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Abstract

Most econometric models of intrahousehold behavior assume that household decision-
making is efficient, i.e., utility realizations lie on the Pareto frontier. In this paper we
investigate this claim by adding a number of participation constraints to the household
allocation problem. Short-run constraints ensure that each spouse obtains a utility level
at least equal to what they would realize under (inefficient) Nash equilibrium. Long-run
constraints ensure that each spouse obtains a utility level equal to a least what they would
realize by cheating on the efficient allocation and receiving Nash equilibrium payoffs in all
successive periods. Given household characteristics and the (common) discount factor of
the spouses, not all households may be able to attain payoffs on the Pareto frontier. We
estimate these models using a Method of Simulated Moments estimator and data from
one wave of the Panel Study of Income Dynamics. We find that the model with long-run
participation constraint fits the data best, and that 6 percent of sample households are not
able to attain efficient outcomes. To meet the long-run participation constraint, over 90
percent of “efficient” households are required to modify the ex ante Pareto weight of 0.5
for each spouse assumed to apply to all households.



1 Introduction

There is a long history of the theoretical and empirical investigation of the labor supply
decisions of married women. Perhaps the starting point for modern econometric analysis of
this question is Heckman (1974), in which a neoclassical model of wives’ labor supply was
estimated using disaggregated data. He explicitly estimated the parameters characterizing
a household utility function, which included as arguments the leisure levels of wives and
household consumption. With the addition of a wage function, Heckman was able to
consistently estimate household preference parameters and the wage function in a manner
that eliminated the types of endogenous sampling problems known to create estimator bias
when the participation decision is ignored.1

Many researchers have estimated both static and dynamic household labor supply func-
tions in the intervening years using models based on household utility function specifica-
tions, though in many cases the husband’s labor supply decision has been treated as prede-
termined or exogenous. Over the last several decades, there has been a movement to view
the family as a collection of agents with their own preferences who are united through the
sharing of public goods, emotional ties, and production technologies. Household members
are seen as often viewed as behaving strategically with respect to one another given their
rather complicated and interconnected resource constraints. Analysis of these situations
has focused on describing and analyzing cooperative equilibrium outcomes. Though mod-
els using the cooperative approach (e.g., Manser and Brown (1980), McElroy and Horney
(1981), Chiappori (1988)) differ in many respects, they share the common characteristic of
generating outcomes that are Pareto-efficient (the primary distinction between them being
the method for selecting a point on the Pareto frontier). The noncooperative approach,
which uses Nash equilibrium as an equilibrium concept (e.g. Leuthold (1968), Bourgignon
(1984), Del Boca and Flinn (1995), Chen and Woolley (2001)), leads to outcomes that are
generally Pareto-dominated. The analytic attractiveness of noncooperative equilibrium
models lies in the fact that equilibria are often unique, an especially distinct advantage
when formulating an econometric model.

A large number of empirical studies have tested whether observed household behavior
is more consistent with a single household utility function or with a model that posits
strategic interactions between household members. These studies have led to a decisive
rejection of the “unitary” model. Unfortunately, there have been few empirical studies to
date that have attempted to actually estimate a collective model of household labor supply
(some notable exceptions include Kapteyn and Kooreman (1992), Browning et al. (1994),
Fortin and Lacroix (1997), and Blundell et al. (2005)). Two of the more important reasons
for the paucity of empirical studies are the stringent data requirements for estimation of
such a model and lack of agreement regarding the “refinement” to utilize when selecting
a unique equilibrium when a multiplicity exist (as is the case in virtually all cooperative

1While Heckman’s model was based on an explicit model of utility maximization, it did assume that the
labor supply decision of the husband was predetermined.
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models).
Some researchers have advocated using the assumption of Pareto efficiency in nonuni-

tary models as an identification device (see, e.g., Bourguignon and Chiappori (1992) and
Flinn (2000)).2 Our view in this paper is slightly more eclectic. We view household time al-
location decisions as either being associated with a particular utility outcome on the Pareto
frontier, or to be associated with the noncooperative (static Nash) equilibrium point. In
reality there are a continuum of points that dominate the noncooperative equilibrium point
and that do not lie on the Pareto frontier, however developing an estimable model that
allows such outcomes to enter the choice set of the household seems beyond our means.
Our paper expands the equilibrium choice set to two focal points, but it still represents a
very restrictive view of the world.

Even under an assumption of efficiency there is wide latitude in modeling the mech-
anism by which a specific efficient outcome is implemented, as is evidenced by the lively
debate between advocates of the use of Nash bargaining or other axiomatic systems (e.g.,
McElroy and Horney (1981,1990), McElroy (1990)) and those advocating a more data
driven approach (e.g., Chiappori (1988)). The use of an axiomatic system such as Nash
bargaining requires that one first specify a “disagreement outcome” with respect to which
each party’s surplus can be explicitly defined. It has long been appreciated that the bar-
gaining outcome can depend critically on the specification of this threat point. Most often
(in the household economics literature) the threat point has been assumed to represent the
value to each agent of living independently from the other. Lundberg and Pollak (1993)
provide an illuminating discussion of the consequences of alternative specifications of the
threat point on the analysis of household decision-making. In particular, instead of assum-
ing the value of the divorce state as the disagreement point for each partner, they consider
this point to be determined by the value of the marriage to each given some default mode
of behavior, which they call “separate spheres.” In this state, each party takes decisions
and generally acts in a manner in accordance with “customary” gender roles. Lundberg
and Pollak state that households will choose to behave in this customary way when the
“transactions costs” they face are too high.

The approach taken in this paper is something of a synthesis of the standard bargaining
and sharing rule approaches to modeling household behavior. We introduce outside options
that household members must recognize and meet, if possible, when choosing efficient allo-
cations. These side conditions on the household’s optimization problem are interpretable
more as participation constraints than “threat points,” and these options do not serve as
a basis for conducting bargaining in the axiomatic Nash sense. Practically speaking, we
view the household allocation decisions as emanating from maximization of the sum of the

2An argument sometimes given for this assumption relies on the Folk Theorem. As household members
interact frequently and can observe many of each other’s constraint sets and actions, for reasonable values
of a discount factor efficient behavior should be attainable. The most general behavioral specification
estimated here allows us to examine this claim empirically, and we find that efficient allocations cannot be
sustained for a small percentage of households.
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utilities of the two spouses where the Pareto weight associated with the utility of spouse
1 is α. Adding side constraints to the household optimization problem restricts the set of
α-generated time allocations that are implementable, and, depending on the nature of the
constraints, may make it impossible to implement any efficient solution.

In this paper we develop and estimate a model of household labor supply which allows
for both efficient and inefficient intrahousehold behavior.3 Gains from marriage are taken
to arise from the presence of a publicly-consumed good that is produced in the household
with time inputs from the spouses and goods purchased in the market. In the presence
of a public good, efficient outcomes, which by definition lie on the Pareto frontier, must
weakly dominate the value of the noncooperative equilibrium for each spouse. So why
would some households fail to determine time allocations in an efficient manner? There
are many ways to look at this issue, such as through an assumption that efficiency involves
costs of coordination and implementation over and above what is required when behavior is
determined in Nash equilibrium, which may involve monitoring, increased communication,
etc. This is a reasonable approach to take,4 but we focus more directly on implementation
issues in this paper. We look at the case in which household interactions are repeated over
an indefinitely long horizon, and determine whether cooperative behavior can be supported
using Folk Theorem-inspired arguments.

We build four distinct models of household behavior that are taken to the household
time allocation data. They are not strictly nested for the most part, but do have a reason-
ably natural ordering in terms of complexity. The models are described and developed in
a reasonably general manner in the following section. They are:

1. (Nash Equilibrium, or NE) Let a∗i (ai0) denote the best response functions of spouse
i given that spouse i0 chooses actions ai0 . Then the Nash equilibrium actions are
given by (âN1 âN2 ), where âN1 = a∗1(â

N
2 ) and âN2 = a∗2(â

N
1 ). As is well-known, in

general there exist alternative actions that can yield higher utility to each spouse.
The Nash equilibrium allocation, is a natural focal point for our analysis since (a)
it is unique under our assumptions regarding functional forms of preferences and
household technology and (b) presents no opportunity for profitable deviation from
their Nash equilibrium actions for either spouse. These attributes are not shared by
the efficient time allocation decisions which follow.

3Lugo-Gil (2003) contains an analysis of a model based on a somewhat similar idea. In her case, spouses
decide on consumption allocations in a cooperative manner after the outside option is optimally chosen. All
“intact” households chose a threat point either of divorce or noncooperative behavior. The choice of threat
point has an impact on intrahousehold allocations. In her case, all household allocations are determined
efficiently (using a Nash bargaining framework), whereas in ours, some allocations are determined in an
inefficient manner. Moverover, her empirical focus was on expenditure decisions, while we focus on time
allocations.

4 In fact, this is exactly the approach we took in earlier versions of this paper. While we believe that
coordination and monitoring costs are “real,” we believe that the implementation story we build here, based
on Folk theorem arguments, is slightly more compelling.
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2. (Pareto Optimal, or PO) All efficient household time allocations can be generated
by maximizing

(âP1 âP2 )(α) = arg max
(a1,a2)∈CS

αu1(a1, a2) + (1− α)u2(a1, a2), α ∈ (0, 1), (1)

subject to the usual budget and time constraints and the household production tech-
nology, which define the choice set CS, and where ui(a1, a2) represents the utility
payoff to spouse i given the actions a1 and a2. All of these allocations produce utility
outcomes that lie on the Pareto frontier, and thus have the desirable property that
one spouse’s utility cannot be increased without decreasing the utility of the other
spouse. From our perspective, these efficient outcomes have some problematic fea-
tures as well. First, there are a continuum of efficient outcomes. Only by settling
on a value of the Pareto weight α do we obtain a unique solution to the household’s
decision problem. Second, these outcomes may not be particularly compelling if one
spouse does appreciably worse relative to their payoffs from behaving in other “rea-
sonable” ways. Third, the actions are not, in general, best responses of either spouse
to the actions of the other. Consequently, there is a problem connected with the
implementation of these actions.

