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Abstract

We study dynamic information acquisition in a strategic trading model. We allow

the strategic trader to optimally choose when to acquire costly information about an

asset’s payoff, instead of endowing her with this information. We show that whether

the market maker observes the acquisition decision plays a crucial role. With observ-

ability, there exists an equilibrium in which the optimal acquisition decision follows

a pure strategy and exhibits delay relative to a naive NPV rule. In contrast, when

the acquisition decision is not observable, we show that an equilibrium with smooth

trading and a pure acquisition strategy cannot exist. We also rule out the existence

of a natural class of equilibria with smooth trading in which the trader mixes between

acquiring information and not.
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1 Introduction

Investors’ incentives to acquire private information change over time and with current eco-

nomic conditions. For instance, rising oil prices can trigger research into whether airlines

are hedged against fuel price increases. A falling real estate market can lead investors to ac-

quire loan-level data on their mortgage-backed securities in order to revalue their positions.

A consolidation wave in a particular industry can lead market participants to investigate

remaining firms as potential targets. Following Grossman and Stiglitz (1980), a large litera-

ture has studied how investors choose to acquire information, and what their decisions imply

for financial markets. However, despite the inherently dynamic nature of the information

acquisition decision, the existing literature has treated it as a static problem by requiring

that investors make their information choices before the start of trading.

We study the dynamic information acquisition decision of a strategic trader. In contrast

to prior work, we allow her to choose the timing of information acquisition in response to

the evolution of a public signal. We find that whether or not the market maker observes the

trader’s acquisition decision plays a crucial role. When the trader’s acquisition decision is

observable, there is an equilibrium in which acquisition is a pure strategy and the optimal

decision exhibits delay beyond what would be predicted by a naive “NPV” rule. In sharp

contrast, we show that such pure strategy equilibria do not exist when information acquisition

is not observable by the market maker. Moreover, we rule out existence of a class of mixed

strategy equilibria in which the strategic trader follows a smooth trading strategy and a value

matching condition characterizes points at which the trader acquires information with strictly

positive probability. These results suggest that the standard strategic trading equilibrium

may be inconsistent with costly information acquisition when information can be acquired

dynamically and the acquisition decision is unobservable.

Our model builds on the continuous-time Kyle (1985) model in Back and Baruch (2004).

There is a single risky asset, traded by a risk-neutral, strategic trader and a mass of noise

traders. We introduce a publicly observable signal, which may or may not be payoff rele-

vant, that evolves stochastically over time. For example, suppose an airline’s fuel hedging

positions are not publicly known. In this case, the market faces uncertainty about whether

fluctuations in oil prices are relevant for the airline’s stock price. A risk-neutral market

maker competitively sets the asset’s price, conditional on the public signal and aggregate or-

der flow. The asset payoff (and consequently, the relevance of the signal) is publicly revealed

at a random time, e.g., when the airline’s derivative positions are made public.1 The traders

1The assumption of a random horizon is largely for tractability and is not qualitatively important for our
primary results. When appropriate, we indicate where the conclusions from a fixed-horizon model would
differ.
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and the market maker share a common prior about the payoff relevance of the public signal.

In contrast to much of the literature, we do not assume the strategic trader is endowed

with private information. Instead, she can pay a cost to determine whether the public signal

is payoff relevant. The value of this information varies over time as the signal evolves, e.g.,

whether or not the airline is hedged has a larger impact on its profits when oil prices have

risen.2 The key feature of our analysis is that the decision to become informed need not be

made at the initial date before trading begins. Rather, the trader can acquire information

at a time of her choosing.

We find that whether or not the market maker observes the trader’s information acquisi-

tion plays a key role. First, we follow the literature by considering the case with observable

acquisition.3 In this case, we show there exists an equilibrium where information acquisition

follows a pure strategy. Appealing to standard results on optimal stopping, we characterize

the trader’s optimal strategy and show that it follows a cutoff rule: she chooses to acquire

information only when the public signal reaches a threshold. Intuitively, the ability to decide

when to acquire information endows the trader with a call option on the expected profits

from being privately informed, and she chooses to exercise the option only when the uncer-

tainty about the asset payoff is sufficiently high. Moreover, we show that optimal information

acquisition exhibits delay — the strategic trader chooses to wait beyond the threshold that

would be prescribed by an “NPV” rule. As such, the standard assumption that the trader

can only choose to acquire information at the initial date is restrictive if she can condition

her acquisition decision on the evolution of public news.

Consistent with the intuition from real option decisions, we show that the benefit from

waiting to acquire information increases in the cost of information and the volatility of

the public signal, but decreases in the prior uncertainty about the payoff relevance of the

signal. We show that the likelihood of information acquisition need not always increase with

volatility of the public signal. While higher signal volatility increases the likelihood that the

option to acquire information ends up “in the money,” it also increases the value of waiting.

In fact, we show that when acquisition costs are sufficiently low, the likelihood of acquisition

decreases with news volatility.

We also find that the likelihood of information acquisition need not be higher when the

2As we discuss further in Section 2, the public signal with uncertain payoff-relevance allows us to introduce
time-varying uncertainty in the asset payoff in a tractable manner, which is a necessary feature for the trader’s
timing decision to be nontrivial. In our setting, learning about the payoff relevance of the public signal is
equivalent to learning about the payoff itself. When the public signal has zero volatility (i.e., there is no
public news) our setting maps to the binary-payoff model of Back and Baruch (2004); however, we permit
the strategic trader to endogenously choose to learn about the payoff.

3This is consistent with the standard framework, where the market maker knows with certainty whether
there is an informed, strategic trader in the market.
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trading horizon is longer. When the payoff is expected to be revealed quickly, the value from

being informed is very low since there is little time over which to profit at the expense of

noise traders, and so the acquisition boundary is high. However, as the expected trading

horizon increases, there are two offsetting effects. On the one hand, the value from being

informed increases with the horizon since the trader expects her information advantage to

last longer. On the other hand, the cost of waiting decreases with the horizon, since the

likelihood that the payoff is revealed before acquisition is low. We show that initially the

first effect dominates, while eventually the second one does. As a result, the trader is less

likely to acquire information when the trading horizon is very long or very short.

We then consider the case in which the strategic trader’s decision to acquire information

is not observable by the market maker. First, we explore whether there exist equilibria in

which information acquisition follows a pure strategy. One can immediately rule out any

equilibrium in which the strategic trader delays acquisition (or does not acquire at all).

In any such equilibrium, the market maker should rationally set the price impact to zero

before acquisition. But since acquisition is not observable, the uninformed strategic trader

should deviate by acquiring information, trading against the unresponsive market maker,

and making unbounded profits.

We also rule out pure-strategy equilibria in which the strategic trader acquires informa-

tion immediately. In such an equilibrium the strategic trader could profitably deviate by

not acquiring, thereby avoiding the cost of information, and trading optimally against an

incorrect pricing rule. In the conjectured equilibrium, the market maker treats the order

flow as informative, but an uninformed trader knows that it is not. In our setting, this

informational advantage ensures that an uninformed strategic trader can generate the same

value from trading as the expected value from becoming informed, but without paying the

cost of acquisition.4

Given the absence of pure strategy equilibria, we consider the possibility of equilibria in

which the strategic trader follows a mixed information acquisition strategy. We show that

there cannot exist such an equilibrium if the value function of the strategic trader satisfies

the usual HJB equation of dynamic programming, and there exists a point at which she

mixes that satisfies standard indifference conditions of optimal stopping.5 As we show, this

is because there is a profitable deviation for the uninformed trader at the hypothesized point

4The source of this informational advantage is that in continuous time, noise trading is effectively ob-
servable by the strategic trader. By contrast, an uninformed strategic trader cannot observe noise trading
contemporaneously in the standard, discrete-time setting, and so optimally chooses to trade zero and earns
zero profit.

5This also rules out equilibria in which the strategic trader mixes continuously (over an interval of public
news realizations) with a given intensity.
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of acquisition. Instead of acquiring information with positive probability, she can deviate

by refraining from trade for the next instant, and then re-evaluating her decision to become

informed.6 Her overall expected trading profit from deviating in that instant is at least as

high as her expected profit from becoming informed and then trading in that instant, but

since the trading game ends with positive probability immediately after she trades, she is

better off by delaying the cost of acquiring information to the future.

Our paper relates to the large literature on asymmetric information models with endoge-

nous information acquisition that was initiated by Grossman and Stiglitz (1980). While a

number of papers extend this basic setting to allow for dynamic trading (e.g., Mendelson

and Tunca (2004), Avdis (2016)), to allow traders to condition their information acquisition

decision on a public signal (e.g., Foster and Viswanathan (1993)), to allow traders to pre-

commit to receiving signals at particular dates (e.g., Back and Pedersen (1998), Holden and

Subrahmanyam (2002)), or to incorporate a sequence of one-period information acquisition

decisions (Veldkamp (2006)), the information acquisition decision remains essentially static

— investors make their information acquisition decision before the start of trade. The unob-

servable acquisition case of our model is related to a recent literature that studies markets

in which some participants face uncertainty about the existence or informedness of others

(e.g., Li (2013), Banerjee and Green (2015), Back, Crotty, and Li (2016), Wang and Yang

(2016)). To the best of our knowledge, however, our model is the first to allow for dynamic

information acquisition in that the strategic trader can choose to become privately informed

at any point of time. Our analysis implies that allowing for dynamic information acquisition

has economically important consequences and highlights the fact that observability of the

acquisition decision plays a critical role.

