.118 0.382 n = 96 

  within   0.000 0.267 0.267 T = 52.927 
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Table 4 – Major factors explaining variation in COVID-19 contagion (cross-section) 

 
 (1) (2) (3) (4) (5) (6) 

  As of March, 5th 2020 As of April, 17th 2020 

       

PM10 0.0217***   0.152***   

 (0.00705)   (0.0464)   

PM2.5  0.0249**   0.185***  

  (0.00993)   (0.0690)  

NO2   0.00894*   0.0442 

   (0.00537)   (0.0324) 

Urban green -0.00898 -0.0143 -0.00745 -0.0464 -0.0915 -0.0285 

 (0.0109) (0.0131) (0.0113) (0.0688) (0.0874) (0.0715) 

High temperature -0.117 -0.0578 -0.128 0.256 0.466 0.197 

 (0.181) (0.189) (0.190) (0.523) (0.602) (0.560) 

Density -7.19e-05 -4.58e-05 -0.000141 -0.000478 -0.000116 -0.00102 

 (0.000102) (0.000107) (0.000115) (0.000663) (0.000741) (0.000706) 

Over65 -0.00379** -0.00486** -0.00437** -0.00998 -0.0201* -0.0157 

 (0.00177) (0.00190) (0.00185) (0.0109) (0.0117) (0.0113) 

Income 0.580 0.731 0.366 9.377*** 10.64*** 8.227** 

 (0.543) (0.638) (0.564) (3.241) (3.785) (3.450) 

Health (pca) 0.00352 0.00984 -1.77e-05 -0.0812 -0.000575 -0.101 

 (0.0142) (0.0166) (0.0148) (0.0851) (0.100) (0.0916) 

Public transport use 0.140 0.105 0.0567 -0.206 -0.373 -0.769 

 (0.180) (0.186) (0.184) (1.140) (1.194) (1.148) 

Internal commuting -1.822** -2.188** -1.839** 6.081 3.102 8.293* 

 (0.811) (0.892) (0.861) (4.750) (5.394) (4.933) 

External commuting 0.997 0.800 2.850 -9.006 -13.86 6.843 

 (1.920) (2.078) (1.897) (11.81) (13.47) (11.13) 

Artisan 2.023*** 1.847** 1.862** 26.74*** 25.95*** 25.26*** 

 (0.730) (0.808) (0.784) (4.567) (5.107) (4.658) 

Constant 0.612 1.223** 1.099** -10.08*** -5.057 -7.457** 

 (0.530) (0.560) (0.535) (3.182) (3.512) (3.322) 

λ 0.0781 0.00886 0.117 0.457* 0.369 0.659*** 

 (0.546) (0.562) (0.570) (0.237) (0.290) (0.203) 

ρ 0.225 0.355 0.343 -2.158*** -1.700* -2.386*** 

 (0.592) (0.515) (0.547) (0.759) (0.889) (0.793) 

 0.0840*** 0.0912*** 0.0904*** 2.985*** 3.299*** 3.211*** 

 (0.0121) (0.0136) (0.0131) (0.467) (0.532) (0.512) 

Observations 96 90 95 95 89 94 

Cross-sectional SAC model. Columns 1—3 refer to March, 5th 2020 and columns 4—6 refer to April, 17th 2020; ρ and λ are spatial 

autoregressive parameters measuring the degree of spatial correlation in the number of new cases and the disturbance term respectively; 

2 is the Maximum Likelihood residuals variance. Standard errors are clustered at regional level, *** p<0.01, ** p<0.05, * p<0.1 
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Table 5 – Major factors explaining variation in mortality (cross-section) 

 
 (1) (2) (3) (4) (5) (6) 

  As of March, 5th 2020 As of April, 15th 2020 

       

PM10 0.000856**   0.00109***   

 (0.000333)   (0.000297)   

PM2.5  0.00152***   0.00153***  

  (0.000464)   (0.000398)  

NO2   0.000643***   0.000463** 

   (0.000244)   (0.000217) 

Urban green -0.000490 -0.000521 -0.000307 -0.000384 -0.000523 -0.000177 

 (0.000507) (0.000584) (0.000520) (0.000467) (0.000531) (0.000494) 

High temperature -0.00241 -0.00111 -0.00599 -0.00367 -0.000387 -0.00348 

 (0.00854) (0.00852) (0.00889) (0.00494) (0.00534) (0.00500) 

Density -2.02e-06 -1.96e-06 -7.57e-06 -3.44e-06 -2.27e-06 -6.01e-06 

 (4.76e-06) (4.79e-06) (5.23e-06) (4.29e-06) (4.32e-06) (4.71e-06) 

Over65 0.000132 8.67e-05 0.000112 0.000142* 6.22e-05 0.000139* 

 (8.47e-05) (8.62e-05) (8.41e-05) (7.49e-05) (8.13e-05) (7.82e-05) 

Income 0.0138 0.0307 0.0160 0.0180 0.0440* 0.0161 

 (0.0253) (0.0288) (0.0257) (0.0225) (0.0260) (0.0232) 

Health (pca) 0.000712 0.000824 0.000601 0.000149 0.000884 -0.000331 

 (0.000669) (0.000748) (0.000680) (0.000597) (0.000672) (0.000635) 

Public transport use -0.00349 -0.00274 -0.00715 -0.0167** -0.0177** -0.0225*** 

 (0.00853) (0.00842) (0.00844) (0.00770) (0.00772) (0.00769) 

Internal commuting -0.0324 -0.0524 -0.0452 -0.0236 -0.0545 -0.0139 

 (0.0382) (0.0404) (0.0392) (0.0342) (0.0355) (0.0336) 

External commuting -0.0673 -0.111 -8.30e-05 -0.0315 -0.0705 0.0250 

 (0.0905) (0.0938) (0.0858) (0.0808) (0.0849) (0.0783) 

Artisan 0.0866** 0.0553 0.0679** 0.125*** 0.102*** 0.124*** 

 (0.0343) (0.0363) (0.0346) (0.0305) (0.0326) (0.0322) 

Constant -0.0382 -0.00552 -0.0225 -0.0613** -0.0162 -0.0514** 

 (0.0313) (0.0316) (0.0276) (0.0242) (0.0286) (0.0245) 

λ 0.371 0.155 0.504 0.241 0.0510 0.334 

 (0.536) (0.521) (0.443) (0.481) (0.576) (0.403) 

ρ 0.102 0.457 -0.371 -0.613 -0.159 -1.364 

 (0.708) (0.451) (0.856) (0.814) (0.751) (0.906) 

