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Abstract

In the present paper we introduce a generalization of the well–known Chu–Vandermonde

identity. In particular, by inductive reasoning, the identity is extended to a multivariate setup

in terms of the fourth Lauricella function. The main interest in such generalizations derives

from the species diversity estimation and, in particular, prediction problems in Genomics

and Ecology within a Bayesian nonparametric framework.
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1 Introduction

Among elegant results implied by the binomial theorem, one of the most attractive and widely

known results is Vandermonde’s identity, named after Alexandre–Théophile Vandermonde:(
n+m

q

)
=

q∑
q1=0

(
n

q1

)(
m

q − q1

)
(1)

for n,m, q ∈ N0. Combinatorially, we can think of this identity as related to the following

illustrative example: a group of people consists of n left–handed and m right–handed persons,

and we are trying to establish how many combinations exist such that there are exactly q women

in the group. We can categorize each possible arrangement into one of r + 1 categories. The

r+ 1 categories are indexed from 0 to r, and an arrangement falls under category q1 if there are

exactly q1 left–handed women, and the remaining women (q−q1) are right-handed. In particular,

the
(

n
q1

)(
m

q−q1

)
part merely counts how many arrangements fall under category q1. The sum adds

up all possible arrangements which fall under one of the categories. From a probabilistic point

of view, the Vandermonde identity is related to the hypergeometric probability distribution. In
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particular, when both sides of (1) are divided by
(
n+m

q

)
, then for each q1,

(
n
q1

)(
m

q−q1

)
/
(
n+m

q

)
is

interpreted as the probability that exactly q1 objects are defective in a sample of q distinctive

objects drawn from an urn with n + m objects in which n are defective, i.e. there are
(
n+m

q

)
possible samples (without replacement); there are

(
n
q1

)
ways to obtain q1 defective objects and

there are
(

m
q−q1

)
ways to fill out the rest of the sample with non-defective objects.

The Vandermonde identity can be generalized to non-integer arguments. In this case, it is

known as the Chu–Vandermonde’s identity and takes on the form

(a1 + a2)q =
q∑

q1=0

(
q

q1

)
(a1)q1(a2)(q−q1) (2)

for any complex-valued a1 and a2 with (a)n being the Pochhammer symbol for the ascending

(or rising) factorial of a of order n, i.e. (a)n := a(a+1) · · · (a+n−1) =
∏n−1

i=0 (a+ i) (see Comtet

[2] and references therein).

In this paper we introduce a new generalization of the Chu–Vandermonde identity. In par-

ticular, the multivariate version of this new generalization of the Chu–Vandermonde identity is

then derived by inductive reasoning in terms of the fourth Lauricella function. The motivation

for studying such a generalization of the Chu–Vandermonde identity stems from applications

to species diversity estimation and, in particular, to prediction problems in Genomics. In fact,

by adopting a Bayesian nonparametric approach for predicting the number of new genes to

be discovered in sequencing a cDNA library, the determination of suitable estimators crucially

relies on obtaining closed form solutions for multivariate convolutions generalizing the one of

Chu–Vandermonde; see Lijoi et al. [11] and reference therein. The proposed results and its

application in Bayesian nonparametrics highlights once again the interplay between Bayesian

nonparametrics on one side and the theory of Lauricella functions on the other. Further exam-

ples of this close connection can be found in Regazzini [18], Lijoi and Regazzini [12] and James

[7] where functionals of the Dirichlet process are considered. It is worth noting that there is

growing literature concerning Bayesian nonparametric approaches to species sampling and re-

lated prediction and estimation problems. See, for instance, [13, 14, 15, 17] and [6] for a recent

review of the discipline.