2 Model

Our framework is based on the continuous-time, Kyle (1985) model in Back and Baruch

(2004). Fix a probability space (Ω,F ,P) on which is defined the standard Brownian motion

(WZ ,WN) and independent random variables ξ and T . Let Ft denote the augmentation of

the filtration σ({WZt,WNt}). The random variable ξ ∈ {0, 1} is binomial with probability

α = Pr (ξ = 1), and T is exponentially distributed with rate r. There are two assets: a risky

asset and a risk-free asset with interest rate normalized to zero. The risky asset pays off v

6This deviation is made possible by a feature of the Kyle model in continuous time. As highlighted by
Back (1992), the maximum value attainable by the strategic trader in equilibrium can be attained by not
trading for an interval of time and then following the optimal trading strategy from that point.
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at random time T , where

v = ξNT . (1)

The public news process Nt is a geometric Brownian motion

dNt = σNNt dWNt (2)

where σN > 0 and the initial value N0 > 0 is constant.7 We interpret ξ as the payoff-

relevance of the news process. In particular, the news process is only informative about the

payoff of the risky asset if ξ = 1. There is a single, risk-neutral strategic trader who can pay

a fixed cost c at any time τ to determine whether the public news process is payoff relevant

(i.e., to observe the realization of ξ).

To fix ideas, consider the example from the introduction. Suppose the market faces

uncertainty about whether an airline is hedged against fuel price increases. The strategic

trader must pay a cost (i.e., c) to investigate whether the airline is exposed (i.e., ξ ∈ {0, 1}),
and optimally chooses when to do so. When the price of oil is relatively low, the incremental

impact on firm value (i.e., v) of hedging is low. In contrast, when the price of oil is high,

whether or not the airline is hedged affects its value much more. As such, one expects the

value of learning about exposure varies over time with the publicly observable news about

fuel prices (i.e., changes in Nt).

Let Xt denote the cumulative holdings of the trader, and suppose the initial position

X0 = 0. Further, suppose Xt is absolutely continuous and let θ(·) be the trading rate (so

dXt = θ(·)dt).8 There are noise traders who hold Zt shares of the asset at time t, where

dZt = σZdWZt, (3)

with σZ > 0 a constant.

Finally, there is a competitive, risk neutral market maker who sets the price of the risky

asset. This market maker observes the order flow Yt = Xt + Zt and sets the price equal

to the conditional expected payoff given the public information set. Let {FPt } denote the

public information filtration, which we separately describe below for the observable and

7The assumptions that the public signal is perfectly informative about Nt and that Nt has zero drift are
without loss of generality. In the more general case, Nt is replaced with E[NT |FP

t ] in the pricing rule and
trading strategy and the rest of the analysis is essentially unchanged. It is also straightforward to generalize
to a general continuous, positive martingale for the news process, but at the expense of closed-form solutions
to the optimal acquisition problem in most cases.

8Back (1992) shows that it is optimal for the trader to follow strategies of this form.
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unobservable cases. The price at time t < T is then given by

Pt = E
[
v
∣∣FPt ] . (4)

Let T denote the set of FPt stopping times. We require that the trader’s information

acquisition time τ ∈ T . That is, we require acquisition to depend only on public information

up to that point. Let F It denote the augmentation of the filtration σ(FPt ∪ σ(ξ)). Thus, F It
represents the trader’s information set, post-information acquisition. We require the trader’s

pre-acquisition trading strategy to be adapted to FPt and her post-acquisition strategy to be

adapted to F It .

To ensure that the trader’s expected profit is well-defined, we must rule out trading

strategies that first incur infinite losses by driving the price to zero or Nt and then reap

infinite profits. Given a price process Pt (which will in general depend on θ through the

order flow) a trading strategy θ is admissible if it satisfies the measurability restrictions

given above (i.e., does not depend on ξ before the moment of information acquisition) and

E
∫ T

0

(θu(NT ξ − Pu))− du <∞, (5)

where x− = max{0,−x}. Note that this admissibility condition is identical to that of Back

and Baruch (2004) in the case that τ = 0 and Nt ≡ 1.

Our definition of equilibrium is standard and follows Back and Baruch (2004), modified

to account for information acquisition.9

Definition 1. A pure strategy equilibrium is an information acquisition time τ ∈ T and

admissible trading strategy θ for the trader and a price process Pt such that, given the trader’s

strategy the price process satisfies (4) and, given the price process, the trading strategy and

acquisition time maximize the expected profit

E
[∫ T

0

θ(NT ξ − Pu) du
]
.

Remark: The specification of the public news process allows us to introduce stochastic

volatility in a parsimonious and tractable manner. Without variation in public news (e.g., if

Nt ≡ 1), the above setting reduces to the one analyzed by Back and Baruch (2004) but with

endogenous information acquisition. In this case, however, the trader’s acquisition decision is

effectively static since the value of information is constant over time. With a stochastic news

9For now, we focus on pure acquisition strategies. We go into further detail on the interpretation of
mixing when we consider unobservable acquisition below.
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process, the value of information evolves over time, which introduces dynamic considerations

to the acquisition decision. We expect alternative specifications that generate time-variation

in uncertainty about fundamentals would generate similar predictions, although at the ex-

pense of tractability or a less natural economic interpretation.10

3 Observable information acquisition

In this section, we characterize equilibria where the strategic trader’s decision to acquire

information is observable by the market maker. In this case, the information acquisition

decision by the strategic trader resembles the exercise of a real option. We show that optimal

information acquisition exhibits delay, and derive predictions on the likelihood of information

acquisition and price dynamics in this case.

Let It denote the indicator for whether the strategic trader has acquired information at

time t or before. Because the market maker observes the news and order flow processes,

the time of the asset payoff, and the acquisition status of the strategic trader, the public

information filtration FPt is the augmentation of the filtration σ({Nt, Yt,1{T≤t}, It}).11

3.1 Financial market equilibrium

We can construct equilibrium by working backwards. We begin by characterizing the fi-

nancial market equilibrium, conditional on an acquisition time, and then find the optimal

acquisition time given the financial market equilibrium.

Proposition 1. Fix an information acquisition time τ ∈ T . There exists an equilibrium in

the trading game in which the price of the risky asset is given by Pt = Ntα prior to acquisition

and Pt = Ntpt after acquisition, where

pt ≡ E
[
ξIt | FPt

]
=

0 0 ≤ t < τ

Φ
(

Φ−1 (α) er(t−τ) +
√

2r
σ2
Z

∫ t
τ
er(t−s)dYs

)
τ ≤ t < T

. (6)

10A perhaps more standard specification of the model would be one in which the value v is normally
distributed with stochastic volatility (e.g., variance Σt). In order for this volatility to impact the acquisition
decision, it must be publicly observable. However, this poses a difficulty: how does one interpret a setting
in which the value of an asset is unobservable, but exhibits observable stochastic volatility? An alternative
specification, in which there is a public signal with an error that exhibits stochastic volatility (e.g., Nt = v+εt,
where εt exhibits stochastic volatility σt), necessitates the introduction of two state variables (i.e., the signal
Nt and the conditional variance of v under the public information set, ΣP,t), which limits tractability.

11To reduce clutter, we abuse notation somewhat by using FP
t to denote both the market maker’s informa-

tion set, which includes the acquisition indicator It in this case, as well as the public information filtration,
which includes only the news process and order flow variables, and defines the admissible class of stopping
times for acquisition.

8



Prior to information acquisition, the trader does not trade (i.e., θU ≡ 0), and conditional on

information acquisition, her strategy depends only on p and is given by

θ1 (p) =
σ2
Zλ(p)

p
, and θ0 (p) = −σ

2
Zλ(p)

1− p
,

where θi, i ∈ {U, 1, 0}, denotes the trading strategy corresponding to the uninformed, in-

formed of ξ = 1, and informed of ξ = 0 types. In this equilibrium, conditional on becoming

informed, the trader’s value function is given by

J1 (pt, Nt) = Nt

∫ 1

pt

1− a
λ (a)

da, and J0 (pt, Nt) = Nt

∫ pt

0

a

λ (a)
da, (7)

where λ (p) =
√

2r
σ2
Z
φ (Φ−1 (1− p)).

Our equilibrium characterization naturally extends the equilibrium in Back and Baruch

(2004) to (i) accommodate the news process Nt and (ii) account for the possibility that

the strategic trader is uninformed before τ . Before information acquisition, the strategic

trader does not trade,12 and consequently, the order-flow is uninformative and the market-

maker does not update his beliefs about ξ. As a result, before τ the price Pt = αNt evolves

linearly with Nt. Conditional on information acquisition, the strategic trader optimally

trades according to θξ characterized in the proposition. Since θ1 6= θ0, the order flow provides

a noisy signal about ξ to the market maker. The market maker’s conditional expectation

about ξ, given by pt, depends on the cumulative (weighted) order-flow since the acquisition

date (i.e.,
∫ t
τ
er(t−s)dYs), and consequently, so does the price Pt.

3.2 Optimal information acquisition

Given the value function in Proposition 1, we can characterize the optimal information

acquisition decision.

Proposition 2. The strategic trader optimally acquires information the first time Nt hits

the optimal exercise boundary N∗ = β
β−1

c
K

, where

K =

√
σ2
Z

2r
φ
(
Φ−1 (1− α)

)
, and β =

1+
√

1+8r/σ2
N

2
. (8)

12Under the posited price function, the pre-acquisition trading strategy is indeterminate. Any strategy
that uses only public information earns zero expected profit in this region. Given such a trading strategy,
it also remains optimal for the market maker to set Pt = Ntα. Without loss of generality, we focus on the
case in which the trader does not trade before time τ . In the presence of transaction costs, this would be
the optimal strategy.
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Moreover, the optimal exercise boundary N∗ increases in c and σN , decreases in σZ, is U-

shaped in α (minimized at α = 0.5), and is U-shaped in r.

As we show in the proof of the above, the expected profit immediately prior to acquiring

information at any date t (i.e., the value function the instant before ξ is observed) is given

by

J̄ (Nt) ≡ Et
[
αJ1 (α,Nt) + (1− α) J0 (α,Nt)

]
= KNt. (9)

Note that the value function given information acquisition at date t is higher when there is

more noise in the order flow (i.e., higher σZ), when there is more prior uncertainty about

whether Nt is informative (i.e., when α is closer to 0.5), and when the information advantage

is expected to be longer lived (i.e., when r is smaller).

