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Abstract

The choice of admissible trading strategies in mathematical modelling of financial markets
is a delicate issue, going back to Harrison and Kreps [HK79]. In the context of optimal portfo-
lio selection with expected utility preferences this question has been the focus of considerable
attention over the last twenty years.

We propose a novel notion of admissibility that has many pleasant features – admissibility
is characterized purely under the objective measure P ; each admissible strategy can be approx-
imated by simple strategies using finite number of trading dates; the wealth of any admissible
strategy is a supermartingale under all pricing measures; local boundedness of the price process
is not required; neither strict monotonicity, strict concavity nor differentiability of the utility
function are necessary; the definition encompasses both the classical mean-variance preferences
and the monotone expected utility.

For utility functions finite on R, our class represents a minimal set containing simple strate-
gies which also contains the optimizer, under conditions that are milder than the celebrated
reasonable asymptotic elasticity condition on the utility function.
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1 Introduction

A central concept of financial theory is the notion of a self-financing investment strategy H, whose
discounted wealth is expressed mathematically by the stochastic integral

x+H · St := x+
∫

(0,t]
HsdSs,

where S is a semimartingale process on a stochastic basis (Ω, (Ft)0≤t≤T , P ), representing discounted
prices of d traded assets, and x is the initial wealth.

Stochastic integration theory formulates minimal requirements for the integral above to exist,
see Protter [Pr05]. The class of predictable processes H for which the integral exists is denoted by
L(S;P ) or simply L(S). However, the whole of L(S) is not appropriate for financial applications.
Specifically, Harrison and Kreps [HK79] noted that when all processes in L(S) are allowed as trading
strategies, arbitrage opportunities arise even in the standard Black-Scholes model. This is not a
problem of the model S – the reason is that the theory of stochastic integration operates with a
set of integrands far too rich for such applications. The solution proposed by the subsequent no-
arbitrage literature, see [Sch94, DS98], is to restrict attention to a subset Hb ⊆ L(S) of strategies
whose wealth is bounded uniformly from below by a constant.

Now consider a concave non decreasing utility function U and an agent who wishes to maximize
the expected utility of her terminal wealth, E[U(x+H · ST )]. In this context, A ⊆ L(S) will be a
good set of trading strategies if the utility maximization over H ∈ A is well posed and if A contains
the optimizer,

U(+∞) > sup
H∈A

E[U(x+H · ST )] = max
H∈A

E[U(x+H · ST )].

Historically, the search for a good definition of admissibility has proved to be a difficult task and
it has evolved in two streams. For utility functions finite on a half-line, for example a logarithmic
utility, there is a natural definition: admissible strategies are again those in Hb, see [KS99, CSW01,
KS03]. Remarkably, this theoretical framework is valid for any arbitrage-free S.

For utility functions finite on the whole R, the situation is more complicated. The definition
of admissibility via Hb works only to a certain extent. Here S has to be locally bounded (or
σ-bounded) to ensure that Hb is sufficiently rich for a duality framework to work, cf. [Sch01].
Moreover, the class Hb will typically fail to contain the optimizer – this happens, for example, in
the classical Black-Scholes model under exponential utility.

A possible choice in this situation is to consider all strategies whose wealth is a martingale under
all suitably defined pricing measures (see Section 3.1). This approach works well for exponential
utility, cf. [DGRSSS02, KSt02]. The seminal work of Schachermayer [Sch03] shows that, for general
utilities, the martingale class is too narrow to catch the optimizer. The optimal strategy only exists
among strategies whose wealth is a supermartingale under all pricing measures. For this reason,
the supermartingale class is now considered the best notion of admissibility.

It is evident from our discussion that admissibility is currently defined in a primal way for utility
functions finite on R+ but for utilities finite on R the definition is dual, via pricing measures. A
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connection between the two approaches is foreshadowed in Schachermayer [Sch01] who defines a
set of admissible terminal wealths as those positions whose utility can be approximated in L1(P )
by strategies with wealth bounded from below. Under suitable technical assumptions, the optimal
wealth exists and there is a trading strategy in the supermartingale class which leads to the optimal
wealth, cf. also Owen [O02] and Bouchard et al. [BTZ04].

All of the papers dealing with utility finite on R above use locally bounded price processes.
Biagini and Frittelli [BF05] employ a wider class of well-behaved price processes compatible with
the utility U . In [BF07] they show that for this class of price processes there is always an optimizer
in Schachermayer’s set of supermartingale strategies. In a subsequent paper [BF08], they propose
a unified treatment for utility functions finite on a half-line as well as those finite on the whole R,
for an even wider class of semimartingales S. As we show in Section 3.1 their hypotheses on S

amount to our Assumption 3.1. In contrast to the present paper, [BF08] use admissible strategies
HW whose wealth is controlled from below by (a multiple of) an exogenously given, fixed random
variable W > 0. When W is constant, one recovers the usual set Hb of strategies with wealth
bounded uniformly from below. Here, too, the optimal strategy may fail to be in HW , there is no
approximation result for the optimizer, and when S is not particularly well behaved the optimizer
may in principle depend on the choice of the loss control W .

The philosophy of the present paper is to make the definition of admissibility general enough
to provide a “unified treatment” of utility functions in the spirit of [BF08], while keeping the
definition as natural and intuitive as possible by not resorting to duality. We use a bottom-up
approach whereby we first define a class of well-behaved simple trading strategies H which can
be interpreted as buy-and-hold strategies over finitely many dates (see Definition 3.2 for details).
In the locally bounded case H corresponds to buy-and-hold strategies whose wealth is uniformly
bounded in absolute value. We then define admissible strategies H as suitable limits of strategies
in H.

Definition 1.1. H ∈ L(S) is an admissible integrand if U(H · ST ) ∈ L1(P ) and if there exists an
approximating sequence (Hn)n in H such that:

i) Hn · St → H · St in probability for all t ∈ [0, T ];

ii) U(Hn · ST )→ U(H · ST ) in L1(P ).

The set of all admissible integrands is denoted by H.

The two requirements above are natural assumptions if considered separately. Item i) is in
the spirit of the construction of the stochastic integral itself, while item ii) ensures that utility of
an admissible strategy can be approximated by the utility from simple strategies. Definition 1.1
combines these two desirable approximation features together.

The key point is that we do not ask for approximation of terminal utility only, as is done in
[Sch01, O02, BTZ04], but we also require an approximation of the wealth process at intermediate
times, as in Černý and Kallsen [ČK07, Definition 2.2]. What is more, our definition does not rely
on regularity properties of U , such as strict concavity, strict monotonicity or differentiability.
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Our results then follow rather smoothly: H is a subset of the supermartingale class (Proposition
3.8) and the optimizer belongs to H under very mild conditions, as shown in the main Theorem
4.10. Therefore, as a byproduct, we also obtain an extremely compact proof of the supermartingale
property of the optimal solution.

The paper is organized as follows. In Sections 2.1-2.3 there are basic definitions from convex
analysis, theory of Orlicz spaces and stochastic integration. Section 2.4 contains a new result
on σ-localization. In Sections 3.1 and 3.2 we discuss conditions imposed on the price process S
and the corresponding definitions of simple strategies. In Section 3.3 we prove the martingale
property of simple strategies. In Section 3.4 we define the admissible strategies and prove their
supermartingale property. In Sections 4.1 and 4.2 we discuss the customary conditions of reasonable
asymptotic elasticity and other related conditions used in the literature and we contrast them with
a weaker Inada condition at +∞ employed in this paper. The main result (Theorem 4.10) is stated
and proved in Section 4.3. Section 5 provides more details on the main assumptions and on the
advantages of our framework compared to the existing literature. Section 6 contains technical
lemmata.

2 Mathematical preliminaries

2.1 Utility functions

A utility function U is a proper, concave, non-decreasing, upper semi-continuous function. Its
effective domain is

domU := {x | U(x) > −∞}. (1)

and is not empty. The infimum of the effective domain of U is denoted by

x := inf(domU). (2)

Let U(+∞) := limx→+∞ U(x) and define

x := inf{x | U(x) = U(+∞)}. (3)

In the economic literature x is known as the satiation point or bliss point. For strictly increasing
utility functions x = +∞, while for truncated utility functions, which feature for example in
shortfall risk minimization, x < +∞ represents a point where further increase in wealth does not
produce additional enjoyment in terms of utility. In economics this is interpreted as the point of
maximum satisfaction, or bliss.

By construction x ≤ x and the equality arises only when U is constant on its entire effective
domain in which case the utility maximization problem is trivial since “doing nothing” is always
optimal. Therefore, modulo a translation, the following assumption entails no loss of generality.

Assumption 2.1. x < 0 < x and U(0) = 0.
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The convex conjugate of U is defined by

V (y) := sup
x∈R
{U(x)− xy}.

Our assumptions on U imply that V is a proper, convex, lower semi-continuous function, equal to
+∞ on (−∞, 0), and it verifies V (0) = U(+∞). For example, with exponential utility one obtains
the following conjugate pair of functions U, V :

U(x) = 1− e−x; V (y) = y ln y − y + 1. (4)

In the sequel we will often exploit the following form of the Fenchel inequality, obtained as a simple
consequence of the definition of V :

U(x) ≤ xy + V (y). (5)

2.2 Young functions, Orlicz spaces and the Orlicz space induced by U

We recall basic facts on Young functions and induced Orlicz spaces. The interested reader is referred
to the monographs by Rao and Ren [RR91] and Krasnosel’skii and Rutickii [KR61] for proofs.

A Young function Ψ : R→ [0,+∞] is an even, convex and lower semicontinuous function with
the properties:

i) Ψ(0) = 0; ii) Ψ(+∞) = +∞; iii) Ψ < +∞ on an open neighborhood of 0.

Note that Ψ may jump to +∞ outside a bounded neighborhood of 0, but when Ψ is finite valued,
it is also continuous by convexity. In either case, Ψ is nondecreasing over R+ and countably convex
(see Lemma 6.1).

The Orlicz space LΨ induced by Ψ on (Ω,FT , P ) is defined as

LΨ = {X ∈ L0 | E[Ψ(cX)] < +∞ for some c > 0}.

It is a Banach space when endowed with the Luxemburg (gauge) norm

NΨ(X) = inf
{
k > 0 | E

[
Ψ
(
X

k

)]
≤ 1
}
.

