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Abstract

A lowest unique bid auction allocates a good to the agent who submits the lowest

bid that is not matched by any other bid. This peculiar auction format is becoming

increasingly popular over the Internet. We show that when all the bidders are rational

such a selling mechanism can lead to positive pro�ts only if there is a large mismatch

between the auctioneer�s and the bidders� valuation. On the contrary, the auction

becomes highly lucrative if at least some bidders are myopic. In this second case,

we analyze the key role played by the existence of some private signals that the seller

sends to the bidders about the status of their bids. Data about actual auctions con�rm

the pro�tability of the mechanism and the limited rationality of the bidders.

JEL Classi�cation: D44, C72.

Keywords: Lowest unique bid auctions; Signals; Bounded rationality.

1 Introduction

A new wave of websites is intriguing consumers over the Internet. These websites sell

goods of considerable value (electronic equipment, watches, holidays, and even cars and

houses) through quite a peculiar auction mechanism: the winner is the bidder who submits

�A previous and substantially di¤erent version of this work circulated with the title �Lowest Unique
Bid Auctions over the Internet: Ability, Lottery or Scam?� (University of Siena, DEPFID wp 06/08). I
would like to thank Luca Anderlini, Paolo Ghirardato, Harold Houba, Yaron Raviv, Amnon Rapoport
and Dmitri Vinogradov for useful comments as well as seminar participants at the Collegio Carlo Al-
berto, University of Siena, SMYE 2009 conference (Istanbul), BEELab-LabSi workshop (Florence) and
SED Conference on Economic Design (Maastricht) for helpful discussion. All errors are mine. E-mail:
andrea.gallice@brick.carloalberto.org.
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the lowest unique o¤er, i.e., the lowest o¤er that is not matched by any other bid. Such a

mechanism is commonly called a lowest unique bid auction (LUBA) and leads to impres-

sively low selling prices; one of these websites reports that an iPod (value 200 Euros) has

been sold for 0.25 Euros, a Sony Playstation 3 (400 e) for 0.81 e, and a new Volkswagen

Beetle Cabriolet (32,000 e) for 32.83 e. These are not exceptions. As a rule of thumb,

goods are usually sold for a price that is 0.1-0.3% of the market value.

Websites o¤ering LUBAs �rst appeared in Scandinavian countries in early 2006. Since

then, they rapidly developed in many other European countries (France, Germany, Hol-

land, Italy, Spain, and the UK). Word of mouth is fast, and this auction format is gaining

increasing media attention. Some people say LUBAs are a game of strategy; some say they

are just a lottery, but some suspect they are a plain scam. In this paper, we contribute to

this debate by studying this selling mechanism from a game theoretic point of view.

Let us introduce in more detail the functioning of a LUBA. As a �rst step, agents

must register to one of these websites and transfer an amount of money of their choice to

a personal deposit. Users can then browse through the items on sale and submit as many

bids as they want on the items in which they are interested. Bids are expressed in cents

and are private. Every time that a user places a bid, a �xed amount of money (typically

2 Euros) is deducted from his deposit. The auctioneer justi�es this cost as a price for

a (compulsory) �packet of information� that he sends to the bidder. In fact, as soon as

a bid is submitted, the user receives one of the three following messages: 1) Your bid is

currently the unique lowest bid; 2) Your bid is unique but is not the lowest; or 3) Your

bid is not unique. During the bidding period, which usually lasts for a few days, users can

at any time log in to their account in order to check the current status of their bids, to

add new ones, or to re�ll the deposit. Once the auction closes, the object is sold to the

bidder who submitted the lowest unique bid. For instance, if agents A and B o¤er 1 cent,

C o¤ers 2 cents, A and D o¤er 3 cents, and E o¤ers 6 cents, then the object is sold to C

for a price of 2 cents.

This allocation mechanism is, therefore, considerably di¤erent with respect to tradi-
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tional auction formats.1 In particular, it is the requirement about the uniqueness of the

winning bid that represents a novelty. On one hand, this requirement undermines key

objectives that lie at the core of standard auction theory like, for instance, the e¢ ciency

of the �nal allocation. On the other hand, it adds some new strategic elements. In fact,

from a strategic point of view, a LUBA is more similar to other well-known games than

to a standard auction. Given that agents want to outguess the rivals, the game has some-

thing in common with the Guessing Game (Nagel, 1995). There is an important di¤erence

though. In the Guessing Game, the pattern of best responses follows a unique direction.

This does not happen in a lowest unique bid auction. In fact, a player that expects all the

opponents to bid 1 cent maximizes his payo¤ by bidding 2 cents. But if the player expects

all the opponents to bid 2 cents, then he should switch back and bid 1 cent. Therefore,

the game is not dominance solvable. On the other hand, some other features of the game

(the possibility of multiple bidding, a �xed cost for each bid, and instantaneous knowledge

of the bids�status) makes it similar to a War of Attrition (Maynard Smith, 1974). But

the closest relative of the lowest unique bid auction is the Dollar Auction Game (Shubik,

1971). This is a public auction in which the prize (say, one dollar) is won by the highest

bidder, but both he and the second highest bidder must pay their bids. When participants

are not fully rational, this game can lead to some paradoxical results that highly reward

the auctioneer. We will see that something analogous can easily happen in the case of

LUBAs.

Apart from these classical contributions, there are also some very recent papers that

explicitly study various versions of unique bid auctions. Houba et al. (2009) and Rapoport

et al. (2009) analyze the equilibria of a LUBA in which bidders submit a unique bid,

there is a non-negative bidding fee, and the winner pays his bid. Both papers �nd that

in the symmetric mixed equilibrium, bidders randomize with decreasing probabilities over

a support that comprises the lowest possible bid and is made of consecutive numbers.2

Östling et al. (2009) obtain a similar result for what they call a LUPI (Lowest Unique

1See Klemperer (1999) or Krishna (2002) for detailed reviews of standard auction theory.
2Rapoport et al. (2009) also analyze HUBAs, i.e., unique bid auctions in which the winner is the bidder

who submits the highest unmatched o¤er. Such a mechanism is also studied by Raviv and Virag (2009).
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Positive Integer) game in which players can again submit a single bid, but there are

no bidding fees, and the winner does not have to pay his bid. The peculiarity of this

study is that the number of participants is unknown and is assumed to follow a Poisson

distribution. Finally, Eichberger and Vinogradov (2008) analyze a LUBA (that they call

LUPA, i.e., Least Unmatched Price Auction) where bidders can submit multiple costly

bids, and the winner must pay his winning bid. Given that no information about other

bidders�behavior is released during the auction, they model the game as a simultaneous

game. For some special ranges of the parameters, they show the existence of a unique Nash

equilibrium in which agents mix over bidding strings that comprise the minimum allowed

bid and are made of consecutive numbers. In addition to the theoretical analysis, the

papers by Houba et al. (2009) and by Rapoport et al. (2009) propose some algorithms for

computing the symmetric mixed strategy equilibrium. The papers by Östling et al. (2009)

and Eichberger and Vinogradov (2008) have instead an empirical part, which is based on

�eld and/or experimental data. Theoretical predictions �nd some empirical evidence at

the aggregate level but a much lower one at the individual level.