The standard approach in the literature restricts the strategic trader to make her in-

formation choices before trading begins. In this case, she follows a naive “NPV” rule —

she only acquires information if the value from becoming informed is higher than the cost

i.e., J̄ (N0) ≥ c. As the following corollary highlights, the resulting information acquisition

decision is effectively a static one.

Corollary 1. If the strategic trader is restricted to acquiring information at t = 0, she

optimally acquires information only if N0 ≥ N∗0 , where N∗0 = c
K

. Moreover, the optimal

exercise boundary N∗0 increases in c, decreases in σZ, is U-shaped in α (minimized at α =

0.5), and increases in r.

With dynamic information acquisition, the optimal time to acquire information is char-

acterized by the following problem:

JU (n) ≡ sup
τ∈T

E
[
1{τ<T}(J̄(Nτ )− c)

∣∣Nt = n
]

= sup
τ∈T

E
[
e−rτ (KNτ − c)+ |Nt = n

]
. (10)

This problem is analogous to characterizing the optimal exercise time for a perpetual Amer-

ican call option.13 Notably, the optimal information acquisition decision exhibits delay:

information is not acquired when KNt = c, as would be implied by the static NPV rule.

The intuition for this effect is analogous to that for investment delay in a real options prob-

lem. At any point in time, the trader can exercise her “option” to acquire information and

use that information to profit at the expense of the noise traders. However, by waiting and

observing the news process she learns additional information about the asset payoff (and

therefore her ultimate profits) on which she can condition her decision. Since acquiring in-

formation irreversibly sacrifices the ability to wait, it is optimal to acquire only when doing

13Hence, appealing to standard results, we establish that the optimal stopping time is a first hitting time
for the Nt process and show that the given N∗ is a solution to this problem.
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Figure 1: Exercise Boundary N∗

Unless otherwise specified, parameters are set to σZ = σN = 1, c = 0.25 and α = 0.5.
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so is sufficiently profitable to overcome this opportunity cost. Moreover, the option to wait

is more valuable (and hence N∗ is higher) when the volatility of the news process (i.e., σN)

is higher.

A key difference between the static acquisition boundary of Corollary 1 and the dynamic

acquisition boundary of Proposition 2 is how they respond to the expected trading horizon.

In the static case, the exercise boundary is increasing in r. Recall that increasing r increases

the likelihood that the payoff is revealed sooner i.e., it decreases the expected trading horizon.

This naturally decreases the value from acquiring information, since the trader has a shorter

window over which to exploit her informational advantage.

With dynamic information acquisition, the trader also accounts for the cost of waiting

to acquire information. Specifically, as the trading horizon increases (i.e., r decreases), the

expected value from acquiring information at any date (i.e., JU (Nt)) increases. However, she

is also willing to wait longer to acquire this information, since the cost of waiting (the prob-

ability the value will be revealed before she acquires information) also decreases. Initially,

the first effect dominates, which leads the exercise boundary to decrease as the trading hori-

zon increases. Eventually, however, the second effect dominates, and the exercise boundary

increases with the horizon. As Figure 1 illustrates, this implies that the exercise boundary is

non-monotonic in r with dynamic information acquisition: the trader is less likely to acquire

information when the asset payoff is expected to be revealed too quickly or too slowly.
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3.3 Likelihood of information acquisition

The likelihood of information acquisition depends on two forces. First, the cost of information

may be too high relative to the value of acquiring it: given c, the trader might never find

it optimal to acquire the information. Second, even if the (relative) cost of acquisition is

not too high, the asset payoff may be revealed before the strategic trader chooses to acquire

information. The following results characterize how these effects interact to determine the

likelihood of information acquisition.

In what follows, it is useful to define TN as the first time Nt ≥ N∗. Then, the time at

which information is acquired can be expressed as

τ = TN1{TN≤T} +∞× 1{TN>T}, (11)

where, as before, τ =∞ corresponds to no information acquisition. To avoid the trivial case,

assume N0 < N∗. We begin with the following observation.

Lemma 1. Suppose N0 < N∗. For 0 ≤ t < ∞, the probability that TN ∈ [t, t+ dt] is given

by

Pr (TN ∈ [t, t+ dt]) =

(
log
(
N∗

N0

))
σN
√

2πt3
exp

−
(

1
σN

log
(
N∗

N0

)
+ 1

2
σ2
N t
)2

2t

 dt. (12)

The probability that TN is not finite is given by Pr (TN =∞) = 1− N0

N∗
.

The result follows from applying results on the first hitting time of a Brownian motion

with drift. Since information acquisition is costly and the news process is a martingale,

there is a positive probability that the boundary is never hit, even if T ≡ ∞ . Since the

above expression is increasing in the boundary N∗, the probability of information acquisition

decreases in the cost c and volatility σN , increases in volatility of noise trading σZ and

uncertainty about ξ (i.e., is hump-shaped in α), and is hump-shaped in r.

The next result accounts for the possibility that the payoff is revealed before the infor-

mation is acquired (i.e, TN > T ).

Proposition 3. Suppose N0 < N∗. The probability that information is acquired is Pr (τ <∞) =(
N0

N

)β
. The probability is decreasing in c, increasing in N0 and σZ, hump-shaped in α (around

1
2
), and hump-shaped in r. When c ≤ N0K, the probability is decreasing in σN ; when

c > N0K, it is hump-shaped in σN .

Not surprisingly, accounting for the possibility that the payoff is revealed before Nt hits

N∗ reduces the likelihood of information acquisition (i.e., Pr (τ <∞) < Pr (TN <∞), since

12



Figure 2: Probability that information is acquired Pr (τ <∞) versus σN .
Unless otherwise specified, parameters are set to σZ = 1, c = 0.25 r = 1.5, α = 0.5.
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N0 < N∗ and β > 1). More interestingly, it also changes the effect of the volatility σN

of the news process on the likelihood of acquisition. Increasing σN has two effects: (i) it

increases the acquisition boundary (i.e., N∗ increases in σN), and (ii) fixing the boundary,

it increases the likelihood that Nt will hit the boundary by any given time (i.e., Nt is more

volatile). Appealing to the analogy with an American call option, the above result highlights

that when the option starts in the money (i.e., c ≤ N0K), the first effect dominates and

the probability of acquisition (i.e., the probability the option is exercised) decreases in σN .

However, when the option is initially out of the money (i.e., c > N0K), then for low values of

σN , the second effect dominates the first and the probability of acquisition initially increases

in σN .

Figure 2 presents an example of this non-monotonic effect of σN on the probability of

information acquisition. In panel (a), N0 is sufficiently high so that N0K ≥ c, and so the

probability of information acquisition is decreasing in σN . In panel (b), N0 is low enough so

that the probability of information acquisition initially increases and then decreases in σN .

In Appendix B we explore some additional properties of the equilibrium with observabil-

ity. First, the dynamic nature of the trader’s information acquisition decision leads to novel

price dynamics: information acquisition triggers a jump in instantaneous volatility and price

impact, and following acquisition, both evolve stochastically. Notably, these results are not

driven by stochastic volatility of fundamentals or noise trading, but arise endogenously due

to the trader’s acquisition decision and the market maker’s learning problem.14

Second, we characterize the average absolute price change at the time the asset payoff is

14Although not the focus of their analysis, a similar result on stochastic volatility and price impact arises in
Back and Baruch (2004). However, our result differs from Collin-Dufresne and Fos (2016), where stochastic
volatility and price impact are driven by stochastic volatility in noise trading.
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publicly announced. Intuitively, one might expect that this announcement effect is smaller

when the strategic trader is informed, since the order flow is more informative about the

asset payoff.15 We show that this need not be the case when the timing of information

acquisition is endogenous, because the strategic trader only chooses to acquire information

when uncertainty is sufficiently high. In fact, when the cost of information acquisition is suf-

ficiently high, the public signal volatility is sufficiently high, or the expected trading horizon

is sufficiently extreme (i.e., sufficiently short or sufficiently long), the expected announcement

effect is larger when there is information acquisition.

4 Unobservable information acquisition

In this section, we study the case in which the strategic trader’s decision to acquire infor-

mation is not observable by the market maker. In contrast to the case in which acquisition

is observable, we show that there cannot exist pure strategy equilibria. Moreover, we find

that existence of a class of mixed strategy equilibria is also ruled out.

To analyze this scenario, we need to introduce some additional notation. As before,

denote the types of strategic trader by i ∈ {U, 1, 0}, corresponding to uninformed, informed

of ξ = 1, and informed of ξ = 0. In this case, the public information filtration FPt is the

augmentation of the filtration σ({Nt, Yt,1{T≤t}}), which is analogous to the observable case

except that the market maker no longer observes the indicator It. Let pt = E[Itξ|FPt ] and

qt = E[It(1 − ξ)|FPt ] denote the market maker’s conditional probabilities that the trader is

informed and has observed ξ = 1 and ξ = 0, respectively. As before, the public news follows

(2). Hence, the state space is S = {(p, q,N) ∈ [0, 1]2 × [0,∞) : 0 ≤ p+ q ≤ 1}. As updating

on the presence of an informed trader ceases if p+ q reaches zero or one, if (p, q,N) reaches

the boundary {(p, q,N) : p + q = 1} the evolution of p, q is such that the state remains in

this set. Furthermore, the edges of this boundary, (1, 0,R+) and (0, 1,R+), are absorbing for

(p, q).

We first consider the possibility of equilibria in which information acquisition is a pure

strategy. Note that never acquiring information cannot be an equilibrium. If it were, the

market maker should rationally be insensitive to order flow. But in this case, the strategic

trader can profitably deviate by acquiring information and trading arbitrarily large quantities

at the unresponsive price.

15For instance, as Back (1992) establishes, conditional on the strategic trader being informed the an-
nouncement effect must be zero in the analogous, finite horizon model where the announcement is perfectly
anticipated. When the announcement date is stochastic, but the strategic trader is exogenously endowed
with information, as in Back and Baruch (2004), the announcement effect is smaller on average when the
strategic trader is informed.
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Next, consider an equilibrium where the strategic trader does not acquire information

until some stopping time τ > 0 (as in the observable case). In any such pure-strategy

equilibrium, the market maker should rationally set the price impact to zero before time

τ . But since information acquisition is not observable, this permits the strategic trader to

deviate by acquiring information preemptively and trading with zero price impact, generating

unbounded profits.