Orlicz spaces are generalizations of Lp spaces whereby Ψ(x) = |x|p, p ≥ 1 yields LΨ ≡ Lp, while
Ψ(x) = I{|x|≤1} induces the space L∞ with the supremum norm. Intuitively, the faster Ψ increases
to +∞ the smaller the space LΨ and the stronger its topology. It is also clear that two distinct
choices of the Young function may give rise to isomorphic Orlicz spaces, the Luxemburg norms
being equivalent. These statements are made precise by the following definition and theorem.

Definition 2.2 (Krasnosel’skii and Rutickii). Let Ψ1 and Ψ2 be two Young functions. We write
Ψ1 � Ψ2, if there are constants λ > 0 and x0 such that for x ≥ x0,

Ψ1(λx) ≥ Ψ2(x).

We say that Ψ1 and Ψ2 are equivalent if Ψ1 � Ψ2 and Ψ1 � Ψ2.
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Theorem 2.3 (Krasnosel’skii and Rutickii). The following statements are equivalent:

i) Ψ1 � Ψ2;

ii) LΨ1 ↪→ LΨ2;

iii) there is λ > 0 such that

NΨ2(X) ≤ λNΨ1(X) for all X ∈ LΨ1 .

Consequently, any Orlicz space LΨ satisfies the embeddings

L∞ ↪→ LΨ ↪→ L1,

and two Orlicz spaces are isomorphic if and only if their Young functions are equivalent.
The Morse subspace of LΨ, also called the “Orlicz heart”, is given by

MΨ = {X ∈ L0 | E[Ψ(cX)] <∞ for all c > 0}.

The inclusion of MΨ in LΨ may be strict and in particular MΨ = {0} when LΨ = L∞. On the
other hand, Mp = Lp for any 1 ≤ p < +∞. More generally, when Ψ is finite on R then

L∞ ↪→MΨ ↪→ LΨ. (6)

We end these considerations with a classic example of strict inclusion of MΨ in LΨ.

Example 2.4. Let Ψ(x) = (coshx − 1). Simple calculations show that LΨ is the space of random
variables X with some absolute exponential moment finite, E[ec|X|] < +∞ for some c > 0. MΨ is
the proper subspace of those X with all absolute exponential moments finite. Therefore, as soon
as Ω is infinite, MΨ $ LΨ.

From Section 3 onwards, the Young function will be

Û(x) := −U(−|x|),

meaning that the Orlicz space in consideration is generated by the lower tail of the utility function.
Then,

X ∈ LÛ iff E[U(−c|X|)] > −∞ for some c > 0. (7)

For utility functions with lower tail which is asymptotically a power, say p > 1, LÛ is isomorphic
to Lp and LÛ ≡ M Û . When U is exponential, say U(x) = 1 − e−γx, with γ > 0, Û(x) = eγ|x| − 1
and the induced space is isomorphic to that of Example 2.4, so that LÛ ) M Û in the relevant case
|Ω| = +∞.

For utility functions with half-line as their effective domain, such as U(x) = ln(1 + x), LÛ is
isomorphic to L∞ and M Û = {0}.
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2.3 Semimartingale norms

There are two standard norms in stochastic calculus. Let S be an Rd-valued semimartingale on
the filtered space (Ω, (Ft)0≤t≤T , P ) and let S∗t =

∑d
i=1 sup0≤s≤t |Sis| be the corresponding maximal

process. For p ∈ [1,∞] let
‖S‖S p := ‖S∗T ‖Lp ,

and denote the class of semimartingales with finite S p-norm also by S p. This definition is due to
Meyer [M78]. We extend the definition slightly to allow for an arbitrary Orlicz space LΨ(P ) or its
Morse subspace MΨ(P ),

S Ψ := {semimartingale S | S∗T ∈ LΨ}, (8)

SMΨ
:= {semimartingale S | S∗T ∈MΨ}. (9)

Remark 2.5. Note for future use that S Ψ and SMΨ
are stable under stopping, that is if S belongs

to S Ψ or SMΨ
and if τ is a stopping time, then the stopped process Sτ := (Sτ∧t)t is in S Ψ or

SMΨ
, respectively.

Following Protter [Pr05], for any special semimartingale S with canonical decomposition into
local martingale part M and predictable finite variation part A, S = S0 + M + A, we define the
following semimartingale norm,

‖S‖H p = ‖S0‖Lp + ‖[M,M ]1/2T ‖Lp + ‖var(A)T ‖Lp ,

where var(A) denotes the absolute variation of process A. The class of processes with finite H p-
norm is denoted by H p. As usual we let

M p := H p ∩M ,

where M is the set of uniformly integrable P -martingales.

2.4 Localization and beyond: σ-localization and I-localization

Recall that for a given semimartingale S on (Ω, (Ft)0≤t≤T , P ), L(S) indicates the class of predictable
and Rd-valued, S-integrable processes H under P , while H · S indicates the scalar-valued integral
process. Following [Pr05, Chapter 4, Section 9] and [DS06, Definition 8.3.2]), when ϕ is a scalar
predictable process belonging to ∩di=1L(Si), ϕ · S stands instead for the vector valued process
(ϕ · S1, . . . , ϕ · Sd).

Now, let C be some fixed class of semimartingales. The following methods of extending C

appear in the literature:

i) S ∈ Cloc, i.e. S is locally in C , if there is a sequence of stopping times τn increasing to +∞
(called localizing sequence) such that each of the stopped processes Sτn = I[0,τn] · S is in C .

ii) S ∈ Cσ, i.e. S is σ-locally in C , if there is a sequence of predictable sets Dn increasing to
Ω× R+ such that for every n the vector-valued process IDn · S is in C .
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iii) S ∈ CI , i.e. S is I-locally in C , if there is some scalar process ϕ ∈ ∩di=1L(Si), ϕ > 0 such
that ϕ · S is in C .

The first two items are standard (cf. [JS03, I.1.33], [Ka04]) while the third item is an ad hoc
definition. By construction, for an arbitrary semimartingale class C one has Cσ ⊇ Cloc ⊇ C .
However it is not a priori clear what inclusions hold for CI , apart from the obvious CI ⊇ C .
Émery [E80, Proposition 2] has shown that when C = M p or H p, the following equalities hold

M p
σ = M p

I , H p
σ = H p

I , for p ∈ [1,+∞). (10)

To complicate matters, some authors use σ-localization to mean I-localization, see [Pr05, KŜı06].
In this paper we deliberately make a clear distinction between the two localization procedures.

The name I-localization (I standing for integral) is probably a misnomer, since no localization
procedure is involved. But we have chosen it because in Émery’s result I-localization coincides
with σ-localization. In general, however, CI 6= Cσ. Intuition suggests that the two localizations
coincide whenever the primary class C is defined via some sort of integrability property, as in
the case above: martingale property and its generalizations, boundedness or more generally Orlicz
integrability conditions on the maximal process. The next result in this direction appears to be
new.

Proposition 2.6. For any Orlicz space LΨ, its Morse subspace MΨ and the corresponding semi-
martingale normed spaces S Ψ,SMΨ

, the following identities hold: Sσ
Ψ = S Ψ

I and (SMΨ
)σ =

(SMΨ
)I .

Proof. We prove the statement only for S Ψ, since the proof for SMΨ
is analogous.

i) Inclusion S Ψ
σ ⊆ SI

Ψ. Fix S ∈ S Ψ
σ . Then, there are predictable sets Dn increasing to

Ω × R+ such that (IDn · S)∗T ∈ LΨ, for all n ≥ 1. Thus there exist constants cn > 0 such
that 0 ≤ E[Ψ(cn(IDn · S)∗T )] < +∞. Since Ψ is nondecreasing over R+, cn can be assumed
(0, 1]-valued. Let

bn := E[Ψ(cn(IDn · S)∗T )], dn := h 2−n(1 + bn)−1

where h := 1/(
∑

n≥1 2−n(1+bn)−1) is a normalizing constant, and define the following strictly
positive, finite valued process

ϕ :=
∑
n≥1

cndnIDn .

Since 0 ≤ ϕm :=
∑m

n=1 cndnIDn ↑ ϕ ≤
∑

n≥1 dn = 1, the Dominated Convergence Theorem
for stochastic integrals ([Pr05, Theorem 32]) applies. Therefore, ϕ ∈ L(S) and (ϕm ·S−ϕ·S)∗T
tends to 0 in probability. Passing to a subsequence if necessary, we can assume the convergence
holds P -a.s. Now,

(ϕ · S)∗T ≤ (ϕ · S − ϕm · S)∗T + (ϕm · S)∗T ≤ (ϕ · S − ϕm · S)∗T +
m∑
n=1

cndn(IDn · S)∗T
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and taking the limit on m, (ϕ · S)∗T ≤
∑

n≥1 cndn(IDn · S)∗T . Monotonicity of Ψ then ensures

E[Ψ((ϕ · S)∗T )] ≤ E[Ψ(
∑
n≥1

cndn(IDn · S)∗T )]

Countable convexity of Ψ (Lemma 6.1) implies the latter term is majorized by
∑

n≥1 dnE[Ψ(cn(IDn ·
S)∗T )] and thus

E[Ψ((ϕ · S)∗T )] ≤
∑
n≥1

dnE[Ψ(cn(IDn · S)∗T )] =
∑
n≥1

dnbn = h
∑
n≥1

2−n
bn

1 + bn
≤ h ≤ 2(1 + b1),

i.e. S ∈ S Ψ
I .

ii) Inclusion S Ψ
I ⊆ S Ψ

σ . The line of the proof is: a) fix S ∈ S Ψ
I and show S ∈ (S Ψ

loc)σ; b) then,
as S Ψ is stable under stopping (see Remark 2.5), a result by Kallsen ([Ka04, Lemma 2.1])
ensures (S Ψ

loc)σ = S Ψ
σ , whence the conclusion follows.

We only need to prove a), so let us fix S ∈ S Ψ
I and pick ϕ > 0 such that ϕ · S ∈ S Ψ. If

Dn = { 1
n < ϕ < n}, then (Dn)n is a sequence of predictable sets increasing to Ω × R+. We

now show IDn · S ∈ S Ψ
loc for all n. To this end, let τnk = inf{t | (IDn · S)∗t > k}. Then

(IDn · Sτ
n
k )∗T ≤ (IDn · Sτ

n
k )∗T− + |(IDn · Sτ

n
k )T |

≤ k + |(IDn · Sτ
n
k )T−|+ |∆(IDn · Sτ

n
k )T | ≤ 2k + |∆(IDn · Sτ

n
k )T |,

and the last jump term verifies

|∆(IDn · Sτ
n
k )T | = |∆

((
IDn

ϕ

)
· (ϕ · Sτn

k )
)
T

| =
(
IDn

ϕ

)
T

|∆(ϕ · Sτn
k )T | ≤ n2(ϕ · S)∗T ,

so that
(IDn · Sτ

n
k )∗T ≤ 2k + 2n(ϕ · S)∗T ∈ LΨ.

