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Abstract

This paper analyzes preferences in the presence of ambiguity that are rational in the

sense of satisfying the classical ordering condition as well as monotonicity. Under technical

conditions that are natural in an Anscombe-Aumann environment, we show that even for

such general preference model it is possible to identify a set of priors, as first envisioned

by Ellsberg (1961). We then discuss ambiguity attitudes, as well as unambiguous acts and

events, for the class of rational preferences we consider.
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1 Introduction

Daniel Ellsberg’s seminal paper (1961) ignited a large and growing literature aimed at devel-

oping decision models that accommodate a concern for ambiguity. Among the first, and most

prominent contributions, Schmeidler (1989)’s axiomatization of Choquet-expected utility (CEU)

and Gilboa and Schmeidler (1989)’s foundations for maxmin-expected utility (MEU) with multi-

ple priors occupy a special place. Furthermore, applications in several areas of economic theory

have demonstrated their usefulness.

More recently, several influential contributions have proposed decision models that over-

come specific perceived limitations of the CEU and MEU models. Two behavioral aspects have

received special attention. First, both the CEU and the MEU model satisfy Certainty Indepen-

dence: the main implication of this axiom is that preferences and, in particular, ambiguity atti-

tudes are unaffected by changes in the “scale” and “location” of utilities. To fix ideas, suppose

the individual is risk-neutral, and assume that an individual is just indifferent between receiv-

ing $3 dollars for sure, and participating in a bet that yields $10 dollars if a certain ambiguous

event obtains, and 0 otherwise. Then, Certainty Independence also implies that the individual

would be indifferent: (i) between receiving $300 for sure, and participating in a bet that yields

$1,000 if the event obtains and 0 otherwise; and also (ii) between receiving $1,003 for sure and

participating in a bet that yields $1,010 if the event obtains and $1,000 otherwise. Analogies

with choice under risk suggest that subjects may reasonably violate either one or both of these

conclusions.

Second, the MEU model is characterized by a specific form of dislike for ambiguity, for-

malized by the “Uncertainty Aversion” axiom due to Schmeidler (1989). This axiom delivers

quasi-concavity of the functional representing preferences, and hence ensures a convenient

mathematical structure as shown by Cerreia-Vioglio, Maccheroni, Marinacci, and Montrucchio

(2008). At the same time, this axiom imposes restrictions on preferences which one may want

to dispense with (see Ghirardato and Marinacci (2002) for a theoretical discussion, or Baillon,

L’Haridon, and Placido (forthcoming) for an experimental perspective).

Recent decision-theoretic models relax the Certainty Independence and Uncertainty Aver-

sion axioms in specific ways. For instance, variational preferences (Maccheroni, Marinacci, and
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Rustichini, 2006) relax invariance to the scale of utilities, but retain invariance to their location,

as well as Uncertainty Aversion; the model studied by Cerreia-Vioglio et al. (2008) drops Cer-

tainty Independence entirely, but retains Uncertainty Aversion; Grant and Polak (2007) instead

drop Certainty Independence, and weaken Uncertainty Aversion. Siniscalchi (2009) retains in-

variance to the location of utilities, but drops scale invariance, as well as Uncertainty Aversion

entirely.

This paper drops both Certainty Independence and Uncertainty Aversion. We consider pref-

erences that only satisfy what in our view are the basic tenets of rationality under ambiguity:

weak order and monotonicity. We call these preferences rational. Since they are a weak order,

they are rational in the usual sense of utility theory. At the same time, the monotonicity assump-

tion guarantees consistency with state-wise dominance, which in turn annihilates the relative

effects of ambiguity. All the models discussed above, and several others, belong to this class of

preferences. In particular, this class includes the MBC preferences introduced by Ghirardato

and Siniscalchi (2010, GS henceforth) and the Uncertainty Averse Preferences introduced by

Cerreia-Vioglio et al. (2008).

We first show that, for such preferences, a set of priors can be obtained following the ap-

proach of Ghirardato, Maccheroni, and Marinacci (2004, GMM henceforth); i.e., as a represen-

tation of the derived unambiguous preference relation.1 Thus, in a specific behavioral sense,

one can identify probabilities that are significant for the decision maker’s choices, regardless of

the representation of her preferences, which following GS we call “relevant priors.” We carry

on this task in an Anscombe-Aumann setting, and under two additional assumptions: Risk

Independence and Archimedean continuity. We call the rational preferences satisfying these

additional axioms MBA preferences (for Monotonic, Bernoullian, and Archimedean). We thus

directly generalize the results of GMM and Nehring (2002), and provide a basis over which both

the analysis of GS and most results of Cerreia-Vioglio et al. (2008, C3M henceforth) rest.

We then leverage this general representation result to analyze the individual’s perception of

ambiguity and her attitudes toward it. MBA preferences provide a relatively “neutral” ground

1Nehring (2001) and Gilboa, Maccheroni, Marinacci, and Schmeidler (2010) derive a set of priors from a separate

relation, which they interpret as embodying “objective rationality,” and impose consistency conditions between

such relation on the decision maker’s preference relation.
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for the study of these issues, precisely because they do not incorporate any specific assumption

about invariance and/or attitudes toward ambiguity. We show that MBA preferences admit a

“generalized Hurwicz (or α-MEU) representation,” thus extending an analogous result estab-

lished by GMM for preferences satisfying Certainty Independence. This representation pro-

vides a useful tool to study, for instance, comparative ambiguity attitudes. Then, we discuss two

different notions of ambiguity aversion and the relations between them. Finally, we propose a

behavioral definition of unambiguous acts, and characterize it in terms of the set of priors we

identify. We then define unambiguous events, and again provide a functional characterization.

Related literature

As outlined above, the main contributions of this paper are: 1) showing that the (arguably)

most general rationality assumptions for choice under ambiguity guarantee the existence of a

set of priors, first envisioned by Ellsberg (1961) and modeled in the seminal papers of Gilboa

and Schmeidler (1989) and Bewley (2002); 2) the discussion of ambiguity attitudes in such gen-

eral context; 3) the characterization of unambiguous acts and events and some consequences

thereof.

In respect to the first contribution, our debt to the GMM paper is obvious. The added con-

tribution here is clearly in showing how (most of) the representation results of that paper gen-

eralize to rational preferences which do not satisfy Certainty Independence, but only Risk Inde-

pendence. The GS paper is complementary to the present one. Its main focus is the characteri-

zation of the set of relevant priors for popular preference models. Such characterizations hinge

on a differential result which requires a stronger continuity condition, and thus applies only to

a subset of MBA preferences, which GS dub MBC (where C stands for “[Cauchy] continuous”).

The C3M paper is also complementary to the present one, because its main focus is the analysis

of rational preferences which also satisfy Schmeidler’s “Uncertainty Aversion” axiom. C3M also

characterize the set of relevant priors in several ways (but, their differential characterization is

different from the one in GS).

The discussion on ambiguity attitudes is also related to earlier work. We show how the ideas

in Ghirardato and Marinacci (2002) can be extended to the MBA class of preferences. We refer to
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that paper for detailed discussion on the relation of such vision of ambiguity aversion to those

spoused in other papers, in particular Schmeidler (1989) and Epstein (1999).

As to this paper’s third contribution, this paper comes within a well established literature.

Early attempts to characterize behaviorally ambiguity were focussed on ambiguity of events in

specific preference models. Such is the case of Nehring (1999) and Zhang (2002), which con-

sider CEU preferences. Subsequently, Epstein and Zhang (2001) and Nehring (2001) offered

definitions of unambiguous event which apply in principle to any preference, providing a char-

acterization over rich state spaces. Nehring’s proposal is particularly relevant to our paper since

it can be shown to be equivalent to the one offered here. The Epstein-Zhang definition, on the

other hand, is markedly different from ours. We refer the reader to section 5.3, and especially to

Nehring (2006) and Amarante and Filiz (2007) for discussion on the relations between the def-

inition of unambiguous event presented here, Zhang’s and Epstein-Zhang’s. To the best of our

knowledge, the only previous paper that provides a definition of unambiguous act as primitive,

and events as derivative, is Ghirardato and Marinacci (2002). However, their definition only ap-

plies to preferences which are ambiguity averse (or loving) according to the definition in that

paper. For such preferences, the definition of unambiguous act offered in the two papers can

be shown to coincide.

Finally, some of the consequences that we draw from our definitions of ambiguity owe to

previous work, and our debts and contributions are clearly identified in the respective sections.

2 Notation and preliminaries

We consider a state space S, endowed with an algebra Σ. The notation B0(Σ,Γ) indicates the set

of simple Σ–measurable real functions on S with values in the interval2 Γ ⊂ R, endowed with

the topology induced by the supremum norm; for simplicity, write B0(Σ,R) as B0(Σ).

The set of finitely additive probabilities onΣ is denoted ba1(Σ). The (relative) weak∗ topology

on ba1(Σ) is the topology induced by B0(Σ) or, equivalently, by B (Σ).

A functional I : B0(Σ,Γ)→R is:

2Which may be open or closed on the left or right, and may also be unbounded on one or both sides.

5



• monotonic if I (a )≥ I (b ) for all a ≥b

• continuous if it is sup-norm continuous

• normalized if I (α1S) =α for all α∈ Γ

Next, fix a convex subset X of a vector space. (Simple) acts are Σ-measurable functions

f : S→ X such that f (S) = { f (s ) : s ∈ S} is finite; the set of all (simple) acts is denoted byF . We

define mixtures of acts pointwise: for anyα∈ [0, 1], α f +(1−α)g is the act that delivers the prize

α f (s )+ (1−α)g (s ) in state s . Given f , g ∈F and A ∈ Σ, we denote by f A g the act inF which

yields f (s ) for s ∈ A and g (s ) for s ∈ Ac ≡S \A.

3 Rational preferences and relevant priors: characterizations

In this section we first briefly introduce our basic assumptions on preferences, characterizing

what we earlier dubbed the “MBA” model. (We refer the reader to GS and C3M for more detailed

discussion of the axioms.) Then we show that for MBA preferences the unambiguous preference

relation introduced by GMM can be used to obtain a set of possible probabilistic models of the

decision problem that might be employed by the decision maker the relevant priors.

3.1 Axioms

The main object of interest is a bynary relation ¼ on F . As usual, � (resp. ∼) denotes the

asymmetric (resp. symmetric) component of ¼, and we abuse notation by identifying the prize

x and the constant act that delivers x for every s .

Axiom 1 (Weak Order) The relation¼ is nontrivial, complete, and transitive onF .

Axiom 2 (Monotonicity) If f , g ∈F and f (s )¼ g (s ) for all s ∈S then f ¼ g .

These two axioms define rational preferences. Next two axioms are tailored to the Anscombe-

Aumann setup we are considering.