 0.000186*** 0.000186*** 0.000186*** 0.000146*** 0.000147*** 0.000152*** 

 (2.69e-05) (2.78e-05) (2.73e-05) (2.13e-05) (2.19e-05) (2.29e-05) 

Observations 96 90 95 96 90 95 

Cross-sectional SAC model. Columns 1—3 refer to March, 5th 2020 and columns 4—6 refer to April, 15th 2020; ρ and λ are spatial 

autoregressive parameters measuring the degree of spatial correlation in the number of new deaths and the disturbance 

term, respectively; 2 is the Maximum Likelihood residuals variance. Standard errors are clustered at regional level, *** p<0.01, ** 

p<0.05, * p<0.1 
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Table 6 – Major factors explaining variation in COVID-19 contagion (pooled) 

 
  (1) (2) (3) (4) (5) (6) 

Dep. Var.: New_cases_pc 

nuoviCases_pc 

nuoviCases_pc 

New_deaths_pc 

mortisupop               
Day 0.0105*** 0.0110*** 0.0105*** 0.00369** 0.00385** 0.00363** 

 (0.00222) (0.00225) (0.00222) (0.00131) (0.00138) (0.00133) 

Day2 -8.89e-05*** -9.38e-05*** -9.01e-05*** -3.77e-05*** -3.92e-05*** -3.71e-05*** 
 (2.11e-05) (2.16e-05) (2.09e-05) (1.27e-05) (1.34e-05) (1.29e-05) 

PM10 0.00352**   0.00162**   
 (0.00162)   (0.000634)   

PM2.5  0.00458**   0.00211**  
  (0.00209)   (0.000925)  

NO2   0.00181***   0.000867*** 

   (0.000608)   (0.000280) 
Urban green -0.00166 -0.00279*** -0.00121 -0.000686 -0.00116** -0.000494 

 (0.00117) (0.000835) (0.00131) (0.000482) (0.000441) (0.000561) 
High temperature -0.00882 -0.00286 -0.0156*** 0.000367 0.00382** -0.00305 

 (0.00578) (0.00659) (0.00452) (0.00147) (0.00154) (0.00376) 

Density 4.61e-06 8.70e-06 -1.06e-05 -2.73e-06 -1.63e-06 -9.48e-06 
 (7.01e-06) (5.70e-06) (9.55e-06) (4.36e-06) (3.86e-06) (5.81e-06) 

Over65 -0.000336 -0.000523** -0.000448* 1.42e-05 -4.51e-05 -2.02e-05 
 (0.000196) (0.000234) (0.000229) (0.000122) (0.000136) (0.000136) 

Income 0.145** 0.180** 0.123** 0.0241 0.0256 0.0158 
 (0.0592) (0.0679) (0.0553) (0.0188) (0.0290) (0.0148) 

Health (pca) -0.000960 0.000392 -0.00151 -1.93e-05 0.000187 -0.000350 

 (0.00177) (0.00169) (0.00168) (0.000515) (0.000571) (0.000533) 
Public transport use 0.0155 0.00875 0.00270 -0.0134 -0.0165** -0.0201*** 

 (0.0152) (0.0144) (0.0209) (0.00801) (0.00729) (0.00669) 
Internal commuting 0.0697 -0.00626 0.0650 -0.0332 -0.0575 -0.0358 

 (0.104) (0.0926) (0.0840) (0.0427) (0.0406) (0.0425) 

External commuting -0.221 -0.338** 0.0855 -0.0506 -0.0920 0.0754 
 (0.195) (0.142) (0.215) (0.0838) (0.0701) (0.0879) 

Artisan 0.561*** 0.520*** 0.523*** 0.202*** 0.180*** 0.185** 
 (0.0875) (0.0798) (0.0894) (0.0646) (0.0540) (0.0679) 

Constant -0.420*** -0.328*** -0.342*** -0.125*** -0.0890*** -0.0917*** 

 (0.0670) (0.0544) (0.0500) (0.0355) (0.0283) (0.0224) 
       

Observations 5,081 4,763 5,028 4,992 4,680 4,940 
R-squared 0.271 0.265 0.277 0.318 0.308 0.293 
Pooled OLS model. Standard errors are clustered at regional level, *** p<0.01, ** p<0.05, * p<0.1. 
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Table 7 – Major factors explaining variation in mortality and contagion (fixed effects) 

 
  (1) (2) (3) (4) (5) (6) 

Dep. Var.: New_cases_pc New_deaths_pc 
              

Day -0.0157*** -0.0110*** -0.00664** -0.00555*** -0.00365*** -0.00210*** 

 (0.00388) (0.00369) (0.00277) (0.000858) (0.000799) (0.000727) 

Day2 8.85e-05** 5.29e-05 -6.87e-06 3.29e-05*** 2.03e-05*** 3.38e-07 

 (3.82e-05) (3.59e-05) (2.52e-05) (8.18e-06) (7.51e-06) (6.80e-06) 

Day*PM10 0.000826***   0.000364***   

 (0.000111)   (2.45e-05)   

Day2*PM10 -8.42e-06***   -3.48e-06***   

 (1.16e-06)   (2.44e-07)   

Day*PM2.5  0.00122***   0.000544***  

  (0.000143)   (3.10e-05)  

Day2*PM2.5  -1.25e-05***   -5.29e-06***  

  (1.49e-06)   (3.08e-07)  

Day*NO2   0.000404***   0.000206*** 

   (7.02e-05)   (1.64e-05) 

Day2*NO2   -3.83e-06***   -1.97e-06*** 

   (7.29e-07)   (1.64e-07) 

Day*Artisan 0.0124*** 0.0121*** 0.0106*** 0.00220*** 0.00210*** 0.00200*** 

 (0.00177) (0.00190) (0.00173) (0.000403) (0.000427) (0.000418) 

Day*Urban green -1.21e-05 -2.45e-05 -4.30e-06 -1.88e-05*** -1.89e-05*** -1.75e-05*** 

 (2.56e-05) (3.01e-05) (2.44e-05) (5.84e-06) (6.76e-06) (5.89e-06) 

High temperature -0.00979 -0.0109 -0.00700 -0.00110 -0.000713 0.00255 

 (0.00872) (0.00930) (0.00842) (0.00213) (0.00224) (0.00221) 

Day*Density 7.60e-07*** 8.02e-07*** 3.42e-07 8.79e-08 1.06e-07* 1.70e-08 

 (2.41e-07) (2.49e-07) (2.51e-07) (5.50e-08) (5.60e-08) (6.05e-08) 