Therefore, for any fixed n, (IDn · Sτ
n
k )∗T is also in LΨ for all k, whence IDn · S ∈ S Ψ

loc. This
precisely means S ∈ (S Ψ

loc)σ, which completes the proof.

3 The strategies

3.1 Conditions on S and simple strategies

Let S be a d-dimensional semimartingale which models the discounted evolution of d underlyings.
As hinted in the introduction, to accommodate popular models for S, including exponential Lévy
processes, we do not assume that S is locally bounded. However, to make sure that there is a
sufficient number of well-behaved simple strategies we impose the following condition on S:

Assumption 3.1. S ∈ S Û
σ .
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The class S Û
σ introduced here appears to be the most comprehensive class of price processes to

have been systematically studied in the context of utility maximization to date. Most papers in the
literature assume S locally bounded, in our notation S ∈ S∞

loc. Sigma-bounded semimartingales,
that is processes in S∞

σ , appear in Kramkov and Ŝırbu [KŜı06]. For p ∈ (1,+∞) it can be shown, cf.
[ČK07, Lemma A.2], that the class of semimartingales which are locally in Lp coincides with S p

loc.
These processes feature in Delbaen and Schachermayer [DS96]. Biagini and Frittelli [BF05] require
existence of a suitable and compatible loss control for process S which in our notation corresponds
to S ∈ SM Û

I . In [BF08] this requirement is weakened to S ∈ S Û
I which by Proposition 2.6 is

equivalent to Assumption 3.1.
As has already been pointed out in [BF08], the σ-localization in Assumption 3.1 provides a

substantial amount of flexibility since there are many interesting cases with S /∈ S∞
loc which fit in

this setup. However, the cost of considering price processes of increasing generality is reflected in
progressively less attractive interpretations of simple trading strategies:

Definition 3.2. Define ϕ ∈ ∩di=1L(Si;P ), ϕ > 0, and a sequence of stopping times (τn)n as follows:

i) For S ∈ S Û let ϕ ≡ 1, τn ≡ T for all n;

ii) For S ∈ S Û
loc \S Û let ϕ ≡ 1 and let (τn)n be a localizing sequence for S from the definition

of S Û
loc;

iii) For S ∈ S Û
σ \ S Û

loc let τn ≡ T and let ϕ be a fixed I-localizing integrand for S such that
ϕ · S ∈ S Û , which is possible by virtue of Proposition 2.6.

We say H is a simple integrand if it is of the form H =
∑N

k=1HkI]Tk−1,Tk] ϕ where T1 ≤ · · · ≤ TN
is a finite sequence of stopping times with TN dominated by τn for some n, and each Hk is an Rd-
valued random variable, FTk−1

-measurable and bounded. The vector space of all simple integrands
is denoted by H.

As can be seen from the definition, when S ∈ S Û no localization is needed. Every simple integrand
is simple also in the sense of integration theory and it represents a buy-and-hold strategy on S over
finitely many trading dates. Vice versa, every buy-and-hold strategy implemented over a finite
set of dates is simple. One may thus wonder which models fall in this category. Some common
examples are:

a) finite-time models satisfying |St| ∈ LÛ for t = 1, 2, . . . , T ;

b) Lévy processes, when i) the utility U is exponential and the Lévy measure ν satisfies∫
eλ|x|I{|x|>1}dν(x) < +∞ for some λ > 0;

or ii) the utility U(x) behaves asymptotically like −|x|p, p > 1 when x → −∞ and the Lévy
measure ν satisfies ∫

|x|pI{|x|>1}dν(x) < +∞.
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Such conditions on ν are equivalent to integrability conditions on the maximal functional S∗,
i.e. S ∈ S Û , which in turn are equivalent to Û -integrability of St at some t > 0. This
follows from general results on g-moments of Lévy processes, when g is a submultiplicative
function (see [Sat99, Theorems 25.3 and 25.18]). Explicit examples of utility maximization
in this case can be found in Biagini and Frittelli [BF05, Section 3.2], [BF08, Example 35].
Here, U is exponential utility and S is a compound Poisson process with Gaussian or doubly
exponentially distributed jumps;

c) exponential Lévy processes belong to S Û whenever Û behaves asymptotically like a power
function with exponent p ∈ (1,+∞) and the Lévy measure of lnS, ν, satisfies∫

epxI{x>1}dν(x) < +∞.

This is derived similarly as in b) once lnS has been decomposed into a sum of two independent
Lévy processes, one of which represents large jumps of lnS.

For S ∈ S Û
loc \ S Û it is still true that all simple strategies are of the buy-and-hold type

but one can no longer pick the trading dates arbitrarily. From a practical point of view most
commonly used price processes fall into this category. For example, in the Black-Scholes model
the risky asset is represented by a geometric Brownian motion which does not belong to S Û when
U stands for the exponential utility. On the other hand S is continuous and therefore locally
bounded which means S ∈ S∞

loc ⊆ S Û
loc ⊆ S Û

σ for any utility function satisfying our assumptions,
including the exponential. The same line of reasoning applies to diffusions and more generally to all
semimartingales with bounded jumps which therefore automatically belong to S Û

σ for any utility
function U . In the case S Û

loc = S p
loc our definition of simple strategies mirrors the definition in

Delbaen and Schachermayer [DS96].
Finally, the price paid for allowing S ∈ S Û

σ \ S Û
loc is that simple strategies can no longer be

interpreted as buy-and-hold with respect to the original price process S but only with respect
to the better-behaved process S′ := ϕ · S. This case is interesting mainly theoretically since the
I-localizing strategy ϕ has already appeared in the literature on utility maximization. It plays
an important role in the work of Biagini [Bia04] where the maximal process (ϕ · S)∗ is taken as
a dynamic loss control for the strategies in the utility maximization problem. Within setups of
increasing generality in Biagini and Frittelli [BF05, BF08] ϕ gives rise to so-called suitable and
(weakly) compatible loss control variables W := (ϕ · S)∗T .

3.2 σ-martingale measures

To motivate the definition of simple strategies mathematically we now define dual asset pricing
measures.

Definition 3.3. Q� P is a σ-martingale measure for S iff S is a σ-martingale under Q. The set
of all σ-martingales measures for S is denoted by M and the subset of equivalent measures by Me.
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The concept of σ-martingale measure was introduced to Mathematical Finance by Delbaen and
Schachermayer [DS98]. When S is (locally) bounded, it can be shown that M coincides with the
absolutely continuous (local) martingale measures for S (see e.g. Protter [Pr05, Theorem 91]).
Therefore, σ-martingales are a natural generalization of local martingales in the case when S is not
locally bounded and the elements of M which are equivalent to P can be used as arbitrage-free
pricing measures for the derivative securities whose payoff depends on S. The recent book [DS06]
contains an extensive treatment of the financial applications of this mathematical concept.

When S ∈ S Û
σ \S Û , one may wonder to what extent the utility maximization problem depends

on the particular choice of ϕ (or of the localizing sequence (τn)n). Thanks to Émery’s equality (10)
the set of absolutely continuous σ-martingale measures for S is the same as the set of σ-martingale
measures for S′ = ϕ · S. Specifically, Q� P is a σ-martingale measure for S by (10) if and only if
there exists a Q-positive, predictable process ψQ ∈ ∩di=1L(Si;Q) such that ψQ ·S is a Q-martingale.
And this happens if and only if ψ′Q · (ϕ · S) is a Q-martingale, where ψ′Q = ψQ

ϕ .
Since the sets of σ-martingale measures for S and S′ are the same, the dual problem to the

utility maximization also remains the same. Under suitable conditions (see the statement of the
main Theorem 4.10), we thus end up with the same optimizer, regardless of a specific choice of the
I-localizing strategy ϕ.

3.3 Generalized relative entropy and properties of simple integrals

Definition 3.4. A probability Q has finite generalized relative entropy with respect to P , notation:
Q ∈ PV , if there is yQ > 0 such that

vQ(yQ) := E

[
V

(
yQ
dQ

dP

)]
<∞. (11)

For exponential utility U(x) = 1−e−x we have seen in (4) that V (y) = y ln y−y+1, and in this
case a probability Q verifies (11) if and only if its probability density has finite Kullback-Leibler
[KL51] divergence:

H(Q‖P ) := E

[
dQ

dP
ln
dQ

dP

]
< +∞.

The Kullback-Leibler divergence is also known in Information Theory as relative entropy of Q with
respect to P . Intuitively speaking, H(Q‖P ) is a non-symmetric measure of the distance between
probabilities Q and P . In Financial Economics it measures the extra amount of wealth an agent
with exponential utility perceives to have if she invests optimally in a complete market with pricing
measure Q, as opposed to investing all her wealth in the risk-free asset.

In the 1960-ies, Csiszár treated a wide class of statistical distances replacing the weighting
function y ln y by a convex function V verifying V (1) = 0. In his terminology, Q has finite V -
divergence with respect to P if

E

[
V

(
dQ

dP

)]
< +∞. (12)

The interested reader can also consult Liese and Vajda [LV87].
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In Mathematical Finance applications the function V is typically the convex conjugate of a
utility function, see Kramkov and Schachermayer [KS99], Bellini and Frittelli [BeF02], Goll and
Rüschendorf [GR01] and basically all the contemporary literature on utility maximization. Here, a
Q ∈ PV is said to have finite generalized relative entropy. Our definition pushes the generalization
one step further, since we do not require yQ = 1 in (11). Hereafter we will often be slightly sloppy
and refer to the elements of PV briefly as probabilities with “finite entropy”.

The proof of the following simple Lemma is omitted.

Lemma 3.5. Consider Qi � P , i = 1, 2, such that vQi(yi) < +∞ for some yi > 0. Then for
0 ≤ λ ≤ 1

vλQ1+(1−λ)Q2

(
1

λ/y1 + (1− λ)/y2

)
<∞.

Corollary 3.6. PV is convex.

Simple integrals have good mathematical properties with respect to σ-martingale measures with
finite (generalized relative) entropy.

Lemma 3.7. The wealth process X = H · S of every H ∈ H is a uniformly integrable martingale
under all Q ∈M∩ PV .

Proof. i) S ∈ S Û
σ \ S Û

loc. Since H ∈ H, the maximal functional X∗ verifies X∗T ≤ c(ϕ · S)∗T for
some constant c > 0 and some I-localizing integrand ϕ which exists by Proposition 2.6. By (7)
then E[U(−α(ϕ · S)∗T )] ∈ R for some constant α > 0 and, as a consequence,

0 ≥ E
[
U

(
− α

c
X∗T

)]
> −∞.