Axiom 3 (Risk Independence) If x , y , z ∈ X and λ ∈ (0, 1] then x � y implies λx + (1− λ)z �

λy +(1−λ)z .
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Axiom 4 (Archimedean) If f , g , h ∈F and f � g � h then there are α,β ∈ (0, 1) such that α f +

(1−α)h � g �β f +(1−β )h.

As it is well-known, the above two axioms, in addition to the ones characterizing rational

preferences, imply the existence of:

• a Bernoulli utility index on X ; that is, u : X →Rwhich is affine and represents the restric-

tion of ¼ to X ;

• the existence of certainty equivalents x f for all acts f ∈F .

A binary relation¼ onF that satisfies Axioms 1–4 will henceforth be called an MBA preference

(for Monotonic, Bernoullian, Archimedean).

We now provide a basic representation result for the preferences satisfying the above ax-

ioms. It generalizes previous results of Gilboa and Schmeidler (1989), GMM, GS and C3M,

which all impose more stringent axiomatic requirements on preferences.

Proposition 1 A preference relation ¼ satisfies Axioms 1–4 if and only if there exists a non-

constant, affine function u : X → R and a monotonic, normalized, continuous functional I :

B0(Σ, u (X ))→R such that for all f , g ∈F

f ¼ g ⇐⇒ I (u ◦ f )≥ I (u ◦ g ). (1)

Moreover, if (Iv , v ) also satisfies Eq. (1), and Iv : B0(Σ, v (X ))→ R is normalized, then there are

λ,µ∈Rwith λ> 0 such that v (x ) =λu (x )+µ for all x ∈X , and Iv (b ) =λI (λ−1[b −µ])+µ for all

b ∈ B0(Σ, v (X )).

Observe that differently from Lemma 1 in GMM, the functional I is not necessarily constant-

linear.3 I therefore depends upon the normalization chosen for the utility function (see Ghi-

rardato, Maccheroni, and Marinacci (2005)). On the other hand, thanks to normalization, I is

uniquely determined by u and the equality I
�

u
�

f
��

= I
�

u
�

x f

�

1S

�

= u
�

x f

�

.

3I is constant-linear if and only if I (αa + β1S) = αI (a ) + β for all a ∈ B0(Σ, u (X )), α,β ∈ R, α > 0, such that

αa +β1S ∈ B0(Σ, u (X )).
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3.2 Relevant priors and unambiguous preferences

We now recall GMM’s notion of “unambiguous preference” relation (see also Nehring, 2007).

The more general preference setting notwithstanding, such relation has the same interpreta-

tion as in GMM: since ambiguity sensitivity may lead to violations of the Anscombe-Aumann

independence axiom, we look for rankings that are not reversed by mixtures.

Definition 1 Let f , g ∈ F . We say that f is unambiguously preferred to g , denoted f ¼∗ g , if

and only if, for all h ∈F and all λ∈ (0, 1], λ f +(1−λ)h ¼λg +(1−λ)h.

The relation ¼∗ enjoys the properties identified by GMM (see their Props. 4 and 5), and

hence, as in GMM, it admits a representation à la Bewley (2002) (cf. e.g. GMM Prop. A.2):

Proposition 2 For any MBA preference¼, there exists a non-empty, unique, convex and weak∗-

closed set C ⊂ ba1(Σ) such that, for all f , g ∈F ,

f ¼∗ g ⇐⇒
∫

u ◦ f d P ≥
∫

u ◦ g d P for all P ∈C ,

where u is the function obtained in Proposition 1. Moreover, C is independent of the choice of

normalization of u .

The last sentence —which follows from the structure of the Bewley-style representation and

the uniqueness of C given u — shows that C is cardinally invariant, even though I is not.

Thus, the unambiguous preference gives rise to a set of priors, which GMM interpret as the

(subjective) ambiguity revealed by the decision maker’s preferences. We refer the reader to that

paper for discussion of the appropriateness of such interpretation.

GS propose a behavioral definition of the set of priors that are relevant for the individual’s

primitive preference relation ¼; they then show that the resulting set is precisely C , and also

show that the arguments provided by GMM in support of their interpretation of C as revealed

ambiguity extend to the preferences they study. We refer the interested reader to GS for details;

we shall sometimes implicitly invoke GS’ equivalence result and thus refer to C as the set of

“relevant priors.”
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4 A generalized Hurwicz representation

We now turn to the first consequence of the general representation results of the previous sec-

tion. We show that that the generalized α-MEU representation suggested by GMM, which is in

the spirit of Hurwicz’s “pessimism index” model Hurwicz (1951), extends to MBA preferences,

and so does its interpretation in terms of comparative ambiguity. Thus, throughout this section,

¼ is an MBA preference, represented by the pair (I , u ) as per Proposition 1 and with relevant pri-

ors C as per Proposition 2.

We first introduce convenient notation. For any measure Q ∈ ba1(Σ) and function a ∈

B (Σ), let Q(a ) =
∫

a dQ . Also, given a weak∗ closed set D ⊂ ba1(Σ) and function a ∈ B (Σ), let

D(a ) = minQ∈D Q(a ) and D(a ) = maxQ∈D Q(a ); note that D (resp. D) is a monotonic, normal-

ized, constant-linear and concave (resp. convex) functional on B (Σ). We then get the following

immediate Corollary of the previous representation results.

Corollary 3 For every a ∈ Bb (Σ, u (X )),

C (a )≡min
P∈C

P(a )≤ I (a )≤max
P∈C

P(a )≡C (a ).

A second piece of terminology is useful. GMM deem an act crisp if, intuitively, it cannot be

used to hedge the ambiguity of any other act. GMM formalize this intuition via a behavioral

condition that indirectly relies upon Certainty Independence; since MBA preferences do not

necessarily satisfy this property, we require a slightly stronger definition: we deem an act crisp

if it is unambiguously indifferent to a constant.4 Formally, denote by∼∗ the symmetric compo-

nent of ¼∗. Then, the act f ∈ F is crisp if there is x ∈ X such that f ∼∗ x (that is, for all g ∈ F

and λ ∈ [0, 1], λ f + (1−λ)g ∼ λx + (1−λ)g ). The characterization of crispness in terms of C

follows.

Corollary 4 An act f ∈F is crisp if and only if C (u ◦ f ) =C (u ◦ f ).

We can now provide the sought generalized α-MEU representation. Given a normalized

representation (I , u ) of an MBA preference¼, define an ambiguity index α : Bb (Σ, u (X ))→R by

4For GMM’s preferences the two conditions are equivalent: this follows immediately from Corollary 4 below

and GMM’s Prop. 10.
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letting

α(a ) =
C (a )− I (a )

C (a )−C (a )
(2)

for every non-crisp function a ∈ Bb (Σ, u (X )); by convention, letα(a ) = 1
2

for every crisp function

a . The following result is then immediately proved.

Proposition 5 Let ¼ be an MBA preference. Then there exist a non-empty, weak∗–closed, and

convex set C ⊂ ba1(Σ), a non-constant, affine function u : X →R, and a functionα : Bb (Σ, u (X ))→

[0, 1] such that (i) for all f , g ∈F ,

f ¼ g ⇐⇒ α(u ◦ f )C (u ◦ f )+[1−α(u ◦ f )]C (u ◦ f )≥α(u ◦g )C (u ◦g )+[1−α(u ◦g )]C (u ◦g )

and (ii) u and C represent ¼∗ in the sense of Prop. 2. Furthermore, for all non-crisp functions

a ,b ∈ Bb (Σ, u (X )), if P(a ) = P(b ) for all P ∈C , then α(a ) =α(b ).

Finally, if (u ′,C ′,α′) also satisfy (i) and (ii), then C ′ =C , u ′(x ) = λu (x ) +µ for some λ,µ ∈R

with λ> 0, and α′(λa +µ) =α(a ) for all non-crisp a ∈ Bb (Σ, u (X )).

Remark 4.1 The uniqueness statement in Proposition 5 may be paraphrased as follows: C is

unique, u is cardinally unique, and if the ambiguity index α(·) is viewed as a function of acts,

rather than of utility profiles, then it is also unique (for non-crisp acts). More precisely, it is

invariant to cardinal transformations of the utility function u . It is worth recalling that GMM

define the ambiguity index α(·) over (equivalence classes of) acts, rather than functions.

Since the functional I derived in Proposition 1 is not necessarily constant-linear, the func-

tional α does not have the same structure as in GMM. There, it is shown that, for any two acts

f , g ∈ F , α(u ◦ f ) = α(u ◦ g ) holds if, for every P,Q ∈ C , P(u ◦ f ) ≥ Q(u ◦ f ) if and only if

P(u ◦ g ) ≥Q(u ◦ g ). For MBA preferences such equality only obtains under the more restric-

tive condition that P(u ◦ f ) = P(u ◦ g ) for every P ∈C .

4.1 Ambiguity aversion

Here we consider the characterization of ambiguity attitudes for MBA preferences. We first

show that, as it transpired from our choice of terminology, and consistently with the analysis in

GMM, the function α can be interpreted as an index of ambiguity aversion: The higher α(u ◦ f )
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is, the more averse to the ambiguity entailed by f is the decision maker. “More averse to am-

biguity” here is in the sense of Ghirardato and Marinacci (2002, to which the reader is referred

for explanation and discussion; GM henceforth): We say that preference ¼1 is more averse to

ambiguity than¼2 if for all f ∈F and all x ∈X , f ¼1 x implies f ¼2 x . The comparison is made

between preferences which display the same relevant priors C and utility u , or equivalently (see

GMM, Proposition 6, which generalizes immediately to our case), for any f , g ∈F ,

f ¼∗1 g ⇐⇒ f ¼∗2 g (3)

We then immediately obtain:5

Proposition 6 (GMM, Proposition 12) Let¼1 and¼2 be MBA preferences, and suppose that¼1

and ¼2 reveal identical ambiguity. Then ¼1 is more ambiguity averse than ¼2 if and only if for

any common utility u , α1(u ◦ f )≥α2(u ◦ f ) for any noncrisp f ∈F .

Notice that, since as observed the function αmay not be independent of the choice of the

normalization of utility, here we first normalize the two utility functions to be identical,6 and

then perform the comparison of the α functions.

Turning to an absolute notion of ambiguity aversion, we recall that GM (in this differing

from Epstein (1999), see the discussion in their paper) suggest using subjective expected util-

ity preferences as a benchmark for ambiguity neutrality, and propose the following axiomatic

definition of ambiguity aversion:

Axiom 5 (Ambiguity Aversion) There exists a SEU preference ¾ that agrees with ¼ on X and

such that, for all f ∈F and x ∈X ,

f ¼ x =⇒ f ¾ x

That is, a preference is ambiguity averse if it is more ambiguity averse than some SEU pref-

erence that displays the same risk attitudes.7

5Here and henceforth, for results which are straightforward extension of existing results we omit the proof and

provide a reference to the existing result.

6Eq. (3) implies that the Bernoullian utilities are cardinally equivalent, thus equality of utility is w.l.o.g.

