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Abstract

This paper revisits the problem of adverse selection in the insurance market of Rothschild and

Stiglitz [24]. We propose a simple extension of the game-theoretic structure in Hellwig [13] under

which Nash-type strategic interaction between the informed customers and the uninformed firms

results always in a particular separating equilibrium. The equilibrium allocation is unique and

Pareto-efficient in the interim sense subject to incentive-compatibility and individual rationality.

In fact, it is the unique neutral optimum in the sense of Myerson [20].
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1 Introduction

This paper readdresses an old but still open question in applied micro-economic theory: how a

competitive market will allocate insurance policies when firms cannot distinguish amongst the

different risk-classes of customers. To this end, it restricts attention to the simplest depiction that

captures the essential features of this question, an economy in which each of a continuum of agents

observes a binary parameter indicating the probability of suffering an income loss. For this version

of the problem, we propose a game-theoretic structure under which Nash-type strategic interaction

between the informed insurees and uninformed insurers delivers the strongest of results. The

equilibrium is unique and sorts the two types by maximizing the welfare of the low-risk agents. More

importantly, it does so in a way that renders the equilibrium outcome interim incentive efficient

(i.e, Pareto-efficient in the interim sense and subject to incentive-compatibility and individual

rationality). In fact, and in a sense to be made precise below, it is the most desirable allocation on

the interim incentive efficient (IIE) frontier.

Needless to say, we examine the interactions between the market participants under the lenses

of non-cooperative game-theory. This has become the standard tool for analyzing markets with

adverse selection because of its main virtue, every detail of the economic environment is made

explicit. Indeed, a well-defined extensive-form game with incomplete information describes all the

institutional details of the market, the information that is available to each of the players and the

actions they may take. With respect to studying markets for insurance provision, this approach

was first adopted by Rothschild and Stiglitz [24]. Yet, the main implication of their study (as well

as of the subsequent generalization by Riley [23]) was that, abstracting away from specific market

structures but viewing market participants as engaging in Nash-type strategic behavior, adverse

selection can be too cumbersome for competitive markets to function, even under the simplest of

settings. It limits the form of contractual arrangements that are consistent with equilibrium, to

the extent that it can even preclude its existence altogether.

Specifically, under Nash-type strategic behavior (it is common knowledge amongst all players

that no player can influence the actions of any other player), there might be no (pooling) equilibrium

arrangement offering a single price per unit of coverage. This occurs when insurance firms have an

incentive to charge higher prices for greater coverage because, by doing so, they are able to sort

their lower-risk customers from the higher-risk ones (for whom additional coverage yields greater

marginal benefits). In this case, the only possible contractual arrangement is separating with

each risk-class paying its own premium, equal to its true accident probability. Unfortunately, the

Rothchild-Stiglitz (RS) allocation is a viable equilibrium only under limiting conditions.

This alarming observation led to the emergence of a significant body of literature whose prin-

cipal aim has been to propose allocation mechanisms, along with implementing market structures,

which ensure that always some allocation will be supported as competitive equilibrium, under some

associated notion of equilibrium. The respective models can be broadly classified into three sets,

based upon the extent to which the mechanism allows the players’ behavior to be strategic. All

but two, however, share an unsatisfactory feature: whenever the RS allocation is not IIE, the same
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is almost always true also for the suggested equilibria. The two exemptions are Miyazaki [19]

and Bisin and Gottardi [2] but either suffers from deficiencies regarding the implementation of the

proposed equilibrium.

One class of models has focused on Walrasian mechanisms. In its purest form, this approach was

initiated by Prescott and Townsend [21]-[22] and revisited recently by Rustichini and Siconolfi [25].

The central message of these papers is that general economies with adverse selection do not always

admit pure Walrasian equilibrium pricing systems and, when they do, the resulting allocations are

not necessarily IIE. To guarantee existence, some studies have introduced rationing (Gale [9]-[10],

Guerrieri et al. [12]) or suppressed the requirement that firms are profit-maximizing, imposing at

the same time quantity constraints on trade (Dubey and Geanakoplos [5], Dubey et al. [6]).