For any fixed Q ∈M∩PV , the Fenchel inequality U(x)− xy ≤ V (y) applied with x = −α
cX
∗
T , y =

yQ
dQ
dP gives

U

(
− α

c
X∗T

)
+
α

c
X∗T yQ

dQ

dP
≤ V

(
yQ
dQ

dP

)
,

whence 0 ≤ α
c yQX

∗
T
dQ
dP ≤ V (yQ dQ

dP ) − U(−α
cX
∗
T ), and therefore X∗T is in L1(Q). As Q is a σ-

martingale probability for S, X is also a Q-σ-martingale. Since its maximal process is integrable,
X is in fact a Q-uniformly integrable martingale (see Protter [Pr05, Chapter IV-9]).

ii) S ∈ S Û
loc. Proceed as in i), replacing ϕ with I[0,τn].

In financial terms, the message of the above Lemma is that each Q ∈ M ∩ PV represents a
pricing rule that assigns a correct price to every simple self-financing strategy.

3.4 Admissible integrands and integrals

As anticipated in the introduction, simple integrands are unlikely to contain the solution of the
utility maximization problem. The appropriate class of admissible integrands is an extension given
in terms of suitable limits of strategies in H. We recall the definition of admissibility here for
convenience.
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Definition 1.1. H ∈ L(S) is an admissible integrand if U(H · ST ) ∈ L1(P ) and if there exists an
approximating sequence (Hn)n in H such that:

i) Hn · St → H · St in probability for all t ∈ [0, T ];

ii) U(Hn · ST )→ U(H · ST ) in L1(P ).

While for H ∈ H the wealth process H · S is always a martingale under Q ∈ M ∩ PV due to
Lemma 3.7, the following result shows that H is a subset of the supermartingale class of strategies
Hs introduced by [Sch03],

Hs := {H ∈ L(S) | H · S is a local martingale

and a supermartingale under any Q ∈M∩ PV }.
(13)

Proposition 3.8. H ⊆ Hs.

Proof. Let X = H · S for some H ∈ H and let (Xn := Hn · S)n with Hn ∈ H be an approximating
sequence. Fix a Q ∈ M ∩ PV and a corresponding scaling yQ as in Definition 3.4. Item i) of
Definition 1.1 applied at time T implies (Xn

T )− converges in P -probability to X−T . Moreover,
Fenchel inequality gives

U(Xn
T )− V (yQ

dQ

dP
) ≤ Xn

T yQ
dQ

dP
.

From Definition 1.1, item ii), the left hand side above converges in L1(P ), whence the family
(Y n)n, Y n := (Xn

T )− dQdP is P -uniformly integrable, so ((Xn
T )−)n is Q-uniformly integrable (see

Lemma 6.2). Uniform integrability plus convergence in probability ensures (Xn
T )− → X−T in L1(Q).

By passing to a subsequence if necessary, the next is an integrable lower bound for (Xn
T )n,

WQ :=
∑
n

|(Xn+1
T )− − (Xn

T )−| ∈ L1(Q)

Denote by ZQ the associated Q-martingale, ZQt := EQ[WQ | Ft]. Note that when domU is a
half-line we could also have chosen trivially WQ := − inf domU .

Since Xn
T ≥ −WQ and process Xn is a Q-martingale for all n by Lemma 3.7, we obtain

Xn
t = EQ[Xn

T | Ft] ≥ −EQ[WQ | Ft] = −ZQt , (14)

so that the sequence Xn is controlled from below by the Q-martingale ZQ. Therefore by Delbaen
and Schachermayer compactness result [DS99, Theorem D] (in the version stated in Section 5,
[DS98]) there exists a limit càdlàg supermartingale Ṽ to which a sequence Kn · S, where Kn is
a suitable convex combinations of tails Kn ∈ conv(Hn, Hn+1, . . .), converges Q-almost surely for
every rational time 0 ≤ q ≤ T . By item i), ((Xn

t ))n converges in P -probability to Xt for every t,
thus Kn · St converges to Xt for every t as well. Therefore Ṽ coincides Q-a.s. with X on rational
times, and since X is also càdlàg as it is an integral, X and Ṽ are indistinguishable, so that X is
a Q-supermartingale. By assumption Q is a σ-martingale measure, so X = H · S = ( 1

ϕH) · (ϕ · S)
where ϕ > 0 and (ϕ ·S) is a Q-martingale. As X also satisfies X ≥ −ZQ, Ansel and Stricker lemma
[AS94, Corollaire 3.5] implies that X is a local Q-martingale.
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Remark 3.9. Proposition 3.8 would go through if one replaced our class H with the set of integrands
with wealth bounded from below

Hb = {H ∈ L(S) | H · S ≥ c for some c ∈ R}, (15)

as in Schachermayer [Sch01] when S ∈ S∞
loc, or more generally with the larger set of strategies

whose losses are in some sense well controlled as in Biagini and Frittelli [BF05, BF08],

HÛ = {H ∈ L(S) | ∃W ≥ 0, E[U(−W )] > −∞, H · S ≥ −W}, (16)

see also Biagini and Ŝırbu [BS09]. An application of the Ansel and Stricker lemma [AS94, Corollaire
3.5] shows that wealth processes for strategies in HÛ ⊇ Hb are local martingales and supermartin-
gales under any Q ∈ M ∩ PV – but not martingales in general. In contrast, our smaller class H
has the stronger martingale property as shown in Proposition 3.8. Mathematically, however, it is
the supermartingale property of approximating strategies that really matters. This is also true in
the proof of the main Theorem 4.10 where one can replace arguments relying on the martingale
property of approximating strategies [Yor78, Corollaire 2.5.2] with supermartingale compactness
results of [DS99].

The list below summarizes the advantages of H over current definitions of admissibility:

a) Definition 1.1 is primal. No pricing measures come into play, and admissibility can thus be
checked under P .

b) The present definition is dynamic, that is the whole wealth process, rather than just its
terminal value, is involved in the definition of H. As a result all admissible strategies are in
the supermartingale class.

c) The loss controls required in the proof of the supermartingale property are generated endoge-
nously, via approximating sequences. This provides a great deal of flexibility and ensures that
for U finite on R the optimizer is in H under very mild conditions, milder than the conditions
assumed to obtain the supermartingale property of the optimizer in [Sch03, BF07]. Since un-
der our assumptions the optimal utilities over H and Hs coincide, see (33), the smaller class
H seems to be more appropriate than Hs not only economically but also mathematically.

d) Approximation by strategies in H is built into the definition of admissibility, it does not have
to be deduced separately (cf. [St03]).

e) The desirable properties above hold without any technical assumptions on U . It can be finite
on R or only on a half-line; bounded from above or not, or even truncated; neither strict
monotonicity, strict convexity nor differentiability are required.

f) Our definition is compatible with the existing definition of admissibility for non-monotone
quadratic preferences, see Remark 3.10 below. We have therefore found a good notion of
admissibility which encompasses both the classical mean-variance preferences and monotone
expected utility.
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Remark 3.10. For the purpose of this remark only, we admit non-monotone U . Specifically, let
U(x) := x−x2/2, which represents a normalized quadratic utility. In such case, H ∈ H if and only
if there is a sequence of Hn ∈ H such that: 1) Hn · St → H · St in probability for all t ∈ [0, T ]
and 2) Hn ·ST → H ·ST in L2(P ). In other words, when U is quadratic the admissibility criterion
in Definition 1.1 coincides with the notion of admissibility pioneered by Jan Kallsen in [ČK07,
Definition 2.2], which inspired our work. Since 1) above and i) in Definition 1.1 coincide, the only
thing to prove is that ii) in our definition is equivalent to 2) above:

⇒ Suppose first H ∈ H. The L1(P ) convergence of utilities implies E[U(Xn
T )] → E[U(XT )] so

that Xn
T are uniformly bounded in L2(P ). Since L2(P ) is a reflexive space there is a sequence

of convex combinations of tails of (Xn
T , X

n+1
T , . . .), say X̃n

T , which converges in L2(P ) to a
square integrable random variable which necessarily is XT = H · ST thanks to Definition
1.1-i). By considering the corresponding convex combinations of strategies, which are again
simple, we obtain the existence of an approximating sequence à la Kallsen for H.

⇐ Conversely, let X = H · S be an integral approximated à la Kallsen by simple integrals
(Xn)n. L1(P ) convergence of the utilities U(Xn

T ) to U(XT ) is then a consequence of the
Cauchy-Schwartz inequality.

4 Optimal trading strategy is in H

The optimal investment problem can be formulated over H, H or over Hs, respectively,

uH(x) := sup
H∈H

E[U(x+H · ST )], (17)

uH(x) := sup
H∈H

E[U(x+H · ST )], (18)

uHs(x) := sup
H∈Hs

E[U(x+H · ST )]. (19)

Alongside, we consider auxiliary complete market utility maximization problems, each obtained by
fixing an arbitrary Q ∈M∩ PV :

uQ(x) := sup
X∈L1(Q),EQ[X]≤x

E[U(X)]. (20)

The value functions uH(x), uH(x), uHs(x), uQ(x) are also known as indirect utilities (from the
respective domains of maximization). The next lemma is an easy consequence of the definition of
H and of the supermartingale property of the strategies in H and Hs. The proof is omitted.

Lemma 4.1. For any x > x and for any Q ∈M∩ PV

uH(x) = uH(x) ≤ uHs(x) ≤ uQ(x). (21)
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4.1 Reasonable Asymptotic Elasticity and Inada conditions

It is well known in the literature that the existence of an optimizer is not guaranteed yet, neither
in H nor in the larger supermartingale class Hs ⊇ H. An additional condition has to be imposed,
essentially to ensure that the expected utility functional k 7→ E[U(k)] is upper semicontinuous with
respect to some weak topology on terminal wealths.

Kramkov and Schachermayer were the first to address this issue in [KS99, Sch01] for regular U ,
that is utilities that are strictly increasing, strictly concave and differentiable in the interior of their
effective domain. To the end of recovering an optimizer they introduced the celebrated Reasonable
Asymptotic Elasticity condition on U (RAE(U)),

lim sup
x→+∞

xU ′(x)
U(x)

< 1, (22)

and also lim inf
x→−∞

xU ′(x)
U(x)

> 1, when U is finite on R, (23)

as a necessary and sufficient condition to be imposed on the utility U only, regardless of the
probabilistic model. This condition is now very popular, see [OŽ09, RS05, Sch03, B02] just to
mention a few contributions.