7To further clarify, we consider SEU preferences à la Anscombe-Aumann, rather than à la Savage.
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The characterization of ambiguity aversion given by GM immediately generalizes to MBA

preferences. A piece of terminology first. Given an MBA preference with a representation (I , u ),

define

Core(I ) = {P ∈ ba1(Σ) : ∀a ∈ B0(Σ, u (X )), I (a )≤ P(a )} and

Eroc(I ) = {P ∈ ba1(Σ) : ∀a ∈ B0(Σ, u (X )), I (a )≥ P(a )} .

These correspond to the game-theoretic notions when the preference is CEU, but not other-

wise. Absolute ambiguity aversion corresponds to non-emptiness of Core(I ). (The symmetric

property of ambiguity love is analogously characterized as nonemptiness of Eroc(I ).)

Proposition 7 (GM, Theorem 12) Let¼be an MBA preference and (I , u ) a representation in the

sense of Prop. 1. Then¼ is ambiguity averse if and only if Core(I ) 6= ;.

The GM proposal is not the most popular definition of ambiguity aversion in the literature.

The following notion, proposed by Schmeidler (1989), claims that title. It imposes convexity of

preferences.8

Axiom 6 (Convexity) If f , g ∈F and α∈ (0, 1) then

f ∼ g =⇒α f +(1−α) g ¼ f .

These two notions of aversion to ambiguity are a priori different. Indeed, GM present an

example (Example 25) of an ambiguity averse MBA preference which is not convex, while the

following is an example of a convex MBA preference which is not ambiguity averse.

Example 1 Suppose X =R and consider S = {s1, s2}. Further, suppose Σ is the power set. Then,

we can identify each element P ∈ b a 1(Σ) with the number P({s1}). For this reason, without loss

of generality, we use P for either the number and the probability distribution. Next, consider

the preference ¼ overF represented by the functional V :F →R defined by

V
�

f
�

= min
P∈ba1(Σ)







�∫

f d P
�+

c1 (P)
−

�∫

f d P
�−

c2 (P)







8Schmeidler calls this property “uncertainty aversion,” while GM call it “ambiguity hedging.”
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where c1, c2 : ba1(Σ)→R are such that c1(P) = P+1
2

and c2(P) = 1+P . It is immediate to see that

c1 is affine and continuous and c2 is affine and continuous. Note also that u does not appear

because it is the identity. Moreover, minP∈b a 1(Σ) c1(P) = 1
2
> 0 and maxP∈b a 1(Σ) c1(P) = 1 while

minP∈b a 1(Σ) c2 (P) = 1. By C3M (Corollary 22), ¼ is an MBA preference that satisfies convexity.

However, in light of the discussion in Cerreia-Vioglio, Maccheroni, Marinacci, and Montrucchio

(2009), ¼ is ambiguity averse only if arg max c1 ∩ arg min c2 6=∅, which is clearly not satisfied in

our case.

However, the next result shows that a connection exists between the two notions of aversion

to ambiguity: convexity amounts to ambiguity aversion holding “locally” for every act. For con-

venience, we restrict attention to MBA preferences for which there is no worst consequence:

that is, for every x ∈ X there is y ∈ X such that x � y . Given a representation (I , u ) as in Prop. 1,

this is equivalent to the condition that infx∈X u (x ) 6∈ u (X ).9

Theorem 8 For an MBA preference¼ that has no worst consequence, the following conditions

are equivalent:

(i) ¼ is convex

(ii) for each f ∈F , there is a SEU preference¾ f such that, for all g ∈F ,

f ¾ f g =⇒ f ¼ g

In view of Theorem 8, Axiom 6 implies the following weak version of Axiom 5: at each x ∈ X

there is a SEU preference ¾x such that, for all g ∈F ,

x ¾x g =⇒ x ¼ g .

Relative to Axiom 5, here the SEU preference¾x depends on x . Hence, Axiom 6 actually implies

Axiom 5 for all preferences where this dependence can be removed. It is useful to reformulate

this condition by introducing the sets

S¼(x ) =
�

¾: for all g ∈F , x ¾ g ⇒ x ¼ g
	

∀x ∈X .

9This does not imply that u (X )must be unbounded below: e.g. consider X = (0, 1) and u (x ) = x .
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In other words, S¼(x ) is the collection of all SEU preferences that are more uncertainty averse

than ¼ at x . Using these sets, we can say that Axiom 6 implies Axiom 5 provided

⋂

x∈X

S¼(x ) 6= ;

Such is the case for CEU preferences, for which as observed by Ghirardato and Marinacci Axiom

6 implies Axiom 5.

4.2 Does B stand for Biseparable?

MBA preferences share some of the properties of what Ghirardato and Marinacci (2001) call

“biseparable” preferences. In our context, a preference ¼ is biseparable if there exists a unique

capacity ρ : Σ→ R such that, given any representation (I , u ) of ¼, with I normalized, we have

for any binary act x A y with x � y ,

I (u ◦ (x A y )) = u (x )ρ(A)+u (y )(1−ρ(A)). (4)

Biseparability thus requires that the “decision weight” attached to the event A in the evaluation

of any bet x A y be independent of the prizes x and y (provided x � y ). Also observe that bisep-

arability is a property of preferences, not of their representation: Eq. (4) is equivalent to the

requirement that x A y ∼ρ(A)x +[1−ρ(A)]y , where the r.h.s. of this indifference is a mixture of

the prizes x and y . Hence, the capacity ρ is also independent of the choice of u .10

It is not hard to see that in general, MBA preferences may fail to be biseparable, even though

they induce a cardinal and affine utility u . The following example illustrates.

Example 2 On an arbitrary state space S and X =R+, consider a smooth-ambiguity preference

with u (x ) = x , µ({Q1}) = µ({Q2}) = 1
2

with Q1({A}) = Q2({A}) = 3
4

for some event A ∈ Σ, and

φ(α) = log(α) (so that ambiguity aversion is decreasing in α). Denote by Iu the normalized

functional representing these preferences: that is, Iu (a ) = e
1
2 logQ1(a )+ 1

2 logQ2(a ) for all a ∈ Bb (Σ,R+).

10Consequently, under biseparability, the restriction of the normalized functional I to binary acts is also inde-

pendent of u , even though, for general acts, this is not generally the case. As it is argued in Ghirardato et al. (2005),

I is invariant with respect to u for all acts f in our Anscombe-Aumann framework only if we assume that the

preference satisfies Certainty Independence.
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Finally, consider now the bet 1 A 0 that pays 1 USD if A obtains and 0 otherwise. We have

Iu (1 A 0) = e
1
2 log(Q1(A))+ 1

2 log(Q2(A)) ≈ 0.43301.

If on the other hand we consider the bet 2 A1, then

Iu (2 A 1) = e
1
2 log(1+Q1(A))+ 1

2 log(1+Q2(A)) ≈ 1.47902.

Thus, if we apply Eq. (4) to the bet 1A 0, we conclude that ρ(A) equals 0.43301; however, if we

consider the bet 2 A 1 instead, Eq. (4) implies that ρ(A) should be 0.47902: contradiction.

We therefore see that in this case ρ(A) cannot be defined independently of the choice of

x � y , a violation of biseparability. Intuitively, since φ(α) = log(α) displays decreasing absolute

ambiguity aversion, as we increase the prizes involved, we get a less conservative willingness to

bet on the ambiguous event A.

While invariance of I and ρ to transformations of the utility function does not obtain, for

MBA preferences we can still obtain a “locally” biseparable representation of¼, in the following

sense. Fix a pair (I , u ) that represents¼, with I normalized. Given a bet x A y on an event A ∈Σ

(with x � y ), define

ρx ,y (A)≡α(u ◦x A y )(C (1 A 0)−C (1 A 0))+C (1 A 0); (5)

The uniqueness properties of the ambiguity index α(·) ensure that the quantity ρx ,y is inde-

pendent of the utility function adopted (cf. Proposition 5). It is then easy to verify that, when

restricted to binary acts (bets) of the form x A y (for arbitrary A ∈ Σ), the preference ¼ has the

representation

I (u ◦ (x A y )) = u (x )ρx ,y (A)+u (y )(1−ρx ,y (A)) (6)

With this notation, an MBA preference is biseparable if ρx ,y does not depend upon x and

y ; we may call such a preference MBis, for Monotone and Biseparable. It is natural to ask if an

additional axiom identifies the MBis subclass of MBA preferences. Ghirardato and Marinacci

(2001) describe and axiomatize a model of preferences that turns out to have exactly the type of

separability we need. The main axiom is the following; recall that an act f ∈F is binary iff it is

of the form f = x A y for some A ∈Σ and x , y ∈X (not necessarily distinct or strictly ranked).
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Axiom 7 (Binary Certainty Independence) For all f , g ∈ F , with f , g binary acts, x ∈ X , and

λ∈ (0, 1]: f � g if and only if λ f +(1−λ)x �λg +(1−λ)x .

We then have the following characterization; see also Theorem 9 in Ghirardato and Mari-

nacci (2001).

Proposition 9 An MBA preference¼ satisfies Axiom 7 if and only if it is biseparable.

5 Ambiguity of acts and events

This section contains the main contributions of this paper. We first propose a notion of unam-

biguous acts which strengthens that of crisp acts (cf. §4), and characterize it for MBA prefer-

ences. Second, we employ this notion to define unambiguous events, and again provide char-

acterizations. Armed with the characterization of unambiguous acts and events for MBA pref-

erences, we proceed to investigate some consequences of such characterizations. In particu-

lar, we observe how, in the spirit of Epstein and Zhang (2001), the derived set of unambiguous

events can be used to provide a “fully subjective” theory of expected utility (different from the

one they propose). We finally generalize Marinacci (2002)’s result on the consistency of proba-

bilistic sophistication and ambiguity aversion to non (α-)MEU preferences.

Throughout this section, it is convenient to adopt an explicit notation for simple acts. Fix

a finite partition {E1, . . . , En} of S in Σ, and corresponding prizes x1, . . . ,xn ∈ X . The act that

delivers prize x i in states s ∈ E i , for i = 1, . . . , n , will be denoted by {x1, E1; . . . ;xn , En}. As before,

if n = 2, then {x1, E ;x2,S \E }will be denoted simply by x1 E x2

5.1 Unambiguous acts

We begin by motivating our definition of unambiguous acts. In keeping with the intuition that

ambiguity is revealed by non-neutral attitudes toward hedging, a starting point is to require

that unambiguous acts be crisp. To elaborate, we surely want the set of unambiguous acts to

include all constant acts; it then seems plausible to require that this set also include acts that,

like constants, are revealed not to provide any hedging opportunities.
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However, we would like the notion of unambiguous acts to capture an additional intuition.