Day*Over65 1.25e-05*** 1.02e-05** 1.06e-05*** 1.98e-06** 8.88e-07 2.34e-06** 

 (4.22e-06) (4.48e-06) (4.08e-06) (9.62e-07) (1.00e-06) (9.85e-07) 

Day*Income 0.00331** 0.00377** 0.00370*** 0.000713** 0.000844** 0.000686** 

 (0.00131) (0.00152) (0.00124) (0.000299) (0.000342) (0.000300) 

Day*Health (pca) -5.50e-05 -3.37e-05 -5.25e-05 -1.00e-05 6.41e-07 -1.59e-05** 

 (3.42e-05) (3.92e-05) (3.26e-05) (7.79e-06) (8.80e-06) (7.86e-06) 

Day*Public transport use 7.45e-05 1.38e-05 9.48e-05 -8.82e-05 -0.000126 -0.000221** 

 (0.000429) (0.000437) (0.000404) (9.77e-05) (9.80e-05) (9.75e-05) 

Day*Internal commuting 0.00931*** 0.00836*** 0.00839*** 0.00169*** 0.00121** 0.00156*** 

 (0.00197) (0.00212) (0.00189) (0.000449) (0.000475) (0.000457) 

Day*External commuting -0.0163*** -0.0185*** -0.0125*** -0.00235** -0.00265** -0.00141 

 (0.00459) (0.00490) (0.00419) (0.00105) (0.00110) (0.00101) 

ρ -0.799*** -0.851*** -0.349** -0.606*** -0.683*** -0.473*** 

 (0.101) (0.0968) (0.146) (0.113) (0.110) (0.119) 

λ 0.786*** 0.792*** 0.671*** 0.766*** 0.764*** 0.748*** 

 (0.0295) (0.0281) (0.0575) (0.0325) (0.0312) (0.0371) 

 0.00464*** 0.00485*** 0.00418*** 0.000306*** 0.000310*** 0.000309*** 

 (9.80e-05) (0.000106) (8.86e-05) (6.22e-06) (6.53e-06) (6.30e-06) 

Observations 4,608 4,320 4,560 4,992 4,680 4,940 

R-squared 0.177 0.170 0.181 0.161 0.187 0.127 

Number of Provinces 96 90 95 96 90 95 

Panel Fixed-effects SAC model; ρ and λ are spatial autoregressive parameters measuring the degree of spatial correlation in the number 

of new cases or deaths and the disturbance term, respectively; 2 is the Maximum Likelihood residuals variance. Standard errors are 

clustered at regional level, *** p<0.01, ** p<0.05, * p<0.1 
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Table 8 – The role of lockdown and pollution in reducing mortality (fixed effects OLS) 

 
Dep. Var: difference in predicted  

mortality trends (C-R) (1) (2) (3) (4) (5) (6) (7) (8) 

                  

Lockdown 0.130*** 0.0918*** 0.100*** 0.101***     

 (0.0207) (0.00862) (0.00796) (0.00881)     

lockdown*PM2.5≥median  0.0890***       

  (0.0247)       

lockdown*PM10≥median   0.0629**      

   (0.0286)      

lockdown*NO2≥median    0.0633**     

    (0.0256)     

After 12/3     0.154*** 0.102*** 0.112*** 0.114*** 

     (0.0268) (0.00945) (0.00881) (0.0104) 

After 12/3*PM2.5≥median      0.110***   

      (0.0290)   

After 12/3*PM10≥median       0.0840**  

       (0.0329)  

After 12/3*NO2≥median        0.0817** 

        (0.0293) 

Constant 0.00804 0.00240 0.00521 0.00540 0.000336 -0.00169 -0.000566 -0.000571 

 (0.0159) (0.00943) (0.0140) (0.0129) (0.0187) (0.00997) (0.0148) (0.0137) 

         

Observations 87,268 84,690 86,935 86,621 87,268 84,690 86,935 86,621 

R-squared 0.147 0.164 0.155 0.155 0.246 0.279 0.265 0.264 

Number of municipalities 5,761 5,561 5,733 5,704 5,761 5,561 5,733 5,704 

Standard errors are clustered at regional level. Dependent variable: difference between previously estimated counterfactual (C) and 

real (R) trend in mortality; *** p<0.01, ** p<0.05, * p<0.1 
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APPENDIX A 

 

 
Table A1 – The effects of lockdown and pollution in reducing mortality (DID approach) 

 
Dep. Var: predicted 

 mortality trends (1) (2) (3) (4) (5) (6) (7) (8) 

                  

Lockdown 0.150*** 0.109*** 0.117*** 0.118***     

 (0.0220) (0.00866) (0.00807) (0.00903)     

Lockdown*Real trend -0.130*** -0.0918*** -0.100*** -0.101***     

 (0.0207) (0.00862) (0.00796) (0.00881)     

Lockdown*Pm2.5≥median  0.0940***       

  (0.0264)       

Lockdown*Real trend* 

Pm2.5≥ median  -0.0890***       

  (0.0247)       

Lockdown*Pm10≥ median   0.0675**      

   (0.0303)      

Lockdown*Real trend* 

Pm10≥ median   -0.0629**      

   (0.0286)      

Lockdown*NO2≥ median    0.0677**     

    (0.0272)     

Lockdown*Real trend* 

NO2≥ median    -0.0633**     

    (0.0256)     

After 12/3     0.171*** 0.117*** 0.126*** 0.129*** 

     (0.0279) (0.00950) (0.00888) (0.0106) 

After 12/3*Real trend     -0.154*** -0.102*** -0.112*** -0.114*** 

     (0.0268) (0.00945) (0.00881) (0.0104) 

After 12/3*Pm2.5≥ median      0.114***   

      (0.0304)   

After 12/3*Real trend* 

Pm2.5≥ median      -0.110***   

      (0.0290)   

After 12/3*Pm10≥ median       0.0875**  

       (0.0343)  

After 12/3*Real trend* 

Pm10≥ median       -0.0840**  

       (0.0329)  

After 12/3*NO2≥ median        0.0852** 

        (0.0306) 

After 12/3*Real trend* 

NO2≥ median        -0.0817** 

        (0.0293) 

Constant 0.0766*** 0.0734*** 0.0750*** 0.0751*** 0.0759*** 0.0748*** 0.0754*** 0.0754*** 

 (0.00895) (0.00545) (0.00784) (0.00724) (0.0101) (0.00551) (0.00798) (0.00739) 

         