In subsequent work, in the context of utilities finite on R+, Kramkov and Schachermayer [KS03]
put forward less restrictive conditions∗, imposed jointly on the model and on the preferences, in order
to recover the optimal terminal wealth. Here they work under assumptions which are equivalent to
the existence of Q ∈Me ∩ PV and the following Inada condition on the indirect utility uHb , where
the class Hb is defined in (15):

lim
x→+∞

uHb(x)/x = 0. (24)

It is important to note that for utility functions finite on a half-line the modulus of the conju-
gate function V (y) grows only linearly for large y and therefore the following implication holds
automatically:

Q ∈M∩ PV ⇒ vQ(y) < +∞ for all y sufficiently high. (25)

On the other hand, for utilities finite on R condition (25) has to be imposed explicitly, together
with an appropriate generalization of condition (24).

Assumption 4.2. Condition (25) is satisfied and

there exists Q ∈M∩ PV such that lim
x→+∞

uQ(x)/x = 0. (26)

Note first that the requirement (26) automatically holds, and for all Q ∈M∩PV , if U(+∞) < +∞.
Since for any Q ∈ M ∩ PV one has uQ(x) ≥ uH(x) ≥ U(x), and U is monotone, condition (26)
implies an identical Inada condition both on the indirect utility uH and also on the original utility
function U at +∞. An identical chain of inequalities for the indirect utilities holds if we replace
∗The interested reader is referred also to the recent Biagini and Guasoni [BG09] for counterexamples and a

different, relaxed framework that allows optimal terminal wealth to be a measure and not only a random variable.
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H with Hb and for this reason condition (26) is slightly stronger than the condition (24) imposed
in [KS03] when U is finite on a half-line. It is an open question whether condition (26) can be
weakened to

M∩ PV 6= ∅ and lim
x→+∞

uH(x)/x = 0. (27)

Further discussion of Assumption 4.2 and its relation to RAE(U) and the Inada condition (24) can
be found in Section 5.1. The results of the next section go in that direction.

4.2 Complete market duality

Here we study a complete market Q ∈ PV and hence no specific model for S is required. Among
other results, we provide an alternative characterization of the Inada condition (26) in terms of the
generalized relative entropy of Q.

Lemma 4.3. Fix Q ∈ PV and consider the function vQ defined in (11). For any x > x,

uQ(x) = min
y≥0
{xy + vQ(y)} < +∞. (28)

An Orlicz duality based proof of the above lemma is given in Section 6. Here we only remark that
the minimizer may not be unique. This is due to lack of strict convexity of V , which in turn is due
to lack of strict concavity of U .

Corollary 4.4. Fix Q ∈ PV . The following statements are equivalent:

i) uQ verifies the Inada condition at +∞: limx→+∞ uQ(x)/x = 0;

ii) there is yQ > 0 such that

vQ(y) = E

[
V

(
y
dQ

dP

)]
< +∞ for all y ∈ (0, yQ]. (29)

Proof. ii) ⇒ i) Suppose that vQ(y) is finite in a right neighborhood of 0. By Fenchel inequality,
E[U(X)] − E[y dQdPX] ≤ E[V (y dQdP )] for all X ∈ L1(Q) so that uQ(x) ≤ xy + vQ(y) for all y > 0.
Fixing y one obtains limx→+∞ uQ(x)/x ≤ y and on letting y → 0 the Inada condition on uQ follows.
i) ⇒ ii) For a given x > x, select one dual minimizer in (28) and denote it by yx. Now, uQ(x) =
xyx + vQ(yx), vQ(yx) is finite, and the chain of inequalities

uQ(x) = xyx + vQ(yx)
Jensen
≥ xyx + V (yx) ≥ xyx ≥ 0

holds for any x as V is nonnegative. Dividing by x > 0 and sending x to +∞, (26) implies
limx→+∞ yx = 0. Finiteness of vQ over the set {yx}x, whose closure contains 0, and convexity of
vQ finally imply vQ is finite in the interval (0, yQ], with yQ from (11).

Corollary 4.5. If Me ∩ PV 6= ∅ then the measure Q in (26) can be chosen equivalent to P .
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Proof. Take Qe ∈ Me ∩ PV and assume Q satisfies (26). By Corollary 4.4 vQ(y) is finite for all y
near zero. Define Q∗ := 1

2Q+ 1
2Q

e. Thus, Q∗ ∼ P and by Lemma 3.5 vQ∗(y) is finite for all y near
zero. Therefore uQ∗ satisfies the Inada conditon (26).

The next Proposition contains a novel characterization of the condition

uQ(x) < U(+∞),

which is a kind of “no utility-based arbitrage” condition, when Q has finite entropy. Agents cannot
reach satiation utility U(+∞) if the initial capital x is below the satiation point x̄, and vice versa.

Proposition 4.6. For Q ∈ PV and x > x the following statements are equivalent:

i) x < x̄;

ii)
uQ(x) = min

y>0
{xy + vQ(y)} < U(+∞). (30)

Proof. ii)⇒ i) U(x) ≤ uQ(x) < U(+∞) implies x < x̄.
i)⇒ ii) Let Z := yQdQ/dP , with yQ from (11). When U(+∞) = V (0) = +∞ there is nothing to
prove in view of (28). Consider therefore the remaining case 0 < U(+∞) = V (0) < +∞. Function
f(y) := V (y) + xy is convex and by Rockafellar [R70, Theorem 23.5] it attains its minimum at
ŷ := U ′−(x) > 0 with f(ŷ) = V (ŷ) + xŷ = U(x). Convexity then gives

f(y) ≤ f(0)− yf(0)− f(ŷ)
ŷ

= U(+∞)− yU(+∞)− U(x)
ŷ

for y ∈ [0, ŷ],

f(y/k) ≤ f(0) +
f(y)− f(0)

k
≤ U(+∞) +

f(y)
k

for k ≥ 1, y ≥ 0.

For k ≥ 1 these estimates imply

E[f(Z/k)] = E[f(Z/k)1{Z≤kŷ}] + E[f(Z/k)1{Z>kŷ}]

≤ U(+∞)−1
k

(
U(+∞)− U(x)

ŷ
E[Z1{Z≤kŷ}]− E[f(Z)1{Z>kŷ}]

)
,

and, as x < x̄ implies U(x) < U(+∞), for sufficiently large k E[f(Z/k)] < U(+∞) = V (0), which
completes the proof.

Remark 4.7. Corollary 4.4 and Proposition 4.6 should be contrasted with an example by Schacher-
mayer [Sch01, Lemma 3.8], where the author constructs an arbitrage-free complete market with
unique pricing measure Q for which uQ(x) ≡ U(+∞), while U is strictly increasing and bounded
from above (and therefore it satisfies the Inada condition at +∞). This is possible because the
measure Q in question does not belong to PV .

Corollary 4.8. If x ∈ (x, x̄) then

uH(x) ≤ uH(x) ≤ uHs(x) ≤ inf
Q∈M∩PV

uQ(x) = inf
y>0,Q∈M∩PV

{xy + vQ(y)}. (31)

Proof. The chain of inequalities follows from Lemma 4.1 and Proposition 4.6.
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4.3 The main result

The minimization problem on the right-hand side of (31) is a natural candidate as a dual problem
to the utility maximization on the left-hand side. However, the general theory of [BF08] shows that
in order to catch the minimizer the dual domain must be extended beyond probability densities.
Rephrased in our terminology, whenever S ∈ Sσ

Û \SM Û

σ the dual problem may have a minimizer
which has a non zero singular part, but for S ∈ SM Û

σ the singular parts in the dual problem
disappear and there is no duality gap in (31) under Assumption 4.2. We make these statements
precise in Theorem 5.1 and Corollary 5.2.

Our main result hinges on the absence of singularities in the dual problem, which is what we now
assume. Within the confines of Assumption 4.9, which can be imposed also when S ∈ Sσ

Û \SM Û

σ ,
we provide a unified treatment for utility functions finite on R or only on a half-line.

Assumption 4.9. For any x ∈ (x, x̄), the following dual relation holds:

uH(x) = min
Q∈M∩PV

uQ(x) = min
y≥0,Q∈M∩PV

{xy + vQ(y)}. (32)

As indicated above, this assumption represents no loss of generality for S ∈ SM Û

σ , including
situations where U is finite on R and

a) S is “sufficiently integrable”. Some commonly found examples are locally bounded processes,
such as diffusions or jump diffusions with bounded relative jumps, regardless of the specifi-
cation of U ; jump diffusions with relative jumps in M Û ; Lévy processes with large jumps in
M Û ;

b) LÛ = M Û , under the standing Assumption 3.1. This happens when e.g. U has left tail that
behaves asymptotically like a power, xp, with p > 1.

When S ∈ Sσ
Û \SM Û

σ , which includes all cases where U is finite only on a half-line, unfortunately
there is no known sufficient condition for the strong duality (32) to hold. The appropriate modifi-
cation of Theorem 4.10 which would work without Assumption 4.9 remains an interesting area for
future research.

Assumption 4.9 together with (31) immediately yields the following, apparently stronger, state-
ment for x ∈ (x, x̄)

uH(x) = uH(x) = uHs(x) = min
y>0,Q∈M∩PV

{
xy + E

[
V

(
y
dQ

dP

)]}
. (33)

Any optimal dual pair in (33) is denoted by (ŷ, Q̂), dependence on x is understood. The lack of
uniqueness of the optimal dual pair is again due to the lack of strict convexity of V , depending on
the lack of strict concavity of U .

Most results in the literature are obtained under the assumption Q̂ ∼ P . This condition is
satisfied automatically for utility functions unbounded from above since V (0) = U(+∞) = +∞
while E[V (ŷ dQ̂dP )] must be finite. When U is strictly monotone but bounded, a well-known sufficient
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condition for Q̂ ∼ P is the existence of an equivalent σ-martingale measure with finite entropy.
This can be gleaned from a.i) and a.iii) in Theorem 4.10, on observing that x̄ = +∞.

As a general comment, Theorem 4.10 provides a desirable approximation result for the optimal
strategy Ĥ ∈ H. The approximation holds under very mild conditions: U may lack strict mono-
tonicity and strict concavity; S ∈ S Û

σ ; and Q̂ may be only absolutely continuous. These results
are novel not only for utility finite on R but also for utility functions finite on a half-line.