With respect to this ongoing literature, our paper di¤ers in a number of ways. The main

novelty is the analysis of the role played by the signals that the bidders receive about the

status of their submitted bids. We study how these signals in�uence the bidding strategies,

and we show them to be a key element of the mechanism, especially for what concerns

out of equilibrium play. Second, we explicitly model bidders�decisions about how much

to invest in the auction (i.e., how many bids to submit). We frame the problem as a

rent-seeking game, and we study how the optimal level of investment is in�uenced by the

parameters of the game. Finally, by modeling LUBAs as a sequential game that captures

the actions of both the bidders and the auctioneer, we focus on the pro�tability of the

mechanism. We show that if agents are rational then the expected pro�ts of the auctioneer

can be positive only if his valuation of the good is (much) lower than the valuation of the

bidders. This would imply that websites o¤ering LUBAs should not proliferate the way

they do. We then adopt a more behavioral approach and show how a LUBA can become

highly pro�table when at least some of the bidders lack the necessary commitment to
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stick to equilibrium strategies. The pro�tability of this selling mechanism and the limited

rationality of the bidders �nd an empirical con�rmation in the analysis of a dataset that

collects information about actual LUBAs.

The remainder of the paper is organized as follows: Section 2 formalizes the strategic

situation and characterizes its equilibria under the assumption of perfect rationality of

the players. Section 3 investigates what happens when some of the bidders are boundedly

rational. Section 4 examines a dataset, which collects detailed information about 100

LUBAs. Section 5 concludes.

2 The game and its equilibria

We introduce and analyze a sequential game that captures some of the key features of a

lowest unique bid auction. The game spans over T + 2 periods with t 2 f�1; 0; 1; :::; Tg

and has (N + 1) risk-neutral players: an auctioneer (a) and N � 2 symmetric potential

buyers. We assume that N is known. At period t = �1 the auctioneer, whose outside

option is ua = 0, can decide to auction a certain good through a LUBA. We indicate with

Va the value of the good for the auctioneer and with V the homogeneous valuation of

any potential buyer i 2 N . We assume that Va � V .3 If a opens the auction he credibly

commits to sell the good to the buyer who o¤ers the lowest positive bid that is not matched

by any other bid. The N buyers must then solve two distinct and subsequent problems.

In the �rst one, which takes place at t = 0 and which we label the �investment decision�,

each agent decides the maximum amount that he is willing to invest in the game. Given

that each bid costs c 2 [1; V � 1], this amount determines the number of bids that the

agent is willing to submit throughout the game. In the second problem, which we label

the �bidding phase", each bidder must decide where and when to place these bids. The

bidding phase starts at t = 1 (the opening of the auction) and ends at t = T (the closing

of the auction) where T is common knowledge. At any period t 2 f1; :::; Tg each player i

plays xti 2 f�g [ f1; :::;1g. Action xti = � indicates that agent i does not bid at period
3V can be interpreted as the retail price of the good. The assumption Va � V captures the fact that

the auctioneer may pay the good less than its retail price because of quantity discount and/or marketing
reasons.
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t. Action xti 6= � indicates that agent i submits at time t the bid xti 2 f1; :::;1g. As soon

as a bid xti 6= � has been placed, player i is charged c and receives from the auctioneer a

truthful and private signal �t
�
xti
�
2 fW;M;Lg. It is common knowledge that the signals

mean the following:

� �t
�
xti
�
= W indicates that xti is currently the W inning bid (i.e., at time t x

t
i is the

lowest unique bid).

� �t
�
xti
�
=M indicates that xti M ight be the winning bid (i.e., at time t x

t
i is unique

but it is not the lowest).

� �t
�
xti
�
= L indicates that xti is a Losing bid (i.e., x

t
i is not unique).

The status of some bids can thus change over time. In particular, the signal �t
�
xti
�
=

W can be updated by �s
�
xti
�
= M (a bidder j places at time s 2 ft+ 1; :::; Tg the bid

xsj < x
t
i such that �

s (xsi ) = W ) or by �
s
�
xti
�
= L (a bidder j bids xsj = x

t
i). For similar

reasons the signal �t
�
xti
�
= M can be updated by �s

�
xti
�
= W or by �s

�
xti
�
= L. The

signal �t
�
xti
�
= L cannot be updated as the status of a bid that is not unique cannot

change any more. If at period t a unique bid does not exist then a speci�c tie-breaking

rule ensures that a single bid receives the signal W .4 In other words, there is always a

bidder who holds the provisional winning bid and this bidder is unique. Each bidder can

check the current status of his own bids at any time and at no cost.

In order to formalize players�payo¤s we let �ti 2 N be the number of bids submitted by

agent i up to period t such that �Ti is the number of bids submitted by i over the course

of the entire auction
�
i.e., the cardinality of the set

�
xti j xti 6= �

	T
t=1

�
. Moreover we use

the notation x̂ti to indicate the bid that wins the auction. Stressing that all the monetary

values
�
Va; V; c and

�
xti
	T
t=1

for all i
�
are expressed in the same unit (say Euro cents),

payo¤s take the following form:

ua =

8<:
P
i2N �

T
i c+ x̂

t
i � Va if a opens the LUBA

0 otherwise

4The rule speci�es that if at time t 2 f1; :::; Tg a unique o¤er does not exist, then the current winner is
the bidder that submitted �rst the lowest bid chosen by the lowest number of agents. We add the further
rule that if two or more agents chose this bid simultaneously then the tie is broken randomly.
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ui =

8<: V � �Ti c� x̂ti if 9x̂ti 2
�
xti
	T
t=1

s.t. �T
�
x̂ti
�
=W

��Ti c otherwise
for i 2 N

Notice that the payo¤s of the bidders comprise their outside option of not participating

to the auction as ui = 0 when �Ti = 0.

We solve the game by backwards induction. Therefore, we �rst analyze the bidding

phase of the game. Then, we study the investment decision of the bidders. Finally, we

examine the decision of the auctioneer if to open or not the LUBA.