Either of these approaches arrives at some equilibrium that is essentially unique and involves a

separating allocation. Typically, however, this is not IIE while uniqueness obtains by restricting the

out-of-equilibrium actions and beliefs often in strong ways. Under rationing, the refinement criteria

range from subgame perfection (Guerrieri et al. [12]) to the Universal Divinity of Banks and Sobel

[1] (Gale [9]) or the Stability of Kohlberg and Mertens [15] (Gale [10]). The latter notion has been

deployed also under quantity constraints (Dubey and Geanakoplos [5], Dubey et al. [6]) but seems

to be more binding in that environment. As shown in Martin [17], its weakening to something akin

to trembling-hand perfection allows for many pooling equilibria which typically Pareto-dominate

the separating allocation but are not IIE either.

Instead of constraining the Walrasian mechanism, Bisin and Gottardi [2] enhance it with the

implicit presence of institutions that monitor trade appropriately. Restricting attention to the

same insurance economy as the one in he present paper, they show that the RS allocation obtains

always as the unique Walrasian equilibrium if there are markets for contingent claims in which

agents trade only incentive-compatible contracts. To ensure that incentive efficiency is attained

whenever the RS allocation is not IIE, they introduce also markets for consumption rights. The

ensuing Arrow-Lindahl equilibria internalize the consumption externality due to adverse selection.

In fact, by varying the endowment of consumption rights, the authors are able to trace the entire

IIE frontier but for one point. The latter, which is no other than the unique equilibrium allocation

in the present paper, can be obtained only as the limit of a sequence of equilibria.

Another perspective has been to look at mechanisms in which competitive equilibrium is sup-

ported by strategic behavior. This has produced two separate lines of approach. In earlier models,

some of the players exhibit strategic behavior which is not of the Nash-type. Specifically, the sellers

in Wilson [26], Riley [23], Engers and Fernandez [7], and Miyazaki [19] but also the buyers in Gross-

man [11] are able to foresee the unraveling of equilibrium Rothschild and Stiglitz warned about and

modify their plans so as to prevent it. By contrast, most later studies have been built upon the

game-theoretical foundation in Hellwig [13] or its generalization in Maskin and Tirole [18]. Under

these structures, whenever the RS allocation is not IIE, a multiplicity of contractual arrangements

can be supported as sequential equilibria. Within the richness of the resulting equilibrium set,

however, the IIE subset is of negligible size.

Evidently, even though there are by now many views about how a competitive market might
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allocate insurance policies under adverse selection, a crucial question has been left open: whether,

if at all, and under which game-theoretic structure a competitive market whose participants engage

in Nash-type strategic behavior may ensure that resources are allocated efficiently. This motivates

the present paper which answers this question in the affirmative, and in the strongest sense, using

structural elements that are well-known in the literature. Our main message is that a simple

extension of Hellwig’s game-structure delivers always and uniquely a particular efficient allocation

as Nash equilibrium.

As we argue in the sequel, the analysis of Rothschild and Stiglitz can be interpreted by means

of a two-stage game in which, at stage 1, the firms make binding offers of insurance contracts

while, at stage 2, the customers choose amongst them. By contrast, Hellwig turns the offers firms

make at stage 1 non-binding by adding a third stage in which, after observing the other firms’

contractual offers at stage 1 and the customers’ choices at stage 2, a firm may withdraw any of its

own contracts. Regarding this game, we envision expanding the strategy space of the insurance

providers along two dimensions. Our firms may subsidize their net income across contracts by

offering menus of them at stage 1. They can also publicly pre-commit, if they so wish, to an offer

on either of two levels: not withdrawing a contract at stage 3, irrespectively of the history of play

at that point (commitment on the contractual level), or not withdrawing an element of a menu

unless they withdraw the menu itself (commitment on the policy level).

Under this structural enhancement, the IIE allocation that maximizes the welfare of low-risk

customers can always be supported as the unique equilibrium, for a given distribution of the two

risk-types in the population, even when one does not exist in the Rothschild-Stiglitz setting. The

equilibrium outcome coincides with the RS allocation when the latter is IIE. Otherwise, it involves

cross-subsidization across risk-classes but also contracts. Each class pays a different risk premium,

the one paid by the high-risk (low-risk) agents being less (more) than their true accident probability.

As a result, insurers expect losses on their high-risk customers to be offset by profits from the low-

risk ones.