Observations 174,536 169,380 173,870 173,242 174,536 169,380 173,870 173,242 

R-squared 0.193 0.212 0.202 0.202 0.299 0.333 0.318 0.318 

Number of municipalities 11,522 11,122 11,466 11,408 11,522 11,122 11,466 11,408 

Dependent variable: previously estimated trend in mortality, i.e 𝑀𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦𝑚𝑡, which is equal to 𝐶_𝑀𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦𝑚𝑡
̂   for the “cloned” 

observations to which we have assigned the predicted counterfactual trend, and to 𝑇_𝑀𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦𝑚𝑡
̂  for original observations, to which 

we have assigned the (real) predicted mortality trend (see section 5); Real_trendm, is the treatment indicator, which is equal to one for 

municipalities with the real mortality trend, and zero for their “clones” receiving the counterfactual trend. We use as post-treatment 

variable the dummy Lockdownit, which is equal to one if the municipality m in province i in day t was under the total block, or the 

dummy After_12/3t, which is equal to one for t > March, 12th 2020. The interaction Lockdownit*Real_trendm or 

After_12/3t*Real_trendm  (i.e. the  interaction between treatment and post-treatment indicator) is the DiD coefficient; standard errors 

are clustered at regional level;  *** p<0.01, ** p<0.05, * p<0.1 
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Table A2. Major factors explaining variation in mortality and contagion (negative binomial model) 

 
 (1) (2) (3) (4) (5) (6) 

Dep. Var.: New_cases_pc New_deaths_pc 

              

Pm10 0.0670***   0.0434***   

 (0.0212)   (0.0118)   

Pm2.5  0.0756***   0.0504***  

  (0.0274)   (0.0185)  

No2   0.0396***   0.0287*** 

   (0.0105)   (0.00733) 

       

Observations 5,086 4,768 5,033 4,992 4,680 4,940 

Negative binomial regression with time variable as offset. Standard errors are clustered at regional level. 

*** p<0.01, ** p<0.05, * p<0.1       
 

 

Table A3. Major factors explaining variation in mortality and contagion (weekly data) 

 

  (1) (2) (3) (4) (5) (6) 

Dep. Var.: New_cases_pc New_deaths_pc 

              

Pm10 0.0215**   0.00157**   

 (0.0102)   (0.000571)   

Pm2.5  0.0284**   0.00193**  

  (0.0130)   (0.000837)  

No2   0.0108**   0.000919*** 

   (0.00383)   (0.000263) 

Week (Ref = 24-25 Feb)       

26 Feb – 3 Mar 0.0475* 0.0507* 0.0480* -0.000625 -0.000605 -0.000582 

 (0.0267) (0.0280) (0.0269) (0.00108) (0.00119) (0.00108) 

4 Mar – 10 Mar 0.135** 0.144** 0.136** 0.00704* 0.00776* 0.00691* 

 (0.0642) (0.0669) (0.0647) (0.00395) (0.00412) (0.00399) 

11-17 Mar 0.328*** 0.347*** 0.330*** 0.0116 0.0128 0.0117 

 (0.107) (0.110) (0.109) (0.00724) (0.00750) (0.00733) 

18-24 Mar 0.604*** 0.638*** 0.607*** 0.0197** 0.0213** 0.0193** 

 (0.146) (0.148) (0.148) (0.00896) (0.00926) (0.00907) 

25-31 Mar 0.627*** 0.657*** 0.629*** 0.0158** 0.0176** 0.0151** 

 (0.120) (0.120) (0.121) (0.00702) (0.00716) (0.00710) 

1-7 Apr 0.554*** 0.580*** 0.543*** -0.00236 -0.00139 -0.00214 

 (0.0973) (0.0965) (0.0950) (0.00382) (0.00382) (0.00386) 

8-14 Apr 0.463*** 0.487*** 0.455*** -0.00562* -0.00441 -0.00531* 

 (0.0622) (0.0628) (0.0595) (0.00280) (0.00302) (0.00280) 

Constant -0.956*** -0.316 -0.488 -0.0399 -0.00542 -0.00823 

 (0.256) (0.326) (0.316) (0.0237) (0.0278) (0.0276) 

Controls Yes Yes Yes Yes Yes Yes 

       

Observations 768 720 760 768 720 760 

R-squared 0.490 0.492 0.474 0.336 0.328 0.316 

Pooled OLS model. Controls are as in equation (1). Standard errors in parenthesis are clustered at regional level. 

*** p<0.01, ** p<0.05, * p<0.1 
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Table A4. Major factors explaining variation in mortality and contagion (weekly data) 

 
  (1) (2) (3) (4) (5) (6) 

Dep. Var.: New_cases_pc New_deaths_pc 

             

Week (Ref = 24-25 Feb)       

(26 Feb – 3 Mar)*Pm10 0.0125*   0.000494**   

 (0.00675)   (0.000219)   

(4 Mar – 10 Mar)*Pm10 0.0243   0.00122**   

 (0.0146)   (0.000569)   

(11-17 Mar)*Pm10 0.0313*   0.00229**   

 (0.0173)   (0.000959)   

(18-24 Mar)*Pm10 0.0388**   0.00262**   

 (0.0182)   (0.00111)   

(25-31 Mar)*Pm10 0.0238   0.00168***   

 (0.0141)   (0.000559)   

(1-7 Apr)*Pm10 0.0210**   0.00160***   

 (0.00935)   (0.000417)   

(8-14 Apr)*Pm10 0.0201*   0.00114**   

 (0.0115)   (0.000400)   

Week (Ref = 24-25 Feb)       

(26 Feb – 3 Mar)*Pm2.5  0.0142**   0.000413  

  (0.00615)   (0.000329)  

(4 Mar – 10 Mar)*Pm2.5  0.0303*   0.00170**  

  (0.0157)   (0.000698)  

(11-17 Mar)*Pm2.5  0.0417*   0.00320*  

  (0.0214)   (0.00157)  

(18-24 Mar)*Pm2.5  0.0520*   0.00357**  

  (0.0251)   (0.00145)  

(25-31 Mar)*Pm2.5  0.0353*   0.00237**  

  (0.0196)   (0.00101)  

(1-7 Apr)*Pm2.5  0.0267**   0.00153**  

  (0.0121)   (0.000645)  

(8-14 Apr)*Pm2.5  0.0254   0.00168***  

  (0.0164)   (0.000560)  

Week (Ref = 24-25 Feb)       

(26 Feb – 3 Mar)*No2   0.00462   0.000362** 

   (0.00277)   (0.000140) 

(4 Mar – 10 Mar)* No2   0.00837   0.000769** 

   (0.00541)   (0.000324) 