The final candidate for an equilibrium with pure-strategy acquisition is one in which the

trader acquires information immediately. This type of equilibrium is only possible when the

cost of information is sufficiently small. In this case, the expected payoff from acquiring

information immediately is J̄(N0) − c, as described by (9) above. Anticipating that the

strategic trader acquires information, the market maker rationally sets the price response to

λ(p) from Proposition 1. However, given this price response, we show that the value from

remaining uninformed is JU(N0) = J̄(N0). This implies that the strategic trader can deviate

by not acquiring information, save the cost of information acquisition c, and obtain the same

expected trading profits going forward.

Intuitively, the uninformed strategic trader exploits “mis-pricing” in the risky asset: while

the market maker treats the order flow as informative in the conjectured equilibrium, the

uninformed strategic trader knows that it is not. Since the noise trader demand is effectively

observable to the strategic trader in a continuous time setting, she possesses an informational

advantage which she can profitably exploit.16 In our setting, we show that this informational

advantage generates the same value as the ex-ante expected value from acquiring information,

gross of cost c.

The following result summarizes these arguments.

Proposition 4. There does not exist an equilibrium in which the trader follows a smooth

trading strategy and a pure information acquisition strategy.

Next, we entertain the possibility that information acquisition follows a mixed strategy.

A mixed information acquisition strategy is a probability distribution over stopping times

in T . That is, at the beginning of the game, the trader randomly chooses a (pure) stopping

time according to some probability distribution, and follows the realized strategy for the

duration of the game.17 Because the trader must be indifferent between any stopping time

16In contrast, an uninformed strategic trader cannot infer the current realization of the noise trade in the
standard, discrete-time model, and so optimally trades zero.

17There are multiple, equivalent ways of defining randomization over stopping times. Aumann (1964)
introduced the notion of randomizing by choosing a stopping time according to some probability distribution
at the start of the game. Touzi and Vieille (2002) treat randomization by identifying the stopping strategy
with an adapted, non-decreasing, right-continuous processes on [0, 1] that represents the cdf of the time
that stopping occurs. Shmaya and Solan (2014) show, under weak conditions, that these definitions are
equivalent.
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τ over which she mixes, each such τ must also achieve the maximum in her optimization

problem

max
{θi(·)}i∈{U,1,0},τ∈T

E
[∫ τ

0

θU(NT ξ − Ps) ds+

∫ T

τ

(αθ1 + (1− α)θ0)(NT ξ − Ps) ds
]
.

Given a trading strategy θ, let Lθ denote the generator of the process X ≡ (p, q,N) i.e., let

Lθf(x) ≡ lim
t↓0

Ex[f(Xt)]− f(x)

t
.

As before, given a stopping time τ over which the trader mixes, let J i, i ∈ {U, 1, 0} denote

the value functions of the three types, and let J̄ = αJ1 + (1 − α)J0 reflect the uninformed

trader’s conditional expected value of the informed type value function at any point (p, q,N).

Let C = {(p, q,N) ∈ S : JU > J̄ − c}. Suppose that J i are continuous on S, JU is a twice

continuously differentiable solution of the HJB equation in C, and J i for i ∈ {0, 1} are

twice continuously differentiable solutions of the HJB equation in the interior of S. i.e., for

i ∈ {0, 1, U},

rJ i = sup
θ∈R

{
θ(Nvi − P ) + LθJ i

}
, (13)

where vi is the conditional expectation of ξ for type i.

The following Proposition establishes that there does not exist an overall equilibrium

in the model in which the value functions of the three types solve the HJB equations in

the relevant regions and satisfy the value matching condition at at least one point at which

information is acquired with positive probability.18

Proposition 5. There does not exist an overall equilibrium in which

1. The trader follows a smooth trading strategy and a mixed acquisition strategy,

2. The value functions of the three types the satisfy the smoothness restrictions and are

solutions to the associated HJB equations as stated above, and

3. There exists a stopping time τ over which the trader mixes, and a point on the boundary

of the corresponding continuation region, at which the trader is indifferent between

18Note that in any mixed strategy equilibrium, there must be information acquisition at date zero with
positive probability. If not, the price sensitivity to order flow should be zero, but this implies the uninformed
strategic trader can deviate by acquiring information preemptively. As a result, in any mixed equilibrium,
0 < p0 + q0 < 1.
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acquiring and not acquiring information i.e., at which the value matching condition

JU = J̄ − c holds.

The result relies on a feature of the continuous-time Kyle model that has been highlighted

by Back (1992). Importantly, the optimality of the trading strategy θi for any strategic trader

implies that

rJ i = sup
θ∈R

{
θ(Nξ − P ) + LθJ i

}
= L0J i, (14)

i.e., the strategic trader’s maximum attainable value at date t can be attained by not trading

until some later date s and then trading optimally going forward. But this implies a profitable

deviation for the trader at the point of information acquisition. Instead of paying cost c and

(with positive probability) irreversibly becoming an informed type for the remainder of the

game, she can remain uninformed, refrain from trading, and re-evaluate her acquisition

decision after the next instant. Owing to the effect of discounting (since the value of the

asset is revealed with positive probability at every instant), waiting to become informed saves

her at least c rdt. Hence, she strictly prefers to remain uninformed over the next instant.

But this deviation rules out indifference at any conjectured acquisition point.

The result also rules out the class of equilibria in which the strategic trader mixes within

an open set of (p, q,N), by acquiring with a given intensity. In fact, when the strategic trader

mixes in such a way, value matching must hold identically over the set. However, analogous

arguments to those in the proof of Proposition 5 establish that these are inconsistent with

optimal trading, i.e., condition (13).

Note that the above deviations are not feasible when information acquisition is observable,

since the market maker could immediately respond to any decision to preempt / delay

acquisition. As such, this analysis highlights the key role that observability plays when

the strategic trader can both trade and choose when to acquire information dynamically.

Moreover, while the above arguments are developed in the context of our benchmark model,

the key arguments may be applicable to other settings.

5 Conclusions

The canonical Kyle-type framework, in which the market maker sets prices in response to

strategic trading by an informed trader, provides an important benchmark for understanding

how markets aggregate private information. A key limitation of the standard setup is that

the strategic trader is endowed with private information before trading begins, instead of

acquiring it endogenously. To explore the implications of endogenous information acquisition,
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we consider a continuous-time strategic trading model in which the trader can choose when

to acquire information about the asset payoff in response to the evolution of a public signal.

We show that the existence and nature of equilibrium depends crucially on whether the

information acquisition decision is observable by the market maker. When acquisition is

observable, we show there exists a unique equilibrium in pure (acquisition) strategies. More-

over, the equilibrium features delay in information acquisition. In contrast, when acquisition

is not observable, we find there cannot exist pure strategy equilibria. Moreover, a class of

mixed strategy equilibria satisfying natural conditions is also ruled out.

Our analysis suggests that key features of the standard, strategic trading framework may

be difficult to reconcile with costly dynamic information acquisition. Exploring the robust-

ness of these results to different distributional assumptions, information acquisition tech-

nologies (e.g., costs dependent upon the precision of information), and competition among

traders are natural next steps. It would also be interesting to study how our analysis changes

when the public signal is endogenized (e.g., in the form of strategic disclosure by firms or

regulators).
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A Proofs of Main Results

Proof of Proposition 1. To establish the equilibrium in the Proposition, we need to show:

(i) the proposed price function is rational, and (ii) the informed trader’s strategy is optimal.

Fix any τ ∈ T .

Rationality of pricing function

Consider the set {t : t < τ} on which the trader has not acquired information. Then,

because {Nt}, {Zt} and ξ are independent, and under the proposed trading strategy Yt = Zt

for t < τ, it is immediate that

E[ξNT |FPt ] = E[ξ|FPt ]E[NT |FPt ] = αE[NT |FPt ].

Since T is almost surely finite and is independent of the process Nt we have E[NT |FPt ] = Nt,

and so E[ξNT |FPt ] = αNt.

Now, consider the set {t : τ ≤ t < T} on which the trader has acquired information and

the asset payoff has not yet occurred. Up to the addition of the news process, the problem

now resembles that considered in Back and Baruch (2004), and we can adapt the proof

offered there. Specifically, consider the pricing rule from Back and Baruch (2004), adapted

for the fact that information is acquired at time τ,

dpt = λ(p)dYt, pτ = α,

where λ(p) is given in the statement of the Proposition. (Later we will show that this

pricing rule can be written in the explicit form in eq. (6).) Note that the proposed trading

strategy depends only on ξ and p, the process p depends only on the order flow, and {Nt} is

independent of ξ and {Zt}, so (ξ, {pt}) is conditionally independent of {Nt}, and therefore

E[ξNT |FPt ] = E[ξ|FPt ]E[NT |FPt ] = E[ξ|{Ys}s≤t]Nt,

where the final equality follows since E[NT |FPt ] = Nt. Furthermore, since Yt = Zt for

t < τ under the proposed trading strategy and ξ is independent of {Zt} it follows that

E[ξ|{Ys}s≤t] = E[ξ|{Ys}τ≤s≤t].
Recall that as of time τ, the informed trader begins trading according to the strategy

θξ(p) and the order flow becomes informative. The market maker’s conditional expectation

is simply equal to her prior α since before this time only noise traders have been active. It

follows that starting at time τ the market maker’s filtering problem becomes identical to
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that of the market maker in Back and Baruch (2004). Hence, their Theorem 1 implies that

for t ≥ τ the pricing rule

dpt = λ(p)dYt, pτ = α,

satisfies pt = E[ξ|{Ys}s≥τ ].
To complete the proof of the rationality of the proposed price, it suffices to show that the

explicit form of p(·) for τ ≤ t < T in eq. (6) satisfies dpt = λ(p)dYt. Applying Ito’s Lemma

to the function f(p) =

√
σ2
Z

2r
Φ−1(p) to the above process for pt gives

df(pt) =
1

2
σ2
Zλ

2(pt)

2r
σ2
Z
f(pt)

λ2(pt)
dt+

1

λ(pt)
λ(pt)dYt

= rf(pt) dt+ dYt.