2.1 The bidding phase

Let �max 2 N be the maximum number of bids that a rational bidder is willing to submit

in the LUBA. Section 2.2 will provide a rationale for such a formulation, explicitly derive

�max as a function of the parameters of the game and show that �max is symmetric. By

now, we take �max as given with �max � 1. Bidders must then choose when and where to

place their bids. In what follows, we investigate these problems.

We di¤erentiate between two cases: �max = 1 and �max > 1. The second situation is

obviously more complex as bidders must condition their behavior on their former bids and

on the associated signals. Still, the two cases share some common features. First, in both

situations an equilibrium surely exists. In fact, the number of players is �nite and so is their

strategy space once that strictly dominated bids are eliminated, i.e., xti 2 f1; :::; V � cg

rather than xti 2 f1; :::;1g. Indeed, it is easy to notice that equilibria actually abound.

In particular, there exist a large number of asymmetric equilibria in pure strategies.5

However, given the symmetry and the anonymity of the bidders, we restrict our attention

to symmetric equilibria. Symmetric equilibria in pure strategies cannot exist: bidders

want to outguess the rivals such that for any N > 2 a pro�table deviation surely exists

from any symmetric pure strategy pro�le. It follows that a symmetric equilibrium must

necessarily involve mixed strategies.

As for the timing dimension of the game, we assume T >> �max such that agents

have enough periods to use all their available bids if so they wish. This assumption is
5For example, if N = 3 and �max = 1 the pro�les

�
x1i = 1; x

1
j = 1; x

1
k = 2

	
and

�
x1i = 1; x

1
j = 2; x

1
k = 3

	
are Nash equilibria as there are no (strictly) pro�table deviations.
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not particularly restrictive given that in actual LUBAs the bidding period lasts for a few

days while the time needed to submit a bid amounts to a few seconds. Moreover, the tie-

breaking rule (see footnote 4) implies that all those strategies in which bidders delay the

submission of their bids are weakly dominated. By invoking a trembling hand argument

we disregard these strategies and we focus on the equilibria in which bidders place their

bids as soon as possible.

2.1.1 The case with �max = 1

The case with �max = 1 is analogous to a LUBA in which the rules of the auction specify

that each player can submit a single bid. This situation has been carefully investigated by

Houba et al. (2009) and Rapoport et al. (2009). In line with their �ndings, the following

proposition describes some features of the equilibrium distribution.

Proposition 1 In the symmetric equilibrium of the LUBA with �max = 1, each bidder

chooses x1i according to the distribution p such that:

(i) p has support S(p) = f1; :::;Kg with K � V � c.

(ii) p(x) is strictly decreasing in x.

Proof. Assume that there exists an equilibrium in which p(k) = 0 for some k 2 f1; :::;Kg

but p(�) > 0 for � > k. Then pure strategy x1i = � would be strictly dominated by

strategy x1i = k. This implies that � should not be played in the mixed equilibrium, a

negation of the initial assumption. Therefore, the support of the distribution comprises 1

and has no gaps. The fact that K � V � c follows from elimination of strictly dominated

bids. As for the second point, assume that in equilibrium the probability distribution is

non strictly decreasing and there exists at least a � 2 S(p) for which p(�) � p(k) with

k 2 f1; :::; �� 1g. Then E
�
uijx1i = k

�
> E

�
uijx1i = �

�
. In fact, either x1i = k is more

likely to be unique than x1i = � (the case with p(�) > p(k)) or x1i = � and x1i = k are

equally likely to be unique (the case with p(�) = p(k)). But in both cases x1i = k is

more likely to result into the lowest unique bid simply because k < �. Moreover with

x1i = k the price that the bidder must pay if he wins is lower than with x1i = �. But
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E
�
uijx1i = k

�
> E

�
uijx1i = �

�
contradicts the fact that both k and � are in the support

of p(x). For this to be the case E
�
uijx1i = k

�
= E

�
uijx1i = �

�
must hold which requires

p(�) < p(k) in order to balance the advantages of bidding on k. By setting � = k+ 1 and

k 2 f1; :::;K � 1g this result must hold for any pair of consecutive numbers in S(p). It

follows that p(x) is strictly decreasing in x 2 f1; :::;Kg.

In the symmetric equilibrium all the bidders mix according to p. It follows that every

player is equally likely to win. Signals do not matter in this context: each bidder receives

the signal �1(x1i ) 2 fW;M;Lg but, given �max = 1, he does not have any additional bid

to submit. Therefore xti = � for any i and any t 2 f2; :::; Tg and �T (x1i ) = �1(x1i ) for any

i.

2.1.2 The case with �max > 1

If �max > 1, bidders can submit multiple bids. Because of the tie-breaking rule, every

bidder submits his �rst bid at t = 1. And given that bids are costly, agents place their

�rst bid x1i in the optimal way, i.e., by using the probability distribution that characterizes

the equilibrium when �max = 1 (see Proposition 1). We now label this distribution p1

where the superscript indicates that this is the distribution from which agents draw their

�rst bid. Bidders then receive the signal �1(x1i ) 2 fW;M;Lg and can decide if to submit

additional bids. Who will do so? The following two lemmas answer this question.

Lemma 1 For any t � 1, there exist N � 1 bidders for which �t (xri ) 6= W for every

element of the set fxri g
t
r=1.

Proof. The rules of the game ensures that, for any t � 1 and any possible distribution

of bids, there is a unique bidder j who submitted the unique bid x̂rj 2
n
xrj

ot
r=1

for which

�t
�
x̂rj

�
=W . It follows that the remaining N�1 bidders do not hold the current winning

bid, i.e., �t (xri ) 6=W for every element of the set fxri g
t
r=1 and for any i 6= j.

Lemma 2 For any t � 1 and any bidder i, xti 6= � if and only if �t�1i < �max and

�t�1 (xri ) 6=W for every element of the set fxri g
t�1
r=1. Otherwise x

t
i = �.
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Proof. �max is the maximum number of bids that a rational bidder is willing to submit.

It is derived (see section 2.2) as the optimal solution to the investment decision agents

face at t = 0. It follows tautologically that a player who does not hold the current winning

bid keeps on submitting bids until �ti = �
max. On the other hand, a bidder who holds the

bid x̂ri 2 fxri g
t�1
r=1 for which �

t�1 (x̂ri ) = W does not submit additional bids given that,

conditional on �T (x̂ri ) = W , his payo¤ is higher with �Ti = �t�1i < �max. And if the

signal �t�1 (x̂ri ) = W is updated by �t�1+k (x̂ri ) 6= W then the agent still has the option

to submit the remaining �max � �t�1i bids given the assumption T >> �max.