2 Generalized Chu–Vandermonde identity

The topic of multiple hypergeometric functions was first approached, in a systematic way, by

Lauricella [8] at the end of the 19th century and further investigated by Appell and Kampé de

Fériet [1]. See the comprehensive and stimulating monograph by Exton [3]. The original paper
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by Lauricella [8] proceeded to define and study four n-dimensional functions which bear his

name and are usually denoted by F (n)
A , F (n)

B , F (n)
C and F (n)

D , respectively. In particular, here we

focus on the fourth Lauricella function, which, for any n ∈ N is characterized by the following

Laplace-type integral representation

F
(n)
D (a, b1, . . . , bn; c;x1, . . . , xn) =

1
Γ(b1) · · ·Γ(bn)

(3)

×
∫

(R+)n

e−
Pn

i=1 ti

n∏
i=1

tbi−1
i 1F1

(
a; c;

n∑
i=1

xiti

)
dt1 · · · dtn.

for any a, c ∈ R and any b1, . . . , bn ∈ R+, with Γ being the Gamma function and 1F1 being the

confluent hypergeometric function of the first kind. Observe that if n = 2, F (n)
D reduces to the

Appell hypergeometric function F1, whereas, if n = 1, it becomes the Gauss hypergeometric

function 2F1 which has been the starting point in the definition of the F (n)
D .

Proposition 2.1 For any q ≥ 1, w1, w2 ∈ R+ and a1, a2 > 0

q∑
q1=0

(
q

q1

)
wq1

1 w
q−q1
2 (a1)q1(a2)(q−q1) = wq

2 (a)q 2F1

(
−q, a1; a;

w2 − w1

w2

)
(4)

where a := a1 + a2.

Proof. Several proofs can be given by using different known characterizations of the Gauss

hypergeometric function 2F1. Here, a straightforward proof is given by the direct application of

two known representation for the Gauss hypergeometric function 2F1: i) for any a, b ∈ R and

n ∈ N

2F1(a, b; b− n; z) = (1− z)−a−n
n∑

k=0

(−n)k(b− a− n)kz
k

(b− n)kk!
(5)

and ii) for any a, b ∈ R and n ∈ N

2F1(a, b; b− n; z) =
(−1)n(a)n

(1− b)n
(1− z)−a−n

2F1(−n, b− a− n; 1− a− n; 1− z). (6)

Now set n := q, b := 1−a2, a := −a2− q+ 1−a1, k := q1 and z := w1/w2 in (5) and (6). Then,

by using the representation (5) we obtain the relation

q∑
q1=0

(
q

q1

)
wq1

1 w
q−q1
2 (a1)q1(a2)(q−q1) = 2F1

(
a1,−q;−a2 − q + 1;

w1

w2

)
wq

2(a2)q.

and by resorting to (6) we have

2F1

(
a1,−q; 1− a2 − q;

w1

w2

)
=

(a1 + a2)q

(a2)n
2F1

(
−q, a1; a1 + a2;

w2 − w1

w2

)
.
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which implies (4). �

Note that the Chu–Vandermonde identity (2) is immediately recovered from (4) by setting

w1 = w2 = 1. The following proposition, obtained by inductive reasoning from (4), provides

the multivariate extension of the identity given in Proposition 2.1 and represents the main

result of the paper. In fact, as concisely illustrated in Section 3, it represents a crucial tool for

determining computable expressions for the estimators of interest and may turn out to be useful

also in different applied contexts.

Proposition 2.2 For any q ≥ 1, j ≥ 1 let Dj,q := {(q1, . . . , qj) ∈ {1, . . . , q}j :
∑j

i=1 qi = q} and

let w1, . . . , wj ∈ R+ and a1, . . . , aj > 0. Then

∑
(q1,...,qj)∈Dj,q

(
q

q1, . . . , qj

) j∏
i=1

wqi
i (ai)qi (7)

= wq
j (a)qF

(j−1)
D

(
−q, a1, . . . , aj−1, a;

wj − w1

wj
, . . . ,

wj − wj−1

wj

)
where a :=

∑j
i=1 ai.

Proof. Using Equation (4), the proof follows by inductive reasoning. Suppose the identity

holds true for j − 1, i.e.