(11-17 Mar)* No2   0.0122*   0.00102** 

   (0.00683)   (0.000402) 

(18-24 Mar)* No2   0.0168**   0.00125** 

   (0.00693)   (0.000525) 

(25-31 Mar)* No2   0.0122*   0.00129*** 

   (0.00600)   (0.000311) 

(1-7 Apr)* No2   0.0148***   0.000880*** 

   (0.00439)   (0.000260) 

(8-14 Apr)* No2   0.0156**   0.000555** 

   (0.00604)   (0.000205) 

   (1.158)   (0.0766) 

Week (Ref = 24-25 Feb)       

26 Feb – 3 Mar 0.307 0.666 0.571 -0.00513 -0.000187 0.00387 

 (0.331) (0.496) (0.473) (0.0110) (0.00980) (0.00976) 

4 Mar – 10 Mar 0.333 1.032 0.847 -0.0196 0.0218 0.00618 

 (0.482) (0.703) (0.701) (0.0251) (0.0386) (0.0352) 

11-17 Mar -0.416 0.488 0.234 -0.0504 0.0117 -0.00260 

 (0.544) (0.628) (0.680) (0.0302) (0.0293) (0.0304) 

18-24 Mar -1.189* 0.0764 -0.486 -0.0904* -0.0254 -0.0265 

 (0.650) (0.573) (0.577) (0.0481) (0.0464) (0.0318) 

25-31 Mar -1.080* -0.186 -0.714 -0.116*** -0.0608* -0.0703** 

 (0.561) (0.455) (0.470) (0.0262) (0.0293) (0.0249) 

1-7 Apr -2.225*** -1.636* -1.640** -0.0997*** -0.0592** -0.0787*** 

 (0.746) (0.833) (0.660) (0.0226) (0.0217) (0.0219) 

8-14 Apr -1.764*** -1.154* -1.217*** -0.125*** -0.0851*** -0.111*** 

 (0.495) (0.554) (0.419) (0.0270) (0.0256) (0.0249) 

Constant 0.811 0.955 0.902*** 0.0714* 0.0662 0.0396*** 

 (0.675) (0.632) (0.160) (0.0376) (0.0453) (0.00773) 
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Week dummies*Controls Yes Yes Yes Yes Yes Yes 

       

Observations 768 720 760 768 720 760 

R-squared 0.650 0.656 0.641 0.398 0.403 0.381 

Number of provinces 96 90 95 96 90 95 

Panel FE model. Controls are as in equation (1). Standard errors in parenthesis are clustered at regional level. 

*** p<0.01, ** p<0.05, * p<0.1 

 

 

 

Table A5. Pollution and province-specific estimated reproduction rate of COVID-19 

 
 Dep. Var.: 𝑅0𝑖

̂  (1) (2) (3) (4) (5) (6) 

Day -0.00823*** -0.00823*** -0.00823*** -0.00839*** -0.00843*** -0.00827*** 

 (2.39e-05) (2.62e-05) (2.43e-05) (0.000102) (9.75e-05) (7.64e-05) 

Day2 5.39e-05*** 5.39e-05*** 5.39e-05*** 5.55e-05*** 5.57e-05*** 5.44e-05*** 

 (2.57e-07) (2.81e-07) (2.59e-07) (7.58e-07) (6.29e-07) (5.30e-07) 

Pm10 5.05e-05**      

 (2.17e-05)      

Pm2.5  4.63e-05*     

  (2.63e-05)     

No2   4.11e-05**    

   (1.77e-05)    

Day*PM10    4.84e-06*   

    (2.47e-06)   

Day2*PM10    -5.02e-08*   

    (2.58e-08)   

Day*PM2.5     8.46e-06**  

     (3.01e-06)  

Day2*PM2.5     -9.20e-08***  

     (3.04e-08)  

Day*NO2      1.10e-06 

      (2.07e-06) 

Day2*NO2      -8.92e-09 

      (2.22e-08) 

Constant 1.311*** 1.313*** 1.312*** 1.311*** 1.311*** 1.311*** 

 (0.00151) (0.00163) (0.00158) (0.000608) (0.000623) (0.000666) 

Controls Yes Yes Yes Yes Yes Yes 

       

Observations 6,037 5,659 5,974 6,037 5,659 5,974 

R-squared 0.982 0.982 0.982 0.982 0.982 0.982 

Number of provinces       96 90 95 

Pooled OLS regressions in columns 1-3; Panel FE regressions in columns 4-6. Standard errors are clustered at regional level. 

Controls are as in Eq.2.  

*** p<0.01, ** p<0.05, * p<0.1       
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Table A6. Pollution and contagion (Instrumental Variable OLS Pooled Regressions – second stage) 

 
Dep. Var.: New cases  

per 1000 inhabitants (1) (2) (3) (4) (5) (6) (7) (8) (9) 

                    

PM10 0.0154*** 0.0147*** 0.0105**       

 (0.00406) (0.00412) (0.00481)       

PM2.5    0.0135*** 0.0136*** 0.0113*    

    (0.00366) (0.00397) (0.00626)    

NO2       0.0176** 0.0194* 0.0198 

       (0.00756) (0.0104) (0.0243) 

Day 0.0106*** 0.0106*** 0.0107*** 0.0112*** 0.0112*** 0.0113*** 0.0103*** 0.0102*** 0.0103*** 

 (0.00228) (0.00228) (0.00229) (0.00236) (0.00236) (0.00237) (0.00228) (0.00229) (0.00229) 

Day2 -9.09e-05*** -9.10e-05*** -9.17e-05*** -9.66e-05*** -9.66e-05*** -9.73e-05*** -8.74e-05*** -8.69e-05*** -8.75e-05*** 

 (2.16e-05) (2.16e-05) (2.17e-05) (2.25e-05) (2.25e-05) (2.26e-05) (2.16e-05) (2.16e-05) (2.17e-05) 

Mobility (pca)  0.00624 0.00282  -0.00290 -0.00396  -0.0160 -0.0151 

  (0.0111) (0.00901)  (0.00950) (0.00799)  (0.0239) (0.0284) 

Artisan   0.330*   0.216   -0.0369 

   (0.179)   (0.280)   (0.889) 

Urban green -0.00230 -0.00268 -0.00199 -0.00438** -0.00424*** -0.00384*** -0.00278 -0.00184 -0.00180 

 (0.00181) (0.00170) (0.00150) (0.00156) (0.00138) (0.00116) (0.00398) (0.00485) (0.00477) 