Now applying Ito’s lemma to the function e−rtf(pt) and integrating allows one to express

f(pt) = f(pτ )e
rt +

∫ t

τ

er(t−s)dYs.

Note that f(pτ ) =

√
σ2
Z

2r
Φ−1(α), so returning to the explicit form of the function f(p) and

inverting it follows that

pt = Φ

(
Φ−1 (α) er(t−τ) +

√
2r
σ2
Z

∫ t

τ

er(t−s)dYs

)
.

Optimality of trading strategy

Next, we demonstrate the optimality of the proposed trading strategy, taking as given the

acquisition time τ. This analysis closely follows the proof in Back and Baruch (2004). Define

V (p) ≡
∫ 1

p
1−a
λ(a)

da and consider the proposed post-acquisition value function for the case ξ = 1

(the case for ξ = 0 is analogous)

J1 (pt, Nt) = NtV (pt).

We begin by showing that the given J characterizes the value function for t ≥ τ . Consider

{t : τ ≤ t < T} and suppose ξ = 1. Direct calculation on the function V yields

V ′ =
p− 1

λ
(15)
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rV =
1

2
σ2
Zλ

2V ′′, (16)

which coincides with eq. (1.15) and (1.16) in Back and Baruch (2004).

Let θt denote an arbitrary admissible trading strategy. Following Back and Baruch

(2004), let p̂t denote the process defined by p̂s = α for s ≤ τ and dp̂t = λ(p̂)dYt for t > τ and

0 < p̂t < 1, with Yt generated when the trader follows the given arbitrary trading strategy. In

order to condense notation, in this section, we denote E[·|FPt ] = Et[·]. Since θ is admissible,

we know that

Eτ
[∫ T

τ

Nu(1− pu)θ−u du
]

= Eτ
[∫ ∞

τ

e−r(u−τ)Nu(1− p̂u)θ−u du
]
<∞,

from which it follows that ∫ ∞
τ

e−r(u−τ)Nu(1− p̂u)θ−u du <∞

almost surely, and therefore that the integral∫ ∞
τ

e−r(u−τ)Nu(1− p̂u)θudu

is well-defined, though is possibly infinite.

Let T̂ = inf{t ≥ τ : p̂ ∈ {0, 1}}. Applying Ito’s lemma to e−r(t−τ)J yields

e−r(t∧T̂−τ)J1(p̂t∧T̂ , Nt∧T̂ )− J1(p̂τ , Nτ )

=

∫ t∧T̂

τ

e−r(u−τ)N

(
−rV (p̂u) + λθV ′(p̂u) +

1

2
σ2
Zλ

2V ′′
)
du

+ σZ

∫ t∧T̂

τ

e−r(u−τ)NλV ′(p̂u)dWZu + σN

∫ t∧T̂

τ

e−r(u−τ)NV (p̂u)dWNu

= −
∫ t∧T̂

τ

e−r(u−τ)Nuθu(1− p̂u)du− σZ
∫ t∧T̂

τ

e−r(u−τ)Nu(1− p̂u)dWZu (17)

+ σN

∫ t∧T̂

τ

e−r(u−τ)NuV (p̂u)dWNu

where the last equality uses eq. (15) and (38). Since V ≥ 0, the above implies

∫ t∧T̂

τ

e−r(u−τ)Nuθu(1− p̂u)du ≤ NτV (α) + x(t), (18)
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where we define x(t) = σN
∫ t∧T̂
τ

e−r(u−τ)NuV (p̂u)dWNu − σZ
∫ t∧T̂
τ

e−r(u−τ)Nu(1 − p̂u)dWZu.

The integrands in the stochastic integrals are locally bounded and hence the integrals are

local martingales (Thm. 29, Ch. 4, Protter (2003)). It follows that x(t) is itself a local

martingale (Thm. 48, Ch. 1, Protter (2003)).

Let τ̂n be a localizing sequence of stopping times for x(t). That is, τ̂n+1 ≥ τ̂n, τ̂n →∞, and

x(t∧ τ̂n) is a martingale for each n. Because x(t) is a local martingale such a sequence exists

(e.g., because x(t) is continuous we can take τ̂n = inf{t : |x(t)| ≥ n}). Further considering

the sequence n ∧ τ̂n, eq. (18) implies

∫ n∧τ̂n∧T̂

τ

e−r(u−τ)Nuθu(1− p̂u)du ≤ NτV (α) + x(n ∧ τ̂n).

Applying Fatou’s lemma,19 along with this inequality, yields

Eτ

[∫ T̂

τ

e−r(u−τ)Nuθu(1− p̂u)du

]
≤ lim inf

n→∞
Eτ

[∫ n∧τ̂n∧T̂

τ

e−r(u−τ)Nuθu(1− p̂u)du

]
≤ NτV (α) + lim inf

n→∞
Eτ [x(n ∧ τ̂n)]

≤ NτV (α).

Note that for T̂ < ∞ we have p̂T̂ = 1 since p̂T̂ = 0 would imply a violation of the

admissibility condition. To establish this, note that eq. (17) implies

−Eτ

[∫ n∧τ̂n∧T̂

τ

e−r(u−τ)Nuθu(1− p̂u)du

]
= Eτ

[
e−r(t∧T̂−τ)Nt∧T̂V (p̂t∧T̂ )−NτV (α)

]
− J1(p̂τ , Nτ ),

and therefore

− Eτ

[∫ T̂

τ

e−r(u−τ)Nuθu(1− p̂u)du

]

≥ lim sup
n→∞

Eτ

[
−
∫ n∧τ̂n∧T̂

τ

e−r(u−τ)Nuθu(1− p̂u)du

]
= lim sup

n→∞
Eτ
[
e−r(n∧τ̂n∧T̂−τ)Nn∧τ̂n∧T̂V (p̂n∧τ̂n∧T̂ )−NτV (α)

]
− J1(p̂τ , Nτ )

≥ Eτ
[
e−r(T̂−τ)NT̂V (p̂T̂ )

]
− J1(p̂τ , Nτ )

=∞,
19The typical formulation of Fatou’s Lemma requires that the integrands fn be weakly positive. However,

if f−n is bounded above by an integrable function g, considering fn + g in Fatou’s lemma delivers the result.
Here, due to the admissibility condition we can take g = Nu(1− pu)θ−u .
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where the first line applies the ‘reverse’ Fatou’s Lemma, the second line uses the equality

in the previous displayed equation, the third line applies Fatou’s Lemma and the final line

follows because V (0) = ∞. Furthermore, p̂u = p̂T̂ = 1 for all u ≥ T̂ since 1 is an absorbing

state. It follows that

Eτ
[∫ ∞

τ

e−r(u−τ)Nuθu(1− p̂u)du
]

= Eτ

[∫ T̂

τ

e−r(u−τ)Nuθu(1− p̂u)du

]
≤ NτV (α). (19)

Furthermore, this inequality is trivially true for T̂ =∞, so it holds regardless of the behavior

of T̂ . It follows that

NτV (α) ≥ Eτ
[∫ ∞

τ

e−r(u−τ)Nuθu(1− p̂u)du
]

= Eτ
[∫ T

τ

Nuθu(1− pu)du
]
,

since p̂ = p for t ≤ T. Hence NτV (α) is an upper bound on the post-acquisition value

function.

To establish the optimality of the trader’s post-acquisition strategy and the expression for

the value function, it remains to show that the expected profits generated by the strategy

attain the bound NτV (α). (We show below that the trader’s overall trading strategy is

admissible.) Compute the trader’s expected profit at time τ. We have

Eτ
[∫ T

τ

θ1(pu)Nu(1− pu) du
]

=

∫ ∞
τ

Eτ
[
1{t≤T}θ

1(pu)Nu(1− pu)
]
du

=

∫ ∞
τ

Eτ [Nu]Eτ
[
1{t≤T}θ

1(pu)(1− pu)
]
du

= Nτ

∫ ∞
τ

Eτ
[
1{t≤T}θ

1(pu)(1− pu)
]
du

= NτEτ
[∫ T

τ

θ1(pu)(1− pu) du
]
,

where the first equality applies Fubini’s theorem which is permissible because the integrand

is positive, the second equality uses the fact that N is independent of T and {pu}, the next-

to-last equality follows because N is a martingale, and the final equality applies Fubini’s

theorem again. Back and Baruch (2004) establish that under the given trading strategy and

pricing rule, V (α) = Eτ
[∫ T

τ
θ1(pu)(1− pu) du

]
. Hence,

NτV (α) = Eτ
[∫ T

τ

θ1(pu)Nu(1− pu) du
]
,

which establishes the optimality of the post-acquisition trading strategy.
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Let JU(N) denote the pre-acquisition value function (i.e., the value function for an unin-

formed trader). Note that because p ≡ 0 for t < τ, JU effectively depends only on the news

process in this case. We need to characterize this function and establish that the overall

posited trading strategy, involving no trade prior to acquisition, is optimal. Under the given

trading strategy, we have

JU(N) = E
[
1{τ<T}

∫ T

τ

θξ(pu)Nu(ξ − pu) du
]

= E
[
1{τ<T}J

ξ(pτ , Nτ )
]

Let θ̌ be any admissible trading strategy that is adapted to FPt and θ̂ any admissible

strategy that is adapted to F It . Then θ = 1{t<τ}θ̌+1{t≥τ}θ̂ is an arbitrary admissible strategy

that obeys the restriction that the trader does not observe ξ until time τ. The expected profits

from following this strategy are

E0

[
1{τ<T}

∫ τ

0

θ̌uNu(ξ − α) du+ 1{τ<T}

∫ T

τ

θ̂uNu(ξ − pu) du+ 1{τ≥T}

∫ T

0

θ̌uNu(ξ − α) du

]
= E0

[
1{τ<T}

∫ T

τ

θ̂uNu(ξ − pu) du
]

= E0

[
1{τ<T}E

[∫ T

τ

θ̂uNu(ξ − pu) du|F Iτ
]]

≤ E0

[
1{τ<T}J

ξ(pτ , Nτ )
]

= JU(N),

where the first equality takes expectations over ξ, the second equality uses the law of iterated

expectations, and the inequality follows since it was shown above that as of time τ, our posited

trading strategy achieves higher expected profit than any other admissible strategy.