For U finite on R our framework is a further improvement over the current literature: [Sch01],
[KSt02], [St03], [OŽ09], [BTZ04] all assume S locally bounded. Approximation by simple strategies
has so far been shown only for exponential utility for locally bounded S and for expected utility
only cf. [St03, Theorem 5] – not in the stronger sense of L1(P ) convergence of the utilities given
by item ii) in Definition 3.4.

For comparison, Schachermayer [Sch01] proves an approximation similar to (35) for the terminal
wealth of the optimal solution f̂ = Ĥ ·ST via integrals bounded from below. This work is extended
further by Bouchard et al. [BTZ04] who allow for non-differentiable and non-monotone utility
functions. Moreover, in [Sch03] Ĥ is shown to be in the supermartingale class of strategies through
a (hard) contradiction argument, which is later extended by [BF07] to S ∈ SM Û

I with a proof
along the same lines.

Here the supermartingale property of Ĥ is shown in a general setup and in a very natural way,
as a consequence of H ⊆ Hs. We also extend results of Bouchard et al. [BTZ04] beyond S ∈ S∞

loc

under the weaker condition from Assumption 4.2 instead of the RAE(U) condition (45), while
considerably simplifying the required proofs thanks to the Orlicz duality approach.

When U is not strictly monotone, that is when U attains its global maximum at a satiation
point x < +∞, the sufficient conditions for Q̂ ∼ P known in the monotone case do not work; here
typically Q̂ is not equivalent to P even when there are equivalent probabilities in M∩ PV . We
nonetheless recover an integral representation under P , and thus existence of an optimal trading
strategy, provided the budget constraint is binding, EQ[f̂ ] = x, for some Q ∈Me ∩ PV . This mild
sufficient condition appears to be new in the literature. Our contribution in the case where U is
strictly monotone but Q̂ is not equivalent to P is discussed in detail in Section 5.3.

Theorem 4.10. Under Assumptions 3.1, 4.2 and 4.9, for any initial wealth x ∈ (x, x̄) the following
statements hold:

a) There exists a (−∞,+∞]-valued claim f̂ , not unique in general, with the following properties

i) f̂ < +∞ whenever Me ∩ PV 6= ∅;

ii) f̂ realizes the optimal expected utility, in the sense that

E[U(f̂)] = uH(x);
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iii) EQ̂[f̂ ] = x, and the following equalities hold P -a.s. for any dual optimizers ŷ, Q̂:

V

(
ŷ
dQ̂

dP

)
= U(f̂)− f̂ ŷ dQ̂

dP
,

{f̂ ≥ x̄} =
{
dQ̂

dP
= 0
}

;

iv) f̂ ∈ L1(Q) and EQ[f̂ ] ≤ x for all Q ∈M∩ PV ;

v) In case U is strictly concave, V is strictly convex and the solutions of primal and dual
problem f̂ , ŷ, Q̂ are unique. If in addition U is differentiable, these unique solutions
satisfy ŷ dQ̂dP = U ′(f̂);

b) There is an approximating sequence of strategies Hn ∈ H with terminal values fn := x+Hn ·
ST such that:

i)
fn

P -a.s.→ f̂ , (34)

provided Me ∩ PV 6= ∅ or x̄ = +∞;

ii)

U(fn)
L1(P )→ U(f̂); (35)

iii)

fn
L1(Q̂)→ f̂ , (36)

and, provided (34) holds, for any Q ∈M∩ PV such that EQ[f̂ ] = x

fn
L1(Q)→ f̂ ; (37)

iv) There exists an integral representation f̂ = x+ Ĥ · ST with Ĥ ∈ L(S; Q̂), and Ĥ · S is a
Q̂-martingale.

v) When there is Q̃ ∈ Me ∩ PV such that EQ̃[f̂ ] = x then Ĥ in b.iv) can be chosen in H
and consequently Ĥ is a utility maximizer over both H and Hs,

uH(x) = uHs(x) = max
H∈H

E[U(x+H · ST )]. (38)

In particular, by virtue of a.iii), (38) holds whenever Q̂ ∼ P .

Proof. a) Let us fix a pair ŷ, Q̂ of dual minimizers. For ease of notation and without loss of
generality we let x = 0 throughout.

i.1) Select a maximizing sequence (kn)n, kn = Kn · ST ,Kn ∈ H so that E[U(kn)] ↑ uH(0).
Fix Q∗ ∈M∩ PV as follows:
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• in case Me ∩ PV 6= ∅, select Q∗ as an equivalent measure satisfying (26). This is
possible by Corollary 4.5;

• in case Me ∩ PV = ∅, take Q∗ = Q̂. Here necessarily V (0) = U(+∞) < +∞, so Q̂
as well as any other measure in M∩ PV satisfies (26).

Let
Q :=

1
2
Q̂+

1
2
Q∗

Then, Q ∈M∩PV ; Q ∼ P ifMe∩PV 6= ∅; Q satisfies (26); L1(Q) = L1(Q̂)∩L1(Q∗); and
L1(Q)-convergence is equivalent to convergence in L1(Q̂) and L1(Q∗) by construction.

i.2) The sequence (kn)n is bounded in L1(Q). In a general case this follows from the auxiliary
Proposition 6.3, which in turn is a consequence of the Inada condition (26). In a special
case when domU is a half-line, L1(Q)-boundedness also follows trivially from kn ≥ x

and EQ[kn] = 0, which is a consequence of Lemma 3.7. In a second special case where
U is bounded from above the claim can be alternatively deduced from the boundedness
of U−(fn) and the Fenchel inequality (5).

i.3) L1(Q) boundedness of (kn)n enables the application of the Komlós theorem, so that
there exists a sequence of convex combinations (fn)n with fn ∈ conv(kn, kn+1, . . .), that
converges Q-a.s. to a certain random variable f ∈ L1(Q) ⊆ L1(Q̂). As H is a vector
space, these fn are terminal values of simple integrals fn = Hn · ST , Hn ∈ H. By
concavity, the fn are still maximizers, i.e. E[U(fn)] ↑ uH(0).

i.4) Define f̂ as follows:

• in case Me ∩ PV 6= ∅, f̂ := f . Here, Q ∼ P and f is a well-defined element of
L0(Ω,FT , P ) with fn

P -a.s.→ f = f̂ ;

• in case Me ∩ PV = ∅ , and thus Q = Q̂,

f̂ := fI
{ dQ̂

dP
>0}

+ x̄I
{ dQ̂

dP
=0}

By construction, f̂ ∈ L1(Q̂) in both cases.

ii) It is easily seen that for y > 0 and Q ∈ {Q̂,Q}

lim sup
n

(
U(fn)− fny

dQ

dP

)
≤ U(f̂)− f̂y dQ

dP
≤ V

(
y
dQ

dP

)
, (39)

using the convention +∞·0 = 0. The Fatou lemma applied to (39) for any y sufficiently
large yields

uH(0) = lim sup
n

E

[
U(fn)− fny

dQ

dP

]
≤ E

[
lim sup

n

(
U(fn)− fny

dQ

dP

)]
≤ E

[
U(f̂)− f̂y dQ

dP

]
≤ E

[
V

(
y
dQ

dP

)]
.

(40)

In particular, we derive U(f̂) ∈ L1(P ). On taking Q = Q, in virtue of (26) and Corollary
4.4 we can let y → 0 so that

uH(0) ≤ E[U(f̂)]. (41)
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Also, on taking Q = Q̂ and sending y → +∞ we get

EQ̂[f̂ ] ≤ 0. (42)

Equation (40) with the choice of the optimizers Q = Q̂, y = ŷ yields

uH(0) ≤ E[U(f̂)]− ŷEQ̂[f̂ ] ≤ E
[
V

(
ŷ
dQ̂

dP

)]
= uH(0), (43)

which implies EQ̂[f̂ ] = 0 and uH(0) = E[U(f̂)], in view of (41), (42) and ŷ > 0 from
(33).

iii) The Fenchel optimal relation U(f̂)− f̂ ŷ dQ̂dP
P -a.s.= V (ŷ dQ̂dP ) now follows from (41-43). From

here we conclude
dQ̂

dP
= 0⇔ U(f̂) = U(x̄) = U(+∞).

The forward implication follows from V (0) = U(+∞) and the converse from ŷ > 0. The
equality EQ̂[f̂ ] = 0 has just been shown in a.ii.2).

iv) Since lim supn(U(fn)−fny dQ̂dP ) ≤ U(f̂)− f̂y dQ̂dP and the inequalities in (40) are equalities
for y = ŷ and Q = Q̂, one has lim supn U(fn) = U(f̂) = U(+∞) on A := {dQ̂dP = 0}.
Therefore, by passing to a subsequence that converges to the limsup we can assume
U(fn)IA → U(f̂)IA, whence globally

U(fn) P -a.s.→ U(f̂). (44)

Consider now an arbitrary Q ∈ M ∩ PV . Given (44) necessarily lim infn fnIA ≥ x̄IA

and therefore lim infn |fn| ≥ |f̂ |, as well as lim infn fn ≥ f̂ . Additionally, (fn)n is L1(Q)
bounded: EQ[fn] = 0 and (E[U(fn)])n is bounded from below, so Proposition 6.3 applies
again. Therefore, Fatou Lemma yields f̂ ∈ L1(Q) and

EQ[f̂ ] ≤ EQ[lim inf
n

fn] ≤ lim inf
n

EQ[fn] = 0

v) Finally, the results when U is strictly concave and differentiable follow now from the
pointwise identity U(x)− xU ′(x) = V (U ′(x)).

b) i) This follows by construction when Me ∩ PV 6= ∅, cf. item a.i.3) above, and otherwise
from U(fn)→ U(f̂) when x̄ = +∞, cf. equation (44).

ii) Since U(fn) P -a.s.→ U(f̂), the L1 convergence of the utilities is equivalent to show-
ing uniform integrability of (U(fn))n. Given the convergence of the expected util-
ity, E[U(fn)] ↑ E[U(f̂)], an argument “à la Scheffé” shows that the uniform inte-
grability of (U(fn))n is equivalent to uniform integrability of any of the two families
(U−(fn))n, (U+(fn))n. U(0) = 0 and monotonicity of U imply U−(fn) = −U(−f−n ) and
U+(fn) = U(f+

n ).
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Suppose by contradiction that the family (U+(fn))n ≡ (U(f+
n ))n is not uniformly in-

tegrable, and proceed as in [KS03, Lemma 1]. Given the supposed lack of uniform
integrability, there exist disjoint measurable sets (An)n and a constant α > 0 such that

E[U(f+
n )IAn ] ≥ α.