3. (Constrained Pareto Optimal, or CPO) In this case, we restrict outcomes on the
Pareto frontier to at least yield as much utility to each spouse as he or she would
realize in the static Nash equilibrium of the static game. This essentially restricts the
welfare weight α utilized in the social welfare function (1) to a connected subinterval of
(0, 1).We use the Nash equilibrium payoff values in the participation constraint, since
this form of behavior is both uniquely determined and behaviorally consistent (in the
sense that no spouse has an incentive to deviate from the Nash time allocations).
Given the state variables characterizing the household, we can determine the Nash
equilibrium payoffs to the spouses, which are given by {V N

1 , V N
2 }. Associated with

each solution to (1) is a pair of payoffs to the spouses {V P
1 (α), V

P
2 (α)}, and, as we

will show, V P
1 is strictly increasing in α and V P

2 is strictly decreasing in α. There
will exist an interval IC(V N

1 , V N
2 ) ≡ [α(V N

1 ), α(V
N
2 )] ⊂ (0, 1), and any α ∈ IC will

be associated with efficient decisions in which each spouse obtains a payoff at least
as large as what they would receive in Nash equilibrium. The determination of
household time allocations in this case, conditional on a value of α, is as follows. If
α ∈ IC , then

(âC1 âC2 )(α) = (â
P
1 âP2 )(α), α ∈ IC , (2)

since the “participation constraint” is not binding. If α < α(V N
1 ), so that spouse 1

would have a higher payoff in Nash equilibrium, the α must be “adjusted” up so that
he has the same welfare in either regime. In this case,

(âC1 âC2 )(α) = (â
P
1 âP2 )(α(V

N
1 )), α < α(V N

1 ). (3)

4



Conversely, if spouse 2 suffers utility-wise in the efficient outcome associated with α,
the α must be adjusted downward, and we have

(âC1 âC2 )(α) = (â
P
1 âP2 )(α(V

N
2 )), α > α(V N

2 ). (4)

Note that under this behavioral rule, there is still, in general, a continuum of possible
solutions, associated with all values of α belonging to IC .

4. (Endogenous Interaction, or EI). The final behavioral set up we consider, which
nests the NE and CPO specifications in a particular sense, allows households to
choose allocations either on the Pareto frontier or those associated with the static
Nash equilibrium. In this case, we consider household decision-making in a stylized
dynamic context, in which the spouses face the same constraints each period and must
decide whether to supply time allocations consistent with a given α on the Pareto
frontier or to choose the Nash equilibrium allocations. We use a grim trigger strategy
set up with a restricted strategy space to model the choice, in which each spouse
calculates their payoffs from deviating from the allocation (âC)(α) given that their
spouse “complies” with their time commitments, (âCi0 )(α). If either spouse deviates
from the efficient allocation in any period, then the household time allocations are
determined according to the inefficient Nash equilibrium forever after. The long-run
costs of cheating are an increasing function of the discount factor β ∈ (0, 1) which we
assume to be common to both spouses. We show that there exists a critical value of
β, β∗∗, such that for any β less than β∗∗ the household actions will be inefficient. For
any β ≥ β∗∗, the household will behave efficiently. The implementation constraint
further restricts the set of α that can be used to determine the efficient outcomes. In
particular, for any β ≥ β∗∗, there exists an “implementable” set of α, IE(β, V N

1 , V N
2 )

characterized in terms of lower and upper limits α(V N
1 , β) and ᾱ(V N

2 , β), which has
the property

IE(V N
1 , V N

2 , β) ⊆ IC(V N
1 , V N

2 ).

When β < β∗∗, then IE = ∅. Then we have

(âE1 âE2 )(α, β) =

⎧⎪⎪⎨⎪⎪⎩
(âN1 âN2 ) if β < β∗∗

(âP1 âP2 )(α(V
N
1 , β)) if β ≥ β∗∗, α < α(V N

1 , β)
(âP1 âP2 )(α) if β ≥ β∗∗, α ∈ IE(V N

1 , V N
2 , β)

(âP1 âP2 )(ᾱ(V
N
2 , β)) if β ≥ β∗∗, α > ᾱ(V N

2 , β)

The details behind this summary of results will be presented in the following section;
our intention is simply to give the reader an idea of the linkages between the models we
develop and estimate below.

We view the contribution of the paper as bringing short- and long-run implementation
issues into the estimation of models of household behavior. Basic versions of the first and
second models described above, those of inefficient Nash equilibrium and the “collective”
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model, have been estimated on numerous occasions, so there is nothing new in our estima-
tion of these models, except perhaps for the econometric specification employed. However,
estimation of the collective model subject to the constraint that no spouses welfare level be
less than what they can obtain under the Nash equilibrium has not been performed.5 We
demonstrate empirically that adding such a constraint has significant effects on the point
estimates of the model and, consequently, on the welfare inferences that can be drawn.

The addition of the incentive compatibility constraint in our final model specification
is noteworthy in that it allows spouses the choice of their mode of interaction. Some
households, given their state variables, will choose to behave in an inefficient manner,
while others will behave in a “constrained” efficient manner. This carries the important
implication that small changes in state variables, such as wages or nonlabor income, may
have large changes on actions if these small changes prompt a change in behavioral regime.

While we have added two sets of constraints to the household optimization problem,
it is obviously the case that other types of constraints could be added instead of, or in
addition to, the two we have analyzed. For example, it is common to specify the value of
each spouse in the divorce state as the disagreement point when using a Nash bargaining
framework to analyze household decisions. Clearly, this constraint could be added to those
considered here when determining the set of implementable values of the Pareto weight α.
These types of generalizations are left to future research, and are probably best considered
in a truly dynamic model of the household that allows for divorce outcomes.

The plan of the paper is as follows. In Section 2 we lay out the theoretical structure
of the model. Section 3 contains a discussion of estimation issues and develops the non-
parametric and parametric estimators used in the empirical analysis. Section 4 contains a
description of the data and model estimates. Section 5 concludes.

5Mazzocco (2007) is a valuable contribution to the literature that also considers implementation issues
explicitly. The focus of his analysis is on determining whether intertemporal household allocations are
consistent with ex ante efficient allocations, or whether welfare weights have to be continually adjusted
to meet short-run participation issues that arise when household members cannot credibly make life-long
commitments to a given ex ante efficient allocation. He finds evidence supporting the lack of commitment
hypothesis.
There are a number of differences between his approach and the one taken here, the most salient of which

are the following. First, the dynamic setting he considers is not nearly as stylized as the one employed here.
Second, participation constraints change over the life cycle, though they are modeled as exogenous random
processes, whereas in our case the outside option is explicitly modeled. Third, in his model all households
behave efficiently in every period, that is, the outside option is never chosen. In our case, the outside option
of inefficient behavior is chosen in some states of the world.
Another valuable paper that examines commitment issues in a household setting using a dynamic con-

tracting approach is Ligon (2002). As in Mazzocco (2007), all final household allocation decisions are
constrained efficient, which is not the case in our EI specification.
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2 The Household’s Decision Problem

In the first part of this section we describe the objectives and constraints facing the spouses.
We then turn to a consideration of the manner in which a household equilibrium allocation
is determined under four different modeling assumptions.

2.1 The General Environment

While the empirical application will require us to make a number of functional form as-
sumptions, the model of household behavior we develop is applicable quite generally. We
assume egoistic preferences, with the current period payoff function of spouse i given by
the function

ui(a1, a2),

with ai being actions available to spouse i. These actions may consist of purchases of inputs
for a household production technology, the supply of time to that technology, or purchases
of market goods, the consumption of which directly impacts the satisfication of one or
both spouses. We assume the presence of intrahousehold externalities, a useful definition
(adapted from Mas-Colell et al., 1995) of which is:

Definition 1 An externality is present whenever the well-being of a spouse or their pro-
ductivity (in household production) is directly affected by the actions of the other spouse.

Given the presence of a household externality, assumed throughout the sequel, there ex-
ists a welfare-improving set of feasible actions that differ from the (static) Nash equilibrium
actions.

2.2 The Behavioral Regimes

2.2.1 Nash Equilibrium

We make the following assumptions.

Assumption 1 There exists functions a unique Nash equilibrium in actions

(âN1 âN2 )(u1, u2, CS)

where U is a family of period-payoff functions.

Assumption 1 rules out, most importantly, various types of nonconvexities in the choice
sets of the household members, such as the existence of fixed time or money costs associated
with supplying time to the labor market or in household production.
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2.2.2 Pareto Optimal Decisions

As in the introduction, we write the Benthamite social welfare function for the household
as

Wα(a1, a2) = αu1(a1, a2) + (1− α)u2(a1, a2).

Maximizing the value of Wα(a1, a2) with respect to the actions of the two spouses given
CS traces out the Pareto frontier. In particular,

(âP1 âP2 )(α, u1, u2, CS) = arg max
(a1,a2)∈CS

Wα(a1, a2).

Assumption 2 The Pareto optimal actions (âP1 âP2 )(α, u1, u2, CS) are unique.

The Pareto frontier is defined by the set of points

PF (u1, u2, CS) ≡ {u1(âP1 (α, u1, u2, CS), âP2 (α, u1, u2, CS)), u2(âP1 (α, u1, u2, CS), âP2 (α, u1, u2, CS))}, α ∈ [0, 1]

It follows that u1 is nondecreasing in α and u2 is nonincreasing in α along PF. Assuming
differentiability along the Pareto frontier with respect to α,

du2
du1

¯̄̄̄
{u2,u1}∈PF

< 0.

Our analysis is based on the existence of externalities within the household. It follows
that the pair of Nash equilibrium utility levels, {V N

1 , V N
2 }, defined by

V N
i = ui(â

N
1 , â

N
2 ), i = 1, 2,

is not a point on the Pareto frontier.

2.2.3 Constrained Pareto Outcomes

As was pointed out in the Introduction, Pareto efficient outcomes have the desirable feature
that one spouse’s utility cannot be improved without decreasing the other’s, but may or
may not meet certain “fairness” criteria. We singled out Nash equilibrium play as a natural
focal point for the behavior of spouses since it involves no coordination or policing of actions
due to the fact that strategies are best responses. This gives the Nash equilibrium a type
of stability not possessed by efficient outcomes.

At a minimum, then, it seems reasonable to restrict attention to efficient outcomes that
yield each spouse at least the level of welfare they can attain under the Nash equilibrium
actions. We think of this as a “short-run” participation constraint, where short-run refers
to the fact that it ensures that each party is at least as well-off under the efficient allocation
as they would be under Nash equilibrium in the current period. The following proposition
follows directly from the relatively weak assumptions made to this point. To reduce nota-
tional clutter, we drop the explicit conditioning on the utility functions ui and the choice
set CS.
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Proposition 2 There exists a nonempty interval IC(V N
1 , V N

2 ) ≡ [α(V N
1 ), α(V

N
2 )] ⊂ (0, 1),

α(V N
1 ) < α(V N

2 ), such that

u1(â
P
1 (α), â

P
2 (α)) ≥ V N

1

u2(â
P
1 (α), â

P
2 (α)) ≥ V N

2

if and only if α ∈ IC(V N
1 , V N

2 ).

Proof. The points on the Pareto frontier are monotone and continuous functions of α.
By Assumption 4, the Nash equilibrium payoffs are dominated by a set of points on the
Pareto frontier. Define the unique value α(V N

1 ) by

u1(â
P
1 (α(V

N
1 ), â

P
2 (α(V

N
1 ))) = V N

1 ,

and, similarly, define α(V N
2 ) by

u2(â
P
1 (α(V

N
2 )), â

P
2 (α(V

N
2 ))) = V N

2 .