In fact, our equilibrium allocation is the one suggested by Miyasaki who was the first to allow

suppliers to offer menus rather than single contracts. His focus, however, was on adverse selection

in the labor market and he chose to identify a firm with its wage-structure, its menu of wage-effort

contracts. As a result, he viewed free entry and exit in the labor market as dictating that a firm

may withdraw its menu but not only a single contract from that menu. This restriction, which is

fundamental for Miyasaki’s analysis, was heavily criticized in the realm of insurance markets by

Grossman. This author pointed out that insurance suppliers more often than not require buyers

to submit applications. That is, they may indeed offer menus of contracts but are also able to

withdraw specific contracts from these menus by simply rejecting the corresponding applications.

Allowing firms to do so, Grossman concluded that the equilibrium contractual arrangement ought

to entail pooling, unless it is the RS allocation.

We do take into account this insight but also another equally realistic element of insurance

suppliers’ behavior: they often choose to send certain customers “pre-approved” applications. As

long as it is public belief that the latter term is binding in an enforceable manner, the two elements
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together permit an insurance supplier not only to withdraw a particular contract from a menu at

stage 3, but also to publicly-commit, at stage 1, to not withdraw it. As it turns out, endogenizing

in this way the commitment of firms upon their insurance promises restricts dramatically the

equilibrium set. In conjunction with endogenous commitment on the policy level, it delivers always

the same singleton one. As it happens, on the one hand, commitment on the contractual level is not

observed in equilibrium. “Pre-approved” applications are deployed only off the equilibrium path to

restrict the players’ beliefs so that the many equilibria in the standard version of Hellwig’s game

are ruled out. On the other, the equilibrium insurance menu is introduced under commitment on

the policy level.

Needless to say, it is not simply the interaction between menus and Hellwig’s game that drives

our result. Cross-subsidization of net income between contracts has been considered also by Maskin

and Tirole [18] under a game-theoretic structure similar to Hellwig’s but a much more general

interpretation of contractual arrangements. This paper identified the set of equilibrium allocations

that would emerge if the latter are actually mechanisms: specifications of a game-form to be played

between two parties, the set of possible actions for each, and an allocation for each pair of strategies.

Even though the authors’ main focus was on signalling, they established that the set of equilibrium

outcomes remains essentially the same under screening as long as the out-of-equilibrium actions

and beliefs are left unrestricted. Much in agrement with Hellwig’s intuition, this set is rich to an

extent that renders its IIE subset negligible.

By comparison, the present paper demonstrates the necessity of restricting the market par-

ticipants’ out-of-equilibrium beliefs in order to arrive at the given IIE outcome. Our augmented

version of Hellwig’s game is an example of a mechanism that restricts the out-of-equilibrium beliefs

appropriately. It does so by relying heavily on the notion of endogenous commitment and, in this

sense, attests to the important role of what are called public actions in Myerson [20]. These are

enforceable decisions individual players can publicly-commit themselves to carry out, even if they

may turn out ex-post to be harmful to themselves or others. Myerson assigns to the set of public

actions center-stage in establishing the existence of neutral optima. The latter form the smallest

class of incentive-compatible allocations that are attainable as sequential equilibria of the game in

which the informed party proposes mechanisms and satisfy four fundamental axioms of mechanism

selection. As we argue in the sequel, our equilibrium allocation is the unique neutral optimum for

the insurance economy under study.

The rest of the paper is organized as follows. The next section presents the market for insurance

provision in the context of Hellwig’s three-stage game. It revisits important results which are

commonly-used in applications of Hellwig’s model but have been shown rather heuristically in the

literature. In particular, we identify their strategic underpinnings and show how, viewed under the

light of contractual commitment, they set the stage for our main result. This is presented in Section

3 which analyzes how the interplay between commitment on the contractual and policy levels leads

in fact to efficient insurance provision. In Section 4, we discuss and interpret our findings further,

in particular vis a vis relevant ones in the literature. Section 5 concludes. It is followed by an

Appendix containing the analytical version of our arguments. By contrast, wherever possible, the
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main text presents the economic intuition behind our claims via graphical examples of cases in

which they are true.