Proof of Proposition 2. Let J̄(Nt) denote the value of acquiring information when the

news process is equal to Nt. Using the expression for the post-acquisition value function in

Proposition 1, we have

J̄ (Nt) = Nt

(
α

∫ 1

α

1− a
λ(a)

da+ (1− α)

∫ α

0

a

λ(a)
da

)
≡ NtK.

Make the change of variables x = Φ−1(1− a) in the integrals in the expression for JU(Nt)

K = α

√
σ2
Z

2r

∫ 1

α

(1− a)
1

φ(Φ−1(1− a))
da+ (1− α)

√
σ2
Z

2r

∫ α

0

a
1

φ(Φ−1(1− a))
da
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= −α
√

σ2
Z

2r

∫ −∞
Φ−1(1−α)

Φ(x)dx− (1− α)

√
σ2
Z

2r

∫ Φ−1(1−α)

∞
(1− Φ(x)) dx

= α

√
σ2
Z

2r

∫ Φ−1(1−α)

−∞
Φ(x)dx+ (1− α)

√
σ2
Z

2r

∫ ∞
Φ−1(1−α)

(1− Φ(x)) dx.

Now integrate by parts

K = α

√
σ2
Z

2r

∫ Φ−1(1−α)

−∞
Φ(x)dx+ (1− α)

√
σ2
Z

2r

∫ ∞
Φ−1(1−α)

(1− Φ(x)) dx

= α

√
σ2
Z

2r

(
−
∫ Φ−1(1−α)

−∞
xφ(x) dx+ xΦ(x)

∣∣∣∣Φ−1(1−α)

−∞

)

+ (1− α)

√
σ2
Z

2r

(∫ ∞
Φ−1(1−α)

xφ(x) dx+ x(1− Φ(x))

∣∣∣∣∞
Φ−1(1−α)

)

= α

√
σ2
Z

2r

(
−
∫ Φ−1(1−α)

−∞
xφ(x) dx+ (1− α)Φ−1(1− α)

)

+ (1− α)

√
σ2
Z

2r

(∫ ∞
Φ−1(1−α)

xφ(x) dx− αΦ−1(1− α)

)
=

√
σ2
Z

2r

∫ Φ−1(1−α)

−∞
−xφ(x) dx =

√
σ2
Z

2r
φ(Φ−1(1− α)),

since
∫
−xφ(x)dx =

∫
φ′(x)dx = φ (x).

The pre-acquisition value function under optimal stopping is

JU(n) ≡ sup
τ∈T

E
[
1{τ<T}(KNτ − c) | Nt = n

]
= sup

τ∈T
E
[
e−rτ (KNτ − c)+ | Nt = n

]
,

where the second equality follows because T is independently exponentially distributed and

it suffices to consider only the positive part of KNτ−c since the trader can always guarantee

herself zero profit by not acquiring. Note that this problem is similar to pricing a perpetual

American call option on an asset with price process KNt that follows a geometric Brownian

motion and with strike price c. Hence, standard results (Peskir and Shiryaev (2006), Chapter

4) imply that the optimal stopping time is a first hitting time of the Nt process,

TN = inf{t > 0 : Nt ≥ N∗},

where N∗ > 0 is a constant to be determined.
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The value function and optimal N∗ solve the following free boundary problem

rJU = 1
2
σ2
NN

2
t J

U
NN for n < N∗

JU(N∗) = KN∗ − c ‘value matching’

JUN (N∗) = K ‘smooth pasting’

JU(n) > (n− c)+ for n < N∗

JU(n) = (n− c)+ for n > N∗

JU(0) = 0.

To determine the solution in the continuation region n < N∗, consider a trial solution of the

form JU(n) = Anβ. Substituting and matching terms in the differential equation yields

r = 1
2
σ2
Nβ(β − 1), β = 1

2
± 1

2

√
1 + 8r

σ2
N

and the boundary condition at N = 0 requires that one take the positive root

β = 1
2

+ 1
2

√
1 + 8r

σ2
N
.

Applying the above conjecture to the value-matching and smooth pasting conditions implies:

N∗ =
β

β − 1

c

K
, A =

K

β

(
β

β − 1

c

K

)1−β

=
c

β − 1

1

(N∗)β
,

and the resulting function satisfies JU(n) > n−c in the continuation region, which establishes

the result. The comparative statics with respect to c, σN , σZ , and α are immediate from the

explicit expression for N∗. Moreover, since

∂
∂r
N∗ =

c

σ2
Zφ (Φ−1 (1− α))

4
√

2

(
√
r − 2

√
r

8r

σ2
N

+1

)
(
σN −

√
σ2
N + 8r

)
2

(20)

we know that N∗ is decreasing in r when r < 3
8
σ2
N , but increasing otherwise.

Proof of Lemma 1. Note that

Nt ≥ N∗ ⇐⇒ log(Nt) ≥ log(N∗)

⇐⇒ −1

2
σN t+WNt ≥

1

σN
(log(N∗/N0)),
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so that the first time that Nt hits N∗ is the first time that a Brownian motion with drift

−1
2
σN hits 1

σN
(log(N

∗

N0
)). It follows from Karatzas and Shreve (1998) (Chapter 3.5, Part C,

p.196-197) that for N0 < N∗ the density of TN is

Pr (TN ∈ [t, t+ dt]) =

(
log
(
N∗

N0

))
σN
√

2πt3
exp

−
(

1
σN

log
(
N∗

N0

)
+ 1

2
σN t

)2

2t

 dt.

Moreover, since 1
σN

(log(N
∗

N0
)) > 0 but the drift of the Brownian motion is −1

2
σN < 0, it

follows from Karatzas and Shreve (1998) (p.197) that Pr(TN =∞) > 0. Specifically, note

that

Pr (TN <∞) =

∫ ∞
0

(
log
(
N∗

N0

))
σN
√

2πt3
exp

−
(

1
σN

log
(
N∗

N0

)
+ 1

2
σN t

)2

2t

 dt =
N0

N∗
, (21)

which implies Pr (TN =∞) = 1− N0

N∗
.

Proof of Proposition 3. Given the definition of τ , we have that for 0 ≤ t <∞,

Pr (τ ∈ [t, t+ dt]) =
Pr
(
τ ∈ [t, t+ dt]

∣∣TN ≤ T
)

Pr (TN ≤ T )

+ Pr
(
τ ∈ [t, t+ dt]

∣∣TN > T
)

Pr (TN > T )
(22)

= Pr
(
TN ∈ [t, t+ dt]

∣∣TN ≤ T
)

Pr (TN ≤ T ) (23)

= Pr (TN ∈ [t, t+ dt]) Pr (T ≥ t) (24)

= e−rt Pr (TN ∈ [t, t+ dt]) . (25)

Integrating gives us

Pr (τ <∞) =

∫ ∞
0

e−rt

(
log
(
N∗

N0

))
σN
√

2πt3
exp

−
(

1
σN

log
(
N∗

N0

)
+ 1

2
σN t

)2

2t

 dt (26)

=
e
−

log(N∗/N0)
√

8r+σ2
N

2σN√
N∗/N0

=

(
N0

N∗

)β
(27)

The comparative statics for c, N0, σZ and α follow from plugging in the expressions for N∗

and β. To establish the comparative statics for σN , first note that since limσN→0 β =∞,
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limσN→∞ β = 1, and N∗ = β
β−1

c
K

,

lim
σN→∞

Pr (τ <∞) = 0 (28)

lim
σN→0

Pr (τ <∞) =

0 if c > N0K

1 if c ≤ N0K
. (29)

Let

ζ ≡ ∂
∂β

(log (Pr (τ <∞))) = ∂
∂β

(
N0

N∗

)β
= log

(
N0

N∗

)
+ 1

β−1
(30)

which implies limσN→0 ζ = limβ→∞ ζ = log
(
N0K
c

)
, limσN→∞ ζ = limβ→1 ζ =∞, and

∂
∂σN

ζ = ∂ζ
∂β

∂β
∂σN

= − 1
β(1−β)2

∂β
∂σN

> 0. (31)

Since ∂
∂σN

log (Pr (τ <∞)) = ζ ∂β
∂σN

, we have the following results:

• When c ≤ N0K, since ζ ≥ 0 for σN → 0 and ∂
∂σN

ζ > 0 we have ζ > 0 for all σN , which

in turn implies ∂
∂σN

log (Pr (τ <∞)) < 0 for all σN .

• When c > N0K, ζ crosses zero once, from below, as σN increases, which implies
∂

∂σN
log (Pr (τ <∞)) = 0 at exactly this one point. In this case, Pr (τ <∞) is hump-

shaped.