Consider the three-color Ellsberg urn, containing 30 red balls and 60 green and blue balls, in

unspecified proportions. It is natural to regard a “bet on red” as an unambiguous act, because

the partition of the state space S = {r, g ,b} it induces—the winning event {r } and the losing

event {g ,b}—consists of events whose relative likelihood is intuitively clear. But, by the same

token, a “bet on not red” should also be regarded as unambiguous.

More broadly, if two acts f , g induce the same partition of the state space S, in the sense

that, as usual, for all states s , s ′ ∈ S, f (s ) = f (s ′) if and only if g (s ) = g (s ′), then either they

are both ambiguous, or else they are both unambiguous. In other words, the property of being

ambiguous or unambiguous depends upon the partition an act induces, rather than on the spe-

cific assignment of distinct prizes to different elements of the induced partition. The following

example demonstrates that this additional, natural requirement has bite.

Example 3 Let S = {s1, s2, s3}, and consider the set C generated by the priors P = [1/3, 1/4, 5/12]

and Q = [1/4, 5/12, 1/3] and the act f = {x ,{s1}; y ,{s2}; z ,{s3}}, with u (x ) = 1, u (y ) = 4, u (z ) =

7. Observe that P(u ◦ f ) = Q(u ◦ f ), so f is crisp (cf. Corollary 4). However, the act g =

{y ,{s1}; z ,{s2};x ,{s3}}, which “permutes” the payoffs delivered by f but is measurable with re-

spect to the same partition, satisfies P(u ◦ g ) 6=Q(u ◦ g ): hence, it is not crisp.

Now, if unambiguous acts must be crisp (as we wish to assume), then g must be deemed

ambiguous. Since f and g induce the same partition of S, the preceding argument then implies

that we must deem f ambiguous as well.

Observe that, in Example 3, the prizes delivered by the acts f and g are the same; this is the

sense in which g is a “permutation” of f . We formalize this notion of permutation below.

The discussion so far suggests the following loose provisional definition: an act is unam-

biguous if all its “permutations” are crisp. However, a final difficulty must be overcome. Acts

map states to consequences; on the other hand, hedging considerations involve utility trade-

offs. Hence, if we deem f unambiguous, and f (s ) ∼ g (s ) for all s ∈ S, we should deem g un-

ambiguous, too. Indeed, it turns out that, in the approach we pursue, this is necessary, not just

natural, in order to avoid paradoxical conclusions:
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Example 4 Consider again the 3-color Ellsberg urn, with S = {r, g ,b}; consider prizes x , y , z

with x 6= y 6= z and u (x ) = 1 > 0 = u (y ) = u (z ), and let f = {x ,{r }; y ,{g }; z ,{b}}, so f is, in-

tuitively, a bet on red, even though strictly speaking it is not a binary act. Finally, consider the

set C generated by P = [1/3, 2/3, 0] and Q = [1/3, 0, 2/3]. In keeping with the Ellsbergian in-

tuition, we wish to deem f unambiguous; however, consider the act f ′ = {y ,{r };x ,{g }; z ,{b}},

which delivers the same prizes as f and is measurable with respect to the same partition. Then

P(u ◦ f ′) = 2
3
> 0=Q(u ◦ f ′), so f ′ is not crisp.

As in the previous example, f ′ must be deemed ambiguous, and hence our provisional def-

inition would deem f ambiguous as well, which seems counterintuitive.

Our definition of unambiguous act takes care of the difficulty illustrated in Example 4 by

defining permutations in terms of utility levels instead of payoffs.

Definition 2 An act g ∈F is a ¼-permutation of another act f ∈F if:

(i) ∀s ∈S there is s ′ ∈S such that f (s )∼ g (s ′);

(ii) ∀s ∈S there is s ′ ∈S such that g (s )∼ f (s ′);

(iii) for all s , s ′ ∈S, f (s )∼ f (s ′) if and only if g (s )∼ g (s ′).

An act f ∈F is unambiguous if every¼-permutation of f is crisp. The class of all unambiguous

acts is denoted byU .

Note that, if preferences are represented by a Bernoulli utility u on X , then conditions (i) and

(ii) above are equivalent to the statement that u ◦ f (S) = u ◦ g (S).

The following result shows that the set U is the largest set of crisp acts which is “closed”

with respect to ¼-permutations.

Proposition 10 Given an MBA preference¼,U is the largest set of crisp acts such that if f ∈U

and g ∈F is a¼-permutation of f , then g ∈U .

The main result of this section shows that unambiguous acts have a sharp characterization

in terms of their expected utility with respect to probabilities in the set C :

Theorem 11 For any f ∈F , the following statements are equivalent:

(i ) f ∈U .
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(i i ) P({s : f (s )∼ x }) =Q({s f (s )∼ x }) for all x ∈X , P,Q ∈C .

(i i i ) P({s : u ◦ f (s )≥ γ}) =Q({s : u ◦ f (s )≥ γ}) for all γ∈R, P,Q ∈C .

(i v ) P({s u ◦ f (s ) = γ}) =Q({s : u ◦ f (s ) = γ}) for all γ∈R, P,Q ∈C .

Statement (ii) is possibly the most useful, and powerful, characterization of unambiguous

acts. In words, an act is unambiguous if and only if the events in the partition it induces have

the same probability according to all members of the set C . This in particular implies that, if f

is unambiguous and g induces the same partition as f , but possibly delivers entirely different

prizes, then g is also unambiguous.

5.2 Unambiguous events

It is natural to define unambiguous any event with respect to which unambiguous acts are

measurable (a similar approach to defining unambiguous events was earlier advocated by Ghi-

rardato and Marinacci (2002)).

Definition 3 The class of unambiguous events is

Λ=
�

{s : f (s )∼ x } : f ∈U , x ∈X
	

.

Analogously to what we had for unambiguous acts, we can offer two characterization results

for unambiguous events. The first is a behavioral result:

Proposition 12 For any A ∈Σ, A ∈Λ if and only if for any x � y , the act x A y is crisp.

By part (ii) of Theorem 11, arguing as we did after the statement of that Theorem, the quan-

tifier “for all x � y ” could be changed to “for some x � y ” without invalidating the result. This

makes the behavioral identification of the set Λ conceptually easier, and it also conforms with

our intuition that ambiguity is a property of the event partition the act is based on.

Thus, an event A is unambiguous if it is such that any bet on such event —i.e., any act of the

form x A y for x � y — cannot be used to hedge the ambiguity in another act (Nehring (2001)

proposes a different definition which turns out to be equivalent to Def. 3, and hence also to an
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earlier one he presented in Nehring (1999)). Conversely, A is ambiguous if x A y 6∼∗ z for any z ∈

X ; that is, if x A y ∼ z , then there exist λ∈ (0, 1], g ∈F such that λx A y +(1−λ)g 6∼λz+(1−λ)g .

The second result shows that unambiguous events have a simple and intuitive characteri-

zation in terms of the probabilities in C . (Notice that this is independent of the normalization

chosen for u .) There is also a natural connection with the “local” willingness to betρx ,y defined

in Eq. (6).

Proposition 13 For any A ∈ Σ, A ∈ Λ if and only if P(A) =Q(A) = ρx ,y (A) for all P,Q ∈ C and

x , y ∈X .

As a consequence, for all MBA preferences, the collection Λ has a simple and intuitive struc-

ture (cf. Zhang (2002) and Nehring (1999)).

Corollary 14 Λ is a (finite) λ-system. That is: 1) S ∈ Λ; 2) if A ∈ Λ then Ac ∈ Λ; 3) if A, B ∈ Λ and

A ∩ B = ; then A ∪ B ∈Λ.

It is natural to surmise that any act whose upper level sets are unambiguous events should

be deemed unambiguous (cf., e.g., Epstein and Zhang (2001)). Proposition 13, paired with The-

orem 10, allows us to show that this is indeed the case.

Corollary 15 For any act f ∈F , f ∈U if and only if its upper preference sets {s ∈ S : f (s )¼ x }

belong to Λ for all x ∈X .

Nehring (1999) shows that, if S is finite and I is a Choquet integral (so that the set C can

be simply characterized; see Example 17 in GMM), the set Λ can be further characterized as

follows:

Λ= {A ∈Σ :ρ(B ) =ρ(B ∩A)+ρ(B ∩Ac ) for all B ∈Σ},

where ρ = ρx ,y , which in the CEU case is independent of the choice of x and y . It follows that

for CEU preferences Λ is an algebra, a result that shows that such preferences cannot be used to

model some potentially interesting ambiguity situations (see for instance the 4-color example

in Zhang (2002)).
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5.2.1 Ambiguity and willingness to bet

Ghirardato and Marinacci (2002) propose a behavioral notion of unambiguous event for a sub-

class of the biseparable preferences mentioned in Section 4.2, showing that it has a simple char-

acterization terms of the willingness to bet set-functionρ of Eq. (4): an event B is unambiguous

in their sense if and only if ρ(B )+ρ(B c ) = 1.

The definition given above enjoys two main advantages over this earlier proposal: it is more

general, because it applies to any MBA preference, and, more importantly, it is more accurate, as

it allows to distinguish between events which are truly (perceived) unambiguous and those that

appear to be because of the behavior of the decision maker’s ambiguity attitude. The following

result illustrates this point. Recall that ρx ,y (·) of Eq. (6) is the local willingness-to-bet index

defined in Eq. (6), and α(·) is the the ambiguity index of Eq. (2).

Proposition 16 Given an MBA preference with normalized representation (I , u ) and any x , y ∈

X such that x � y , the following are equivalent for any A ∈Σ:

(i ) ρx ,y (A)+ρx ,y (Ac ) = 1 (ρx ,y is complement-additive)

(i i ) either A ∈Λ, or A ∈Σ \Λ and α(u ◦x A y )+α(u ◦x Ac y ) = 1

To interpret, an event satisfies the condition ρx ,y (A)+ρx ,y (Ac ) = 1 for some x and y (which

is the natural generalization of the Ghirardato-Marinacci condition to MBA preferences) in

exactly two cases: either 1) A is unambiguous, or 2) A is not unambiguous, but the decision

maker’s ambiguity index in evaluating the bets x A y and x Ac y behaves so as to perfectly com-

pensate the ambiguity aversion (resp. appeal) revealed in evaluating x A y by evaluating the

complementary bet x Ac y in an ambiguity seeking (resp. averse) fashion. That is, ρx ,y (A) +

ρx ,y (Ac ) = 1 could be satisfied by a pure mathematical accident, if the decision maker’s ambi-

guity attitude is “inconsistent” in just the right way.

On the other hand, suppose that the preference satisfies (for the given x and y ) for every

A ∈Σ \Λ,

α(u ◦x A y )+α(u ◦x Ac y ) 6= 1 (7)

Then ρx ,y (A) +ρx ,y (Ac ) = 1 if and only if A is unambiguous. For instance, this is the case of a
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decision maker for whom α > 1/2 uniformly. The following example shows one case of such

consistency of ambiguity aversion with CEU preferences.