2 The Simple Model Revisited

To parsimoniously describe adverse selection in the market for insurance provision, imagine that,

after having inferred as much as possible from observable characteristics, the insurance firms have

grouped a continuum of customers into two classes of otherwise identical individuals.1 Across these,

the agents differ only in the probability of having an accident, which is known by no one else but

the agent herself. For the low-risk class, which contains a fraction λ ∈ (0, 1) of the population,

this probability is pL. The high-risk class includes the remainder of individuals whose accident

probability is pH , with 0 < pL < pH < 1.

Each individual is endowed with wealth W ∈ R++, to be reduced by the amount d ∈ (0,W )

if she suffers an accident. She may insure herself against this event by accepting an insurance

contract a = (a0, a1) ∈ R2
+. That is, by paying a premium a0 if no accident occurs (state s = 0)

in exchange for receiving the net indemnity a1 otherwise (state s = 1). Having entered this

agreement with an insurance supplier, her state-contingent wealth is given uniquely by the vector

w = (w0, w1) = (W − a0,W − d+ a1), a transfer of wealth across states at the premium rate
dw1
dw0

= −da0
da1

. Her preferences over such vectors (equivalently, over the respective contracts) admit

an expected utility representation with an identical for all consumers, strictly-increasing, strictly-

concave, twice continuously-differentiable Bernoulli utility function u : R++ 7→ R. For an agent

of risk-type h ∈ {L,H}, the preference relation will be denoted by %h, its representation being

Uh (w) = (1− ph)u (w0) + phu (w1).

On the supply side of the market, insurance is provided by risk-neutral firms which maximize

expected profits: Πp (a) = (1− p) a0− pa1, when the typical insurance contract is sold to a pool of

customers whose average accident probability is p ∈ [0, 1]. It will be convenient to use the particular

notation Πh (·) and ΠM (·) whenever this probability is, respectively, ph or the population average,

p = λpL + (1− λ) pH . These firms are supposed to have adequate financial resources to be willing

and able to supply any number of insurance contracts they think profitable.

In fact, they may supply any collection of contracts that is expected to deliver aggregate profits,

even if some of its members might be loss-making in expectation. As will be apparent in the sequel,

in the market under study, the relevant collections of this kind are binary and will be referred to

henceforth as insurance menus. Unless otherwise stated, the typical one {aL,aH} is separating

(the subscript indicating the respective risk-class the contract is meant for) with single contracts

corresponding to trivial menus {a,a}. The latter will be referred to as pooling policies if meant to

be bought by customers of either risk-class.2 Needless to say, designing insurance provision in this

1The continuum hypothesis is standard in models of this type. It allows us to invoke the strong law of large

numbers and claim that an insurance supplier whose policy will serve both types of customers can expect, with

virtual certainty, the composition of risk-types in its client pool to be identical to that in the population.
2Formally (see Step 5 of our RSW analysis in the Appendix), the distinction between pooling policies and sepa-
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way entails the usual incentive-compatibility and individual-rationality constraints:

Uh (wh)− Uh (wh′) ≥ 0 (1)

Uh (w) ≥ uh ≡ Uh (W,W − d) h, h′ ∈ {L,H} (2)

The insurance market is taken to be competitive in that there is free entry and exit. In equi-

librium, therefore, we may observe only menus that expect at least zero aggregate profits. As a

consequence, with respect to pooling policies, the admissible space consists of contracts a ∈ R2
+

that satisfy

Uh (w) ≥ uh h, h′ ∈ {L,H}

ΠM (a) ≥ 0

Moreover, any menu may be supplied if expected to be demanded (i.e. at least one of its contracts is

expected to be bought given that customers choose insurance contracts to maximize their expected

utility) and profitable. The workings of this market will be modeled by means of the three-stage

game in Hellwig [13]. At stage 1, the insurance companies offer menus of contracts. At stage 2,

customers choose contracts from these menus to apply for, each being allowed to apply for only

one contract. At stage 3, the firms may reject whatever applications they have received at stage 2.

To make predictions, we will use the notion of sequential (equivalently, with only two risk-types,

perfect Bayesian) equilibrium. We seek that is a vector of strategies - one for the firms and one for

each type of customer - and a vector of beliefs - at each information set in the game tree - such that

the strategies are optimal at each point (sequential rationality) given that the beliefs are (fully)

consistent. Under this notion and using the terms “honoring” (or “not withdrawing”) a contract

to mean that none of its applications is rejected at stage 3, an equilibrium insurance menu is such

that (a) in equilibrium, each of its constituent contracts is honored at stage 3 and chosen by at least

one risk-class of customers, and (b) there is no other admissible menu that, if offered alongside the

one in question, would expect strictly positive profits.