Define the set of all α values that yield an efficient payoff at least as large as V N
1 for spouse

1 as
IC1 (V

N
1 ),

the minimum element of which is α(V N
1 ). Define the set of all values of α that yield an

efficient payoff at least as large as V N
2 to spouse 2 as

IC2 (V
N
2 ),

the maximum element of which is α(V N
2 ). Then

IC(V N
1 , V N

2 ) = IC1 (V
N
1 ) ∩ IC2 (V N

2 )

= [α(V N
1 ), α(V

N
2 )]

6= ∅

Given problems associated with the identification of the welfare weight α, which are
discussed in detail below, we will typically assume that there exists one value of α, common
to all marriages, which could be culturally determined. The constrained Pareto optimal
allocation is determined by first determining whether α ∈ IC(V N

1 , V N
2 ). If so, each spouses’

utility level using the Pareto weight of α exceeds their static Nash equilibrium utility level,
and the constraint is not binding. Instead, if α < α(V N

1 ), the Pareto efficient solution
yields less utility to spouse 1 than the Nash equilibrium solution. To get this spouse to
participate in the Pareto efficient solution, it is necessary to provide them with at least as
much utility as they would obtain in the static Nash equilibrium, which means adjusting
the Pareto weight up to the value α(V N

1 ). Conversely, if α > α(V N
2 ), then the Pareto weight

has to be adjusted downward to α(V N
2 ) to provide the incentive for the second spouse to

participate in the household efficient outcome. The resulting actions are given formally in
(2) through (4).
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2.2.4 Endogenous Interaction

The time allocations in the Pareto optimal and constrained Pareto optimal cases may or
may not satisfy another set of constraints, one that involves implementation. The essential
issue is that utility levels that lie along the Pareto frontier are not associated with time
allocation choices by either spouse that are “best responses” (in the static sense) to the
choices of their partner. As we know, only the static Nash equilibrium has that property,
and is associated with utility outcomes that are dominated by those associated with the
constrained Pareto optimal choices we have just discussed.

Why might spouses cheat on an efficient agreement that improves the welfare of both
with respect to the Nash equilibrium outcome? The temptation to cheat in this case may
arise from purely self-interested behavior, as it does when we study the incentives of firms
engaged in collusive behavior to deviate from their assigned production quotas (e.g., Green
and Porter, 1984). In that case, the welfare of firms is linked through a common market for
outputs or inputs, though firms’ objectives are typically taken to be solely the maximization
of their own monetary profits. In the case of households, the objectives of spouses may
be considerably more complex than those of firms, and may include altruism, for example.
However, the existence of caring preferences, in and of itself, does not make implementation
of an efficient allocation a foregone conclusion. Indeed, spouses may care so much about
each other that an efficient solution may involve each behaving in what would appear to
be a more self-interested manner to an observer. In this case, “cheating” on the efficient
outcome may imply a spouse spends more of their resources on goods of direct value only
to the other spouse. In the household context cheating may be prevalent, but due to the
presence of household production technologies and interconnected preferences, it is difficult
to detect without strong assumptions on preferences on technologies.

As is well-known from Folk theorem results, in order to implement equilibrium outcomes
that are not best responses in a static sense, it is necessary to provide an intertemporal
context to household choices. Accordingly we define the welfare of each spouse to be

Ji =
∞X
t=1

βt−1ui(a1(t), a2(t)),

where β is a discount factor taking values in the unit interval, and aj(t) are the actions
chosen by spouse j in period t. For reasons related to data availability and computational
feasibility, we restrict our attention to the case in which the stage game played by the
spouses has the same structure in every period. That is, preferences and technology para-
meters are fixed over time, as well as wage offers and nonlabor income levels.

We assume that the couple utilize a grim trigger strategy, with the punishment phase

10



being perpetual Nash equilibrium play.6 We assume that the allocation is determined by

âEi (t) =

½
âCi (α) if ai0(t

0) = âCi0 (α), t
0 = 1, ..., t− 1

âNi if ai0(t
0) 6= âCi0 (α) for any t

0 = 1, ..., t− 1 (5)

in the equilibrium. In this case, a divergence by either spouse from their prescribed action
âCi (α) leads to the play of Nash equilibrium in all subsequent periods. âPi (α) denotes the
prescribed efficient allocation, which is determined using the Pareto weight α.

To determine whether there exists an implementable cooperative equilibrium in the
household, we must check whether there is sufficient patience among the spouses to sustain
the efficient outcome given the size of the penalty they face for deviation. Each spouse’s
objective is to maximize the present discounted value of their sequence of payoffs given the
state variables characterizing the household and the history of past actions of the spouses.
To determine whether or not cooperation is an equilibrium outcome, define the value of
spouse 1 cheating on the cooperative agreement given that spouse 2 does not by

V R
1 (α) + β

V N
1

1− β
, (6)

where
V R
1 (α) = maxa1

u1(a1, â
C
2 (α)),

and where the second term on the right hand side of (6) is the discount rate multiplied by
the present value of the noncooperative equilibrium, which is the outcome of a deviation
from âP1 (α) under (5). If the spouse chooses to implement the cooperative outcome (and
it is assumed that spouse 2 chooses âC2 (α)), then the payoff from this action is

V C
1 (α)

1− β
.

Spouse 1 is indifferent between reneging and implementing the cooperative equilibrium
when

V C
1 (α)

1− β
= V R

1 (α) + β
V N
1

1− β
.

The discount factor β is not a determinant of stage game payoffs, so we can look for a
critical value of the discount factor at which the equality (??) holds. This critical value is
given by

β∗1(α) =
V R
1 (α)− V C

1 (α)

V R
1 (α)− V N

1

.

6We are aware that there are more ‘efficient’ punishment strategies available to the household members,
but the incorporation of these punishments into the econometric model is a difficult task. The important
point for the analysis is that given our modeling set up, a measurable subset of the state vector space will
result in a lack of implementability of efficient outcomes, the main point of our analysis.
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Note that since V C
1 (α) > V N

1 (α), then V
R
1 (α) > V C

1 (α), and V
R
1 (α)−V C

1 (α) < V R
1 (α)−V N

1 ,
so that β∗1(α) ∈ (0, 1). Clearly, an exactly symmetric analysis can be used to determine a
critical discount factor for the spouse 2, β∗2(α). This leads us to the following result.

Proposition 3 Under a grim trigger strategy and given constrained Pareto optimal ac-
tions (âC1 , â

C
2 )(α), the household implements the efficient outcome if and only if β ≥

max{β∗1(α), β∗2(α)}, where β is the common household discount factor and α is the given
Pareto weight.

Proof. Under complete information, the values (β∗1(α), β
∗
2(α)) are known to both spouses.

If β ≥ β∗i (α) for i = 1, 2, each agent knows that the value of implementing the cooperative
solution forever dominates the value of reneging for each, so playing cooperative in each
period is a best response for each spouse and constitutes a Nash equilibrium. Say that
β∗1(α) ≤ β but β∗20(α) > β. The value of spouse 1 choosing âC1 (α) will be

u1(â
C
1 (α), â

R
2 (α)) + β

V N
1

1− β

under the grim trigger strategy, since âR2 (α) 6= âC2 (α) triggers the punishment phase. Given
the reneging action âR2 (α), â

C
1 (α) will not maximize this payoff, and spouse 1 will best

respond a∗1(â
R
2 (α)), say, to which spouse 2, will best respond, with the actions converging

to those of the (unique) Nash equilibrium (âN1 , â
N
2 ). Thus both spouses will play the Nash

equilibrium at every point in time. For the same reason, when β < β∗1(α) and β < β∗2(α),
the sequence of best responses to the reneging behavior of the other spouse leads to the
Nash equilibrium being played in each period.

We now turn to the consideration of the determination of the actions (âE1 (α), â
E
2 (α)) in

the Endogenous Interactions case. After determining the efficient allocation of the house-
hold under CPO given an initial notional value of α, we can determine if this solution is
implementable. For simplicity, let αCPO denote the ex post value of α that satisfies the
participation constraint for a household (given the choice set CS) under the CPO speci-
fication. If β ≥ β∗1(αCPO) and β ≥ β∗2(αCPO), then the CPO outcome is implementable,
and the actions in the Endogenous Interactions case are the same as are specified under
CPO.

In general, the ex post Pareto weight associated with the CPO regime is not imple-
mentable under the EI regime. This is clearly the case when αCPO is determined in such
a way that the participation constraint is binding for one of the spouses, which is always
the case whenever αCPO 6= α0. In this case, there will be no long run welfare gains for the
spouse with the binding participation constraint, and his or her best response will be to
cheat on the efficient outcome. In such a case, to induce that spouse not to deviate from
the efficient outcome, the Pareto weight associated with that spouse must be increased. If
there is an implementable efficient outcome, for a given value of β, it will be the one for
which the “long run” participation (i.e., no cheating) constraint is exactly satisfied. For a
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given value of β, there may be no value of the Pareto weight that simultaneously satisfies
the “no cheating” constraint for both spouses, and in this case, no efficient allocation is
attainable. The formal definition of implementability is the following:

Definition 4 A household has an implementable outcome on the Pareto frontier if there
exists an α ∈ (0, 1) such that β ≥ max{β∗1(α), β∗2(α)}.

Figure 1 contains the graph of the β∗i , i = 1, 2, for a given set of state variables that
fully characterize spousal preferences, household technology, and choice sets. We note that
β∗1 is a decreasing function of α, since increasing (static) gains associated with the efficient
allocation (as α increases) require lower levels of patience to sustain implementation on
the part of spouse 1. Obviously, β∗2 is increasing in α for the opposite reason. We see that
for this set of state variables, the household has an implementable efficient outcome if the
common discount factor of the spouses exceeds β∗∗. If the discount factor is less than that,
no outcome on the Pareto frontier can be implemented, even though there are a continuum
of allocations with static payoffs that strictly exceed the static Nash equilibrium payoffs.

In Figure 1 we have also indicated the manner in which the ex post Pareto bargaining
weight is determined when an implementable allocation exists. Since the value of the
discount factor, β, exceeds β∗∗, an implementable solution exists. Starting from the ex
post α associated with the static Nash equilibrium participation constraint, αCPO, we
see that at this value β∗1(αCPO) > β and β∗2(αCPO) < β, so that at this low level of α
spouse 1 would cheat on the efficient allocation, while spouse 2 would not, meaning that
in equilibrium the αCPO−generated allocation could not be implemented. In this case, α
is increased until it reaches the value αEI , which is that value at which the no-cheating
participation constraint is met for spouse 1.

In summary, we think of the determination of the EI allocations as consisting of the
following steps.