Example 5 Consider the following variant of the Ellsberg “3-color” paradox. An urn contains

120 balls, 30 of which are red, while the remaining 90 are either blue, green or yellow. A decision

maker facing this problem has a CEU preference¼ represented by a (non-constant and convex-

ranged) utility u and a capacity ρ on S = {r, g ,b , y },11 where

ρ =
1

4
1r +

3

4
ν ,

with ν a capacity on {g ,b , y } defined as follows: ν (;) = 0, ν ({g ,b , y }) = 1 and

ν ({g }) = ν ({b}) = ν ({y }) =
7

24
, ν ({g ,b}) = ν ({g , y }) = ν ({b , y }) =

1

2
.

Observe first that Core(ρ) contains (at least) the uniform probability on S. Therefore, ¼ is

ambiguity averse in the sense of Ghirardato and Marinacci (2002), though ρ is not supermod-

ular. Observe next that ρ({r }) = 1/4 and ρ({g ,b , y }) = 3/4. That is {{r },{g ,b , y }} is a candi-

date for being an unambiguous partition. According to Proposition 16, this will be the case if

α({r })+α({g ,b , y }) 6= 1. Using Example 17 of GMM it can be checked after some tedious calcu-

lation that for ¼

C =Conv
¦

[1/4,x , y , z ]∈R4 : [x , y , z ]∈ Per({5/32, 7/32, 12/32})
©

.

It follows that Λ= {;,S,{r },{g ,b , y }} as expected. Moreover,

α({y }) =α({b}) =α({g }) = 5/7, α({r, g ,b}) =α({r, g , y }) =α({r,b , y }) = 1,

α({r, g }) =α({r,b}) =α({r, y }) = 5/8, α({b , y }) =α({g , y }) =α({g ,b}) = 1.

That is, ¼ satisfies α(A)+α(Ac ) 6= 1 for any B ∈Σ \Λ.

It turns out that Eq. (7) has a simple behavioral characterization:

11Notice that such preference is biseparable, so thatρ does not depend on the choice of x and y andα(u ◦x Ay ) =

α(u ◦x ′Ay ′)≡α(A) for every x � y and x ′ � y ′.
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Proposition 17 Given an MBA preference ¼ and x , y ∈ X such that x � y and given A ∈ Σ \Λ,

eq. (7) holds for some normalized (I , u ) representing¼ if and only if

1

2
cx Ay +

1

2
cx Ac y 6∼

1

2
x +

1

2
y (8)

where for any f ∈F we denote by c f one of its certainty equivalents.

We shall see that this result proves useful in characterizing situations in which complement

additivity is a full “marker” for the lack of ambiguity (see, e.g., Proposition 20 below).

We conclude this discussion by observing that the definition of the set Λ and some of the

notation and terminology introduced in the previous paragraphs, allow us to provide an al-

ternative characterization of MBis preferences complementing Prop. 9. If there are “enough”

unambiguous events, Savage’s Postulate P4—which is in general weaker than Binary Certainty

Independence—suffices to guarantee that the preference is biseparable. A piece of notation

first: Given a set D ⊆ ba1(Σ) and a collection Γ⊆Σ, denote D(Γ)≡ {P(A) : ∃P ∈D, A ∈ Γ}.

Proposition 18 Given an MBA preference¼with relevant priors C and unambiguous events Λ,

suppose that C (Λ) is dense in (0, 1). Then the following are equivalent:

(i ) there exists a unique capacity ρ such that eq. (4) holds for any binary act x A y and any

normalized representation (I , u ) of¼

(i i ) ¼ satisfies Savage’s P4 axiom. That is, for any A, B ∈ Σ and any x , y ,x ′, y ′ ∈ X such that

x � y and x ′ � y ′, x A y ¼ x B y iff x ′A y ′ ¼ x ′ B y ′

5.3 A “fully subjective” Expected Utility model

As observed by Epstein and Zhang (2001), there is an important sense in which Savage’s (1954)

construction of subjective probability is not “fully subjective.” In fact, Savage (and later Machina

and Schmeidler (1992), in their extension of Savage’s construction) assumes exogenously that

the probability which represents the decision maker’s beliefs is defined on the wholeσ-algebra

Σ. Examples like Ellsberg’s paradox suggest that a natural extension of Savage’s philosophy

might be to define probabilities wherever the decision maker feels comfortable, and avoid do-

ing so otherwise, thus making also the domain of the probability charge “subjective.” Ep-

stein and Zhang propose a definition of unambiguous event, and in the spirit of Machina and
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Schmeidler (1992) provide an axiomatization of preferences whose induced likelihood relations

are represented by a probability charge on the set of unambiguous events —which under such

axiomatic restrictions (with a minor amendment, see Kopylov (2002)) is a λ-system. Kopylov

(2002) provides an analogous result using a slightly different set of axioms, generating weaker

structural restrictions on the set of unambiguous events (it is what he calls a “mosaic”).

The results obtained thus far allows us to provide a different “fully subjective” version of

Savage’s model, summarized below (cf. also Nehring (2002, Proposition 1)):12

Proposition 19 If ¼ is an MBA preference onF , then there is a λ-system of events Λ⊆ Σ such

that ¼ has an SEU representation (with utility u ) on the setU of the Λ-measurable acts. That

is, there exist a probability charge P :Σ→ [0, 1] such that for any f , g ∈U ,

f ¼ g ⇐⇒
∫

S

u ( f (s ))d P(s )≥
∫

S

u (g (s ))d P(s )

Moreover, P is uniquely defined on Λ.

We thus conclude that the sets of unambiguous events and acts derived above provide us

with natural “endogenous” domains for a theory of subjective expected utility maximization.

The decision maker assigns sharply defined probabilities only to those events that are revealed

unambiguous by his behavior, assigning interval-valued probabilities to all the other events.

Observe that nothing in our analysis prevents the trivial case Λ = {;,S}, in which SEU maxi-

mization never really appears. This is a difference with Epstein and Zhang’s analysis, in which

the set of unambiguous events is very rich by axiomatic requirement on the preferences.

As it is apparent from the statement, there is a sense in which our requirement on prefer-

ences is more stringent than Epstein-Zhang’s. We look for a set of acts on which the preference

¼ satisfies the full-blown SEU model of Savage, rather than just being probabilistically sophis-

ticated in the sense of Machina and Schmeidler. The difference has more than just theoretical

significance: The Epstein-Zhang construction is based on a definition of unambiguous event

which implies that Λ=Σ, i.e., every event in unambiguous, when the decision maker is proba-

bilistically sophisticated. However, as discussed at length in Ghirardato and Marinacci (2002), a

12As observed by Kopylov (2002), one can use Zhang’s (2002) definition of unambiguous event to obtain a “fully

subjective” SEU model, similarly to what we do here. The axiomatics and the sets of unambiguous events being

different, the results are not equivalent.
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probabilistically sophisticated decision maker might still be reacting to the presence of ambigu-

ity. The only way to make sure that he is not is to have a (rich enough) collection of events which

are exogenously known to be unambiguous, as a calibration device. Therefore, the conclusion

that all events are unambiguous to a probabilistically sophisticated decision maker hinges on

an exogenous notion of ambiguity of events which we dispense with.

A problem that is common to all such “fully subjective” approaches is that the domain of the

probability charge may be far from being unique. That is, while our setΛ is certainly unique, it is

not true that one cannot find another set of events on which ¼ has an SEU representation. Just

to make a simple example, suppose that ¼ is a CEU preference on a finite S, and consider any

monotonic class like Γ = {{s1},{s1, s2}, . . . ,S}. Given the family of acts which are Γ-measurable,

there is a probability P which represents¼, as all such acts are comonotonic. On the other hand,

one would have a hard time arguing that Γ is a natural domain for a “fully subjective” theory. But

even imposing structural requirements on the domain (e.g., that it be a λ-system) is not enough

to uniquely identify it in general.13 There might be a multiplicity of “endogenous domains” for

subjective probability, so that the choice of one must be motivated by considerations other than

just finding where the decision maker is capable of formulating sharp probabilities.

5.4 Unambiguous events and weak probabilistic sophistication

A result of Marinacci (2002) shows that preferences which have an α-MEU representation (with

constant α 6= 1/2) and are probabilistically sophisticated with respect to a nonatomic prior col-

lapse to SEU as soon as the set of priors used in the representation induces a “nontrivial” Λ

(see below). Indeed, the result requires an even weaker condition than probabilistic sophis-

tication, as spelled out below. We us the following terminology: A probability P ∈ ba1(Σ) is

convex-ranged on Σ if for any B ∈ Σ and any α ∈ [0, P(B )], there exists A ⊆ B , A ∈ Σ such that

P(A) =α.

Definition 4 A binary relation ¼ on F has weak probabilistic beliefs if there exists a convex-

13A similar observation is made by Kopylov (2002) about his results, although he uses the weaker notion of mo-

saic.

25



ranged P∗ ∈ ba1(Σ) and x � y such that, for all A, B ∈Σ,

P∗(A) = P∗(B ) =⇒ x A y ∼ x B y

Thus, a preference has weak probabilistic beliefs if the indifference sets of the likelihood

relation obtained by considering bets on events (with fixed payoffs x � y ) contain the level sets

of the probability P∗. The condition is weaker than probabilistic sophistication, as it does not

require full agreement between the ranking induced by P∗ and the likelihood ordering.14

We show that Marinacci’s result generalizes to a broad class of MBA preferences violating

the constant ambiguity index assumption. It is only needed that ambiguity attitudes over bets

do not fluctuate in an “inconsistent” fashion; that is, that condition (8) holds.

Proposition 20 Let ¼ be an MBA preference with relevant priors C and unambiguous events

Λ. Suppose that ¼ satisfies condition (8) for any A ∈Σ \Λ, and that C only contains probability

measures and satisfies C (Λ) 6= {0, 1}. Then, the following statements are equivalent:

(i ) ¼ has weak probabilistic beliefs.

(i i ) ¼ is an SEU preference, whose beliefs are represented by a nonatomic probability mea-

sure P∗.

Marinacci’s original result is an impossibility statement: under the assumptions of his the-

orem, probabilistic sophistication is compatible with α-MEU preferences only in the degener-

ate case of EU preferences. Our extension shows that Marinacci’s result is indeed much more

sweeping than that. In particular, it applies also to CEU preferences. Of course, the discus-

sion in Marinacci (2002) on the importance of the assumptions in the theorem still applies.

In particular, we want to emphasize a simple example of a class of CEU preferences which is

probabilistic sophisticated without being SEU.