Even though by now standard in the pertinent literature, this definition hinges upon the market

participants’ beliefs about the profitability of insurance menus. And these beliefs are unambiguous

only under full information, in which case the equilibrium set is a singleton, the strictly-separating

menu
{
aFL ,a

F
H

}
where aFh maximizes the expected utility of risk-type h amongst the contracts

that break even when demanded exclusively by this type.3 Otherwise, under adverse selection,

these beliefs depend fundamentally upon two defining features of the model: the type of separating

rating menus is that the latter entail at least one strict inequality in (1). If both inequalities bind, the menu will be

referred to as strictly separating.
3Let FOkp =

{
a ∈ R2

+ : Πp (a) = k
}

be the level set of expected profits for some pair (p, k) ∈ [0, 1] × R+. In the

(a0, a1)-space, this is a line of slope da1
da0

= − 1−p
p

with k = 0 defining that through the trivial contract a = 0, the

endowment point (W,W − d) in the (w0, w1)-space. When the accident probability in question is, respectively, ph

or p, the latter line will be referred to as the fair-odds line of risk-type h (FO∗h) or of the market (FO∗M ). In the

(w0, w1)-space, aFh = arg maxa∈R2
+:Πh(a)≥0 Uh (w) corresponds to the point of tangency between the indifference curve

of risk-type h and the line FO∗h. This coincides with the intersection of the latter with the 45-degree line, the locus

of full-insurance
{
w ∈ R2

++ : w0 = w1

}
.
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menus it admits and the strategies under which insurance policies are marketed. In what follows,

we investigate this relation and its implications when all players’ strategies are of the Nash-type.

2.1 The Rothschild-Stiglitz Equilibrium

Suppose for now that, at stage 1 of the game described above, we admit only menus that (i) do

not involve cross-subsidization, and (ii) constitute binding contractual offers. Formally, the first

requirement restricts the admissible set to menus {aL,aH} ∈ R4
+ that satisfy (1)-(2) and

Πh (ah) ≥ 0 h ∈ {H,L} (3)

The second requirement, on the other hand, renders common knowledge that being called upon to

act at stage 1 comes with an irreversible commitment to the action chosen at that point. Specifically,

no part of an insurance menu may be withdrawn at stage 3, irrespective of the risk-class composition

of the pool of customers who chose it at stage 2. This is an exogenous restriction which renders the

third stage of Hellwig’s game obsolete. It reduces it to a two-stage game in which, at stage 1, the

uninformed insurance providers make contractual offers while, at stage 2, the informed customers

choose amongst them.4

It is easy to see that this version of the game leads to exactly the same equilibrium outcome as

the analysis in Rothschild and Stiglitz [24]. First of all, it is not possible to have pooling policies

in the equilibrium set. For a hypothetical pooling equilibrium policy a∗ ought to just break-even

in expectation. To do so, however, it must involve cross-subsidization, expecting losses on the

high-risk customers to be matched exactly by expected profits from the low-risk ones.5 Yet, the

very fact that strictly positive profits are extracted by the low-risk type allows for the existence of

another contract a1
L which delivers strictly positive profits if accepted only by low-risk agents and

is such that a1
L �L a∗ �H a1

L (Section C.1.1 in the Appendix). In the presence of a∗, therefore, a1
L

will attract away only the low-risk customers. Clearly, offering it at stage 1 is a strictly-profitable

deviation given that the pooling policy is also on offer.

Graphically, this deviation is depicted by any point in the interiors of the shaded areas on

the left-hand side diagrams of Figures 1-2 and of the lower shaded area on the right-hand side

diagram of the latter figure. With respect to the latter diagram, its upper shaded area refers to

4In terms of interpreting the third stage of our game by means of Grossman’s insight, insurance contracts here can

be introduced in the market only via sending out “pre-approved” application forms. Recall that we take the term to

mean that it is common knowledge amongst all market participants that any customer who files such an application

is guaranteed, in a way that is enforceable whatever her risk-type, delivery of the respective contract.
5Given free entry, we ought to have ΠM (a∗) ≥ 0. Yet, this cannot be a strict inequality. For if ΠM (a∗) = ε > 0,

we may consider the contract â = a∗ − (1,−1) ε
2

which is such that â �h a∗ by either h (it provides strictly more

income in either state of the world). In the contingency, therefore, in which a∗ and â are the only policies on offer, the

latter contract would attract the entire population of customers and, as a pooling policy itself, would expect profits