High temperature -0.00839 -0.00675 -0.00316 0.0180 0.0176 0.0164 -0.0673** -0.0776* -0.0782 

 (0.0206) (0.0181) (0.0149) (0.0150) (0.0147) (0.0146) (0.0316) (0.0414) (0.0900) 

Density -2.74e-05 -3.18e-05 -1.78e-05 -1.55e-05 -1.32e-05 -7.13e-06 -0.000138 -0.000138 -0.000141 

 (1.91e-05) (2.10e-05) (2.21e-05) (1.64e-05) (1.48e-05) (1.83e-05) (8.51e-05) (8.85e-05) (0.000199) 

Over65 0.000451 0.000344 -6.99e-05 -0.000260 -0.000228 -0.000378 -0.000146 6.64e-05 7.94e-05 

 (0.000510) (0.000542) (0.000467) (0.000389) (0.000410) (0.000372) (0.000660) (0.000695) (0.000967) 

Income 0.372** 0.366** 0.273** 0.352*** 0.355*** 0.299* 0.382* 0.398 0.410 

 (0.144) (0.144) (0.123) (0.116) (0.119) (0.143) (0.213) (0.250) (0.465) 

Health (pca) -0.00177 -0.00276 -0.00144 -0.00132 -0.000761 -0.000139 -0.00330 -0.000920 -0.000973 

 (0.00353) (0.00330) (0.00256) (0.00327) (0.00292) (0.00219) (0.00409) (0.00504) (0.00522) 

Constant -0.736*** -0.693*** -0.577*** -0.413*** -0.424*** -0.409*** -0.540*** -0.629** -0.633 

 (0.176) (0.195) (0.179) (0.0854) (0.105) (0.104) (0.152) (0.249) (0.444) 

          

Observations 4,874 4,874 4,821 4,556 4,556 4,503 4,927 4,927 4,874 

Centered R-squared -0.087 -0.048 0.167 0.142 0.138 0.201 -0.648 -0.845 -0.892 

Kleibergen-Paap rk Wald F statistic 11.25 9.215 6.335 11.34 9.617 6.886 6.284 3.853 0.988 

Results from second-stage IV pooled regression model. Instrument: wind speed in 2018; Instrumented variables: PM10 (col. 1-3), PM2.5 (col. 4-6), NO2 (col. 7-9). Standard 

errors are clustered at regional level; *** p<0.01, ** p<0.05, * p<0.1 
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Table A7. Pollution and mortality (Instrumental Variable OLS Pooled Regressions – second stage) 

 
Dep. Var.: New deaths  

per 1000 inhabitants (1) (2) (3) (4) (5) (6) (7) (8) (9) 

                    

PM10 0.00518** 0.00536** 0.00331       

 (0.00223) (0.00228) (0.00217)       

PM2.5    0.00473** 0.00505** 0.00376    

    (0.00206) (0.00218) (0.00269)    

NO2       0.00592* 0.00702 0.00625 

       (0.00308) (0.00410) (0.00845) 

Day 0.00371** 0.00371** 0.00374** 0.00388** 0.00388** 0.00391** 0.00364** 0.00363** 0.00366** 

 (0.00136) (0.00136) (0.00137) (0.00144) (0.00144) (0.00145) (0.00134) (0.00134) (0.00134) 

Day2 -3.79e-05*** -3.79e-05*** -3.82e-05*** -3.95e-05** -3.95e-05** -3.98e-05** -3.71e-05*** -3.69e-05** -3.73e-05*** 

 (1.31e-05) (1.31e-05) (1.32e-05) (1.40e-05) (1.39e-05) (1.40e-05) (1.30e-05) (1.30e-05) (1.30e-05) 

Mobility (pca)  -0.00175 -0.00355  -0.00502 -0.00568**  -0.00980 -0.00923 

  (0.00365) (0.00256)  (0.00345) (0.00263)  (0.00882) (0.00956) 

Artisan   0.159**   0.120   0.0432 

   (0.0658)   (0.0952)   (0.301) 

Urban green -0.00116* -0.00105* -0.000734 -0.00187** -0.00164** -0.00142** -0.00132 -0.000742 -0.000672 

 (0.000583) (0.000585) (0.000544) (0.000710) (0.000702) (0.000641) (0.00134) (0.00171) (0.00157) 

High temperature 0.00109 0.000613 0.00190 0.0105 0.00979 0.00887 -0.0235 -0.0308 -0.0268 

 (0.00617) (0.00619) (0.00444) (0.00634) (0.00601) (0.00583) (0.0141) (0.0179) (0.0368) 

Density -1.42e-05* -1.30e-05 -6.33e-06 -1.10e-05 -6.88e-06 -3.57e-06 -5.13e-05 -5.12e-05 -4.50e-05 

 (7.84e-06) (7.83e-06) (7.54e-06) (7.86e-06) (5.55e-06) (6.40e-06) (3.38e-05) (3.41e-05) (6.82e-05) 

Over65 0.000243 0.000273 7.68e-05 2.36e-05 7.90e-05 -2.84e-06 4.24e-05 0.000173 0.000126 

 (0.000163) (0.000194) (0.000159) (0.000179) (0.000173) (0.000146) (0.000221) (0.000250) (0.000313) 

Income 0.102* 0.104* 0.0582 0.0820 0.0878 0.0561 0.104 0.113 0.100 

 (0.0551) (0.0565) (0.0470) (0.0511) (0.0518) (0.0586) (0.0728) (0.0900) (0.157) 

Health (pca) -0.00104 -0.000763 -0.000133 -0.00125 -0.000295 4.74e-05 -0.00155 -9.08e-05 1.81e-05 

 (0.00118) (0.00106) (0.000680) (0.00125) (0.00100) (0.000702) (0.00124) (0.00160) (0.00151) 

Constant -0.235** -0.246** -0.192** -0.131** -0.150** -0.142** -0.169** -0.224** -0.210 

 (0.0868) (0.0953) (0.0828) (0.0456) (0.0524) (0.0504) (0.0622) (0.104) (0.162) 

          

Observations 4,784 4,784 4,732 4,472 4,472 4,420 4,836 4,836 4,784 

Centered R-squared 0.028 0.005 0.269 0.183 0.183 0.273 -0.546 -0.858 -0.587 

Kleibergen-Paap rk Wald F statistic 11.22 9.205 6.336 11.30 9.584 6.889 6.361 3.904 1.003 