Set gn =
∑n

i=1 f
+
i IAi and fix a Q ∈ M∩ PV satisfying the Inada condition (26). (fn)n

is L1(Q) bounded by Proposition 6.3 and clearly EQ[gn] ≤ nC where C is a positive
bound on the L1(Q) norms of the sequence (fn)n. In addition, E[U(gn)] ≥ nα because
the (An)n are disjoint. Therefore,

uQ(nC)
nC

≥ E[U(gn)]
nC

≥ α

C
> 0

and passing to the limit when n ↑ ∞ the conclusion contradicts (26). So the family
(U+(fn))n is uniformly integrable, and (U(fn))n as well, which means U(fn) tends in
L1(P ) to U(f̂).

iii) To see that fn → f̂ in L1(Q̂), from U(f̂) − f̂ ŷ dQ̂dP = V (ŷ dQ̂dP ) ≥ U(fn) − fnŷ
dQ̂
dP the

difference U(f̂) − U(fn) − (f̂ − fn)ŷ dQ̂dP is nonnegative and has P -expectation which
tends to zero. Henceforth such difference is L1(P ) convergent to 0, which, thanks to
L1(P ) convergence of U(f)− U(fn), yields L1(P ) convergence to 0 of (f̂ − fn)dQ̂dP .

From Fenchel inequality,

f−n yQ
dQ

dP
≤ V

(
yQ
dQ

dP

)
− U(−f−n ) ≤ V

(
yQ
dQ

dP

)
+ |U(fn)|

and given the P -uniform integrability of (U(fn))n, proved in b.ii), the Q-uniform inte-
grability of (f−n )n follows (see Lemma 6.2). Admitting fn

P -a.s.→ f̂ and EQ[f̂ ] = 0, and in

view of 0 = limnEQ[fn], an application of the Scheffé lemma again yields fn
L1(Q)→ f̂ .

iv) Recall that Xn := Hn ·S are all Q̂ uniformly integrable martingales by Lemma 3.7. More-
over, Q̂ is a σ-martingale measure for S, so Xn = (Hn 1

ϕQ̂
) · (ϕQ̂ · S), where M = ϕQ̂ · S

is a Q̂ martingale and ϕQ̂ > 0 holds Q̂-a.s. The convergence (37) permits a straight-
forward application of a celebrated result by Yor [Yor78] on the closure of stochastic
integrals, which gives an integral representation with respect to M of the limit f̂ under
Q̂, f̂ = H∗ ·MT = Ĥ · ST , with Ĥ = H∗ϕQ̂, and the optimal process X̂ := Ĥ · S is also
a Q̂-uniformly integrable martingale.

v) When there is Q ∈ Me ∩ PV with EQ[f̂ ] = 0 convergence (34) applies and by virtue of
b.iii) the construction of Ĥ can be performed under Q instead of Q̂ and therefore Ĥ ∈
L(S, P ). To show Ĥ ∈ H, note we have already proved (35) so we only need convergence
in P -probability of the wealth process at intermediate times. The convergence in (37)
and the martingale property of the Xn and of Ĥ · S under Q imply

EQ[|Xn
t − Ĥ · St|] = EQ[|EQ[Xn

T − Ĥ · ST | Ft]|]
Jensen
≤ EQ[|Xn

T − Ĥ · ST |].
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Therefore, for any t, Xn
t → Ĥ · St in L1(Q) and therefore in Q-probability, which is

equivalent to convergence in P -probability. Thus, Ĥ ∈ H follows.

5 On the main assumptions and connections to literature

5.1 More details on Assumption 4.2

Condition (25) is automatically satisfied for utilities finite on a half-line. For utilities finite on R
it makes sure that the claim f̂ constructed via the Komlós theorem satisfies the budget constraint
EQ[f̂ ] ≤ x for every Q ∈M∩ PV .

To the best of our knowledge Assumption 4.2 is strictly weaker than any other assumption
used in the current literature for U finite on R. In current references, the typical assumption is
RAE(U), which implies vQ(y) < +∞ for all y > 0 and for all Q ∈ PV by [Sch01, Corollary 4.2],
whence Assumption 4.2 necessarily holds. In the non-smooth utility case studied by Bouchard et
al. [BTZ04], equivalent asymptotic elasticity conditions are imposed on the Fenchel conjugate V ,

lim
y→0+

|V ′−(y)|y
V (y)

< +∞, lim
y→+∞

|V ′+(y)|y
V (y)

< +∞. (45)

These again imply vQ(y) < +∞ for all y > 0 and for all Q ∈ PV , see [BTZ04, Lemma 2.3].
On the other hand, Biagini and Frittelli [BF05, BF08] do not require RAE(U), but instead

assume that vQ(y) is finite for all Q ∈ M ∩ PV and all y > 0, which is weaker than RAE(U)
but clearly stronger than Assumption 4.2 by virtue of Corollary 4.4. Since condition (26) is only
slightly stronger than the truly necessary condition (24) for utility functions finite on a half-line
Assumption 4.2 seems to be a very good choice for a unified treatment of utility maximization
problems, regardless of the domain of U .

5.2 A general duality formula and more details on Assumption 4.9

Duality theory applied in the Orlicz spaces context shows that the dual problem associated with
the utility maximization over a general Orlicz space may contain singular parts, see [BF08]. We
have tried to make this Section as self-contained as possible, but the reader can find more details
on the structure of the dual of a general Orlicz space in [RR91]. The dual variables z ∈ (LÛ )∗ have,
in general, a two-way decomposition z = zr + zs in regular and singular part, where zr only can
be identified with a measure absolutely continuous with respect to P . Let 〈·, ·〉 denote the bilinear
form for the dual system (LÛ , (LÛ )∗). The convex conjugate (IU )∗ : (LÛ )∗ → (−∞,+∞] of the
expected utility functional LÛ 3 k 7→ E[U(k)] := IU (k) is then defined as:

(IU )∗(z) := sup
k∈LÛ

{IU (k)− 〈z, k〉}

Recall that the polar set of a cone C ⊂ LÛ is the subset of (LÛ )∗ defined as C0 := {z ∈ (LÛ )∗ |
〈z, k〉 ≤ 0 for all k ∈ C}. The set of normalized elements in C0, i.e. those z which verify 〈z, IΩ〉 = 1,
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is denoted by C0
1 . Thus, when z ∈ C0

1 is regular is an absolutely continuous normalized measure
(with sign). The following Theorem is the key to understand the exact implications of Assumption
4.9. Its proof is basically identical [BF08, Theorem 21], but with our strategies H.

Theorem 5.1. Under Assumption 3.1 and 4.2, for any x ∈ (x, x̄) the following dual relation holds:

uH(x) = min
z∈C0

(IU )∗(z) = min
y>0,z∈C0

1

{
y(x+ ‖zs‖) + E

[
V

(
y
dzr
dP

)]}
(46)

where C := {k ∈ LÛ | k ≤ H · ST for some H ∈ H}. When there is a regular dual minimizer, the
above formula simplifies to

uH(x) = min
y>0,Q∈M∩PV

{
yx+ E

[
V

(
y
dQ

dP

)]}
. (47)

Proof. The first part of the proof goes along the same lines of the proof of Lemma 4.3 and thus we
give only a sketch. Suppose for simplicity x = 0. As in Lemma 4.3, uH(0) = supk∈C E[U(k)] and
the concave expected utility functional IU is proper and has a continuity point which belongs to
C. Then, Fenchel Duality Theorem applies and

uH(0) = sup
k∈C

E[U(k)] = min
z∈C0

(IU )∗(z) = min
z∈C0

{
E

[
V

(
dzr
dP

)]
+ ‖zs‖

}
(48)

where the second equality follows from the explicit expression of the convex conjugate (IU )∗(z) =
E[V (dzr

dP )]+‖zs‖ found by Kozek [Ko79]. Note that C ⊇ −LÛ+, so C0
1 consists of positive normalized

functionals. Assumption 4.2 implies in particular M∩ PV 6= ∅ and since 0 ∈ (x, x̄) Proposition
4.6 implies uH(0) ≤ uQ(0) < U(+∞) for any Q ∈ M ∩ PV . Thus uH(0) < U(+∞), so the dual
minimizers are non null and the dual problem can be re-written as

min
y>0,z∈C0

1

{
E

[
V

(
y
dzr
dP

)]
+ y‖zs‖

}
via the normalized dual variables in C0

1 , which proves (46). Any dual minimizer ẑ ∈ C0
1 clearly

satisfies the integrability condition E[V (y dẑr
dP )] < +∞ for some y. Since 〈ẑ, IΩ〉 = E[dẑr

dP IΩ] +
〈ẑs, IΩ〉 = 1, when ẑs = 0 this exactly means ẑ = ẑr ∈ PV . Suppose there exists a regular dual
minimizer. Then, the optimal dual value is reached upon C0

1 ∩ PV . Therefore,

uH(0) = min
y>0,Q∈C0

1∩PV

E

[
V

(
y
dQ

dP

)]
The Lemmata 3.7 and 6.4 rely on Assumption 3.1 to giveM∩PV = C0

1 ∩PV , whence the conclusion
(47) follows.

The above Theorem shows that the additional Assumption 4.9 amounts to ask ẑs = 0 for some
dual optimizer ẑ in (46). The next Corollary provides a simple sufficient condition which ensures
that any dual optimizer is regular.
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Corollary 5.2. Let U be finite on the whole R and let S ∈ SM Û

σ . Under Assumption 4.2, for any
x ∈ (x, x̄) the simpler dual relation (47) holds. In other words, Assumption 4.9 is automatically
satisfied if Assumption 4.2 holds and S ∈ SM Û

σ .

Proof. Note first that the condition S ∈ SM Û

σ may coincide with the generally weaker Assumption
3.1. This happens when LÛ = M Û , that is when U has left tail which goes to −∞ at a “moderate
speed”. In such case, the dual space (LÛ )∗ is free of singular parts – exactly as in the dual system
(Lp, Lq) when 1 ≤ p < +∞ – and Theorem 5.1 immediately yields the strong dual relation (47).

So, suppose S ∈ SM
Û

σ but M Û ( LÛ . The most intuitive way to show (47) is to note that
terminal values H · ST , H ∈ H, are in M Û , to set Č := {k ∈ M Û | k ≤ H · ST for some H ∈ H}
and to work with the dual system (M Û , (M Û )∗) instead of the full (LÛ , (LÛ )∗). The advantage is
that the elements of (M Û )∗ are regular. Then, an application of the duality arguments of Theorem
5.1 with C replaced by Č gives

uH(x) = min
y>0,Q∈(Č)0

1∩PV

{xy + E

[
V

(
y
dQ

dP

)]
}.