Therefore, every agent that does not hold the current winning o¤er and that did not

reach the upper bound �t�1i = �max keeps submitting additional bids. These subsequent

bids are clearly not independent. In fact, not only a rational agent will not submit the

same bid more than once but he will also condition his bidding strategy on the signals he

receives from the auctioneer. Proposition 2 describes how a rational player updates the

probability distribution pti from which he draws xti. Notice the subscript i attached to this

distribution. This indicates that, while p1i = p1 for any i, subsequent distributions may

di¤er across bidders. In equilibrium, bidders with an identical history of bids and signals

use identical distributions while bidders who submitted di¤erent bids and/or received

di¤erent signals randomize according to di¤erent distributions.

Proposition 2 For any t > 1, a bidder i for which xti 6= � chooses xti according to p
t
i

where pti is such that:

(i) S(pti) =
nn
1; :::;min

n�
xri � 1j�t�1 (xri ) =M

	t�1
r=1

[ fKg
oo

n
�
xri j�t�1 (xri ) = L

	t�1
r=1

o
(ii) pti(x) is strictly decreasing in x for x 2 S(pti)

(iii) pti is derived from pt�1i according to Bayes�s rule.

Proof. The fact that a player must exclude from the support the bids that he already

submitted and whose associated signal is �t�1 (xri ) = L is obvious. Similarly, the upper

bound of the support must be updated with the predecessor of the smallest bid whose

associated signal is �t�1 (xri ) =M . In fact such a signal implies that the current winning
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bid lies somewhere between 1 and xri � 1. The bidder must bid in this interval in order to

either match the current winning bid (hoping to get �t (xri ) =W ) or to �nd a new lowest

unique bid. The proof that pti(x) is strictly decreasing over S(p
t
i) is analogous to the proof

of Proposition 2. The fact that players update the probability distribution according to

Bayes�s rule directly derives from the assumption of rational behavior.

2.2 The investment decision

Bidders accumulate sunk costs at rate c > 0 for every bid they submit. Before the

beginning of the bidding phase (i.e., at t = 0), a rational bidder must then set an upper

bound on the amount of money he is willing to invest in the game.6 This immediately

determines the maximum number of bids the agent can submit. We indicate this number

with �maxi 2 N. The return on the investment �maxi c is uncertain given that, as we saw, the

outcome of a LUBA is non deterministic. The bidder must then trade-o¤ the probability of

winning the LUBA with the losses he su¤ers in case he does not win. The agent optimally

solves this trade-o¤ by maximizing his expected utility E0(ui). By rearranging the payo¤s

introduced in section 2, the agent�s problem can be expressed as:

max
�maxi

E0(ui) =
�
V � x̂ti

�
Pi � �maxi c (1)

where Pi is the probability that at period t = T bidder i holds the bid x̂ti 2
�
xti
	T
t=1

such

that �T
�
x̂ti
�
=W . Given that in the symmetric equilibrium (see section 2.1), each bidder

i chooses where to place his bids xti 6= � according to a symmetric mixed strategy, it follows

that all the players are ex-ante equally likely to win if they all submit the same number

of bids. But it is also true that a bidder who submits more bids than his opponents has

better chances to win the LUBA. In other words, Pi depends on the relative levels of

investment of the players i. More formally, Pi = Pi(!1; :::!N ) where !i = �maxi c is the

investment (or �e¤ort�) chosen by agent i.

Now let !i 2 R+ and x̂ti ! 0. The �rst assumption transforms the problem from a

6 In particular, the agent must perform some sort of worst-case scenario analysis and ask himself: �In
case I receive the signal �t (xri ) 6=W for every bid xri that I submit, when shall I stop?�
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discrete one to a continuous one such that calculus techniques can be applied. The second

assumption implies that at t = 0 agents do not consider that they will also have to pay x̂ti

in case they win. We already mentioned that x̂ti is negligible with respect to V (around

0:1�0:3%) and thus unlikely to really a¤ect the investment decision at t = 0.7 With these

two assumptions, (1) is strategically equivalent to:

max
!i
E0(ui) = V Pi(!1; :::!N )� !i (2)

This last formulation expresses the investment decision of a LUBA as a symmetric

rent-seeking game, i.e., a probabilistic contest in which players compete for a prize by

expending costly resources.8 To �nd the optimal solution to the agent�s problem we still

need to specify a functional form for the success function Pi(!1; :::!N ). Given all the

possible histories of bids and signals that agents can get, a precise characterization of such

a function appears to be a daunting task. We thus look for a tractable approximation that

may satisfy 5 fundamental properties.

P1) Pi = 0 if !i = 0

P2) Pi = 1 if
P
j 6=i !j = 0 and !i > 0

P3) Pi = 1
N if !i = !j for all j

P4) @Pi@!i
> 0, @Pi@!j

< 0

P5) @
2Pi
@!2i

> 0, @
2Pi
@!2j

< 0

The �rst three properties de�ne the limits of Pi and impose symmetry. P4 captures

the fact that in a LUBA an agent who invests more (i.e., submit more bids) has a higher

probability of winning. P5 requires increasing returns to scale for the marginal bid. In

equilibrium in fact (see Proposition 2), the support of the distribution from which a bidder

draws the bid xti shrinks as a result of the signals
�
�t�1(xri )

	t�1
r=1

2 fM;Lg associated with

the agent�s previous bids. In particular, while the signal L eliminates from the support a
7A similar approach has been used by Raviv and Virag (2009) for what concerns HUBAs.
8Rent-seeking games are used to model a wide spectrum of phenomena that involve political lobbying,

investment in R&D activities, lotteries. See Tullock (1980), Baye et al. (1994), Kooreman and Schoonbeek
(1997) and Baye and Hoppe (2003).
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unique value, the signal M eliminates an entire string of values. Therefore, the signal M

increases more than proportionally the probability of �nding the lowest unique bid. And

given that the probability of submitting a bid that receives the signal M increases with

the number of bids, it follows that the probability of winning a LUBA increases more than

proportionally with the �e¤ort�the agent exerts.

A success function that satis�es all the 5 properties is the famous Tullock function

(Tullock, 1980): Pi =
!Ri

!Ri +
P
j 6=i !

R
j
. The parameter R captures the returns to scale that

the investment !i has on the probability of winning. In order to capture the increasing

returns to scale postulated by P5 we set R > 1.9 With this speci�cation, (2) becomes:

max
!i
E0(ui) =

!Ri
!Ri +

P
j 6=i !

R
j

V � !i (3)

The following proposition solves (3) by trivially generalizing the analysis of Baye et al.

(1994) from the 2 players case to the N players case.

Proposition 3 Let ! 2 R+ and x̂ti ! 0, then the investment decision of a lowest unique

bid auction with N bidders has solution ! = N�1
N2 V R with R 2

�
1; N
N�1

�
.