Results from second-stage IV pooled regression model. Instrument: wind speed in 2018; Instrumented variables: PM10 (col. 1-3), PM2.5 (col. 4-6), NO2 (col. 7-9). Standard 

errors are clustered at regional level; *** p<0.01, ** p<0.05, * p<0.1 
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Table A8. Pollution and contagion (Instrumental Variable OLS Pooled Regressions – second stage) 

 
Dep. Var.: New cases 

per 1000 inhabitants 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

                    

Day*PM10 0.00247*** 0.00230*** 0.00224***       

 (0.000688) (0.000645) (0.000643)       

Day2*PM10 -2.23e-05*** -2.15e-05*** -2.15e-05***       

 (6.77e-06) (6.72e-06) (6.69e-06)       

Day*PM2.5    0.00195*** 0.00183*** 0.00178***    

    (0.000563) (0.000514) (0.000514)    

Day2*PM2.5    -1.77e-05*** -1.71e-05*** -1.71e-05***    

    (5.88e-06) (5.54e-06) (5.54e-06)    

Day*NO2       0.00224*** 0.00230*** 0.00224** 

       (0.000784) (0.000860) (0.000877) 

Day2*NO2       -2.01e-05*** -2.11e-05*** -2.11e-05*** 

       (7.43e-06) (7.96e-06) (7.92e-06) 

Day -0.0496*** -0.0508*** -0.0491*** -0.0193** -0.0214*** -0.0211*** -0.0347** -0.0407** -0.0396** 

 (0.0164) (0.0151) (0.0150) (0.00800) (0.00783) (0.00777) (0.0156) (0.0173) (0.0178) 

Day2 0.000451*** 0.000434*** 0.000434*** 0.000180** 0.000169** 0.000169** 0.000316** 0.000337** 0.000337** 

 (0.000159) (0.000158) (0.000157) (8.32e-05) (7.68e-05) (7.69e-05) (0.000148) (0.000161) (0.000161) 

Day*mobility (pca)  0.000231 0.000175  0.000172 0.000148  7.09e-05 9.63e-05 

  (0.000224) (0.000204)  (0.000265) (0.000252)  (0.000369) (0.000374) 

Day*Artisan   0.00479   0.00444   0.00322 

   (0.00298)   (0.00421)   (0.00644) 

Day*Health (pca)  -5.12e-05 -3.24e-05  -3.13e-05 -1.86e-05  -3.85e-05 -3.06e-05 

  (4.00e-05) (3.34e-05)  (3.90e-05) (3.18e-05)  (5.14e-05) (4.17e-05) 

Day*Income  0.00219 0.000813  0.00200 0.000820  0.00260 0.00152 

  (0.00347) (0.00337)  (0.00354) (0.00376)  (0.00384) (0.00499) 

Day*Over65  2.15e-05* 1.57e-05  1.70e-05 1.40e-05  1.97e-05** 1.65e-05 

  (1.15e-05) (1.28e-05)  (1.13e-05) (1.23e-05)  (8.86e-06) (1.30e-05) 

Day*Density  -4.70e-08 1.51e-07  7.56e-08 1.98e-07  -8.28e-07 -3.94e-07 

  (3.62e-07) (3.55e-07)  (2.75e-07) (2.87e-07)  (1.20e-06) (1.73e-06) 

Day*Urban green  1.67e-07 9.51e-06  1.12e-06 9.03e-06  6.47e-06 1.04e-05 

  (4.44e-05) (4.54e-05)  (5.75e-05) (6.37e-05)  (5.79e-05) (5.26e-05) 

High temperature  -0.000724 -0.000778  -0.00457 -0.00555  0.00202 0.00172 

  (0.00564) (0.00588)  (0.00410) (0.00419)  (0.00720) (0.00761) 

Constant -0.225*** -0.227*** -0.229*** -0.237*** -0.238*** -0.240*** -0.221*** -0.225*** -0.227*** 

 (0.0426) (0.0420) (0.0410) (0.0366) (0.0385) (0.0380) (0.0537) (0.0515) (0.0509) 
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Observations 5,300 4,874 4,821 4,929 4,556 4,503 5,406 4,927 4,874 

Number of provinces 100 92 91 93 86 85 102 93 92 

Overall R2 0.0839 0.0999 0.106 0.128 0.139 0.145 0.0609 0.0607 0.0626 

Results from second-stage IV fixed-effects panel regression model. Instruments: wind speed in 2018*day, wind speed in 2018*day2; Instrumented variables: PM10*day and 

PM10*day2 (col. 1-3), PM2.5*day and PM2.5*day2 (col. 4-6), NO2*day and NO2*day2 (col. 7-9). Standard errors are clustered at regional level; *** p<0.01, ** p<0.05, * p<0.1. 
 

 

Table A9. Pollution and mortality (Instrumental Variable OLS Pooled Regressions – second stage) 

 
Dep. Var.: New deaths 

per 1000 inhabitants 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

                    

Day*PM10 0.00137*** 0.00130** 0.00126**       

 (0.000510) (0.000540) (0.000538)       

Day2*PM10 -1.32e-05*** -1.27e-05** -1.26e-05**       

 (5.12e-06) (5.44e-06) (5.46e-06)       

Day*PM2.5    0.00115** 0.00110** 0.00107**    

    (0.000484) (0.000503) (0.000499)    

Day2*PM2.5    -1.12e-05** -1.07e-05** -1.08e-05**    

    (4.88e-06) (5.07e-06) (5.08e-06)    

Day*NO2       0.00121** 0.00128** 0.00124** 

       (0.000488) (0.000568) (0.000572) 

Day2*NO2       -1.17e-05** -1.23e-05** -1.22e-05** 

       (4.89e-06) (5.59e-06) (5.60e-06) 

Day -0.0296** -0.0289** -0.0280** -0.0141** -0.0138* -0.0136* -0.0207** -0.0229** -0.0223* 

 (0.0119) (0.0126) (0.0126) (0.00693) (0.00714) (0.00714) (0.00981) (0.0115) (0.0115) 

Day2 0.000284** 0.000270** 0.000270** 0.000135* 0.000128* 0.000128* 0.000197** 0.000211* 0.000211* 

 (0.000119) (0.000126) (0.000127) (7.01e-05) (7.17e-05) (7.20e-05) (9.83e-05) (0.000112) (0.000113) 

Day*mobility (pca)  5.40e-05 2.08e-05  2.53e-05 9.20e-06  -1.79e-05 -4.75e-06 

  (4.45e-05) (2.58e-05)  (4.45e-05) (3.30e-05)  (7.60e-05) (5.99e-05) 