ΠM (â) = ΠM (a∗)− ε
2
> 0. It constitutes, that is, a profitable deviation, contradicting part (b) of the definition for

a∗ to be a market equilibrium. To arrive at the claim in the text, notice that pH > pL requires ΠH (a) < ΠL (a)

∀a ∈ R2
+ \ {0}. Recall also condition (17) and the opening discussion in Step 1 of our IIE analysis in the Appendix.

Clearly, ΠM (a∗) = 0 only if ΠH (a∗) < 0 < ΠL (a∗).
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a case in which the hypothetical equilibrium pooling policy allows in fact the deviant contract to

be strictly-preferred by either risk-type (â �h a∗ for either h) and strictly-profitable as a pooling

policy itself. The analytical description of such cases is given by the latter part of Section C.1.1 in

the Appendix. A similar example is depicted by the diagram on the right-hand side of Figure 1,

the deviant pooling policies being again the interior points of the shaded area.

Figure 1: Deviations against pooling policies

Figure 2: Deviations against pooling policies

An equilibrium policy, therefore, cannot be but a separating menu. Amongst the admissible

ones, though, the only legitimate candidate is what will be henceforth referred to as the Rothschild-

Stiglitz (RS) menu and denoted by {a∗∗L ,a∗∗H }. Its corresponding income allocation {w∗∗L ,w∗∗H }, the

so called Rothschild-Stiglitz-Wilson (RSW) allocation, solves the problem6

max
(wL,wH)∈R4

++

Uh (wh) s.t. (1), (2), (3) h ∈ {L,H}

6This is the definition of an RSW allocation relative to zero reservation profits, as it appears in Maskin and Tirole

[18]. For the economy under study here, it can be identified via an equivalent formulation (see Appendix B).
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To see why no other separating menu can be an equilibrium, suppose otherwise and let {aL,aH} 6=
{a∗∗L ,a∗∗H } be one. Observe also that the RSW allocation is unique and maximizes the welfare of the

high-risk agents amongst all the separating allocations that are admissible here (see Appendix B).

It can only be, therefore, a∗∗H �H aH . As shown in Section C.1.2 of the Appendix, this necessitates

the existence of another contract a2
L such that a2

L �L aL,a
∗∗
H but a∗∗H �H a2

L and which delivers

strictly-positive profits if chosen only by low-risk agents. Consider now a firm offering the menu{
a2
L,a

∗∗
H

}
. This is separating and attracts either risk-type away from {aL,aH}. Doing so, moreover,

it breaks-even on the high-risk agents but is strictly profitable on the low-risk ones. Examples of

a2
L are given by the interior points of the shaded area in either diagram of Figure 3.

Figure 3: Deviations against a non-RS separating menu

Clearly, the RS menu is the unique equilibrium candidate. Yet, there can be parameter values

for which even this is not a viable equilibrium. As Rothchild and Stiglitz pointed out, albeit

heuristically, this is bound to happen when there are enough low-risk agents in the population so

that the market fair-odds line FO∗M cuts through the low-risk indifference curve associated with

a∗∗L . Formally, the RS menu is an equilibrium here if and only if there exists no contract the low-risk

type prefers strictly (resp. weakly) to a∗∗L and which delivers zero (resp. positive) profits as pooling

policy.

The contrapositive of the “only if” part of this statement is established in Section C.1.3 of the

Appendix where it is shown that, if there are contracts that expect positive (resp. zero) profits

as pooling policies and are weakly (resp. strictly) preferred to a∗∗L by the low-risk type, we can

construct profitable deviations against the RS menu. These are contracts a3 that are strictly

profitable as pooling policies and attract at least the low-risk type away (a3 �L a∗∗L ). Obviously, if

they pull away also the high-risk agents (a3 �H a∗∗H ), they are strictly profitable pooling deviations.