∑
(q1,...,qj−1)∈Dj−1,q

(
q

q1, . . . , qj−1

) j−1∏
i=1

wqi
i (ai)qi

=
∑

(q1,...,qj−1)∈Dj,q

q!
q1! · · · qj−1!

w
qj−1

j−1 (aj−1)qj−1

j−2∏
i=1

wqi
i (ai)qi

= wq
j−1(a− aj)qF

(j−2)
D

(
−q, a1, . . . , aj−2, a− aj ;

wj−1 − w1

wj−1
, . . . ,

wj−1 − wj−2

wj−1

)
and we show it holds for j as well. Observe that

∑
(q1,...,qj)∈Dj,q

q!
q1! · · · qj !

j∏
i=1

wqi
i (ai)qi

=
q∑

qj=0

q!
qj !(q − qj)!

w
qj

j (aj)qj

∑
(q1,...,qj−1)∈Dj−1,q−qj

(q − qj)!
q1! · · · qj−1!

j−1∏
i=1

wqi
i (ai)qi .

For any n ∈ N let ∆(n) := {(u1, . . . , un) : ui ≥ 0, i = 1, . . . , n,
∑n

i=1 ui ≤ 1} be the n–dimensional

simplex; then, we can write

∑
(q1,...,qj)∈Dj,q

q!
q1! · · · qj !

j∏
i=1

wqi
i (ai)qi =

q∑
qj=0

q!
qj !(q − qj)!

w
qj

j (aj−1)qjw
q−qj

j−1 (a− aj)(q−qj)
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× F (j−2)
D

(
−q + qj , a1, . . . , aj−2, a− aj ;

wj−1 − w1

wj−1
, . . . ,

wj−1 − wj−2

wj−1

)

=
Γ(a− aj)

Γ(a1) · · ·Γ(aj−1)

∫
∆(j−2)

j−2∏
i=1

zai−1
i

(
1−

j−2∑
i=1

zi

)aj−1−1

×
q∑

qj=0

q!
qj !(q − qj)!

w
qj

j (aj)qjw
q−qj

j−1 (a− aj)(q−qj)

(
1−

j−2∑
i=1

zi
wj−1 − wi

wj−1

)q−qj

dz1 · · · dzj−2

=
Γ(a− aj)

Γ(a1) · · ·Γ(aj−1)

∫
∆(j−2)

j−2∏
i=1

zai−1
i

(
1−

j−2∑
i=1

zi

)aj−1−1

×
q∑

qj=0

q!
qj !(q − qj)!

wq
j (aj)qj

×
(

1
wj

)q−qj
[
wj −

j−2∑
i=1

zi(wj − wi)−

(
1−

j−2∑
i=1

zi

)
(wj − wj−1)

]q−qj

(a− aj)(q−qj)dz1 · · · dzj−2

=
Γ(a− aj)

Γ(a1) · · ·Γ(aj−1)

∫
∆(j−2)

j−2∏
i=1

zai−1
i

(
1−

j−2∑
i=1

zi

)aj−1−1

×

(
1−

j−2∑
i=1

zi
wj − wi

wj
−

(
1−

j−2∑
i=1

zi

)
wj − wj−1

wj

)q

×
q∑

qj=0

q!
qj !(q − qj)!

w
q−qj

j (aj)qj

 −wj∑j−2
i=1 zi

wj−wi

wj
+
(

1−
∑j−2

i=1 zi

)
wj−wj−1

wj
− 1

qj

× (a− aj)(q−qj)dz1 · · · dzj−2.