1. Determine the functions β∗j (α).

2. If β < β∗∗, then the household is not able to implement efficient allocations. Then
âEj = âNj , j = 1, 2.

3. If β ≥ β∗∗, the household is able to implement an efficient time allocation. Let α0
denote the notational Pareto weight. Then

(âE1 , â
E
2 ) =

⎧⎨⎩
(aE1 (α0), a

E
2 (α0)) if β∗1(α0) ≤ β and β∗2(α0) ≤ β

(aE1 ((β
∗
1)
−1(β)), aE2 ((β

∗
1)
−1(β))) if β∗1(α0) > β

(aE1 ((β
∗
2)
−1(β)), aE2 ((β

∗
2)
−1(β))) if β∗2(α0) > β

,

where (β∗j )
−1 is the inverse of β∗j .
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2.3 Summary

We summarize the results of this section with the aid of Figure 2. For any given household,
there exists a unique (static) household Nash equilibrium of actions {âN1 , âN2 } and payoffs
{V N
1 , V N

2 }, with the pair of payoffs given by the intersection of the two lines in Figure
2. Varying the Pareto weight α over (0, 1) in the weighted household utility function
specification (PO) traces out the Pareto frontier. When we impose the side constraint that
the Pareto weight must be chosen so that each spouse obtains at least their payoff V N

i , this
defines a lower bound α(V N ) at which the “participation” constraint is just binding for
spouse 1 and an upper bound α(V N) at which the participation constraint is just binding
for spouse 2. If the notional value of the Pareto weight, α0, falls in this interval, than that
value is used to define the efficient outcome, which will be the same as in the unconstrained
case. If the value of α0 is less than α(V N), then the efficient outcome is determined using
the Pareto weight α(V N ). If, instead, α0 > α(V N), then the efficient outcome is determined
using the Pareto weight α(V N ).

The “dynamic” participation constraint imposes a tighter set of restrictions on the α
choice problem than does the “static” participation constraint, except in the extreme case
of β = 1. For any β < 1, there either exists a nonempty interval [α(V N , β), α(V N , β)] ⊂
[α(V N), α(V N)] = [α(V N , β = 1), α(V N , β = 1)], or the set of implementable α is empty,
and inefficient behavior results. Put another way, for any given household, there exists a
critical value β∗∗, with any β < β∗∗(s) inducing the household to behave inefficiently. When
there does exist a nonempty set of α that satisfy the dynamic participation constraint, the
ultimate household allocation is determined in the same manner as it was when we imposed
the static participation constraint.

3 Functional Form Assumptions

In order to estimate the model with the data available to us, a number of functional form
assumptions are required. Our strategy in this first section is to present the assumptions
made regarding the form of spousal preferences and the household production technology,
and then to demonstrate that the resulting household behavior is consistent with Assump-
tions 1 and 2.

We assume that each spouse possesses a utility function defined over the consumption
of a good produced in the household with time inputs of the household members and a
good (or goods) purchased in the market, which we denote by τ1, τ2, and M, respectively.
The household production technology is given by

K = τ δ11 τ
δ2
2 M

1−δ1−δ2 ,

where M is total household income, τ i is the time supplied by spouse i in household
production, and δ1 ≥ 0, δ2 ≥ 0, and δ1+δ2 ≤ 1. Thus the household production technology
exhibits constant returns to scale.
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Individuals supply time in a competitive market to generate earnings. The wage rate
of spouse i is wi, and the time they spend in market activities is hi. The nonlabor income
of the household is denoted by Y, and is the sum of the nonlabor incomes of the spouses,
Y1 + Y2, plus any nonattributable nonlabor income that accrues to the household, Ỹ . The
sources of nonlabor income will play no role in our analysis. Total income of the household
is then M = w1h1 +w2h2 + Y.

Each spouse has Cobb-Douglas preferences over a private good, leisure, and the house-
hold public good, so that

ui = λi ln(li) + (1− λi) lnK, i = 1, 2,

where li is the leisure consumed by spouse i, and λi ∈ [0, 1], i = 1, 2, is the Cobb-Douglas
preference parameter. Each spouse has a time endowment of T, so that

T = hi + τ i + li, i = 1, 2,

defines the time constraint. Spouse i controls his or her time allocations regarding hi and
τ i (which determine li, of course).

By substituting the household production technology into the utility functions of each
spouse, we get a payoff function

u1(l1, τ1, τ2,M) = λ1 ln l1 + δ̃11 ln τ1 + δ̃12 ln τ2 + δ̃13 lnM

u2(l2, τ1, τ2,M) = λ2 ln l2 + δ̃21 ln τ1 + δ̃22 ln τ2 + δ̃23 lnM,

where δ3 = 1 − δ2 − δ1 and δ̃ij = (1 − λi)δj , and where λi + δ̃i1 + δ̃i2 + δ̃i3 = 1, i = 1, 2.
The reaction function of spouse 1, for example, is

(h∗1 τ
∗
1)(h2 τ2) = arg max

h1≥0,τ1
λ1 ln(T−h1−τ1)+δ̃11 ln τ1+δ̃12 ln τ2+δ̃13 ln(w1h1+w2h2+Y ),

and it is straightforward to establish that this best response is uniquely determined for
all (h2 τ2) and for any values of the preference and production parameters satisfying the
constraints imposed above. There exists a unique best response for the second spouse,
(h∗2 τ

∗
2)(h1 τ1) by symmetry. Since h

∗
i is a nonincreasing function of hi0 and is independent

of τ i0 , and since τ∗i is independent of both hi0 and τ i0 , there exists a unique Nash equilibrium

(ĥN1 τ̂N1 ) = (h∗1 τ
∗
1)(ĥ

N
2 τ̂N2 )

(ĥN2 τ̂N2 ) = (h∗2 τ
∗
2)(ĥ

N
1 τ̂N1 ).

Thus these functional form assumptions satisfy Assumption 1.
When considering the Pareto weight allocations, we can write the household objective

function as

Wα(l1, l2, τ1, τ2,M) = αu1(l1, τ1, τ2,M) + (1− α)u2(l2, τ1, τ2,M)

= λ̃1(α) ln l1 + λ̃2(α) ln l2 + φ̃1(α) ln τ1 + φ̃2(α) ln τ2 + φ̃3(α) lnM,
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where λ̃1(α) ≡ αλ1, λ̃2(α) = (1 − α)λ2, φ̃j(α) ≡ ω(α)δj , j = 1, 2, 3, and ω(α) ≡ (α(1 −
λ1) + (1 − α)(1 − λ2). Since the objective function is concave in its arguments and the
constraint set is convex, there exists a unique solution to the household’s optimization
problem, which, for a given value of α, is given by

(hP1 τP1 hP2 τP2 ) = arg max
h1≥0,h2≥0.

τ1,τ2

n
λ̃1(α) ln(T − h1 − τ1) + λ̃2(α) ln(T − h2 − τ2)

+φ̃1(α) ln τ1 + φ̃2(α) ln τ2 + φ̃3(α) ln(w1h1 + w2h2 + Y )
o
.

Thus these functional forms are consistent with Assumption 2.

We conclude this brief section with a comment on the specific functional form as-
sumptions adopted for the empirical analysis. While the assumptions on preferences and
production technology do imply a number of strong restrictions on household behavior, we
will allow for very general forms of between- and within-household heterogeneity that will
enable us to capture most or all variation in the data. In fact, under the most general
specification, we show that the distribution of parameters is just-identified given the PSID
available to us. The point being made is that the restrictiveness of functional form as-
sumptions can only be judged in conjunction with the type of restrictions imposed on the
population distribution of parameters. That said, other functional form assumptions that
satisfied Assumptions 1 and 2 could have been used as a basis for the empirical work, and
the implications drawn regarding the behavioral choices of households and marital sorting
patterns could well have been different using a different set of “basis functions.”

4 Econometric Framework

A household “stage game” equilibrium is uniquely determined given a vector S of state
variables that, given the functional form assumptions maintained, completely characterize
the preferences of both spouses and the choice set of the household. The state variables
are given by

S =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ1
λ2
δ1
δ2
w1
w2
Y
α

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The vector S uniquely determines the efficient and inefficient solutions to the household’s
time allocation problem given the mode of behavior: inefficient (Nash equilibrium), Pareto
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optimal, or constrained Pareto optimal. Adding the discount factor β allows us to deter-
mine which mode of behavior is observed, thus

Db = Db(S;β), b ∈ B,

uniquely determines the time allocation decisions of the household under behavioral specifi-
cation b, which belongs to the set B of four household behavioral specifications we consider
in this paper. The identification and estimation problems relate to our ability to recover
the parameters that characterize a particular mapping Db.

In terms of the econometrics of the problem, identification and estimator implementa-
tion will depend on assumptions regarding the observability of the elements of S. Given
the data at hand, we consider the subvector S1 = (w1 w2 Y )0 observable for all households.
Since wages are only observed for working spouses, clearly this implies that our sample
contains only dual-earner households. This restriction results in us losing about 12 per-
cent of our sample, with the benefit of making the identification conditions for the model
considerably more transparent. We will comment further on this assumption below.

The subvector S2 = (λ1 λ2 δ1 δ2 α) contains the unobservable variables to the analyst.
In our parametric estimation of the model, we specify a population distribution of S2, the
parameters of which, in addition to those describing the distribution of β in the population,
constitute the primitive parameters of the model. We allow considerable flexibility in our
parametric specification of the joint distribution of (λ1 λ2 δ1 δ2) through the following
procedure. Let x be a four-variate normal vector, with

x
i.i.d.∼ N(μ,Σ), (7)

with μ a 4× 1 vector of means and Σ a 4× 4 symmetric, positive definite matrix. A draw
from this distribution, x, is mapped into the appropriate state space through the vector
of known functions, M (which is 4× 1). In our case, we have the following specification of
the “link” function,

λ1 : M1(x) = logit(x1)
λ2 : M2(x) = logit(x2)
δ1 : M3(x) =

exp(x3)
1+exp(x3)+exp(x4)

δ2 : M4(x) =
exp(x4)

1+exp(x3)+exp(x4)

.

Thus, the joint distribution of these 4 household characteristics is described by a total of
14 parameters, 4 from μ and the 10 nonredundant parameters in Σ.7

The two other parameters upon which the model solution depends are the Pareto weight
parameter, α, and the discount factor β. As is well-known from the collective household
model literature, estimation of the Pareto weight α is not possible without auxiliary func-
tional form assumptions and/or exclusion restrictions. While our functional form assump-
tions in principle allow for the identification of α within the various model specifications in

7When estimating Σ, it is necessary to choose a parameterization that ensures that any estimate Σ̂ is
symmetric, positive definite. The most straightforward way of doing so is to use the Cholesky decomposition
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which it appears, in practice identification of this parameter is problematic. As a result, we
restrict its value to α = 0.5 in all of the estimation performed below. This is not as severe
a restriction as it appears on the surface, since in the Constrained Pareto Optimal and
Endogenous Interaction models, the side constraints that the efficient solution is required
to satisfy results, in general, in a nondegenerate distribution of α in the population, even if
the “notional” value of α (α0) is the same for all households. As we will see in the results
reported below, a substantial proportion of households implementing choices that produce
utility outcomes on the Pareto frontier use a value of α not equal to 0.5.

It is possible to allow for variability of β in the population (though we have restricted
the spouses in any given marriage to share the same β), and we have estimated the various
behavioral specifications allowing for this additional source of heterogeneity, after restrict-
ing β to follow a one-parameter power distribution. We found that the heterogeneous β
model fit the data less well than the homogeneous β specification, and so report only the
common β estimates.