Proof. In the appendix.

In line with what intuition suggests, ! is increasing in V and R and decreasing in

N . The optimal ! uniquely determines the maximum number of bids that an agent is

willing to submit. In fact, introducing the ��oor�operator b�c such that bzc maps the real

number z into the integer n with n � z < n+ 1, we can state the following lemma.

Lemma 3 In the symmetric LUBA, each bidder submits up to �max bids with �max =�
!
c

�
=
�
N�1
N2c

V R
�
.

9 If R = 1 the problem becomes a standard (Tullock) lottery in which the probability of winning linearly
increases with the investment. On the other hand, as R ! 1 the game approaches an all-pay auction in
which the agent that invests more wins for sure. Both speci�cations are clearly unsuitable to model the
success function of a LUBA.
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Proof. Each bid costs c. It follows that !c is the number of bids an agent would submit

if these were perfectly divisible. But the number of bids must be an integer such that

�max =
�
!
c

�
. This is the maximum number of bids an agent is willing to submit: bidders�

payo¤ is decreasing in �Ti such that, for any given outcome of the game, an agent is strictly

better o¤ with �Ti < �
max.

The integer �max is a weakly increasing function of ! such that the maximum number

of bids that an agent is willing to submit in a LUBA weakly increases with the agent�s

valuation V and the returns to scale R and weakly decreases with the number of partici-

pants N and the bidding fee c. Lemma 3 implies that �max � 1, such that all the bidders

enter for sure, whenever V � N2c
(N�1)R . In other words, the value of the auctioned good

must be high enough to compensate for the number of participants and the cost of the

bidding fee.10 If �max = 1 the analysis of section 2.1.1 applies. If �max > 1, section 2.1.2

is the relevant one.

2.3 The auctioneer�s decision

From the point of view of the auctioneer, the decision of opening the LUBA depends on

the expected pro�ts that the mechanism can raise. We show these expected pro�ts to

be bounded below. Therefore, the auctioneer certainly opens the auction whenever this

bound is positive. Proposition 4 formalizes this result while Example 1 explicitly solves

an hypothetical LUBA.

Proposition 4 The auctioneer surely opens the LUBA if Va < ((N � 1)�max + 1) c+ 1.

Proof. The auctioneer�s outside option is 0. In case he opens the LUBA his pro�ts are

given by ua =
P
i2N �

T
i c+ x̂

t
i � Va. Because of Lemma 2, in equilibrium the N � 1 losing

bidders submit �max bids while the winning bidder submits at least one bid. Moreover

the lowest possible winning bid is 1 cent. It follows that ua is bounded below by umina =

10Despite a totally di¤erent modelling strategy this result is in line with Houba et al. (2009) and
Rapoport et al. (2009) that also show that full entry does not occur if N or c are too high or V is too low.
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((N � 1)�max + 1) c+1�Va which is strictly positive for any Va < ((N � 1)�max + 1) c+1.

Example 1 Consider a LUBA for an item for which V = 10; 000 (i.e., 100 e), c = 200

and N = 10 such that R 2
�
1; 109

�
. These parameters imply �max =

�
N�1
N2c

V R
�
= 4 for any

R. Auctioneer�s pro�ts are bounded below by umina = ((36 + 1) � 200) + 1 � Va such that

umina > 0 for any Va < 7; 401. It follows that the auctioneer certainly opens the LUBA if

he pays the good no more than 74% of its retail price.

It is interesting to compare auctioneer�s pro�ts with the pro�ts that the mecha-

nism would raise if signals were not available. Pro�ts with signals are given by ua 2��
(N � 1)�max + �Ti

�
c+ x̂ti � Va

	�max
�Ti =1

where �Ti indicates the number of bids submit-

ted by the winning bidder. Pro�ts without signals would amount to ua(nosignals) =

N�maxc+ x̂ti�Va because, with no feedbacks and in line with Lemma 3, all the N bidders

would submit their �max available bids. Therefore, for any given x̂ti, pro�ts with signals

are (weakly) dominated by pro�ts without signals. This consideration leads to question

why websites that organize LUBAs implement the mechanism with signals. Two are the

possible answers: either the auctioneer adopts a sub-optimal behavior or the bidders do

not play the game as equilibrium analysis indicates. Given that the �rst option seems

unlikely, we now turn to analyze the second possibility.

3 The game with (some) boundedly rational bidders

The previous section showed that a lowest unique bid auction can be pro�table for the

seller even when all the bidders are rational and play the equilibrium strategies. Still,

a necessary condition for ensuring positive pro�ts is the existence of a (possibly large)

mismatch between the retail price of the good (V ) and the auctioneer�s valuation (Va).

This �nding, while interesting, hardly rationalizes what we observe in reality, namely the

continuous opening of websites that organize LUBAs. On the contrary, this trend suggests

that the business is much more pro�table than what equilibrium analysis indicates. In this
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section we relax the assumption of full rationality and we show how LUBAs can become

highly pro�table when some bidders lack the necessary commitment to stick to equilibrium

strategies.11 We show how these agents can get stuck into a costly war of attrition and

how this mechanism is triggered and ampli�ed by the existence of the signals.

Given any �max � 1, let the LUBA proceed according to equilibrium analysis. Lemmas

1 and 2 imply that the auction reaches a certain period t� in which N�1 bidders have used

all their available bids (�t
�
i = �max) and none of them holds the winning bid. Therefore

ut
�
i = ��maxc. A rational bidder who committed to �Ti � �max (see Lemma 3) accepts this

loss. In other words, he plays xti = � for any t 2 ft� + 1; :::; Tg such that uTi = ��maxc.

However, a boundedly rational bidder may be tempted to submit additional bids hoping

to eventually win the auction and turn the sunk costs into a positive payo¤. We start by

better de�ning what we mean by boundedly rational behavior in the context of a LUBA.

De�nition 1 Bidder i is boundedly rational if:

(i) whenever �t (xri ) 6= W for every element of the set fxri g
t
r=1, he holds the probability

weighting function wti
�
qti
�
> qti � 0 where qti = qti

�
xt+1i

�
is the probability that an addi-

tional bid xt+1i 6= � placed according to Proposition 2 will lead to the signal �t+1 (x̂ri ) =W

for some x̂ri 2 fxri g
t+1
r=1;

(ii) he is myopic and believes that ut+1i = uTi ;

(iii) he lacks the commitment to stop at �Ti = �
max.