Similarly, for r, ∂
∂r

log(Pr(τ <∞)) = ζ ∂
∂r
β− β

2r
. We have ∂

∂r
ζ = − 1

β(β−1)2
∂
∂r
β− 1

2r
< 0. Since

∂
∂r
β = 1

σ2
N(β− 1

2)
> 0 this implies ∂

∂r
log(Pr(τ < ∞)) crosses zero as most once as r increases

and from above if it does so. Consider the limit as r tends to zero,

lim
r→0

∂
∂r

log(Pr(τ <∞)) = lim
r→0

(
ζ ∂
∂r
β − β

2r

)
= lim

r→0

2rζ − σ2
Nβ
(
β − 1

2

)
2σ2

Nr
(
β − 1

2

) . (32)

If it can be shown that the numerator in eq. (32) has a finite, positive limit it will follow

that the overall limit is ∞. Considering the numerator, we have

lim
r→0

(
2rζ − σ2

Nβ
(
β − 1

2

))
= 2 lim

r→0
r
(

1
β−1
− log β

β−1
− log

√
2r
)
− 1

2
σ2
N

= σ2
N − 2 lim

r→0

1
β(β−1)

1
r2

− 1
2
σ2
N

= 1
2
σ2
N − 2 lim

r→0

2r

(2β − 1) ∂
∂r
β

= 1
2
σ2
N
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where the second equality applies l’Hôspital’s rule to the three different terms and uses the

fact ∂
∂r
β → 2

σ2
N

as β → 1. The third equality rearranges the expression in the remaining limit

to place r2 in the numerator and uses l’Hôspital’s rule again. Returning to eq. (32), this

implies limr→0
∂
∂r

log(P(τ <∞)) =∞.
Now, consider limr→∞

∂
∂r

log(Pr(τ <∞)). We have

lim
r→∞

ζ = lim
r→∞

(
1

β−1
− log β

β−1
− log

√
2r
)

= lim
β→∞

(
1

β−1
− log β

β−1

)
− lim

r→∞
log
√

2r = −∞.

Because ∂
∂r
β > 0, it follows that limr→∞

∂
∂r

log(Pr(τ < ∞)) = −∞, which completes the

proof.

Proof of Proposition 4. First, note that with unobservable acquisition, if the market

maker sets the price impact to zero, the strategic trader should acquire information and

trade with zero price impact to generate unbounded profits. This rules out equilibria in

which information is not immediately acquired. Now consider equilibria in which information

is acquired at some stopping time τ . Then, based on the analysis of the observable case,

in any such equilibrium the price and value functions of the informed strategic traders are

given by the expressions in Proposition 1. Consider the value function JU of an uninformed

strategic trader in this setting. By analogous arguments to those in Proposition 1, we can

show that it is of the form: JU(pt, Nt) = NtV
U(pt), where

V U
p =

p− α
λ

, rV U =
1

2
σ2
zλ

2V U
pp . (33)

hold identically for p ∈ (0, 1). But appealing to the analogous equations for V 0 and V 1, we

can write

V U
p = αV 1

p + (1− α)V 0
p (34)

⇒ V U
pp = αV 1

pp + (1− α)V 0
pp (35)

⇒ V U = αV 1 + (1− α)V 0 (36)

⇒ JU(α,Nt) = J̄(α,Nt). (37)

This implies that the value to being uninformed is equal to the (ex-ante) expected value from

being informed. Hence, the trader can profitably deviate and avoid the cost of information

acquisition without affecting her continuation value.

Proof of Proposition 5. Suppose that an equilibrium exists that satisfies the three points

in the Proposition. There are two cases to consider: (i) the uninformed trader acquires
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information with positive probability on [0, T ] (i.e., the set of stopping times that she mixes

over in her acquisition strategy is nonempty) and (ii) the uninformed trader never acquires

information (the set of stopping times over which she mixes is empty). We begin with case

(i). Consider an arbitrary stopping time τ over which the trader mixes in her acquisition

strategy. This accommodates pure strategies, which are simply mixed strategies that place

probability 1 on a particular stopping time.

Let C = {(p, q,N) ∈ S : JU > J̄−c} denote the continuation region and B = {(p, q,N) ∈
S : JU = J̄ − c} the stopping region for the uninformed trader. Since the value functions are

assumed to be continuous, it follows that C is open and B is closed. Pick a point (p∗, q∗, N∗)

on the boundary of C. Suppose that in some nonempty open neighborhood of this point

A = {‖(p, q,N)− (p∗, q∗, N∗)‖ < ε} ∩ C, pt and qt follow

dpt = µp dt+ λ(θdt+ dZt) + pJdG

dqt = µq dt+ κ(θdt+ dZt) + qJdG,

where µ, ν, λ, and κ are functions of p, q, and N , G is a jump at the boundary of size 1,

and pJ , qJ ∈ R are jump sizes of the respective processes.20 Let Lθ be the generator of the

(p, q,N) process under trading strategy θ. Under the posited processes, L operates on f ∈ C2

as

Lθf(p, q,N) = (µp + θλ)fp + (µq + θκ)fq +
1

2
fppλ

2σ2
Z +

1

2
fqqκ

2σ2
Z + fpqλκσ

2
Z +

1

2
σ2
NN

2fNN

+ {f(p∗ + pJ , q
∗ + qJ , N)− f(p∗, q∗, N)}

For the informed types, the value function satisfies the HJB equation. Moreover, given the

linearity in θ, the terms multiply θ in the HJB equations must equal zero. This implies the

remaining terms must also equal zero i.e., for i ∈ {0, 1}.

0 = sup
θ∈R

{
LθJ i + θ(Nξ − P )

}
− rJ i = L0J i − rJ i, (38)

where L0 corresponds to the generator when θ = 0. Taking an α-weighted average of eq. (38)

over i ∈ {0, 1} and using the linearity of the right-hand side in θ implies that J̄ also satisfies

0 = sup
θ∈R

{
LθJ̄ + θ(Nα− P )

}
− rJ̄ = L0J̄ − rJ̄ (39)

20In equilibrium, the pricing rule responds optimally to the possibility that information is acquired at the
boundary, so in the conjectured equilibrium p and q will jump at any point that information is acquired with
positive probability.
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The uninformed trader faces a combined optimal control and stopping problem. Hence,

her value function must solve the following variational inequality (see Øksendal and Sulem

(2007), Ch. 4) in the interior of S

max

{
sup
θ

(LθJU + θ(Nα− P ))− rJU , J̄ − c− JU
}

= 0,

or equivalently,

max
{
L0JU − rJU , J̄ − c− JU

}
= 0.

In particular, the value function must be a (viscosity) supersolution of the variational in-

equality (Øksendal and Sulem (2007), Ch. 9). That is, given a function h that is twice

continuously differentiable in the interior of S and satisfies h ≤ JU , for any point (p, q,N)

at which h = JU we have

max
{
L0h− rh, J̄ − c− JU

}
≤ 0.

Pick any point on the boundary of the continuation region at which the value matching

holds and take h = J̄ − c. This function is twice continuously differentiable since we have

assumed that J1 and J0 are. Owing to the value matching condition, at the chosen boundary

point we have JU = J̄ − c and therefore we have

max
{
L0J̄ − r(J̄ − c), J̄ − c− JU

}
= max {rc, 0} > 0,

where the equality follows from eq. (39) and value matching. This contradicts JU being a

supersolution of the variational inequality. This completes the proof of case (i).

For case (ii), note that if, with probability one, the uninformed trader does not acquire

information, then the optimal pricing rule is unresponsive to order flows. In that case, the

trader has a profitable deviation in which she acquires information at t = 0, trades against

the unresponsive market maker, and makes unbounded profits. We conclude that there can

be no equilibrium in which she remains uninformed with probability one.
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B Additional Predictions from the Observable Case

Price dynamics

The expression for the price in Proposition 1 immediately implies that price impact of or-

der flow before information acquisition is zero, but jumps to λ (pτ ) when information is

acquired. Moreover, price impact evolves stochastically post-acquisition, since it is driven

by the evolution of the market maker’s beliefs pt.

The following result characterizes return volatility in our model.

Proposition 6. The instantaneous variance of returns is

νt ≡

σ
2
N 0 ≤ t < τ

σ2
N +

(
λ∗(pt)
pt

)2

σ2
Z τ ≤ t < T

Conditional on information acquisition, volatility is stochastic and exhibits the “leverage”

effect i.e., the instantaneous covariance between returns and variance of returns is negative

(cov
(
νt,

dpt
pt

)
≤ 0).

The above result highlights that return volatility is higher conditional on information

acquisition. Conditional on no acquisition, price changes are driven purely by changes in

the news process. However, conditional on the strategic trader being informed, the market

maker also conditions on order flow to update his beliefs about the asset payoff, and as a

result, return volatility is driven by two sources of variation.

In contrast to the standard Kyle (1985) model, our model generates stochastic return

volatility and price impact, even though fundamentals (i.e., Nt) and noise trading (i.e., Zt)

are homoskedastic. This is a consequence of the non-linearity in the filtering problem of

the market maker, and is in contrast to models where the (conditionally linear) filtering

problem amplifies stochastic volatility in an underlying process (e.g., in Collin-Dufresne and

Fos (2016), return volatility amplifies stochastic volatility in noise trading).21 Moreover,

conditional on information acquisition, return volatility also exhibits the “leverage effect”

(see Black (1976) and the subsequent literature) — the instantaneous variance increases

when returns are negative, and vice versa — even though there is no leverage (debt) in the

underlying risky asset.

Despite the large empirical literature documenting the importance of stochastic volatil-

ity and jumps in volatility, there are relatively few theoretical explanations for how these

21Similar results obtain in the continuous-time models of Back and Baruch (2004), Li (2013), Back et al.
(2016), and the discrete time model of Banerjee and Green (2015).
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patterns arise. Our model provides an explanation for both, but it does not rely on jumps

or stochastic volatility in fundamentals. Instead, volatility jumps (and becomes stochastic)

when the public news process triggers private information acquisition by the strategic trader.

Our analysis suggests that further understanding the interaction between public news and

private information can provide new insights into what drives empirically observed patterns

in volatility.

Announcement effects

Next, we turn to the absolute price change at the time the payoff of the risky asset is an-

nounced. In finite horizon models where the announcement is perfectly anticipated (e.g.,

Back (1992)), the informed trader’s optimal strategy ensures that the price change at an-

nouncement is zero. While this is no longer the case with a stochastic announcement date,

the intuition from these models would suggest that the announcement effect is smaller on

average if information is acquired than if it is not. However, as the next result highlights,

this is not always the case.