14Moreover, probabilistic sophistication imposes further requirements beyond the existence of probabilistic be-

liefs. While the requirement that P∗ be convex-ranged is not strictly speaking part of the definition of probabilistic

sophistication, all the existing axiomatizations of probabilistic sophistication in a fully subjective setting —first

and foremost Machina and Schmeidler (1992)— characterize preferences inducing convex-ranged beliefs.
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Example 6 On a state space (S,Σ), with S at least countably infinite, consider a nonatomic

probability measure P and a strictly convex transformation functionϕ : [0, 1]→ [0, 1], increasing

and satisfying ϕ(0) = 0 and ϕ(1) = 1. Then a CEU preference¼with (some utility u and) capac-

ity ρ =ϕ(P)—a subjective Rank-Dependent EU preference— is probabilistically sophisticated

and not SEU. Notice that ¼ is MBA (indeed, invariant biseparable) and satisfies condition (7),

since it has α ≡ 1 by the strict convexity of ϕ. However, it can be checked that for ¼ we have

Λ= {;,S}, so that there is no nontrivial unambiguous event.

We close by recalling an axiom from GMM which can be employed to ensure that, as in the

assumptions of Proposition 20, all the elements of the set C are probability measures, rather

than charges:

Axiom 8 (Monotone Continuity) For all x , y ∈ X , if (An ) is a sequence in Σ such that An ↓ ; and

if z ∈X is such that y � z , then y ¼∗ x An z for some n .

It is immediate to see that Proposition B.1 in GMM extends to MBA preferences, showing

that in the presence of the previous axioms, Monotone Continuity is necessary and sufficient

for C to contain only probability measures.

A Proofs of the results in Section 3

A.1 Proof of Proposition 1

We just prove the necessity part of the statement. Sufficiency follows from routine arguments.

Since ¼ satisfies Weak Order, Risk Independence, Archimedean, and by Kreps (1988, Theorem

5.11), it follows that there exists a nonconstant and affine function u : X →R such that x ¼ y if

and only if u (x )≥ u
�

y
�

. We next show that each f inF admits a certainty equivalent.

Claim. For each f ∈F there exists x f ∈X such that x f ∼ f .

Proof of the Claim. Since f (S) is a finite subset of X and since¼ is a Weak Order and it satisfies

Monotonicity, it follows that there exist two consequences x1 and x0 in X such that x1 ¼ f ¼ x0.

We denote by xα = αx1+(1−α)x0 for all α ∈ [0, 1]. If either x0 ∼ f or x1 ∼ f then the statement
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follows. Otherwise, we have that x1 � f � x0. Define

U =
�

α∈ (0, 1) :αx1+(1−α)x0 � f
	

a nd

L =
�

β ∈ (0, 1) : f �βx1+
�

1−β
�

x0
	

.

Since¼ satisfies Archimedean, it follows that U and L are nonempty. Moreover, since¼ satisfies

Weak Order and u is affine, we have that

α>β ∀α∈U ,∀β ∈ L. (9)

Define ᾱ = infα∈U α and β̄ = supβ∈L β . By (9), it is immediate to see that ᾱ ≥ β̄ . Since U and L

are nonempty, we have that 1> ᾱ≥ β̄ > 0. Then, we have three cases:

1. x ᾱ ∼ f . The statement follows by imposing x f = x ᾱ.

2. ᾱ ∈U . It follows that x ᾱ � f . Since ¼ satisfies Archimedean, it follows that there exists

λ∈ (0, 1) such that

xλᾱ =λx ᾱ+(1−λ)x0 � f ,

thus λᾱ∈U and λᾱ < ᾱ. This is a contradiction with ᾱ= infα∈U α.

3. ᾱ 6∈U and x ᾱ 6∼ f . Since ¼ satisfies Weak Order, it follows that f � x ᾱ, that is, ᾱ ∈ L. Since

ᾱ ≥ β̄ = supβ∈L β , this implies that ᾱ = β̄ . Since ¼ satisfies Archimedean, it follows that

there exists λ∈ (0, 1) such that

f �λx1+(1−λ)x β̄ = xλ+(1−λ)β̄ ,

thus λ+(1−λ) β̄ ∈ L and β̄ < λ+(1−λ) β̄ . This is a contradiction with β̄ = supβ∈L β . �

Notice that B0 (Σ, u (X )) =
�

u ◦ f : f ∈F
	

. We define I : B0 (Σ, u (X ))→R by

I (a ) = u
�

x f

�

where f ∈F and u ◦ f = a .

First, observe that I is well defined. Indeed, pick a ∈ B0 (Σ, u (X )). Consider f , g ∈F such that

u ◦ f = a = u ◦ g . It follows that u
�

f (s )
�

= a (s ) = u
�

g (s )
�

for all s ∈ S. Since u represents ¼
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over X , it follows that f (s ) ∼ g (s ) for all s ∈ S. By Monotonicity, we can conclude that f ∼ g .

Since ¼ satisfies Weak Order, it follows that x f ∼ x g . Thus, we have that

u
�

x f

�

= I (a ) = u
�

x g

�

.

Next, consider a ,b ∈ B0 (Σ, u (X )) such that a (s ) ≥ b (s ) for all s ∈ S. It follows that there exists

f , g ∈F such that u ◦ f = a and u ◦ g = b . Since a ≥ b and ¼ satisfies Monotonicity, it follows

that f ¼ g . Since ¼ satisfies Weak Order and u represents ¼ on X , we thus obtain that

x f ¼ x g and I (a ) = u
�

x f

�

≥ u
�

x g

�

= I (b ) .

Next, we show that I is normalized. Pick k ∈ u (X ). By assumption, there exists x ∈ X such that

u (x ) = k . Moreover, if a = k 1S , then a = u ◦ f where f = x . Notice that x f can be chosen to be

equal to x . By definition of I , it follows that

I (a ) = u
�

x f

�

= u (x ) = k .

Pick f , g ∈F . Since ¼ satisfies Weak Order and u represents ¼ restricted to X , we have that

f ¼ g ⇔ x f ¼ x g ⇔ u
�

x f

�

≥ u
�

x g

�

⇔ I
�

u ◦ f
�

≥ I
�

u ◦ g
�

. (10)

Finally, we are left to prove the continuity of I . First, observe that I (B0 (Σ, u (X ))) = u (X ). Con-

sider a ,b ∈ B0 (Σ, u (X )) such that a ≤ b and I (b ) > k where k ∈ R. It follows that there exist f

and g inF such that a = u ◦ f and b = u ◦ g . We have two cases:

1. I (a ) > k . In this case, B0 (Σ, u (X )) 3 αb + (1−α)a ≥ a for all α ∈ (0, 1). Since I is mono-

tonic, it follows that

I (αb +(1−α)a )≥ I (a )> k .

2. I (a ) ≤ k . Since I (b ) > k , we have that there exists k ′ ∈ u (X ) such that I (b ) > k ′ > k ≥

I (a ). This implies that there exists x ′ ∈ X such that u (x ′) = k ′. By (10), we have that

g � x ′ � f . Since ¼ satisfies Archimedean, it follows that there exists α ∈ (0, 1) such that

αg +(1−α) f � x ′. Since u is affine and by (10), we have that

I (αb +(1−α)a ) = I
�

u ◦
�

αg +(1−α) f
��

> I
�

u
�

x ′
��

= u
�

x ′
�

= k ′ > k .

It follows that I satisfies condition (iv) of C3M Lemma 45. By Proposition 46 of C3M, it fol-

lows that I is lower semicontinuous. Upper semicontinuity follows by a symmetric argument.

The uniqueness part of the statement follows from routine arguments.
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B Proofs of the results in Section 4

B.1 Proof of Theorem 8

Assume that¼ satisfies Weak Order, Risk Independence, Archimedean, Monotonicity. By Propo-

sition 1, it follows that ¼ satisfies Continuity as defined in C3M.

(i) implies (ii). By C3M (Theorem 3), if¼ satisfies Convexity then there exists a nonconstant

affine function u : X →R and a function G ? : u (X )×b a 1 (Σ)→ (−∞,∞] such that the functional

I : B0 (Σ, u (X ))→R defined by

I (a ) = min
P∈b a 1(Σ)

G ?

�∫

a d P, P

�

is well defined and such that

f ¼ g ⇔ I
�

u ◦ f
�

≥ I
�

u ◦ g
�

.

Moreover, G ? (t , P) = suph∈F

¦

u (xh) :
∫

u ◦hd P ≤ t
©

for all (t , P) ∈ u (X )× b a 1 (Σ). Fix an act

f ∈ F . Consider Pf ∈ b a 1 (Σ) such that G ?
�∫

u ◦ f d Pf , Pf

�

= I
�

u · f
�

. Define t =
∫

u ◦ f d P .

Assume that g ∈ F is such that
∫

u ◦ f d Pf ≥
∫

u ◦ g d Pf . By the definition of G ?
�

t , Pf

�

and

since t ≥
∫

u ◦ g d Pf , it follows that u
�

x g

�

≤ G ?
�

t , Pf

�

= I
�

u ◦ f
�

. Since I is normalized, it

follows that I
�

u ◦ g
�

= I
�

u
�

x g

��

≤ I
�

u ◦ f
�

, that is, f ¼ g . Summing up, if we define the

binary relation ≥ f onF by

f 1 ≥ f f 2⇔
∫

u ◦ f 1d P ≥
∫

u ◦ f 2d P

then we have that f ≥ f g implies that f ¼ g . Since f was arbitrarily chosen, the statement

follows.

(ii) implies (i). By Proposition 1, it follows that there exists a nonconstant affine function

u : X → R and a normalized, monotonic, and continuous functional I : B0 (Σ, u (X ))→ R such

that f ¼ g if and only if I
�

u ◦ f
�

≥ I
�

u ◦ g
�

. We define G ? : u (X )×b a 1 (Σ)→ (−∞,∞] by

G ? (t , P) = sup
h∈F

¨

u (xh) :

∫

u ◦hd P ≤ t

«

∀ (t , P)∈ u (X )×b a 1 (Σ) .

Notice that G ? (·, P) :R→ (−∞,∞] is an increasing function for all P ∈b a 1 (Σ). Moreover, observe

that I
�

u ◦ f
�

= u
�

x f

�

≤G ?
�∫

u ◦ f d P, P
�

for all f ∈F and for all P ∈b a 1 (Σ). It follows that

I
�

u ◦ f
�

≤ inf
P∈b a 1(Σ)

G ?

�∫

u ◦ f d P, P

�

∀ f ∈F .
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Pick f ∈F . By assumption, there exists a SEU preference ≥ f such that

f ≥ f g ⇒ f ¼ g .

In other words, we have that there exists P̄ ∈b a 1 (Σ) such that
∫

u ◦ f d P̄ ≥
∫

u ◦ g d P̄⇒ I
�

u ◦ f
�

≥ I
�

u ◦ g
�

.

By definition of G ?, this implies that

G ?

�∫

u ◦ f d P̄ , P̄

�

= I
�

u ◦ f
�

.

Since f was arbitrarily chosen, we can conclude that

I
�

u ◦ f
�

= min
P∈b a 1(Σ)

G ?