At any time t, and out of the many possible distributions of actual bids, there are

certainly cases in which bidder i can conquer the winning bid by submitting an additional

o¤er. For example, if all the bidders bid 1 at t = 1 then x2i = 2 will receive the signal

�2
�
x2i
�
= W . Therefore, the event of winning the auction with an extra bid has an

objective probability qti � 0. However, for realistic values of N and �max, this probability,

when positive, is certainly small. In line with prospect theory (Kanheman and Tversky,

1979) and the empirical evidence about probability weighting functions (see Prelec, 1998,

11A similar approach is adopted by Malmendier and Szeidl (2008) that show how the presence of a
minority of overbidding behavioral agents disproportionally in�ates pro�ts in the case of standard auctions.
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and references within), a boundedly rational bidder overestimates this probability, i.e.,

wti
�
qti
�
> qti . Many are the well-known behavioral biases that can shape such a subjective

probability assessment: loss-aversion, over-optimism, wishful thinking, bidding fever. The

fact that wti
�
qti
�
> qti when q

t
i is small generates a classical pattern of risk attitudes,

namely risk-seeking for small probability gains and large probability losses. This in turn

rationalizes widespread phenomena like the purchase of lottery tickets or disproportionate

betting on longshots. In the context of a LUBA this same pattern can lead to excessive

bidding as the following proposition shows.

Proposition 5 A boundedly rational bidder i for which �t (xri ) 6=W for every element of

the set fxri g
t
r=1 and �

t
i � �max plays xt+1i 6= � if wti

�
qti
�
> c

V�x̂ri
' c

V . Moreover if this

condition holds at time t then it also holds at time t + k such that xt+k+1i 6= � for any

k 2 f1; :::; T � t� 1g whenever �t+k (xri ) 6=W for every element of the set fxri g
t+k
r=1.

Proof. A boundedly rational bidder who does not hold the winning bid and is not commit-

ted to �ti � �max, submits an additional bid if E(ut+1i ) > uti, i.e., w
t
i

�
qti
� �
V �

�
�ti + 1

�
c� x̂ri

�
+�

1� wti
�
qti
�� �

�
�
�ti + 1

�
c
�
> ��tic where x̂ri 2 fxri g

t+1
r=1 is i�s eventual winning bid. Solv-

ing for wti
�
qti
�
, the last condition is veri�ed for any wti

�
qti
�
> c

V�x̂ri
' c

V given that in

practice x̂ri is negligible. With this approximation the lower bound for the probability

weighting function does not depend on �ti and remains constant over time. This means

that if the constraint is satis�ed at period t, it is also satis�ed at any period t + k with

k 2 f1; :::; T � t� 1g such that agent i keeps on submitting additional bids until he gets

the signal �t+k (x̂ri ) =W for some x̂ri 2 fxri g
t+k
r=1.

Example 2 Consider the situation described in Example 1 with V = 10; 000, c = 200,

N = 10 and �max = 4. Assume that there are at least 2 � I � 10 boundedly rational bidders

(De�nition 1). At least I � 1 of them reach at t� the situation �t
�
i = 4 and �

t� (xri ) 6= W

for any xri 2
�
x1i ; :::; x

t�
i

	
. Proposition 5 states that each one of these bidders submits an

additional bid at every t 2 ft� + 1; :::; Tg whenever they do not hold the winning bid and
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their probability weighting function is such that wt
�
i

�
qt
�
i

�
> 200

10;000�x̂ri
' 0:02. Notice that

the constraint on wt
�
i

�
qt
�
i

�
is very low.

Example 2 implies that the presence of at least two boundedly rational bidders can

easily trigger a costly vicious circle in which these players accumulate sunk costs. An

upper bound to this process is given either by T (the closing of the auction) or by bidders�

budget constraint. Whenever these limits are not binding, this sort of war of attrition can

continue even when the costs associated with the number of bids exceed the value of the

good on sale.

To see this, let A and B be two boundedly rational players with wti
�
qti
�
> c

V for

i 2 fA;Bg. In line with Proposition 5, the auction will reach period ~t in which a bidder,

say A, is the current winner such that u~tA = V � �~tAc � x̂rA > 0 with x̂rA 2 fxrAg
~t
1 and

u~tB = ��
~t
Bc. Still, one more bid of B can potentially lead to u~t+1B = V � (�~tB + 1)c � x̂rB

with x̂rB 2 fxrBg
~t+1
1 but u~t+1B < 0. Agent B compares u~tB and u~t+1B . Both values are

negative. Nevertheless u~t+1B > u~tB such that, given the probability weighting function

wtB
�
qtB
�
> c

V , agent B still prefers to play x~t+1B 6= � hoping to diminish his own losses.

The same argument holds for periods ~t + 1, ~t + 2, :::, T � 1. Now assume that before

t = T � 1, agent B conquers the winning bid. Bidder A would then sooner or later �nd

himself in the situation in which B was at period ~t. Therefore, the same logic applies and

the mechanism perpetuates itself.

This feature of lowest unique bid auctions is reminiscent of the Dollar Auction Game

(Shubik, 1971). The Dollar Auction Game is a public ascending auction where N bidders

compete for a dollar. The auction is won by the agent who submits the highest bid but

both him and the second highest bidder must pay their bids. Also in this case, the auction

is unpro�table for the seller if agents are rational. But if multiple entry occurs, this starts

o¤ a bidding war between the two leading bidders such that the winner may end up paying

the dollar more than what it is worth. Both in the Dollar Auction Game and in a LUBA,

the bidding escalation is detrimental for the bidders but bene�cial for the auctioneer. In

fact, as Morgan and Krishna (1997) show, war of attritions yield revenues that are superior

to standard auction mechanisms.
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Going back to the analysis of LUBAs, notice that the assumption of at least two

boundedly rational bidders is not su¢ cient to trigger the bidding escalation. It is in fact

the combination of boundedly rational behavior and of the existence of the signals that

accomplishes this task. To appreciate the fundamental role that signals play, consider how

di¤erent the situation would be if agents were not receiving any kind of feedback about the

status of their bids. In such a case, each player would hold the legitimate hope to win the

auction with one of his �max bids such that the incentives to submit extra bids are much

weaker. And when at the closure of the auction the winner is declared, it would be too late

for the losers to submit additional o¤ers. In other words, in terms of ambiguity, a LUBA

without signals would resemble a traditional lottery. On the other hand, signals make the

game more similar to a �scratch and win� lottery. In fact, signals (and in particular the

signal L) immediately inform the bidder that some or all of his o¤ers have no chances to

win. This clearly encourages overbidding given that an agent that faces potential losses is

tempted to submit additional bids in order to catch up.

Quoting what Malmendier and Szeidl (2008) write with regards to standard auction

mechanisms �if agents are subject to bidding fever, sellers may instigate this bias using

salient messages informing the buyer that he has been outbid�. Indeed, the entire signal-

ing mechanism that characterizes LUBAs seems to have been designed with the goal of

stimulating emotional responses that may lead to an irrational escalation of commitment.