4.1 Simulation-Based Estimation

Let the parameter vector of the model be given by Ω = (μ0 vec(Σ)0 ω)0, where vec(Σ) is a
column vector containing all of the nonredundant parameters in Σ, ω is empty or contains
β in the Endogenous Interaction specification, so that Ω is a 15 × 1 vector in the most
“heterogeneous” model we consider. We have access to a sample of married households
taken from the Panel Study of Income Dynamics (PSID) from the 2005 wave, which we
consider to a random sample from the population of married households in the U.S. within
a given age range. In terms of the observable information available to us, we see the decision
variables for household i,

Ai = (h1,i τ1,i h2,i τ2,i),

and we see the state variables
S1,i = (w1,i w2,i Yi).

of Σ. There are 10 parameters to estimate, with

C =

exp(c1) c2 c3 c4
0 exp(c5) c6 c7
0 0 exp(c8) c9
0 0 0 exp(c10)

,

and Σ(c) = C0C. The exp(·) functions on the diagonal ensure that each of these elements are strictly
positive, which is a requirement for the matrix to be positive definite.
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Define the union of these two vectors, which is the vector of all of the observable variables
of the analysis, by Qi = (Ai S1,i), so that the N × 7 data matrix is

Q =

⎡⎢⎢⎢⎣
Q1
Q2
...

QN

⎤⎥⎥⎥⎦ .
We choose m characteristics of the empirical distribution of Q upon which to base our
estimator. Denote the values of these characteristics by the m× 1 vector Z.

Simulation proceeds as follows. For each of the N households in the analysis, we draw
NR values of x, and also β when it is included in a model specification and allowed to be
heterogeneous. For simplicity, we will consider the set of simulation draws as generating
(λ1 λ2 δ1 δ2 β), even when β is treated as fixed in the population. Let a given simulation
draw of these state variables be given by θi,j , i = 1, ..., N ; j = 1, ...,NR. The draws θi,j
are functions of the parameter vector Ω, which we emphasize by writing θi,j(Ω). Given a
value of Ω, for each household i we solve for household decisions under behavioral mode
b, (ab1,i,j , a

b
2,i,j)(S1,i, θi,j) = Db(S1,i, θi,j), j = 1, ..., NR, where abs,i,j is the market labor

supply and time in household production of spouse s in household i given draws θi,j under
behavioral regime b. The time allocations associated with the simulation are stacked in a
new matrix

Q̃b(Ω) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ab
1,1(Ω) S1,1
...

...
Ab
1,NR(Ω) S1,1
Ab
2,1(Ω) S1,2
...

...
Ab
2,NR(Ω) S1,2
...

...
AN,1(Ω) S1,N

...
...

AN,NR(Ω) S1,N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where Ab
i,j(Ω) = (ab1,i,j ab2,i,j). The analogous value of Zb(Ω) is computed from the (N ×

NR) × 7 matrix Q̃b(Ω). Given a positive-definite, conformable weighting matrix W, the
estimator of Ω is given by

Ω̂b = argmin
Ω
(Z − Zb(Ω))

0W (Z − Zb(Ω)).

The weighting matrix W is computed by resampling the original data Q a total of
5000 times, and for each resampling we compute the value of Z, which we denote Ẑk for
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replication k. We then form

Ẑ =

⎡⎢⎢⎢⎣
Ẑ1
Ẑ2
...

Ẑ5000

⎤⎥⎥⎥⎦ .
W is the covariance matrix of Ẑ. Since a major focus of our empirical investigation is a
comparison of the behavioral models in B in terms of their ability to fit the sample moments
Z, it is advantageous to utilize a weighting matrix W that is not model dependent.

4.2 Identification

As is true of many (or most) simulation-based estimators, especially those used to estimate
relatively complex behavioral models, providing exact conditions for identification is not
feasible. Nevertheless, it may be useful to understand what features of the data gener-
ating process are being used to obtain point estimates of the parameters in our ‘flexible’
parametric model of the household. With this goal in mind, we proceed through a fairly
careful consideration of nonparametric identification of the first three behavioral specifi-
cations. We will then discuss the reasons that the Endogenous Interaction model is not
nonparametrically identified, which is the primary reason for our interest in the estimation
of a flexible parametric specification of the distribution of primitive parameters.

The identification arguments we present in this section condition on observed wages,
and do not allow for measurement error in any of the variables included in Qi, which
contains the conditioning variables S1,i = (w1,i w2,1 Yi), as well as the four time allocation
measures Ai = (h1,i τ1,i h2,i τ2,i). We begin by considering the nonparametric identification
case. We assume that there exists a joint distribution of FS(s), with the vector S =
(w1 w2 Y λ1 λ2 δ1 δ2 α β)0 in the most general model. An individual household in the
PSID subsample is considered to be an i.i.d. draw from the distribution FS . No parametric
assumptions on FS are made, at this point.

4.2.1 All Households Behave Inefficiently (Static Nash equilibrium)

In the case of Nash equilibrium, it is straightforward to show that the model is nonpara-
metrically identified in the sense that we can define a nonparametric, maximum likelihood
estimator (NPMLE) of FS in the following (constructive) manner.

Proposition 5 The distribution FS is nonparametrically identified from Q when the be-
havioral rule is static Nash equilibrium and there are no corner solutions.

Proof. The Nash equilibrium is the unique fixed point of the reaction functions of spouse 1
and spouse 2 given the time allocations of the other spouse. Given that both spouses work,
we observe the vector (w1,j w2,j , Yj) for all households, so that the marginal distribution
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FS1 is nonparametrically identified by construction. Given the observation Qj , we can
invert the reaction functions for household j to yield the two equation linear system

δ1,j =
B1,j(1−B2,j)

1−B1, jB2,j

δ2,j =
B2,j(1−B1,j)

1−B1, jB2,j
,

where Bi,j = wi,jτ i,j/(Mj + wi,jτ i,j), with Mj = w1,jh1,j + w2,jh2,j + Yj . Given constant
returns to scale in household production, δ3,j = 1 − δ1,j − δ2,j , and we can invert the
remaining two equations in the system of reaction functions to obtain

λi,j =
δ3,jwi,j(T − hi,j − τ i,j)

Mj + δ3,jwi,j(T − hi,j − τ i,j)
, i = 1, 2.

Since these values of (δ1,j , δ2,j , α1,j , α2,j) are uniquely determined by (h1,j , τ1,j , h2,j , τ2,j , w1,j , w2,j , Yj),
we “observe” the complete vector of values Sj = (w1,j w2,j Yj λ1,j λ2,j δ1,j δ2,j), and the
nonparametric maximum likelihood estimator of FS is the empirical distribution of {Sj}Nj=1.

Note that the restriction of no corner solutions is essential in our ability to nonpara-
metrically identify the model. Say that, for example, h1,j = 0. Even if the offered wage w1,j
were available, an unlikely event, there would exist a set of values of λ1,j consistent with
the observed choices and the observed state variables, with no way to assess the likelihood
of any value in the set relative to that of any other. In the presence of any kind of trun-
cation or censoring, nonparametric identification of the complete distribution is typically
impossible, since some functional form assumptions are required to assign likelihoods over
sets of values of parameters consistent with observed outcomes.

4.2.2 All Households Behave Efficiently

Proposition 6 The distribution FS is nonparametrically identified from Q when the be-
havioral rule is Pareto efficiency, there are no corner solutions, data points are consistent
with the model, and α is known.

Proof. Household time allocation is determined by solving the system of four first order
conditions associated with (??). We find that

δ1j =
B1j(1−B2,j)

1−B1jB2,j

δ2j =
B2j(1−B1,j)

1−B1jB2,j
,
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the same as in the Nash equilibrium case. Conditional on these values of δ1j and δ2j (⇒
δ3j = 1− δ1j − δ2j under the CRS assumption) and a value of α, we find

λ1j =
1

α
R1j

λ2j =
1

1− α
R2j

where

R1j ≡
C1j(1− C2j)

1−C1jC2j

R2j =
C2j(1− C1j)

1−C1jC2j
.

and

C1j =
δ3jw1j(T − h1j − τ1j)

δ3jw1j(T − h1j − τ1j) +Mj

C2j =
δ3jw1j(T − h2j − τ2j)

δ3jw2j(T − h2j − τ2j) +Mj
.

The values of C1j and C2j lie in the unit interval for all j, which implies that λ1j and
λ2j are always positive. However, for given values of α and all other state variables and
choice variables, either or both λ1j and λ2j may not belong to the open unit interval. In
this case, the data for household j are not consistent with the model and are not used in
the estimation of FS , which is the empirical distribution of {Sj}j∈κ , where κ is the set of
household indices for which λ1j and λ2j both belong to the open unit interval.

We found that the implied values of λ1j and λ2j belonged to the unit interval for all of
the sample cases. In the proposition, in constructing the NPMLE for FS we specified that
only implied values of the preference parameters that satisfied our theoretical restrictions
would be utilized. One could argue that the satisfaction of theoretical restrictions to be a
necessary condition to define the estimator, instead. In this particular application, we did
not have to explicitly confront this problem.

4.2.3 Constrained Efficient Case

The constrained efficient case imposes a side constraint on the efficient solution, one which
insures that each spouse attains a utility value at least as large as what could be obtained
in the inefficient, Nash equilibrium case. This makes the mapping from the observed time
allocations and observed state variables into the unobserved state variables more complex.
We have not been able to prove the uniqueness of the mapping, and instead we have used
the following procedure to define and implement a nonparametric estimator of FS.
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First, from the previous two propositions we know that the implied values of the tech-
nology parameters is independent of α and is the same mapping from the data into (δ1, δ2)
for the Nash equilibrium and Pareto Optimality cases. Thus, the same mapping will ap-
ply here, so the only issue is in defining the mapping from the data into the preference
parameters. To compute this, we have merely solved for the efficient outcomes under a
grid of Pareto weights, αGi , where αGi = 0.001 × i, i = 1, ..., 999. At each value of αGi ,
we determine the values of (λi1, λ

i
2) = (λ1, λ2)(α

G
i ) associated with it. We then determine

the payoffs associated with those values of the preference and technology parameters given
the observed, decisions and state variables, and compare those with the payoffs that all
of these state variables would generate under the static Nash equilibrium. If the welfare
values satisfy the “short-run” participation constraint, then that value of αGi is included
in the set of feasible α values, which we denote αF . We then select an α ∈ αF using the
following criterion:

1. If α0 ∈ αF , then the values of the preference parameters are (λ1, λ2)(α0).

2. If α0 < minαF , then the preference parameters are (λ1, λ2)(minαF ).

3. If α0 > maxαF , then the preference parameters are (λ1, λ2)(maxαF ).

In implementing this procedure, we found that, as in the PO case, all implied values
of the preference parameters belonged to the unit interval. Moreover, we found that the
sets αF were always “connected,” in the sense that when αF consisted of more than two
elements, there were no values of αGi that were greater than minα

F and less than maxαF

that did not belong to αF . Since all of this was done numerically, we cannot claim that for
a finer partition of the grid such cases would not emerge.