Day*Artisan   0.00266***   0.00282***   0.00205 

   (0.000676)   (0.00102)   (0.00185) 

Day*Health (pca)  -1.80e-05 -7.66e-06  -5.24e-06 2.77e-06  -1.31e-05 -8.08e-06 

  (1.41e-05) (1.03e-05)  (1.13e-05) (9.24e-06)  (2.01e-05) (1.44e-05) 

Day*Income  0.000949 0.000177  0.000986 0.000233  0.00121 0.000525 

  (0.00102) (0.000918)  (0.00110) (0.00106)  (0.00108) (0.00123) 

Day*Over65  4.21e-06** 1.03e-06  2.13e-06 2.54e-07  3.20e-06 1.19e-06 

  (2.12e-06) (2.06e-06)  (2.37e-06) (2.15e-06)  (2.54e-06) (2.28e-06) 

Day*Density  -7.83e-08 3.00e-08  -1.90e-08 5.92e-08  -4.29e-07 -1.58e-07 
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  (6.52e-08) (7.16e-08)  (5.37e-08) (6.25e-08)  (3.04e-07) (4.14e-07) 

Day*Urban green  0.00116 0.000843  0.00103 0.000125  0.00775 0.00782 

  (0.00109) (0.00101)  (0.00145) (0.00174)  (0.00558) (0.00614) 

High temperature  -2.37e-05** -1.87e-05  -2.23e-05 -1.74e-05  -2.06e-05 -1.84e-05 

  (1.13e-05) (1.28e-05)  (1.45e-05) (1.89e-05)  (1.98e-05) (1.60e-05) 

Constant -0.0447* -0.0463* -0.0469* -0.0478** -0.0493** -0.0500** -0.0437* -0.0460* -0.0467* 

 (0.0234) (0.0255) (0.0249) (0.0216) (0.0240) (0.0236) (0.0247) (0.0253) (0.0250) 

          

Observations 5,200 4,784 4,732 4,836 4,472 4,420 5,304 4,836 4,784 

Number of provinces 100 92 91 93 86 85 102 93 92 

Overall R2 0.113 0.132 0.138 0.154 0.167 0.174 0.0599 0.0663 0.0676 

Results from second-stage IV fixed-effects panel regression model. Instruments: wind speed in 2018*day, wind speed in 2018*day2; Instrumented variables: PM10*day and 

PM10*day2 (col. 1-3), PM2.5*day and PM2.5*day2 (col. 4-6), NO2*day and NO2*day2 (col. 7-9). Standard errors are clustered at regional level; *** p<0.01, ** p<0.05, * p<0.1. 
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Figure A1 – COVID-19 mortality: real and counterfactual trend 

 
 

 

 

Figure A2 – COVID-19 mortality: mortality trends by lockdown and pollution 

 

Panel A: General lockdown effect & PM2.5     Panel B: General lockdown effect & PM10 

 
 

Panel C: General lockdown effect & NO2    Panel D: Local lockdown effect & PM2.5 
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Panel E: Local lockdown effect & PM10          Panel G: Local lockdown effect & NO2 
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APPENDIX B  

 
Analysis of outliers 

 

 

Descriptive analysis 

 

Figure B1. Pollutants, contagions, and mortality in Italian provinces (average during 

the period 24 February – 15 April 2020, observed and linear fitted values). 

 

(a)     (b) 

 
(c)     (d) 

 
(e)     (f) 
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Studentised residuals 

 

Table B1 shows studentised residuals greater than 2. Residuals are obtained from 

pooled OLS model as in equation (1). The provinces with the highest residuals are 

Cremona, Piacenza, and Lodi. 

 

Table B1. Extreme studentised residuals. 

 
PM10 PM25 NO2 

r Province r Province r Province 

2.34 LO 2.53 LO 2.47 LO 

3.35 PC 2.98 PC 3.43 PC 

5.2 CR 4.96 CR 5.57 CR 
 

 

Leverage 

 

Figure B2 show the leverages (obtained from pooled OLS model as in equation (1)) 

and the studentised residuals for each pollutant. Those with respect to PM10 and PM2.5 

are very similar and show that the observations that may be problematic for leverages 

(i.e., SA, NA, TS, PN, MI) are different from those detected with studentized residuals. 

 

Figure B2. Leverages and studentised residuals. 

 

(a)     (b) 

 
 

(c) 
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DFBeta 

 

Figure B3 displays for each province the dfbeta for PM10, PM2.5, and NO2, 

respectively. The plot confirms that Cremona, Lodi, and Piacenza are the most 

“influential” observations. Depending on the pollutant, Prato, Trieste, Isernia, Matera, 

Ragusa, and Rovigo may also be highly influential. 

 

 

Figure B3. DFBETA. 

 

(a)     (b) 

 
 

(c) 
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Table B2. Pollution, contagion, and mortality (excluding influential observations) 

 
Dep. Var. Pm10 Pm2.5 No2 Constant Obs. R2 

Excluded provinces: Cremona, Lodi, Piacenza. 

New_cases_pc 0.00207**   -0.424*** 4,927 0.268 

 (0.000947)   (0.0616)   

New_cases_pc  0.00253*  -0.378*** 4,609 0.262 

  (0.00128)  (0.0599)   

New_cases_pc   0.00124*** -0.379*** 4,874 0.288 

   (0.000415) (0.0532)   

New_deaths_pc 0.00106***   -0.115*** 4,836 0.286 

 (0.000359)   (0.0251)   

New_deaths_pc  0.00128**  -0.0971*** 4,524 0.275 

  (0.000607)  (0.0246)   

New_deaths_pc   0.000645*** -0.0952*** 4,784 0.277 

   (0.000189) (0.0189)   

 

Excluded provinces: Cremona, Lodi, Piacenza, Ragusa, Isernia, Rovigo, Trento, Matera. 

New_cases_pc 0.00302***   -0.437*** 4,662 0.274 

 (0.000900)   (0.0616)   

New_cases_pc  0.00342**  -0.383*** 4,503 0.265 

  (0.00122)  (0.0614)   

New_cases_pc   0.00152*** -0.371*** 4,609 0.290 

   (0.000516) (0.0557)   

New_deaths_pc 0.00127***   -0.123*** 4,576 0.295 

 (0.000375)   (0.0269)   

New_deaths_pc  0.00144**  -0.0977*** 4,420 0.277 

  (0.000662)  (0.0251)   

New_deaths_pc   0.000685*** -0.0974*** 4,524 0.279 

   (0.000210) (0.0208)   
Standard errors in parenthesis are clustered at regional level. 

 

 

 

 

 