Given that the auctioneer aims to maximize the number of received bids, this obviously

comes as no surprise.

4 Empirical analysis

In this section we analyze a dataset that collects information about 100 lowest unique

bid auctions that took place in the period February 6th, 2008 - April 6th, 2008. These

auctions have been organized by the website bidplaza.it, the leader of the Italian market

with more than 1; 000; 000 contacts per month.12 The rules implemented by this auctioneer

12At the time the data were collected, bidplaza.it was operating as the italian subsidiary of bidster.com,
the world leader in the sector. In November 2008 this partnership broke down and since then both websites
independently o¤er LUBAs in Italy.
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are exactly the ones explained in the introduction. In particular the cost associated with

each bid was set at 2 Euros in every LUBA. For each auction we know the market value

of the item on sale, the winning bid and, most importantly, the complete list of submitted

bids. Overall, our dataset collects 100; 940 bids.13 Unluckily, we do not have information

about the number of bidders, how many and which bids each bidder submitted and the

signals they received. Nevertheless, the data allow to clearly distinguish some interesting

patterns as well as to discriminate between rational versus irrational bidding behavior.

Table 1 reports some summary statistics.

Variables average min max st. dev. sum

Retail price V (e) 274:90 80 450 96:1 27; 490

Winning bid (e) 0:89 0:01 3:37 0:66 88:66

Number of received bids 1; 009 119 2; 917 635 100; 940

Lower bound on number of bidders (N) 15:3 5 38 6:45

Max # of bids under rationality (#k (N
�
k )) 137:4 40 225 48:04 13; 740

Estimated pro�ts (e) 1; 239:2 49 3; 975 893:1 123; 920

Estimated pro�ts (% wrt retail price) 441% 19% 1; 082% 237%

Table 1. Some summary statistics of the data.

The �rst three rows of Table 1 report some statistics about the retail price of the

auctioned items, the winning bids and the number of received bids. Not surprisingly,

there is a positive relationship between the retail price and the number of received bids

(Pearson�s r = 0:645), as well as between the number of received bids and the winning bid

(r = 0:616).

13The dataset, which we manually assembled by retrieving the data from the website bidplaza.it (section
�aste chiuse�, i.e., expired auctions), is available upon request. This is the list of goods to which the data
refer (the notation y (V; k) indicates that good y whose retail price is V has been o¤ered in k di¤erent
auctions such that

P
y k = 100): Sony Playstation 3 (400; 10), Sony Playstation Portable Slim & Lite

(190; 10), Digital Camera IXUS 860IS (350; 9), iPod Shu­ e 1 GB (80; 7), iPod Nano 8 GB (200; 9), iPod
Touch 16 GB (400; 8), Bose Companion 3 multimedia speaker system (295; 10), Samsung CE 1070TS
microwawe oven (240; 9), Nintendo Wii (250; 10), Philips Digital PhotoFrame Wood 10FF2CWO (250; 4),
TomTom One V3 Portable GPS Navigation System (200; 9), XBOX 360 Elite (450; 5).
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The actual distribution of bids can be used to establish a lower bound for the number

of bidders. In fact, by assuming that no agent submitted more than once the same bid

in the same auction, the lower bound N can be inferred from the frequency of the most

frequent bid. This bound (N = 15:3) is extremely conservative and the actual number

of bidders is likely to be much higher than that. Nevertheless we can exclude a rational

bidding behavior no matter the real N . Equilibrium analysis (see Lemma 3) indicates in

fact that every LUBA k 2 f1; :::; 100g can raise at most #k bids with #k = Nk�
max
k =

Nk

j
Nk�1
(Nk)

2c
VkR

k
with R 2

�
1; Nk
Nk�1

�
. By letting R = Nk

Nk�1 and substituting the speci�c

values of Vk and c we can thus solve #k as a function of Nk for Nk 2 fNk; :::;1g and

retrieve max#k = #k (N�
k ) (�fth row of Table 1). This is the maximum number of bids

auction k could have raised even assuming the most rewarding returns of scale R and

the most favorable number of bidders N�
k .
14 The estimate of max#k falls short of the

actual number of received bids by a factor of more than 7 (on average 137:4 vs. 1; 009).

Moreover, the fact that max#k is much smaller than the actual number of received bids

holds for any single auction k.

As a consequence of the high number of bids, the auctioneer made positive pro�ts in

every LUBA. A cautious estimate shows that pro�ts per auction amount on average to the

441% of the retail price.15 The hypothesis of rational behavior is refuted by these �ndings.

In fact, if bidders were rational and Va = V , auctioneer�s pro�ts could be positive only if

the winning bid is very large.16 This is not what we observe in the data where winning

bids amount on average to just 0:33% of V .

Some other features of the data also noticeably stand out. First, and once more

14More precisely, with R = Nk
Nk�1

the function simpli�es to #k(Nk) = Nk

j
Vk
Nkc

k
. This function is

maximized by the (possibly multiple) N�
k 2

n
Nk; :::;

j
Vk
c

ko
that minimizes

�
Vk
N�
k
c
�
j
Vk
N�
k
c

k�
. At these

maxima max#k = #k (N
�
k ) =

j
Vk
c

k
.

15Despite knowing the market value of the goods, the number of bids received and the unitary cost of 2
Euros per bid, pro�ts cannot be computed with certainty. In fact, the auctioneer o¤ers a welcome bonus
such that a user�s �rst deposit of money is doubled. Therefore, some of the bids are virtually for free.
We adopt a conservative approach and we assume that a) only 75% of the bids generated actual revenues
and b) Va = V even though the alternative assumption Va < V is more likely to hold because of quantity
discounts and/or marketing reasons.
16Pro�ts are bounded above by umaxa = N�maxc + x̂ti � Va with x̂ti 2 f1; :::; V � �maxg. Given that

�max � N�1
N2c

V R we have that umaxa � N�1
N
V R + x̂ti � Va. If Va = V , umaxa is certainly negative for any

x̂ti <
1
N
V R.
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contrary to what equilibrium analysis indicates (see propositions 1 and 2), the aggregate

frequencies of the bids are not monotonically decreasing. Figure 1 shows the distribution

of the 97; 225 bids that picked numbers belonging to the set f1; :::; 500g. Although a

decreasing trend is clearly recognizable, this is not monotonic. A closer look at the data

reveals the nature of the spikes that appear in Figure 1: bidders tend to overbid on odd

numbers. More precisely, 54; 230 bids (55:8%) are odd while only 42; 995 (44:2%) are even.