By applying (4), from the last equation we obtain

Γ(a− aj)
Γ(a1) · · ·Γ(aj−1)

wq
j (a)q

∫
∆(j−2)

j−2∏
i=1

zai−1
i

(
1−

j−2∑
i=1

zi

)aj−1−1

×

(
1−

j−2∑
i=1

zi
wj − wi

wj
−

(
1−

j−2∑
i=1

zi

)
wj − wj−1

wj

)q

× 2F1

−q, aj ; a;

∑j−2
i=1 zi

wj−wi

wj
+
(

1−
∑j−2

i=1 zi

)
wj−wj−1

wj∑j−2
i=1 zi

wj−wi

wj
+
(

1−
∑j−2

i=1 zi

)
wj−wj−1

wj
− 1

 dz1 · · · dzj−2

or, equivalently,

Γ(a− aj)
Γ(a1) · · ·Γ(aj−1)

wq
j (a)q

∫
∆(j−2)

j−2∏
i=1

zai−1
i

(
1−

j−2∑
i=1

zi

)aj−1−1

× 2F1

(
−q, a− aj ; a;

j−2∑
i=1

zi
wj − wi

wj
+

(
1−

j−2∑
i=1

zi

)
wj − wj−1

wj

)
dz1 · · · dzj−2.
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Since a− aj > 0 and

1 > max

{
0,<

(
j−2∑
i=1

zi
wj − wi

wj
+ (wj − wj−1)

(
1−

j−2∑
i=1

zi

))}
then we can apply equation 7.621.4 in Gradshteyn and Ryzhik [5] in order to obtain the expres-

sion

1
Γ(a1) · · ·Γ(aj−1)

wq
j (a)q

∫ +∞

0
e−zj−1z

a−aj−1
j−1

∫
∆(j−2)

j−2∏
i=1

zai−1
i

(
1−

j−2∑
i=1

zi

)aj−1−1

× 1F1

(
−q; a; zj−1(

j−2∑
i=1

zi
wj − wi

wj
+ (1−

j−2∑
i=1

zi)
wj − wj−1

wj
)

)
dz1 · · · dzj−2dzj−1

Finally, using the change of variable yi = zizj−1 for i = 1, . . . , j − 2 and yj−1 = zj−1 we obtain

the expression

1
Γ(a1) · · ·Γ(aj−1)

wq
j (a)q

∫ +∞

0
e−yj−1

∫
B(yj)

j−2∏
i=1

yai−1
i

(
yj−1 −

j−2∑
i=1

yi

)aj−1−1

× 1F1

(
−q; a;

j−2∑
i=1

yi
wj − wi

wj
+

(
yj−1 −

j−2∑
i=1

yi

)
wj − wj−1

wj

)
dy1 · · · dyj−1

where

B(yj) =

{
(y1, . . . , yj−1) : yi ≥ 0,

j−1∑
i=1

yi ≤ yj

}
and using the change of variable ui = yi per i = 1, . . . , j − 2 e uj−1 = yj−1 −

∑j−2
i=1 yi we have

wq
j (a)q

Γ(a1) · · ·Γ(aj−1)

∫
(R+)j−1

e−
Pj−1

i=1 ui

j−1∏
i=1

uai−1
i 1F1

(
−q; a;

j−1∑
i=1

ui
wj − wi

wj

)
du1 · · · duj−1

and the proof is completed by applying the identity (3). �

In the following corollary identity (7) in Proposition 2.2 is specialized to the setup arising in

the derivation of the estimators.

Corollary 2.1 For any q ≥ 1, j ≥ 1 let w1, . . . , wj ∈ R+, a1, . . . , aj > 0 and p1, . . . , pj ∈ N.

Then ∑
(q1,...,qj)∈Dj,q

(
q

q1, . . . , qj

) j∏
i=1

wqi
i (ai)(qi+pi) (8)

= wq
j (p+ a)q

j∏
i=1

(ai)piF
(j−1)
D

(
−q, a1, . . . , aj−1, p+ a;

wj − w1

wj
, . . . ,

wj − wj−1

wj

)
where a :=

∑j
i=1 ai and p :=

∑j
i=1 pi.
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3 Application to species diversity estimation

We first introduce the framework and then highlight the usefulness of the multivariate generalized

Chu–Vandermonde identity derived in Section 2. Let (Xn)n≥1 be a sequence of exchangeable

random variables defined on some probability space (Ω,F ,P) with values in a complete and

separable metric space X equipped with the corresponding Borel σ–field X . Then, by de

Finetti’s representation theorem, there exists a random probability measure P̃ such that given P̃ ,

a sample X1, . . . , Xn from the exchangeable sequence is independent and identically distributed

with distribution P̃ . That is, for every n ≥ 1 and any A1, . . . , An ∈X

P(X1 ∈ A1, . . . , Xn ∈ An|P̃ ) =
n∏

i=1

P̃ (Ai).