4.2.4 Endogenous Interaction Case

We cannot show that FS is nonparametrically identified in the EI case, because it is simple
to provide counterexamples to show that it is not. We can continue to assume that the
technology parameters are uniquely determined without reference to the behavioral regime
or value of α used in efficient cases. The fundamental identification problems then concern
the discount factor β and the preference parameters, λ1 and λ2.

Since we could not identify the notional value of α0 nonparametrically, it comes as no
surprise that the same is true of β. We know that if β = 0, no efficient allocations can be
supported, and the resulting time allocations are all generated in NE. Conversely, as β →
1, all households make efficient time allocation decisions, and the preference parameters
implied by the data are those generated under PO. Both sets of values of the preference
parameters are one-to-one mappings from the data, so we have two separate estimators of
FS.

Unfortunately, the lack of identification result continues to hold even after fixing β at
some predetermined value β0. Having a notional value of α, α0, and a fixed value of β, β0,
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we can find cases of observed state variable vectors, S1, and decisions, A, that yield two
valid implied values of (λ1, λ2), one under static Nash equilibrium and one other dynamic
efficiency. By this we mean that the implied values of preferences and technology assuming
static Nash equilibrium are such that no efficient allocation is implementable given β0. At
the same time, using implied values of preferences and technology assuming an efficient
allocation, we can determine values of the preference parameters that imply the existence of
an implementable solution in the sense of satisfying the long-run participation constraint.
Obviously, the two sets of preference parameters are not identical, and there is no way to
differentiate between them when forming the NPMLE of FS .

4.2.5 The Flexible Parametric Case

Under the parametric specification of the unobserved state variables described at the be-
ginning of this Section, the estimation problem becomes one of estimating a set of para-
meters θ assumed to completely characterize the distribution FS(θ), instead of the func-
tion FS itself. In the case of the NE and PO behavioral specifications the parameter
vector θ is clearly identified, since we showed that FS itself was nonparametrically iden-
tified. In this case, using the nonparametric MLE for FS , F̂S , we can define estimators
for θ̂M = argminθM(F̂S, FS(θ)) for some distance function M, and the argument for the
identification of θ will be dependent on properties of M.

In the case of EI, and possibly CPO, this type of argument is not available to us, since
FS is not nonparametrically identified. The flexible parametric specification aids in over-
coming the identification problems associated with the EI case by smoothing the density
over regions in which unique solutions to the inversion problem associated with the non-
parametric estimator do not exist. While we cannot establish formal identification of θ
using the MSM estimator, the parameter estimates we have obtained using the MSM esti-
mator with the flexible parametric specification generally fall into line with those obtained
using the nonparametric estimator, in the cases when it was available for comparison. In
the CPO and EI cases, the parameter estimates were intermediate to those obtained in the
NE and PO cases, as one would expect them to be on a theoretical level, which lends some
credibility to the notion that the estimator was well-behaved and chose appropriate points
in the parameter space.

A final word regarding identification. While theoretically, under the flexible parametric
specification, both α0 and β are identified, we chose to fix α0 at the value 0.5, and estimate
β as a free, but homogenous, parameter in the population. We choose to fix α0, since we
were especially interested in the behavioral heterogeneity in ex post values of α.While the
estimate of β we obtain is “low,” the value makes sense when evaluated in the context of
the estimated distribution of other state variables in the model.
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5 Empirical Results

We begin this section by presenting the sample selection criteria used in creating the
final sample from the PSID with which we work. This is followed by a discussion of the
estimates of the distributions of primitive parameters in the “nonparametric” analysis for
the three identified models: Nash equilibrium, Pareto efficiency, and Constrained Pareto
efficiency. We then move on to our focus of interest, which are the estimates from the
flexible parametric analysis.

5.1 Sample Selection Criteria and Descriptive Statistics

We use sample information from the 2005 wave of the PSID. All models are essentially
static, and therefore we only utilize cross-sectional information from this wave of the survey.
We only considered households in which the head was married, with the spouse present in
the household. In this wave, the PSID obtained the standard information regarding usual
hours of work over the previous year for both spouses, and this information corresponds
to h1 and h2 in the model. Every few years, the PSID also includes a question regarding
the usual hours devoted to housework by each spouse, and this information is included in
the 2005 wave. The responses to these items are interpreted as τ1 and τ2 in the model.
These time allocation questions are regarded as referring to the same time period. We use
total hours worked from the previous year and labor earnings for each spouse to infer a
wage rate, wi for spouse i. In addition, information is available on the nonlabor income of
the spouses over the previous year, and we divide this amount by 52 to obtain a weekly
nonlabor income level, Y.

We only utilize information from households in which both spouses are between the ages
of 30 and 49, inclusive. In addition to this age requirement, we excluded all households
with any child less than 7 years of age, since the household production function is likely
to be far different when small children are present. We also excluded couples with what
we considered to be excessively high time allocations to housework and the labor market,
namely, those with over 100 hours combined in these two activities. We selected this amount
since we set T = 112, which we arrived at by assuming 16 hours to allocate to leisure,
housework, and the labor market for each of the seven days in a week. We also excluded
households reporting a nonlabor income level of more than $1000 a week, on the grounds
that such people were likely to be generating a significant amount of self-employment
income, making the labor supply information they supplied difficult to interpret. Not
many households were lost to this exclusion criterion.

By far the most significant sample selection criterion we imposed was the one requiring
both spouses to work. If a spouse does not work, then clearly we have no wage information
for that spouse, making the nonparametric analysis we discuss above and report on below
impossible to implement. Within the flexible parametric estimator we implement, it would
be possible to allow for corner solutions in labor supply if we are willing to impose a
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parametric assumption regarding the wage offer process.8 While this allows for more model
generality, in principle, it comes at the expense of having to take a position on the partially
unobservable wage process. We chose to follow the route of ruling out corner solutions,
allowing us to condition all of our analysis on observed wages. Because we restricted our
attention to households without small children, imposing the condition that both spouses
supply time to the market resulted in a reduction of 12 percent in our (otherwise) final
sample. We were left with 823 valid cases, which were those satisfying the conditions stated
above and with no missing data on any of the state and decision variables included in the
analysis.

A description of the decisions and state variables is contained in Table 1. As has
been often remarked upon in other analyses of household behavior that include time in
housework, the average time spent in the both housework and labor supply to the market
is very similar for husbands and wives. On average, husbands spend approximately 7 hours
more per week in the labor market than their (working) wives, but devote 7 hours less to
housework. Under our assumption that each spouse has 112 ‘disposable’ hours of time to
allocate each week, on average each spouse spends slightly more than one-half of their time
consuming leisure. We also note that the wives’ distributions of hours in the market and
housework are much more disperse than the corresponding distributions of husbands. In
terms of market work, this is undoubtedly due to the fact that married women are much
more likely to be employed in part-time work than their husbands (see, e.g., Mabli (2007)).
The limited amount of variation in the distribution of husbands’ housework is mainly due
to the floor effect - most observations are clustered in the neighborhood of zero.

In terms of the observed state variables of the analysis, the mean wage of husbands is
approximately 39 percent greater than the mean wage of wives, and exhibits considerably
more dispersion, some of it due to the presence of a few wage outliers among the husbands
(the maximum wage of wives is $80.50, while the maximum wage of husbands is $144.93).
Average weekly nonlabor income of the household is $118.15, and this distribution is quite
disperse, even though the sample is restricted to households receiving no more than $1000
of nonlabor income per week. No nonlabor income is reported by 27 percent of sample
households.

Table 2 contains the zero-order correlation matrix of the variables reported in Table 1.
There is no correlation between the labor supply and housework of husbands, while there
is a reasonably strong negative correlation (-0.189) between them for wives. There is a
strong positive correlation (0.321) between the times spent in housework by husbands and
wives. The wage of a husband and the labor supply of his wife have a negative correlation
of -0.132, while wives with high wages tend to spend less time in housework. There are
no particularly noteworthy correlations between household nonlabor income and other
variables in the analysis, with the possible exception of the husband’s wage (0.115). The

8This was precisely what was done in an earlier version of this paper, when we only considered labor
supply in a model without a household production component.
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correlation between the wages of the spouses (0.294) indicates positive assortative mating
in the marriage market.

5.2 Nonparametric Estimation of the Distribution of State Variables

Under the Nash equilibrium, Pareto efficient, and constrained Pareto efficient modeling
assumptions, we were able to obtain estimates of the distributions of S in our sample.
In all cases other than static Nash equilibrium, we established that the Pareto weight
parameter α was not identified. Accordingly, in all of these models, we simply assume
that the ‘notional’ Pareto weight is 0.5. Of course, the Nash equilibrium solution is not a
function of the parameter α.

In Section 3.2.2, we noted that the mapping from the time allocation decisions and
the observed state variables, the wages of the spouses and household nonlabor income, did
not necessarily produce values of the preference parameters λ1 and λ2 contained in (0, 1).
Nevertheless, all of our 823 sample cases generated values of λ1 and λ2 in the unit interval,
so that all cases are used to generate ‘data’ on preferences and household production
parameters that are used to form the nonparametric estimator of FS.

Table 3 contains estimates of the means and standard deviations of the marginal dis-
tributions of preference and production parameters of the model under the three estimable
behavioral specifications. As discussed above, under our functional form assumptions on
preferences and household production, the implied value of the production parameters δ1j
and δ2j for household j are the same functions of the decisions of household j, Dj , and the
observed state variables for household j, SOj , for each of the three behavioral models for
which we obtain nonparametric estimates of FS . This explains the fact that the estimated
means and standard deviations of the production parameters are identical across the three
behavioral specifications. We note that wives have a higher average productivity in house-
hold production than husbands, with the mean for wives being about 41 percent larger.
There is also slightly more dispersion in the wives’ productivity parameter.

Large differences are observed across the three specifications in terms of the distribution
of the preference parameters. Given that the Nash equilibrium outcomes are inefficient, it
is not suprising to find that the means of the preference parameters under Nash equilibrium
are considerably less than they are under constrained or unconstrained Pareto efficiency. In
all three behavioral cases, the average weight placed on the private good, leisure, is smaller
for wives than their husbands. In the unconstrained Pareto weight case, the average weight
placed on leisure by husbands is 0.580, in comparison with an average leisure weight of 0.430
for wives. There are similar levels of dispersion in the distributions of preference parameters
for husbands and wives across the three behavioral specifications.

Comparing estimates across columns two and three, it is interesting to note that the
constraint that the payoffs under the efficient solution are at least as large as the payoffs
under Nash equilibrium for both spouses is binding for a number of sample cases given the
notional value of α = 0.5. This is evidenced by the differences in the preference parameter
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distributions. Imposing this particular constraint narrows the difference in the mean of
spousal preference parameters, while reducing dispersion as well.