A normally approximated binomial test shows that this di¤erence is signi�cant at the 1%

level. In line with this tendency, 9 out of the 10 most frequent bids are odd.17

Figure 1: The aggregate pattern of bids.

The preference for odd numbers has an intuitive explanation. In a LUBA, players

want to submit bids that no one else chooses. Therefore, agents tend to submit bids that

they perceive to be original: odd numbers (excluding those whose trailing digit is 5) and,

even better, prime numbers. A similar behavior emerges also in the LUBAs studied by

Östling et al. (2009) and is analogous to the one �rst described in Crawford and Iriberri

(2007) for what concerns Hide and Seek games. Notice that the aggregate result of such

a bidding strategy is quite paradoxical as agents end up converging on these peculiar

17The complete top ten list, with aggregate frequency in brackets, is the following: 1 (1,287), 11 (936),
17 (936), 3 (841), 13 (822), 111 (813), 23 (798), 7 (777), 2 (766), 27 (741). As a matter of comparison,
round numbers like 10, 20 and 100 attracted respectively 506, 498 and 471 bids.
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numbers. Indeed, the data show that submitting an odd bid is suboptimal as the large

majority of winning bids are even numbers (68 vs. 32, with the di¤erence being signi�cant

at 1% level).

Although our model of boundedly rational bidders (Section 3) is silent about this

tendency, the bias towards submitting odd bids is another piece of evidence that goes

against the hypothesis of perfect rationality. In particular such a bidding behavior seems

to be consistent with Level-k analysis (see Stahl and Wilson, 1995, and Costa-Gomes et

al., 2001): agents erroneously think to be smarter than the opponents and only perform a

limited number of steps of reasoning.18 Subject to the availability of individual data, we

let for future research a more careful formalization and empirical investigation of agents�

bidding strategies.

5 Conclusions

The paper introduced and analyzed a peculiar selling mechanism that is becoming in-

creasingly popular over the Internet: lowest unique bid auctions (LUBAs) that allocate

valuable goods to the agent who submits the lowest bid that is not matched by any other

bid. We showed that if bidders are rational, a LUBA can be pro�table for the seller only

if his valuation of the good is much lower than the valuation of the potential buyers. But

we also showed why in reality this auction format is so successful: boundedly rational

bidders may lack the necessary commitment to stick to equilibrium strategies, and thus,

they may become locked in a costly war of attrition that highly rewards the auctioneer. In

particular, we highlighted how such a mechanism is driven by the existence of the signals

the auctioneer sends about the current status of players�bids. It is, therefore, ironic to

notice how websites that organize LUBAs overstress, surely a bit in bad faith, the alleged

positive role of these signals.19 While it is clear why they do so (they have to justify the

18Notice moreover that the data do not allow to control for the level of experience of the players. The
bias in submitting odd bids would probably be even more pronounced if only agents that play the game
for the �rst few times were considered.
19For instance, one of these websites claims that �Relying on these signals, using di¤erent strategies and

di¤erent levels of investment, to win the auction becomes a matter of a complex use of various abilities�.
Another website declares: �The investment, the signals and the bidding strategies make the auction void
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�xed cost associated with each bid, and they want to distinguish themselves with respect

to pure lotteries and gambling), the paper showed that signals are at best a double-edged

weapon.

Lowest unique bid auctions also su¤er from other potential problems that should sug-

gest prudence. For instance, they share the technological hitches that characterize on

line auctions: problems of connectivity, delays or congestion, possibly due to last minute

bidding or �sniping� (see, for instance, Roth and Ockenfels, 2002 for the case of eBay

and Amazon auctions). Collusive behaviors are also an important issue. While collusion

among bidders seems unlikely due to the secrecy of agents�identities and to problems of

coordination, collusion between the auctioneer and a single bidder looks much more easily

implementable. Bids are private information, but the auctioneer gets to know them in

real time. As such, nothing prevents him from indicating to a third party where to place

a winning bid seconds before the auction closes. Obviously, this would turn the auction

into a scam. We do not think that LUBAs are scams; the mechanism is too pro�table

to risk ruining it with such a trick. And indeed, to speak the truth, these websites put

quite some e¤ort in trying to build and maintain a reputation for being a trustable and

transparent outlet.

To sum up, lowest unique bid auctions are a very smart selling mechanism. On one

hand, by giving the possibility to win goods of considerable value for very little money,

they share the appeal of lotteries. On the other hand, they give bidders the illusion

of being in control of what they do, and they convey the idea that winning is just a

matter of being smarter than the others. The combination of these two factors makes the

business successful and, in turn, explains the continuous entry in the industry. Entry will

surely stimulate competition and lead to better conditions for the players: lower bidding

fees, higher welcome bonuses, and lower number of opponents. Nevertheless, the basic

mechanism underlying the auction format will remain the same such that the analysis of

this paper continues to be valid. We conclude by stressing once more the similarities that

lowest unique bid auctions have with other well-known games like the War of Attrition and

of any element of luck and based exclusively on the bidder�s ability�.
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the Dollar Auction Game. It is obviously not a coincidence that these games are used as

archetypes for describing situations where irrational behavior leads to an ine¢ cient waste

of resources.

6 Appendix

Proof of Proposition 3

Each agent i solves max
!i
E (ui) =

�
!Ri

!Ri +
P
j 6=i !

R
j

�
V � !i. This leads to the following

necessary and su¢ cient conditions:

@E (ui)

@!i
=

0B@ R!R�1i

P
j 6=i !

R
j�

!Ri +
P
j 6=i !

R
j

�2
1CAV � 1 = 0

@2E (ui)

@!2i
=

0B@ R!R�2i

P
j 6=i !

R
j�

!Ri +
P
j 6=i !

R
j

�3
24(R� 1)

0@!Ri +X
j 6=i

!Rj

1A� 2R!Ri
35
1CAV < 0

Imposing symmetry (!i = !j = !), these become

@E (ui)

@!i
(!i = !j) =

 
(N � 1)R!R�1!R

(N!R)2

!
V � 1 = 0

@2E (ui)

@!2i
(!i = !j) =

 
R!2R�2 (N � 1)

(N!R)3
�
(R� 1)

�
N!R

�
� 2R!R

�!
V < 0

The FOC yields the solution

! =
N � 1
N2

V R

for which the SOC holds locally for R < N
N�2 . By substituting the optimal ! within

the expected utility, we get that

E0(ui) =
1

N
V � N � 1

N2
V R
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which is positive, such that bidders enter the game, for R < N
N�1 .

20 This upper bound

is more restrictive that the constraint identi�ed by the SOC. Therefore, by combining the

requirement of increasing returns to scale with this upper bound, we get R 2
�
1; N
N�1

�
.
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