Now, (Č)0
1 consists of probabilities and as in the final part of the Theorem (Č)0

1 ∩ PV =M∩ PV ,
whence (47).

For the interested reader, we give also a proof, which is less intuitive as requires an analysis of
the behavior of singular elements of (LÛ )∗, but follows directly from the general dual formula (46).
When S ∈ SM Û

σ in fact C0
1 has a special structure:

C0
1 3 z = zr + zs ⇔ zr ∈ C0

1 .

This can be seen through the following steps: 1) C0 coincides in fact with {z ∈ (LÛ )∗+ | 〈z,H ·ST 〉 =
0 ∀H ∈ H}, where the equality holds as H is a vector space, and here H · ST ∈M Û ; 2) when U is
finite on R, Û is also finite everywhere and with such Young functions singular elements in the dual
space are null over the Orlicz heart: if z = zs then z is null over M Û ; 3) the Orlicz heart contains
L∞; 4) as a consequence z ∈ C0

1 iff z is a positive functional and

〈z, IΩ〉 = E

[
dzr
dP

]
+ 〈z, IΩ〉 = E

[
dzr
dP

]
= 1,

〈z,H · ST 〉 = E

[
dzr
dP

H · ST
]

+ 〈zs, H · ST 〉 = E

[
dzr
dP

H · ST
]

= 0 for all H ∈ H,

that is, iff zr ∈ C0
1 . Now, a simple inspection of the dual problem in (46) shows that if z ∈ C0

1 , its
regular part zr makes the dual function to be minimized smaller. Hence, any minimizer is regular,
i.e. we have shown (47).

5.3 Characterization of the optimal solution: x̄ = +∞, Q̂ not equivalent to P

When U is strictly monotone (a typical example is the exponential utility) but Q̂ is not equivalent
to P one can express the optimal terminal wealth f̂ using integrands in L(S, Q̂) but no longer using
the more natural strategies in L(S, P ). An approximation result for f̂ via integrands in L(S, P )
was first shown by Acciaio [A05], under the following technical conditions:
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i) U is differentiable, monotone, strictly concave and it satisfies RAE(U) (22, 23);

ii) S is locally bounded;

iii) the stopping times of the filtration are predictable.

Acciaio builds a sequence of integrals H̃n · ST , whose expected utility tends to the optimum, and
which satisfies (x+ H̃n · ST )→ f̂ P -a.s.

Our setup allows us to remove the technical conditions above while proving P -a.s. convergence
of terminal wealths in item b.i) of Theorem 4.10 and a stronger L1(P ) convergence of utilities in
item b.ii), which implies convergence of expected utility.

6 Auxiliary results

Lemma 6.1. Let Ψ : R → (−∞,+∞] be a convex, lower semicontinuous function. For a given
sequence (xn)n, if dn ∈ R+,

∑
n≥1 dn = 1 and

∑
n≥1 dnxn converges, then

Ψ(
∑
n≥1

dnxn) ≤ lim inf
N

N∑
n=1

dnΨ(xn).

When Ψ is bounded from below, the above inequality simplifies to Ψ(
∑

n≥1 dnxn) ≤
∑

n≥1 dnΨ(xn).

Proof. From convexity of Ψ,

Ψ(
N∑
n=1

dnxn) ≤ (1−
N∑
n=1

dn)Ψ(0) +
N∑
n=1

dnΨ(xn)

WhenN ↑ +∞,
∑N

n=1 dnxn →
∑

n≥1 dnxn so that lower semicontinuity of Ψ implies Ψ(
∑

n≥1 dnxn) ≤
lim infN→+∞Ψ(

∑N
n=1 dnxn). The above displayed chain shows that such lim inf is dominated by

lim infN
∑N

n=1 dnΨ(xn). Finally, when Ψ is bounded from below, the latter series admits limit
(finite or +∞).

Lemma 6.2. Let Q � P . If (Zn dQdP )n is P -uniformly integrable, then (Zn)n is Q-uniformly
integrable.

Proof. This intuitive Lemma is a consequence of the Dunford-Pettis criterion: A subset K ⊂ L1 is
uniformly integrable if and only if it is relatively compact for the weak topology. However, here is
an elementary proof. For every r > 0∫

{|Zn|>r} |Z
n|dQ ≤

∫
{|Zn|>r, dQ

dP
> 1√

r
} |Z

n|dQ+
∫
{ dQ

dP
≤ 1√

r
} |Z

n|dQ

≤
∫
{|Zn| dQ

dP
>
√
r} |Z

n|dQdP dP +
∫
{0< dQ

dP
≤ 1√

r
} |Z

n|dQdP dP

whence

lim
r→+∞

sup
n

∫
{|Zn|>r}

|Zn|dQ ≤ lim
r→+∞

sup
n

(∫
{|Zn| dQ

dP
>
√
r}
|Zn|dQ

dP
dP +

∫
{0< dQ

dP
≤ 1√

r
}
|Zn|dQ

dP
dP

)
= 0
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where the last equality follows from P -uniform integrability of (Zn dQdP )n and from the fact that
{0 < dQ

dP ≤
1√
r
} has P -probability which tends to 0 when r goes to +∞.

Proof of Lemma 4.3. uQ(x) < +∞ follows from Fenchel inequality and from finite entropy of Q: if
X satisfies EQ[X] ≤ x, E[U(X)] ≤ xyQ + vQ(yQ), with yQ from Definition 3.4. The dual formula
to be proved is actually a straightforward consequence of the Fenchel duality formula and of the
results obtained by Rockafellar in the 1970-ies on conjugates of functionals in integral form (here,
expected utility). However, we give a different proof based on Orlicz duality, since it is useful for
Theorem 5.1 where the Orlicz setup is necessary.

The utility maximization problem supEQ[X]≤xE[U(X)] can be rewritten over the utility-induced

Orlicz space LÛ (P ) defined in (2.2). This can be done because: i) the supremum will be reached
over those X such that E[U(X)] is finite, so that −X− ∈ LÛ (P ); ii) if E[U(−X−)] > −∞ then
the truncated sequence Xn = X ∧ n is also in the Orlicz space and by Fatou Lemma in the limit
it delivers the same expected utility from X; iii) LÛ (P ) ⊆ L1(Q), which follows from Q ∈ PV ,
from (7) and Fenchel inequality (this also implies Q is in the topological dual of LÛ ). Therefore,
uQ(x) = sup

X∈LÛ ,EQ[X]≤xE[U(X)]. On LÛ , the concave functional IU (X) := E[U(X)] is proper:

X ∈ LÛ ⇒ X ∈ L1(P ) so that E[U(X)]
Jensen
≤ U(E[X]) < +∞.

Moreover, IU has a continuity point which belongs to the maximization domain D = {X ∈ LÛ |
EQ[X] ≤ x}. This is more subtle to check, but it can be proved that the set

B := {X ∈ LÛ | E[U(−(1 + ε)X−)] > −∞ for some ε > 0},

coincides with the interior of the proper domain of IU (see [BFG08, Lemma 4.1] modulo a sign
change), where IU is automatically continuous by the Extended Namioka Theorem (see e.g. [BF09]).
Then, as x > x, the constant x is in B ∩D.
The dual formula (28) is thus a consequence of Fenchel Duality Theorem [Bre83, Chapter 1], of the
fact that the polar set of the constraint C := {X | EQ[X] ≤ x} ⊇ −L∞+ , i.e. the set {µ ∈ (LÛ )∗ |
µ(X) ≤ x ∀X ∈ C}, by the Bipolar Theorem is the positive ray {yQ | y ≥ 0}, and of the expression
of the convex conjugate (IU )∗ of IU over the variables y dQdP : (IU )∗(y dQdP ) = E[V (y dQdP )] = vQ(y).

Proposition 6.3. Suppose (kn)n is a sequence of random variables such that (E[U(kn)])n is
bounded from below and assume (EQ̃[kn])n is bounded from above for some Q̃ ∈ PV satisfying
the Inada condition (26). Then the following statements hold:

i) U(kn) is L1(P )-bounded;

ii) kn is L1(Q)-bounded for any Q ∈ PV for which EQ[kn] is bounded from above. The indirect
utility uQ need not satisfy the Inada condition (26).

Proof. In this proof c refers to a constant, not necessarily the same on each line.

30



i) By hypothesis there is 0 < y1 < y2 such that vQ̃(yi) < +∞ for i = 1, 2. The Fenchel inequality
implies

E[U(−k−n )] ≤ vQ̃(y2)− y2EQ̃[k−n ], (49)

E[U(k+
n )] ≤ vQ̃(y1) + y1EQ̃[k+

n ], (50)

which yields
E[U(kn)] ≤ c+ y1EQ̃[kn]− (y2 − y1)EQ̃[k−n ]. (51)

By assumption, (EQ̃[kn])n is bounded from above and (E[U(kn)])n is bounded from be-
low, whereby one concludes from (51) and from y2 − y1 > 0 that (EQ̃[k−n ])n is bounded
and consequently (EQ̃[k+

n ])n is also bounded. Finally, by (50) the sequence (E[U(k+
n )])n

is bounded. Since U(k+
n ) ≥ 0, U(−k−n ) ≤ 0 and (E[U(kn)])n is bounded from below the

L1(P )-boundedness of U(kn) follows.

ii) The inequality (49) applies for any Q ∈ PV , i.e. there is yQ > 0 such that

E[U(−k−n )] ≤ c− yQEQ[k−n ]. (52)

By i) the sequence (E[U(−k−n )])n is bounded from below whereby (EQ[k−n ])n must be bounded.
As in i), this and boundedness from above of the expectations (EQ[kn])n ensure (EQ[k+

n ])n is
also bounded, which completes the proof.

Lemma 6.4. Let Q ∈ PV verify EQ[XT ] = 0 for all X = H · S,H ∈ H. Then Q ∈M∩ PV .

Proof. We just need to show Q ∈ M. Consider S ∈ S Û
σ \ S Û

loc, fix any I-localizing ϕ from
Assumption 3.1 and let S′ = ϕ ·S. For any A ∈ Fs, s ∈ [0, T [, t > s let H = IAI]s,t]ϕ, which is in H.
Since H ·S = (IAI]s,t]) ·S′ and EQ[H ·ST ] = EQ[IA(S′t−S′s)] = 0, for all A ∈ Fs, s < t, S′ is a then
Q-martingale, and hence Q ∈M. For S ∈ S Û

loc we proceed as above, replacing ϕ with I[0,τn].
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