�∫

u ◦ f d P, P

�

∀ f ∈F . (11)

Consider f , g ∈F such that f ∼ g . Define k = I
�

u ◦ f
�

= I
�

u ◦ g
�

. Define

UP (k ) =

¨

h ∈F : G ?

�∫

u ◦ f d P, P

�

≥ k

«

.

Since G ? (·, P) is an increasing function for all P ∈ b a 1 (Σ), it follows that UP (k ) is closed under

convex combinations for all P ∈ b a 1 (Σ). By (11), it follows that f , g ∈UP (k ) for all P ∈ b a 1 (Σ).

This implies that

G ?

�∫

u ◦
�

α f +(1−α) g
�

d P, P

�

≥ k ∀α∈ (0, 1) ,∀P ∈b a 1 (Σ) .

By (11), we can conclude that I
�

u ◦
�

α f +(1−α) g
��

≥ I
�

u ◦ f
�

, that is, α f +(1−α) g ¼ f . Since

f and g were arbitrarily chosen, it follows that ¼ satisfies Convexity.

B.2 Proof of Proposition 9

Suppose¼ is biseparable, so ρx ,y is independent of x , y . Then, for all x , y ∈X with x � y and all

A ∈ Σ, I (u ◦ x A y ) = ρ(A)u (x ) + [1−ρ(A)]u (y ). Furthermore, if x ∼ y , I (u ◦ x A y ) = I (u (x )) =

u (x ) = ρ(A)u (x ) + [1 − ρ(A)]u (y ); the first equality follows from monotonicity. Thus, I (u ◦

x A y ) =ρ(A)u (x )+ [1−ρ(A)]u (y )whenever x ¼ y .

Now, for any two binary acts f , g , we can always choose A, A ′ ∈ Σ so that f = x A y and

g = x ′A ′ y ′, with x ¼ y and x ′ ¼ y ′. Then, for all z ∈ X and λ ∈ (0, 1], λ f + (1−λ)z = (λx + (1−
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λ)z )A (λx ′+ (1−λ)z ), and so I (u ◦ [λ f + (1−λ)z ]) = ρ(A)u (λx + (1−λ)z ) + [1−ρ(A)]u (λx ′+

(1−λ)z ) =λI (u ◦ f )+ (1−λ)u (z ), and similarly for λg +(1−λ)z . Axiom 7 follows.

In the opposite direction, suppose Axiom 7 holds. Fix A ∈Σ and consider the fictitious state

space SA = {s , t } actsFA =X SA , and preferences¼A onFA defined by f A ¼A g A iff f A(s )A f A(t )¼

g A(s )A g A(t ) for all f A , g A ∈ FA . Then ¼A satisfies the GMM axioms and admits a representa-

tion (IA , u A), with IA monotonic, constant-linear and normalized; furthermore, we can assume

w.l.o.g. that u A = u , because ¼A and ¼ agree on constant acts.

Now consider x , y ,x ′, y ′ ∈ X with x � y and x ′ � y ′. There exist α,β ∈ R, with α > 0, such

that αu (x ) +β = u (x ′) and αu (y ) +β = u (y ′): hence, if f A , g A ∈ FA are defined by f A(s ) = x ,

f A(t ) = y , g A(s ) = x ′ and g A(t ) = y ′, we have IA(u ◦ g A) =αIA(u ◦ f A)+β ; therefore, if c f A , c g A ∈X

are the ¼A –certainty equivalents of f A and g A respectively, u (c g A ) =αu (c f A )+β as well.

Now c f A ∼A f A iff c f A ∼ x A y , and similarly c g A ∼A g A iff c g A ∼ x ′A y . It follows that I (u ◦

x ′A y ′) = u (c g A ) =αu (c f A )+β =αI (u ◦x A y )+β ; Eq. (6) and the fact that αu (x )+β = u (x ′) and

αu (y )+β = u (y ′) then imply that ρx ,y (A) =ρx ′,y ′(A).

Hence, a set function ρ : Σ→ [0, 1] that satisfies Eq. (4) can be uniquely defined; it is then

straightforward to verify that ρ is in fact a capacity.

C Proofs of the results in Sec. 5

Throughout this appendix we write C (A) (resp. C (A)) in place of C (1 A 0) (resp. C (1 A 0)). We

also write αu ◦ f in lieu of α(u ◦ f ). Notice that for expositional reasons, the results are proved

in a different order than that in the main text.

We also make a useful observation. Call reduced an act f such that f (s ) ∼ f (s ′) implies

f (s ) = f (s ′). Given any non-reduced act f , we observe that there is a reduced act which, while

being state-by-state indifferent to f , “simplifies” it by restricting its range so that it only contains

non-indifferent payoffs. A ¼-reduction g of f is a reduced act g = {x1, A1; ...;xn , An}, with x1 �

x2 � ...� xn and {A1, ..., An} a partition of S inΣ, such that g (s )∼ f (s ) for all s ∈S. Finally, given a

reduced act f = {x1, A1; ...;xn , An}, with x1 � x2 � ...� xn and {A1, ..., An} a partition of S inΣ, and

a permutation σ of {x1,x2, ...,xn}, define the permuted act fσ as fσ = {σ(x1), A1; ...;σ(xn ), An}.

The following lemma is immediately verified:

32



Lemma 21 Given an MBA preference¼, f is unambiguous if and only if there is some¼-reduction

g of f for which gσ is crisp for every permutationσ of g ’s payoffs.

Proof: Note that a ¼-reduction of an act f is a ¼-permutation according to Def. 2. Hence, if f

is unambiguous and g is a ¼-reduction of g , every permutation of g is a ¼-permutation of f ,

and therefore it is crisp. Conversely, let f̄ be a ¼-permutation of f , and let g be a ¼-reduction

of f for which gσ is crisp for every permutation σ. In particular, there is a permutation σ̄ such

that g σ̄(s ) ∼ f̄ (s ) for all s . By assumption, g σ̄ is crisp, so g σ̄ ∼∗ x for some x ∈ X . But then, by

monotonicity of ¼∗, also f̄ ∼∗ x , i.e. f̄ is crisp. Thus, f is unambiguous.

C.1 Proof of Proposition 10

Let U ′ be the set defined in the statement of the proposition. More precisely, let U ′ be the

union of all sets V of crisp acts that are closed under ¼-permutations. Notice that, if f is crisp,

the set of all ¼-permutations of f is one such set V , because the ¼-permutation relation is an

equivalence. Furthermore, all constants are crisp; thus,U ′ is both well-defined and non-empty.

We will prove thatU =U ′. We begin with the observation that any act f whose¼-permutations

are all crisp must belong to U ′. In fact, if f /∈ U ′, one could add f and all its ¼-permutations

toU ′, thus obtaining a larger set and contradicting the definition ofU ′. Conversely, if f ∈U ′,

then any ¼-permutation of f must be inU ′, hence crisp. This proves that f is unambiguous.

C.2 Proofs of Propositions 12 and 13, and of Corollary 14

A lemma first:

Lemma 22 Let a 1, a 2, ..., a n ,b1,b2, ...,bn , c ∈ R be such that
∑n

h=1 a hbσ(h) = c for all permuta-

tionsσ ∈ Per(n ). Then either a 1 = a 2 = ...= a n or b1 =b2 = ...=bn .

Proof. By contradiction, assume that there exist i , j ∈ {1, . . . , n} such that a i 6= a j and k , l ∈

{1, . . . , n} such that bk 6= b l . Consider a permutation σ such that σ(i ) = k and σ(j ) = l , and the
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permutationσ′ =σ(k l ) obtained applyingσ and then switching around k and l . It follows that

a i bk +a j b l +
∑

h 6=i ,j

a hbσ(h) =
n
∑

h=1

a hbσ(h) = c =
n
∑

h=1

a hbσ′(h) = a i b l +a j bk +
∑

h 6=i ,j

a hbσ(h),

whence a i bk + a j b l = a i b l + a j bk . That is, a i (bk −b l ) = a j (bk −b l ), which implies a i = a j , a

contradiction. �

C.2.1 Proofs of Propositions 12 and 13.

We prove the two Propositions by showing that the following statements are equivalent for any

A ∈Σ:

(i ) A ∈Λ.

(i i ) P(A) =Q(A) =ρx ,y (A) for all P,Q ∈C and x � y .

(i i i ) For every x � y , the act x A y is crisp.

(i v ) For some x � y , the act x A y is crisp.

(i )⇒ (i i ) : Suppose that A ∈ Λ. Therefore, there is f ∈ U and x ∈ X such that A = {s ∈ S :

f (s ) ∼ x }. Since f ∈ U , there exists a reduction {x i , A i } of f (with x i � x j for every i 6= j ) such

that for every permutationσ ∈ Per(n ), {xσ(i ), A i } is crisp. Then

n
∑

i=1

u
�

xσ(i )
�

P(A i ) =
n
∑

i=1

u
�

xσ(i )
�

Q(A i )

and
n
∑

i=1

[P(A i )−Q(A i )]u
�

xσ(i )
�

= 0. (12)

Therefore, by the Lemma above, either P(A1)−Q(A1) = P(A2)−Q(A2) = · · · = P(An )−Q(An ) = b

or u (x1) = u (x2) = ... = u (xn ). In the former case 1 =
∑n

i=1 P(A i ) =
∑n

i=1Q(A i ) + nb = 1+ nb .

Therefore b = 0 and A i satisfies condition (i i ) for any for all i = 1, 2, ..., n . As A ∈ {A i : i = 1, . . . , n},

the conclusion follows. In the latter case, n = 1 and A = { f ∼ x } is then either S or ; (depending

on whether x ∼ x1 or not). Clearly P(S) = Q(S) = 1 and P(;) = Q(;) = 0 for any P,Q ∈ C , so

that once again (i i ) follows, also proving that {;,S} ∈ Λ. Notice finally that if P(A) =Q(A) for all

P,Q ∈C , it then follows from the definition of ρx ,y that ρx ,y (A) = P(A) =Q(A).
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(i i )⇒ (i i i ): Let x � y . Then,

P(u (x A y )) = (u (x )−u (y ))P(A)+u (y ) = (u (x )−u (y ))Q(A)+u (y ) =Q(u (x A y ))

for all P,Q ∈C . That is, x A y is crisp.

(i i i )⇒ (i v ): Obvious.

(i v )⇒ (i ): Let x � y be s.t. x A y is crisp. We want to show that f = x A y ∈ U . This is the

case if f has a ¼-reduction whose permutations are all crisp. But f is a reduced act, and the

only permutation of f is g = x Ac y . Since f is crisp,

P(u (x A y )) = (u (x )−u (y ))P(A)+u (y ) = (u (x )−u (y ))Q(A)+u (y ) =Q(u (x A y ))

which implies that P(A) =Q(A). In turn, this implies P(Ac ) =Q(Ac ), so that

P(u (x Ac y )) = (u (x )−u (y ))P(Ac )+u (y ) = (u (x )−u (y ))Q(Ac )+u (y ) =Q(u (x Ac y ))

and g is also crisp. Notice that this argument also shows that if A ∈Λ, then Ac ∈Λ. �

C.2.2 Proof of Corollary 14.