By assuming the random probability measure P̃ to be almost surely discrete, ties will appear

in the sample with positive probability, namely (X1, . . . , Xn) will contain Kn ≤ n distinct

observations X∗1 , . . . , X
∗
Kn

with frequencies Nn := (N1, . . . , NKn) such that
∑k

j=1Nj = n.

The joint distribution of Kn and Nn provides the partition distribution of the exchangeable

sample X1, . . . , Xn and plays an important role in a variety of research areas such as popula-

tion genetics, machine learning, Bayesian nonparametrics, combinatorics, excursion theory and

statistical physics. See Pitman [16] for an exhaustive and stimulating account. In particular,

recent applications of exchangeable partition distributions concern species sampling problems,

which gained a renewed interest due to their importance in Genomics where the population is

typically a cDNA library and the species are unique genes which are progressively sequenced;

see Lijoi et al. [9, 11, 10] and references therein. Specifically, given an exchangeable sample

(X1, . . . , Xn) from some almost surely discrete random probability measure P̃ consisting of a

collection of Kn = j distinct species with labels (X∗1 , . . . , X
∗
j ) and frequencies (n1, . . . , nj), the

main interest relies in estimating the number of distinct species to be observed in a hypothetical

additional sample of size m.

Formally, let X1, . . . , Xn be the so–called “basic sample” of size n containing Kn distinct ob-

servations with frequencies Nn and corresponding to the typically available information. Denote

by K
(n)
m = Km+n −Kn the number of new partition sets C1, . . . , CK

(n)
m

generated by the addi-

tional sample Xn+1, . . . , Xn+m. Furthermore, if C := ∪K
(n)
m

i=1 Ci whenever K(n)
m ≥ 1 and C ≡ ∅ if

K
(n)
m = 0, we set L(n)

m := card({Xn+1, . . . , Xn+m} ∩C) as the number of observations belonging

to the new clusters Ci. It is clear that L(n)
m ∈ {0, 1, . . . ,m} and that m − L

(n)
m observations

belong to the sets defining the partition of the original n observations. According to this, if

S
L

(n)
m

:= (S
1,L

(n)
m
, . . . , S

K
(n)
m ,L

(n)
m

), then the distribution of S
L

(n)
m

conditional on Ln
m = s, is sup-

ported by all vectors (s1, . . . , sK
(n)
m

) of positive integers such that
∑K

(n)
m

i=1 si = s. The remaining

7



m−L(n)
m observations are allocated to the “old” Kn clusters with vector of nonnegative frequen-

cies R
m−L

(n)
m

:= (R
1,m−L

(n)
m
, . . . , R

Kn,m−L
(n)
m

) such that
∑Kn

i=1Ri,m−L
(n)
m

= m − L(n)
m . Based on

this setup of random variables, the issue we address consists in evaluating, conditionally on the

partition induced by the basic sample of size n, the probability of sampling in m further draws

a certain number of new partition groups (species), i.e.