Recall that all three estimates of FS, are equally “valid,” and no statistical criterion
can be used to distinguish between the behavioral specifications given that they are all
based on (different) one-to-one mappings from the data and observed state space to the
unobserved state space. In the next section, when we make flexible parametric assumptions
regarding the distributions of the parameters, we will be able to compare the performance
of the various behavioral models, including the Endogenous Interaction specification.

5.3 Parametric Estimation of the Distribution of State Variables

Before looking at the estimates produced by the parametric estimator under the four be-
havioral specifications, it may be worthwhile to consider why we expect them to differ
to some degree from the nonparametric estimators of FS discussed in the preceding sub-
section. First, we have assumed that the distribution of the state variables (subvector)
SU = (λ1 λ2 δ1 δ2) is independent of the state variables SO = (w1 w2 Y ). This is a strong
assumption, but without specifying some form of parametric dependence between SU and
SO, it would not be possible to relax it. There are reasons to doubt the validity of the
independence assumption. For example, a spouse i with a low value of leisure might have
worked and invested more in the past, so that wi and Y may be negatively related to λi.
To fully account for such dependencies, we would require a life cycle household model with
capital accumulation, which is beyond the scope of the current paper.

Second, while our parametric specification of the distribution of SU is reasonably flex-
ible, it does impose restrictions on the data. These restrictions are what allow us to say
something about the relative abilities of the four different behavioral specifications to fit
the data. Nevertheless, different parametric specifications of the distribution of SU could
lead to different inferences concerning which behavioral framework is most consistent with
the data features chosen for the MSM estimator.

Table 4 contains the MSM estimates of the four behavioral specifications.9 The esti-
mates presented were computed as follows. We obtained point estimates of the 14 para-
meters used to characterize the distribution of SU for each of the four specifications. We
then took a large number of draws (one million) from the estimated distribution of SU ,
and computed the means and standard deviations of each of the components of the vector
SU . In the EI specification, we also estimated the discount factor β, which was constrained
to be homogeneous in the population. The notional value of the Pareto weight α was fixed
at 0.5 in all specifications. For specification CPO, in each simulation we also computed

9We do not present bootstrap standard errors for the estimated moments presented in Table 4 due to the
computational time involved, particularly for the Endogenous Interaction specification. We have computed
bootstrap standard errors for the first two specifications, Nash Equilibrium and “unconstrained” Pareto.
We found that all of the moments presented in the table were quite precisely estimated. We have no reason
to believe that the same would not be true of the last two specifications as well.
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the Pareto weight at which the efficient outcome was implemented. For specification EI, in
each simulation we computed the Pareto weight at which the efficient outcome was imple-
mented in the cases where it was possible to implement an efficient outcome. The means
and standard deviations of the ex post α distribution are presented in columns three and
four of the table. We also present the proportion of simulated cases used in the estimation
for which an efficient solution was obtainable (only relevant for column four), and the pro-
portion of efficient solutions that were implemented at the notional α value of 0.5, which
is relevant for columns three and four. The last row in the table reports the value of the
distance metric for the model; obviously, a lower value indicates that the model is able to
better fit the selected moments at the optimally-chosen parameter estimates.

The Nash equilibrium specification produces estimates of the mean values of the prefer-
ence parameters, λ1 and λ2, roughly in accord with those produced by the nonparametric
estimator. The estimated population dispersion in the parameters is far greater under the
flexible parametric estimator of the distribution than under the nonparametric estimator.
The estimated distribution of production function parameters is quite a bit different un-
der the flexible parametric estimator compared with the nonparametric results. We still
find that, on average, wives are more productive in housework than their husbands, with
the estimated means being 0.178 and 0.138, respectively. The nonparametric estimates
of the means is 0.106 and 0.075, instead. There is also considerably more estimated dis-
persion in these parameters using the parametric estimator. Our sense is that most of
these differences arise from the restriction that the state variables in SU are independently
distributed with respect to SO imposed using the parametric estimator that is not imposed
under the nonparametric estimator, rather than arising from the parametric restrictions
on the distribution of SU .

The estimated moments SU , under the assumption of Pareto efficiency and a notional
welfare weight of 0.5, are presented in the second column. As regards the preference para-
meter distributions, we see that the mean estimated leisure weights for both spouses are
considerably larger than we found in the Nash equilibrium case in Table 4. The estimated
mean λ2 for wives is virtually identical using either the nonparametric or parametric esti-
mator, while the estimated value for husbands is slightly smaller using the nonparametric
estimator. The estimated dispersion in the preference parameters is quite small in this case,
in comparison with the Nash equilibrium case in the first column or the analogous column
of Table 3. The estimated mean value of the production parameters is roughly similar to
what was obtained using the nonparametric estimator, and both moment estimates are
considerably smaller than in the Nash equilibrium case. The estimated dispersion of these
parameters in the population is considerably less than under Nash equilibrium.

It is interesting to compare the distance measures associated with these two models.
Under our assumption that α is known and equal to 0.5, both models have the same number
of estimated parameters (characterizing the parametric distribution of SU ). We see that
the NE model does a superior job in fitting the selected moments than does the PO model.
While we do not conducted a formal test of these differences, because of the computational
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time involved in constructing bootstrap confidence intervals., the difference does seem
important. When we compare these distances with those obtained under the other two
model specifications, we will have a better sense of how ‘significant’ these differences are.

Column three contains the estimated moments of SU from the Constrained Pareto
Optimal specification. We see that requiring Pareto efficient allocations to give each spouse
at least the same amount of welfare as they would obtain under Nash equilibrium has
notable effects on estimated moments of SU and the ability of an efficient specification of
household behavior to fit the data moments. As we might expect, the estimated means in
column three are more similar to those in column two than to those obtained under the
Nash equilibrium specification. The estimated distributions from the CPO specification
exhibit more dispersion than under the PO specification, with the exception of the wife’s
productivity parameter, δ2.

The most interesting comparison between the CPO and PO specification is in terms
of model fit, however. First, recall that if all parameter draws from the distribution of
SU satisfied the ‘participation constraint’ (given the sample cases value of SO), then the
proportion of efficient allocations implemented at the notional value of 0.5 would be 1.
As we see, this is far from the case, with over 40 percent of draws from SU , given the
household’s value of SO, requiring an adjustment from the notional value of α. In Figure
3.a, we plot the distribution of α conditional on α 6= 0.5. The distribution has a ‘regular’
shape, and exhibits a slight negative skew. There is a large amount of mass away from
the neighborhood of [.45,.55], indicating that in some households a substantial change in
the Pareto weight was required to satisfy the participation constraint. This allowance for
heterogeneity in the ex post Pareto weight has substantially improved the ability of the
model to fit the sample characteristics, with the distance measure declining by approxi-
mately 16 percent from the PO specification without the participation constraint. This
specification of household behavior now produces a significant improvement in fit over the
Nash equilibrium specification.

We now turn to our focus of interest, the Endogenous Interaction specification. The EI
specification is also based on a fixed, notional value of the Pareto weight of 0.5, but includes
the discount factor, β, a parameter not included in the PO an CPO specifications. Opening
up the possibility of cheating on the efficient outcome introduces a more stringent form of
a participation constraint than the one that exists in the CPO specification. Perhaps the
most interesting result reported in column 4 is the proportion of sample cases that achieve
utility realizations that lie on the Pareto frontier, which we estimate to be 0.941. Most
households do manage to implement efficient time allocations, however, only 9.2 percent
of these efficient households utilize the notional Pareto weight of 0.5. The distribution of
the ex post value of α, excluding ex post values of α equal to 0.5, is exhibited in Table
3.b. The shape of this distribution is similar to the one shown in the panel above it, with
a slight negative skew. The average value of ex post α among efficient households in the
EI specification is 0.528, compared with 0.509 in the CPO specification. The dispersion in
ex post α is also greater under the EI specification. In terms of the estimates of the two
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first moments of the marginal distributions of preference and production parameters, the
EI estimates of both moments are bounded by the analogous estimates associated with the
PO and CPO specifications.

To induce any households to behave inefficiently, a relatively low value of β is required,
and our point estimate is 0.522, which we interpret as referring to a yearly period, since
the data refer to a representative week in 2004, and we think of participation decisions
being made on a yearly basis. While the estimate of β is ‘low,’ it is not very out of line
with respect to other estimates of the subjective rate of discount found in the experimental
and microeconomics literature (see, for example, Hausman (1979) and Thaler (1981)). The
compilation of estimates of time preference performed by Frederick et al. (Table 1, 2002)
is striking for the huge range of values of the subjective discount rate that have been
found using both experimental and empirical methods. To our knowledge, this is the first
application to attempt to use a formal model with a grim trigger strategy to estimate
a discount factor, so there are no other studies with which we can directly compare our
estimate.10

The EI specification produces a marked increase in the ability of the model to fit
the data features we have selected. Recall that the EI specification nests the NE and
CPO models as special cases. As β → 0, no efficient solutions could be supported, so
all households would behave in an innefficient manner, with allocations given by the Nash
equilibrium values. As β → 1, all households will behave efficiently, with the only constraint
on the allocations being that they satisfy the participation constraint, which imposes the
restriction on α associated with the CPO specification. Moving β from a value of 1 (implicit
in the CPO specification) to 0.522 results in an improvement in the distance metric of 5
percent. Moving β from a value of 0 (implicit in the NE specification) to 0.522 results
in an improvement in fit of over 18 percent. The estimate of β we obtained suggests
that the “shirking” problem is an important one in determining observed household time
allocations.

We conclude this section by describing Figures 4-7, which use the flexible parametric
specification to plot bivariate relationships between production and preference parameters
within and across spouses by household. In each case, we used the point estimates of
the parameters that characterized the flexible multivariate distribution of (λ1 λ2 δ1 δ2),
in conjunction with a large number of pseudo-random number draws from the underlying
standard normal distribution, to generate pseudo-random number draws from the (esti-
mated) joint distribution of the preference and technology parameters.

Figure 4.a contains the scatter plot of draws of λ1 and λ2 obtained from the Nash equi-

10Porter (1983) and Lee and Porter (1983) estimate a switching regressions model motivated by the
trigger price strategy model of Green and Porter (1984). In that model of collusive behavior with imperfect
signals regarding other agents’ actions, a noncooperative punishment period is enterred whenever public
signals indicate a high probability of cheating. The punishment period is determined endogenously, and at
its termination another collusive regime is begun. The eocnometric framework used in the two empirical
papers cited does not allow one to back out an estimate of the discount factor of firms.
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librium specification. There is almost a perfect linear relationship between the preferences
of the spouses in this case, indicating that a substantial degree of (positive) assortative mat-
ing with respect to preferences. The scatter plot of δ1 and δ2 under the Nash equilibrium
specification is presented in Figure 4.b. In this case as well, there is indication of positive
assortative mating, though the relationship is far more disperse. This is particularly true
at large values of δ1 and δ2.