We have proved properties 1 and 2 of a λ-system in the course of proving the previous two

propositions, so we only need to show property 3. If A, B ∈ Λ and A ∩ B = ;, for all P,Q ∈ C ,

P(A ∪ B ) = P(A)+P(B ) =Q(A)+Q(B ) =Q(A ∪ B ), hence A ∪ B ∈Λ. �

C.3 Proofs of Theorem 11 and Corollary 15

Using the definition ofΛ and the characterization of Proposition 12, the statements to be shown

equivalent are reformulated as follows:

(i ) f ∈U .

(i i ) {s ∈S : f (s )¼ x } ∈Λ for all x ∈X .

(i i i ) {s ∈S : f (s )∼ x } ∈Λ for all x ∈X .

(i v ) {s ∈S : u ◦ f (s )≥ a } ∈Λ for all a ∈R.
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(v ) {s ∈S : u ◦ f (s ) = a } ∈Λ for all a ∈R.

(v i ) For every ¼-reduction {x i , A i }ni=1 of f (with x i 6∼ x j if i 6= j ), {A1, A2, ..., An} is a partition of

S in Λ.

(v i i ) There exist a ¼-reduction {x i , A i }ni=1 of f , with {A1, A2, ..., An} a partition of S in Λ (and

x i 6∼ x j if i 6= j ).

The equivalence of (i ) and (v i i ) follows immediately from the argument used to show (i )⇒

(i i ) in appendix C.2.1 and from Proposition 13. We shall now prove that statements (i i )− (v i i )

are equivalent.

(v i i )⇒ (i i ): Given f , let g = {x i , A i }ni=1 be its ¼-reduction with {A1, A2, ..., An} a partition of

S in Λ (and x i 6∼ x j if i 6= j ), so that u ◦ f = u ◦ g =Σn
i=1u (x i )1A i . For all x ∈X , {s ∈S : f (s )¼ x } =

{s ∈ S : u ◦ f (s )≥ u (x )}. Hence, {s ∈ S : f (s )¼ x } is a disjoint union of elements of Λ, which is a

λ-system.

(i i ) ⇒ (i v ): Notice that u (X ) is an interval. Let a ∈ R. If a ∈ u (X ), say a = u (x ′), then

{s ∈ S : u ◦ f (s ) ≥ a } = {s ∈ S : f (s ) ¼ x ′} ∈ Λ. Else, either a < t for all t ∈ u (X ), and then

{s ∈S : u ◦ f (s )≥ a }=S ∈Λ, or a > t for all t ∈ u (X ), and then {s ∈S : u ◦ f (s )≥ a }= ; ∈Λ.

(i v ) ⇒ (v ): Let u ◦ f = Σn
i=1a i 1A i , with {A1, A2, ..., An} a partition of S in Σ and a 1 > a 2 >

... > a n . If a /∈ {a 1, a 2, ..., a n}, then {s ∈ S : u ◦ f (s ) = a } = ; ∈ Λ. The set A1 = {s ∈ S :

u ◦ f (s ) = a 1} = {s ∈ S : u ◦ f (s ) ≥ a 1} ∈ Λ. For all i ≥ 2, then Λ 3 {s ∈ S : u ◦ f (s ) ≥ a i } =
�

s ∈S : u ◦ f (s )∈ {a 1, a 2, ..., a i }
	

=
⋃i

j=1

¦

s ∈S : u ◦ f (s ) = a j

©

= A1 ∪A2 ∪ ...∪A i . Therefore, for

all i ≥ 2, {s ∈S : u ◦ f (s ) = a i } = A i = (A1∪A2∪ ...∪A i ) \ (A1∪A2∪ ...∪A i−1) ∈ Λ (remember that

if Λ is a λ-system, B ,C ∈Λ and C ⊆ B imply B \C ∈Λ).

(v )⇒ (i i i ): For all x ∈X , {s ∈S : f (s )∼ x } = {s ∈S : u ◦ f (s ) = u (x )} ∈Λ.

(i i i )⇒ (v i ): Given f , let g = {x i , A i }ni=1 be any one of its ¼-reductions, with {A1, A2, ..., An}

a partition of S in Σ (and x i 6∼ x j if i 6= j ). W.l.o.g. set x1 � x2 � ... � xn so that u ◦ f = u ◦ g =

Σn
i=1u (x i )1A i and u (x1)> u (x2)> ...> u (xn ). Therefore, A i = {s ∈ S : u ◦ f (s ) = u (x i )} = {s ∈ S :

f (s )∼ x i } ∈Λ for all i = 1, ..., n .

(v i )⇒ (v i i ): Trivial.
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C.4 Proofs of Propositions 16, 17 and 18

C.4.1 Proposition 16

Given x � y , define ρx ,y via Eq. (5). Then ρx ,y (A)+ρx ,y (Ac ) = 1 iff

[αu (x A y )(C (A)−C (A))+C (A)]+ [αu (x Ac y )(C (Ac )−C (Ac ))+C (Ac )] = 1

which, since C (Ac ) = 1−C (A) and C (Ac ) = 1−C (A), is equivalent to

αu (x A y )(C (A)−C (A))+αu (x Ac y )(C (A)−C (A))+ (C (A)−C (A)) = 0

in turn equivalent to

(C (A)−C (A)) = (αu (x A y )+αu (x Ac y ))(C (A)−C (A))

Therefore, ρx ,y (A)+ρx ,y (Ac ) = 1 iff either C (A) =C (A) or αu (x A y )+αu (x Ac y ) = 1.

C.4.2 Proposition 17

Notice that under the representation assumptions, for the given x � y eq. (8) holds iff

1

2
I (u ◦ (x A y ))+

1

2
I (u ◦ (x Ac y )) 6=

1

2
u (x )+

1

2
u (y )

If we recall eq. (6), the l.h.s. can be rewritten as follows:

u (y )+
1

2

�

u (x )−u (y )
�

¦

αu (x A y )(C (A)−C (A))+C (A)+αu (x Ac y )(C (Ac )−C (Ac ))+C (Ac )
©

so that after rewriting and using the shorthand∆C (A) =C (A)−C (A)) we obtain

1

2
I (u ◦ (x A y ))+

1

2
I (u ◦ (x Ac y )) = u (y )+

1

2

�

u (x )−u (y )
���

αu (x A y )+αu (x Ac y )−1
�

(−∆C (A))+1
	

= u (y )+
1

2

�

u (x )−u (y )
���

1−αu (x A y )+αu (x Ac y )
�

∆C (A)+1
	

We thus get

1

2
I (u ◦(x A y ))+

1

2
I (u ◦(x Ac y )) =

1

2
u (x )+

1

2
u (y )+

1

2

�

u (x )−u (y )
���

1−αu (x A y )−αu (x Ac y )
�

∆C (A)
	

Therefore, eq. (8) holds iff

1

2
u (x )+

1

2
u (y ) 6=

1

2
u (x )+

1

2
u (y )+

1

2

�

u (x )−u (y )
���

1−αu (x A y )−αu (x Ac y )
�

∆C (A)
	

which, since A ∈Σ \Λ implies∆C (A)> 0 (and x � y implies u (x )> u (y )), holds iff

1 6=αu (x A y )+αu (x Ac y )

concluding the proof.
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C.4.3 Proposition 18

We begin by recalling that, given a normalized representation (I , u ) and x � y , x A y ¼ x B y iff

αu (x A y )(C (A)−C (A))+C (A)≥αu (x B y )(C (B )−C (B ))+C (B )

with the left-hand (resp. right-hand) side collapsing to P(A) =C (A) =C (A) (resp. P(B ) =C (B ) =

C (B )) if A ∈Λ (resp. B ∈Λ). Clearly, if there is a unique ρ for which Eq. (4) holds, αu (x A y ) does

not depend on x or y . Hence, the implication (i)⇒ (ii) is trivial. We prove that (ii)⇒ (i).

It is enough to show that αu (x A y ) = αu (x ′A y ′) for every u and x � y , x ′ � y ′: this implies

that ρx ,y (A) = ρx ′,y ′(A) whenever x � y , x ′ � y ′, so a set function ρ : Σ→ [0, 1] that satisfies Eq.

(4) can be uniquely defined; it is then straightforward to verify that ρ is a capacity.

Thus, argue by contradiction, and suppose w.l.o.g. that αu (x A y ) > αu (x ′A y ′). By the rich-

ness assumption on C (Λ), there exists B ∈Λ such that P(B ) =C (B ) =C (B ) satisfies

αu (x A y )(C (A)−C (A))+C (A)< P(B )<αu (x ′A y ′)(C (A)−C (A))+C (A)

but then we have a violation of P4, since the first inequality implies x B y � x A y , and the second

implies x ′A y ′ � x ′ B y ′. Thus, we must have αu (x A y ) =αu (x ′A y ′). This completes the proof.

C.5 Proof of Proposition 20

The implication (i i )⇒ (i ) being trivial, we prove (i )⇒ (i i ). By weak probabilistic beliefs (as-

sumption (i )), there exists x � y and a convex-ranged probability charge P∗ such that for all

A, B ∈Σ

P∗(A) = P∗(B ) =⇒ρx ,y (A) =ρx ,y (B )

Consider now A ∈ Λ such that C (A) = C (A) = ρx ,y (A) ∈ (0, 1). It follows that P∗(A) ∈ (0, 1),

since P∗(A) = 0 (resp. P∗(A) = 1) implies P∗(A) = P∗(;) (resp. P∗(A) = P∗(S)), which in turn

implies by (i ) that ρx ,y (A) =ρx ,y (;) = 0 (resp. ρx ,y (A) =ρx ,y (S) = 1), a contradiction.

Let B ∈Σ be such that P∗(B ) = P∗(A), so that (i ) impliesρx ,y (B ) =ρx ,y (A) and (since P∗(B c ) =

P∗(Ac ) as well) ρx ,y (B c ) =ρx ,y (Ac ). It follows that

ρx ,y (B )+ρx ,y (B c ) =ρx ,y (A)+ρx ,y (Ac ) = 1
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where the last equality follows from Proposition 16.

We also know that¼ satisfies condition (8) for any A ∈Σ\Λ. It therefore follows from Propo-

sitions 17 and 16 that ρx ,y (B )+ρx ,y (B c ) = 1 implies B ∈ Λ, so that ρx ,y (B ) = P(B ) for any P ∈C .

We can thus conclude that with the chosen A ∈Λwe have for every B ∈Σ and P ∈C ,

P∗(B ) = P∗(A) =⇒ P(B ) = P(A)

so that P∗ = P follows from Theorem 2 of Marinacci (2002). Since this is true for any P ∈C —that

is, C = {P∗}— we conclude that ¼ is a SEU preference with probability P∗.
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