P(K(n)
m = k|X1, . . . , Xn) (9)

=
∑

Pm,k+j

P
„

L
(n)
m =s,Kn=j,Nn=(n1,...,nKn ),K

(n)
m =k,S

L
(n)
m

=(s1,...,s
K

(n)
m

),R
m−L

(n)
m

=(r1,...,r
Kn

)

«
P(Kn = j,Nn = (n1, . . . , nKn))

where Pm,j+k denotes the set of all allocations of m observations into q ≤ m classes, with

q ∈ {k, . . . , k + j}; in other terms k observations are new species and q − k ≤ j coincide with

some of the j already observed distinct species in X1, . . . , Xn. In particular, expression (9) can

be written as

P(K(n)
m = k|X1, . . . , Xn)∝

m∑
s=k

(
m

s

) ∑
(r1,...,rj)∈Dj,n

(
m− s

r1, . . . , rj

)
1
k!

∑
(s1,...,sk)∈D∗k,s

(
s

s1, . . . , sk

)

×P
„

L
(n)
m =s,Kn=j,Nn=(n1,...,nKn ),K

(n)
m =k,S

L
(n)
m

=(s1,...,s
K

(n)
m

),R
m−L

(n)
m

=(r1,...,r
Kn

)

«

with

D∗k,s := {(s1, . . . , sk) : si ≥ 1 for i = 1, . . . , k,
k∑

i=1

si = s}.

At this point the usefulness of Corollary 2.1 becomes evident. Consider a species sampling

problem characterized by a joint distribution P(L(n)
m = s,Kn = j,Nn = (n1, . . . , nKn),K(n)

m =

k,S
L

(n)
m

= (s1, . . . , sK
(n)
m

),R
m−L

(n)
m

= (r1, . . . , rKn)) assuming the following quite general form,

which includes all explicitly known instances,

P
„

L
(n)
m =s,Kn=j,Nn=(n1,...,nKn ),K

(n)
m =k,S

L
(n)
m

=(s1,...,s
K

(n)
m

),R
m−L

(n)
m

=(r1,...,rKn )

«

= g(n,m, j, k)
j∏

i=1

wri
i (ai)(ni+ri)

k∏
i=1

fi(m, k, si)

for some positive functions g(·) and fi(·) for i = 1, . . . , k and for some w1, . . . , wj ∈ R+ and

a1, . . . , aj ∈ R+. Then the identity (8) provided Corollary 2.1 can be usefully applied in order

to obtain closed form solutions for the multivariate convolutions generalizing the one of Chu–

Vandermonde, i.e.

P(K(n)
m = k|X1, . . . , Xn) (10)

8



∝
m∑

s=k

(
m

s

) ∑
(r1,...,rj)∈Dj,n

(
m− s

r1, . . . , rj

)
1
k!

∑
(s1,...,sk)∈D∗k,s

(
s

s1, . . . , sk

)

× g(n,m, j, k)f(m, k, (s1, . . . , sk))
j∏

i=1

wri
i (ai)(ni+ri)

= g(n,m, j, k)
m∑

s=k

(
m

s

)
wm−s

j (n+ a)(m−s)

j∏
i=1

(ai)(ni)

× F (j−1)
D

(
−m+ s, a1, . . . , aj−1, n+ a;

wj − w1

wj
, . . . ,

wj − wj−1

wj

)
× 1
k!

∑
(s1,...,sk)∈D∗k,s

(
s

s1, . . . , sk

) k∏
i=1

fi(m, k, si) (11)

With reference to the sum over the set of partitions D∗k,s it has to be evaluated according to

the analytic form of the functions fi(m, k, si) for i = 1, . . . , k. In particular, if fi(m, k, si) =

f(m, k, si) for i = 1, . . . , k, for some positive function f(·), then it is well–known that

1
k!

∑
(s1,...,sk)∈D∗k,s

(
s

s1, . . . , sk

) k∏
i=1

f(m, k, si) = Bs,k(v•)

where Bs,k(v•) is the (s, k)–partial Bell polynomial with weight sequence v• := {vi, i ≥ 1} such

that vi := h(m, k, i) for i ≥ 1; see Comtet [2]. For some examples, where (11) can be evaluated

explicitly leading to a readily applicable estimator of K(n)
m |Kn = j we refer to Lijoi et al. [9, 11]

and Favaro et al. [4].
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