The last two plots exhibit the relationship between the preference and technology pa-
rameters of each spouse. These are not produced by “assortative” mating, per se, but the
estimated distributions are related to the characteristics of the spouse and the assumed
form of behavior within the marriage. For the case of husbands, shown in Figure 4.c, there
is little systematic relationship between the preference and technology parameters, with
only a slight positive linear dependence discernible. In the case of wives, shown in Fig-
ure 4.d, the positive relationship between these two parameters is substantially stronger,
though, once again, there is a fair amount of dispersion in the distribution of δ2 at all
values of λ2 except the very lowest.

Figure 5 contains the analogous scatter plots for the unconstrained Pareto weight case,
with the Pareto weight set at 0.5. While some of the same general shape patterns are
exhibited here as we saw under the assumption of Nash equilibrium, there are some no-
table differences. For example, while the preference parameters of the spouses (Figure
5.a) continue to exhibit a strong positive dependence, there is far more dispersion in the
distribution of λ2 conditional on λ1 than we observed in Figure 4.a. There is also much less
of a systematic association between the spousal production function parameters (Figure
5.b) under the Pareto weight model. There is no discernible linear association between the
preference and technology parameters of husbands (Figure 5.c), though there does exist a
positive, yet nonlinear, association between the preference and technology parameters of
wives (Figure 5.d), which was also observed under Nash equilibrium behavior (Figure 4.d).

In Figure 6 we present the scatter plots for the Constrained Pareto Optimal case.
Adding the side constraint that efficient solution payoffs must exceed inefficient Nash equi-
librium payoffs has a dramatic impact on the estimated relationships between intrahouse-
hold preference and productivity parameters. The strong positive relationship between the
preference parameters of the spouses is similar to what was found in the previous two cases,
but the range of values of the parameters is extended to cover the entire unit interval. The
association between the productivity parameters (Figure 6.b) is now found to be weak, and
slightly negative, if any systematic relationship is present. There exists no clear relation-
ship between the preference and productivity parameters of husbands (Figure 6.c), which
was also the case in the other two specifications. There is a large change in this relationship
for wives (Figure 6.d), however. Instead of a positive, but nonlinear association between
these parameters, there is now evidence of a slightly negative, linear association.

Our preferred specification, that of Endogenous Interaction, yields implied associations
between parameters somewhat intermediate to the others we have examined to this point.
The association between preference parameters is positive and approximately linear, as
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was true in the other cases. There is little evidence of a systematic relationship between
the productivity parameters of the spouses (Figure 7.b), and the range of variation in the
parameters is a bit less than under the PO specification and much greater than under
CPO. Once again, we see little systematic relationship between λ1 and δ1 (Figure 7.c),
though there is now indication of a positive, generally linear, relationship between λ2 and
δ2 (Figure 7.d).

5.4 Welfare Implications of the Analysis

Our estimates of the distributions of the unobserved state variables, used in conjunction
with the observed state variables in the data, allow us to examine the implied joint distrib-
ution of spousal welfare within our sample. We follow the methodology used in computing
the scatter plots described above to compute the intrahousehold welfare levels. For house-
hold j in the sample, defined in terms of (w1j w2j Yj), we draw 1000 values of the unobserved
state variable from the estimated distribution under behavioral regime k. Given the entire
state variable vector, we compute time allocations under behavioral rule k, and then the
utility level of each spouse. We then plot the utility levels (u1, u2) for each state variable
vector under the four behavioral regimes. The results are shown in Figure 8.

In all four behavioral regimes, there is a very strong relationship between the attained
utility levels of the spouses. This is not totally unexpected given the specifications of
the utility and household production functions, which posit that all consumption in the
household, aside from leisure, is public. Nonetheless, the specification in and of itself does
not specify the preference weights associated with the public good, which, in principle,
could have been small.

Within each figure we see that a strong majority of the points lie above the 45-degree
line, indicating that wives have a somewhat higher payoff on average given our cardinal
utility representation. If husbands and wives were perfectly symmetric, in the sense that
λ1 = λ2, δ1 = δ2, and w1 = w2, then all utility outcomes in each figure should lie on
the 45-degree line. In Figures 8.b through 8.d, in which all outcomes involve the Pareto
weight parameter α, even under perfect symmetry of preferences, productivity, and wages,
values of α different than 0.5 will produce outcomes off of the 45-degree line. Since the
notional Pareto weight is always set to 0.5, utility realizations are produced by asymmetry
in spousal characteristics, both observed and unobserved.

As was the case in regards to the parameter estimates, the plot of utility payoffs for
the Endogenous Interaction case (Figure 8.d) is intermediate to those generated from the
Nash equilibrium (Figure 8.a) and Pareto efficiency cases (Figures 8.b and 8.c). The
correlation between welfare outcomes is highest in the Nash equilibrium case and lowest in
the unconstrained Pareto environment.
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6 Conclusion

In this paper we have examined a general household allocation model in a variety of behav-
ioral frameworks, including one, that of Endogenous Interaction, that nests efficient and
inefficient behavioral choices within it. We have worked within a very specific specification
of preferences and household production technology when carrying out the empirical ap-
plication, but considered very general forms of household heterogeneity. The point of this
portion of the analysis, if it needs to be made, is that strong functional form assumptions
and restrictions on the distributions of state variables in the populations are required to
identify the parameters characterizing any particular behavioral model. Testing between
behavioral models cannot be done without resort to a number of nontestable identifying
restrictions.

The main contribution of the paper was the development of the model of Endogenous
Interaction, which had households endogenously sorting into inefficient and efficient time
allocation regimes. Under our flexible parametric assumptions regarding the distribution of
household preference and technology parameters, we found evidence that the Endogenous
Interaction model was the most consistent with the set of sample characteristics we used
to implement a Method of Simulated Moments estimator. Interestingly enough, the worst
performance in terms of the value of the distance function was associated with the Pareto
Optimal model (with a fixed Pareto weight of 0.5). The performance of the Pareto weight
model was considerably improved when we added the side constraint that each individual
had a utility payoff on the Pareto frontier that was at least as high was what they received
in Nash equilibrium. The fit of the efficiency-based model was further improved when we
added the constraint that the efficient equilibrium be incentive compatible in the sense
of being “cheating” proof. For those households still able to attain utility payoffs on the
Pareto frontier, the set of Pareto weights required to implement an incentive compatible
outcome was further reduced with respect to the Constrained Pareto specification. The set
of Pareto weights that could produce utility outcomes on the Pareto frontier was empty for
about 6 percent of households. Their time allocations were determined in Nash equilibrium.

When constraints are imposed on the Pareto weight formulation of the household time
allocation problem, a constant population value of the “notional” Pareto weight must be
adjusted to satisfy the time constraints. This produces what we might term model-induced
“structural” heterogeneity in the ex post Pareto weights associated with the efficient out-
comes in the population. We find that the Pareto models with side constraints produce
significant amounts of heterogeneity in the ex post Pareto weight distributions. Under the
Constrained Pareto specification, more than 40 percent of cases had an ex post Pareto
weight unequal to the notional Pareto weight of 0.5. Under the Endogenous Interaction
specification, less than 10 percents of efficient households had an ex post Pareto weight
equal to 0.5. On the basis of these results, we conclude that it is quantitatively import
to consider the ex post heterogeneity induced by behavioral constraints that result in sub-
stantial heterogeneity in implied Pareto weights even when the notional Pareto weight

34



is constant in the population. This finding is consistent with that of Mazzocco’s (2007)
analysis, which supports the dynamic adjustment of Pareto weights to satisfy evolving
participation constraints.

In this paper we have only considered the impact of adding two particular side con-
straints to the efficient allocation problem. In terms of the Constrained Pareto specifica-
tion, we added the constraint that each spouse receive at least what they would in Nash
equilibrium. A number of bargaining-based models of household behavior assume that the
outside option for each spouse is the value of being single. On a conceptual level, adding
further constraints to the efficient allocation problem is straightforward, and, as we have
seen, adding such constraints allows for a better correspondence between household time
allocations observed in the data and those generated by the model. Extending such frame-
works to a realistic dynamic setting which allowed for the possibility of inefficient household
allocations would also considerably increase the appeal of the Pareto-weight approach to
the analysis of household behavior.
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Table 1
PSID 2005 Sample

Means and (Standard Deviations)

N = 823

Variable Husband Wife

h 45.706 38.588
(8.546) (10.512)

τ 7.787 14.920
(6.418) (9.428)

w 22.009 15.823
(13.626) (9.327)

Y 118.151
(182.526)
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Table 2
Correlation Matrix of Observables

h1 τ1 h2 τ2 w1 w2 Y
h1 1.000 −0.017 0.093 0.060 0.029 −0.004 0.084
τ1 1.000 0.081 0.321 −0.031 −0.026 0.024
h2 1.000 −0.189 −0.132 0.084 0.011
τ2 1.000 −0.018 −0.137 0.066
w1 1.000 0.294 0.115
w2 1.000 0.026
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Table 3
Estimates of Primitive Parameters

Means and (Standard Deviations) of Fixed Effects Distributions

Parameter Behavioral Specification
NE PO CPO

λ1 0.369 0.580 0.531
(0.095) (0.166) (0.106)

λ2 0.302 0.430 0.456
(0.102) (0.158) (0.120)

δ1 0.075 0.075 0.075
(0.057) (0.057) (0.057)

δ2 0.106 0.106 0.106
(0.066) (0.066) (0.066)

α 0.500 0.500
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Table 4
Estimates of Primitive Parameter Moments

Flexible Parametric Specification
Means and (Standard Deviations)

NE PO CPO EI

λ1 0.355 0.474 0.489 0.484
(0.247) (0.088) (0.197) (0.094)

λ2 0.315 0.432 0.495 0.472
(0.196) (0.112) (0.229) (0.137)

δ1 0.138 0.065 0.074 0.067
(0.158) (0.050) (0.070) (0.065)

δ2 0.178 0.152 0.099 0.121
(0.216) (0.162) (0.029) (0.100)

β 0.522
(−)

α (Actual) 0.500 0.509 0.528
(−) (0.044) (0.057)

Proportion PF 0 1 1 0.941
Proportion α = 0.5 0.591 0.092

Distance Measure 4897.747 5014.291 4209.456 3991.784
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Table A.1

Moments Used in the MSM Estimator

Sample Characteristic Sample Value
Average h1 45.706
Average h2 38.588
Average τ1 7.787
Average τ2 14.920
St. Dev. h1 8.546
St. Dev. h2 10.512

Average (h1 × h2) 1772.074
Average (h1 × Y ) 5530.755
Average (h2 × Y ) 4580.739
Average (h1 × w1) 1009.293
Average (h2 × w2) 618.773
Average (τ1 × Y ) 947.620
Average (τ2 × Y ) 1876.535
St. Dev. τ1 6.418
St. Dev. τ2 9.423

Average (h1 × w2) 722.880
Average (h2 × w1) 830.367
Average (h1 ≥ 40) 0.955
Average (h2 ≥ 40) 0.694

Average (25 ≤ h1 < 40) 0.0346
Average (25 ≤ h2 < 40) 0.210
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Figure 1 
Critical β  Values 
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Figure 2 
Pareto Frontier and Admissible Solutions 
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