Proposition 7. The expected absolute price jump on announcement, conditional on infor-

mation acquisition is

E
[∣∣ξNT − PT−

∣∣∣∣τ <∞] = 2N∗h (α) , (40)

where h (α) is characterized in the Appendix, and fully illustrated by the plot in Figure 3. The

expected absolute price jump on announcement, conditional on no information acquisition is

E
[∣∣ξNT − PT−

∣∣∣∣τ =∞
]

= 2α (1− α)N∗
N0

N∗
−
(
N0

N∗

)β
1−

(
N0

N∗

)β .

Fixing α ∈ (0, 1) and the other parameters, the announcement effect is larger with informa-

tion acquisition when: N0 is sufficiently small, c is sufficiently high, σ2
N is sufficiently high,

σ2
Z is sufficiently low, or r is sufficiently extreme (i.e., sufficiently low, or sufficiently high).

The proposition characterizes conditions under which a potentially surprising result holds:

the announcement effect is larger with information acquisition than without. In a setting

where the strategic trader is exogenously endowed with information, the standard intuition

holds — the announcement effect conditional on an informed trading is smaller than the

announcement effect conditional on no informed trading. To see why, note that in this case,

the announcement effect can be expressed as

E
[∣∣ξNT − PT−

∣∣] = N0E
[∣∣ξ − πT ∣∣] = 2N0E [πT (1− πT )] , (41)
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Figure 3: h (α) and α (1− α)
The figure plots h (α) (solid) and α (1− α) (dashed) as a function of α.
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h (α) (solid), α (1− α) (dashed) as a function of α

where πt = E[ξ|FPt ]. When the strategic trader is not informed, πT = α. When the strate-

gic trader is informed, πT = pT , and so Jensen’s inequality implies that E [pT (1− pT )] ≤
α (1− α). Intuitively, the market-maker’s posterior beliefs are more precise when the strate-

gic trader is informed, and as a result, the price reflects the asset payoff more accurately.

When information acquisition in endogenous, however, there is an offsetting effect at

work. Recall that the strategic trader only acquires information when the news process is

sufficiently high (Nt ≥ N∗). This implies that the expected level of NT , conditional on

information acquisition, is higher since E [NT |τ <∞] = N∗ ≥ N0. Intuitively, the strategic

trader only chooses to acquire information when the prior uncertainty about fundamentals

is sufficiently high. This offsetting effect dominates when the initial news level N0 is suffi-

ciently small or the optimal exercise boundary N∗ is sufficiently large, and as a result, the

announcement effect conditional on information acquisition is higher in these cases.

Proofs

Proof of Proposition 6. Using the expression for the asset price in Proposition 1,

dPt =

ασNNtdWNt 0 ≤ t < τ

σNNtp(Yt)dWNt +Ntλ
∗(pt)σZ dWY t τ ≤ t < T

,

where WY t ≡ Yt/σZ is a standard Brownian motion under the public filtration and is
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independent of WNt. Hence,

dPt
Pt

=

σNdWNt 0 ≤ t < τ

σNdWNt + λ∗(pt)
pt

σZ dWY t τ ≤ t < T
.

Letting νt denote the instantaneous variance of the return process gives:

νt ≡


σ2
N 0 ≤ t < τ

σ2
N +

(
λ(pt)
pt

)2

σ2
Z = σ2

N + 2r

(
φ(Φ−1(pt))

pt

)2

τ ≤ t
(42)

Let f (p) ≡ φ (Φ−1 (p)), and note that fp = −Φ−1 (p) and fpp = − 1
f
. Conditional on

information acquisition, note that by Ito’s Lemma, we have:

dνt = νpdpt + 1
2
νpp (λ (pt))

2 σ2
Zdt = νpdpt + rf (p)2 νppdt, (43)

where νp = 4r
(
f
p

)(
fpp−f
p2

)
< 0, and

νpp = 4r
(
fpp−f
p2

)2

+ 4r
(
f
p

)(
p2(fppp+fp−fp)−2p(fpp−f)

p4

)
. (44)

Since νp < 0, the above implies that conditional on information acquisition, instantaneous

return variance νt and returns are negatively related i.e., cov
(
dpt
pt
, dνt

)
< 0.

Proof of Proposition 7. For the no acquisition case,

E
[∣∣ξNT − PT−

∣∣∣∣TN > T
]

= E
[
NT

∣∣ξ − α∣∣∣∣TN > T
]

= 2α (1− α)E
[
NT

∣∣TN > T
]

(45)

Next, note that

E [NT ] = Pr (TN < T )E
[
NT

∣∣TN < T
]

+ Pr (TN ≥ T )E
[
NT

∣∣TN ≥ T
]

(46)

⇒ E
[
NT

∣∣TN > T
]

=
N0 − Pr (TN < T )N∗

Pr (TN ≥ T )
(47)

=
N0 −

(
N0

N∗

)β
N∗

1−
(
N0

N∗

)β (48)

since E [NT ] = N0, E
[
NT

∣∣TN < T
]

= N∗ and Pr (TN < T ) =
(
N0

N∗

)β
. This produces the

desired expression.
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Conditional on information acquisition, the expected announcement effect is

E
[∣∣ξNT − PT−

∣∣∣∣τ <∞] = E
[
NT

∣∣ξ − p (YT )
∣∣∣∣TN < T

]
(49)

= 2E
[
NTp (YT ) (1− p (YT ))

∣∣∣∣TN < T
]

(50)

= 2E
[
ETN

[
NTp (YT ) (1− p (YT ))

∣∣TN < T
] ∣∣∣∣TN < T

]
(51)

= 2E
[
NTNETN

[
p (YT ) (1− p (YT ))

∣∣TN < T
] ∣∣∣∣TN < T

]
(52)

= 2N∗E
[
p (YT ) (1− p (YT ))

∣∣TN < T
]

(53)

the first and second equalities use the law of iterated expectations, the third equality uses

the fact that conditional on σ
(
FPTN∪{TN < T}

)
, NT −NTN and YT are independent, the

fourth equality uses the fact that N is a martingale, and the final equality uses NTN = N∗.

Suppose τ ∈ [t, t+ dt]. Given the characterization of pt in Proposition 1, we can express

ps for s ≥ t as ps = Φ
(√

2r
σZ
zs

)
, where

zs
∣∣ {τ ∈ [t, t+ dt]} ∼ N

(
Φ−1 (α) er(s−t),

σ2
Z

2r

(
e2r(s−t) − 1

))
. (54)

Next, note that for w ∼ N (0, 1), we have

E [Φ (a+ bw) [1− Φ (a+ bw)]] = Φ
(

a√
1+b2

)
−
[
Φ
(

a√
1+b2

)
− 2T o

(
a√

1+b2
, 1√

1+2b2

)]
(55)

from Owen (1980) 10,010.8 and 20,010.4, where T o (a, b) is the Owen T function. Let z̃s ≡
zs−er(s−t)z0√
σ2
Z

2r (e2r(s−t)−1)
∼ N (0, 1), and note that p (zs) = Φ (a+ bz̃s). This implies

G (t, s) ≡ Et [ps (1− ps) |τ ∈ [t, t+ dt] , s > t] = 2T o
(

Φ−1 (α) , 1√
2e2r(s−t)−1

)
. (56)

Since the stopping time T is exponentially distributed, we have

Et [p (YT ) (1− p (YT )) |T > t, τ ∈ [t, t+ dt]]

= e−rt
∫ ∞
s=t

re−r(s−t)Et
[
p (Ys) (1− p (Ys))

∣∣τ ∈ [t, t+ dt]
]
ds (57)

=

∫ ∞
0

re−rsG (0, s) ds (58)

= 2

∫ ∞
0

re−rsT o
(

Φ−1 (α) , 1√
2e2rs−1

)
ds (59)

= 2

∫ ∞
0

e−xT o
(

Φ−1 (α) , 1√
2e2x−1

)
dx, where x = rs (60)
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≡ h (α) (61)

This implies that

E
[
p (YT ) (1− p (YT ))

∣∣τ < T
]

=

∫ ∞
0

Et [p (YT ) (1− p (YT )) |T > t, τ ∈ [t, t+ dt]] Pr (τ ∈ [t, t+ dt] |T > τ) dt (62)

= h (α)

∫ ∞
0

Pr (τ ∈ [t, t+ dt] |T > τ) dt = h (α) (63)

which implies E
[
|ξNT − PT− |

∣∣τ < T
]

= 2N∗h (α).

Note that the announcement effect is bigger conditional on no acquisition if and only if:

2N∗h (α) < 2α (1− α)N∗
N0

N∗
−
(
N0

N∗

)β
1−

(
N0

N∗

)β ⇔ h (α)

α (1− α)
<

N0

N∗
−
(
N0

N∗

)β
1−

(
N0

N∗

)β (64)

⇔ h(α)
α(1−α)

(
1−

(
N0

N∗

)β)
< N0

N∗
−
(
N0

N∗

)β
(65)

⇔ h(α)
α(1−α)

< N0

N∗
−
(
N0

N∗

)β (
1− h(α)

α(1−α)

)
(66)

For a fixed α, since

N0

N∗
= N0

β−1
βc
K =

N0

c

1
2

(
1 +

√
1 + 8 r

σ2
N

)
− 1

1
2

(
1 +

√
1 + 8 r

σ2
N

) σZ√
2r
φ
(
Φ−1 (α)

)
, (67)

implies that N0

N∗
→ 0 when r → 0, r → ∞, σN → ∞,c → ∞ or σZ → 0. Moreover, since

β > 1 and N0

N∗
< 1, we have

(
N0

N∗

)β → 0 when
(
N0

N∗

)
→ 0. Now, fix α and pick a δ such that

0 < δ < h(α)
α(1−α)

. Then, the above implies that for sufficiently extreme r, sufficiently large

σN , sufficiently large c or sufficiently small σZ , N0

N∗
−
(
N0

N∗

)β (
1− h(α)

α(1−α)

)
< δ, and so the

announcement effect is bigger conditional on acquisition.
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