Otherwise, the high-risk type opts to leave a3 with only the low-risk agents and, hence, at least as

large profits as before (recall the one before the last footnote). Examples of the former case are

points in the interior of the shaded area in Figure 4.
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Figure 4: Deviations against the RS menu

For the “if” part of the claim, notice that there are no separating menus able to steal any

risk-type away from her RS contract since a∗∗h maximizes h’s welfare amongst the separating menus

that are admissible in this version of the game. Hence, credible challenges may come only from

contracts intended to be strictly-profitable as pooling policies.7 Yet, any such contract ought to be

designed so as to attract at least some of the low-risk customers. And, by hypothesis, there are no

such contracts.

2.2 When in doubt, withdraw...

Suppose now that, in the game we just analyzed, the admissibility condition (ii) is altered so as

to allow only non-binding contractual offers.8 This re-enacts the third stage of the original game

by rendering two important elements common knowledge. Being called upon to act now at stage 1

caries no commitment to the action chosen at that point. Indeed, a firm will have to decide whether

or not to withdraw any part of its current offer at stage 3. It will make that decision, moreover,

after having observed the actions of all other firms at stage 1 and after having tried to infer the

subsequent choices of all customers at stage 2.

To analyze what we will be calling henceforth the standard three-stage game, observe first that

the same argument as before precludes any admissible separating menu, but the RS one, from being

an equilibrium. The deviant strategy consists now of offering the menu
{
a2
L,a

∗∗
H

}
at the first stage

with the intention to honor it at the third, irrespective of the history of play at that point. Being

7No contract is able to attract only one risk-type away from the RS policy and avoid losses doing so. For suppose

that a is designed in this way with respect to the risk-type h. It ought to be then Πh (a) ≥ 0 and a∗∗h′ %h′ a �h a∗∗h

for h′ 6= h. As, however, a∗∗h %h a∗∗h′ , this would mean that the separating menu {a∗∗h′ ,a} Pareto-dominates the RSW

allocation while satisfying the constraints of the efficiency problem the latter solves.
8To relate the description once again to Grossman’s interpretation of withdrawals, no firm has any “pre-approved”

application form at its disposal now. It is common knowledge amongst all market participants that no customer who

files an application may be guaranteed delivery of the respective contract.
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strictly-separating with ΠL

(
a2
L

)
> 0 = ΠH (a∗∗H ), the menu guarantees at least zero profits in any

possible contingency. And along the subgame that starts at the beginning of stage 2 and in which

this and the original menu are the only ones that have been introduced at stage 1, the former

expects strictly-positive profits irrespectively of whether or not the latter is withdrawn at stage 3.

Regarding the admissible pooling policies, reasoning similarly as in the previous version of the

game, we conclude that only contracts a ∈ FO∗M are legitimate candidates.9 And from these,

only the ones leaving the low-risk agents at least as well-off as a∗∗L . This is because, given any

a ∈ FO∗M : a∗∗L �L a, there are contracts a4
L which are strictly-profitable if selected only by low-

risk agents and such that a∗∗H �H a4
L �L a,a∗∗H (see the shaded area in the left-hand side diagram

of Figure 5).10 Consider then the strategy of offering
{
a4
L,a

∗∗
H

}
at stage 1 in order to honor it

at stage 3, irrespective of the history of play at that point. Being strictly-separating, this menu

guarantees at least zero profits in any possible contingency. And in the event in which itself and the

pooling policy are the only ones that have been introduced at stage 1, it mounts a strictly-profitable

deviation.

In that case, it is strictly-dominant for the low-risk type to select a4
L over a. As a result,

applications for the pooling policy at stage 2, if there exist any, cannot but come exclusively from

high-risk agents. Hence, any insurer offering the pooling policy should expect losses and view its

withdrawal as the only sequentially-rational choice at stage 3. Anticipating this, however, and

whatever her preference between a and a∗∗H , the high-risk type cannot but apply for the latter at

stage 2. Nevertheless, the deviant menu is strictly-separating and expects to make profits against

the low-risk agents and break even on the high-risk ones.

Evidently, whenever the RS policy is a Nash equilibrium in the previous version of the game,

the path of play now evolves essentially in the same way as before. One equilibrium outcome is

always that firms offer the RS menu at stage 1, in order to honor it at stage 3, while all agents select

the RS contract designed for their type. The only difference is that now an additional equilibrium

scenario obtains when there is a unique a1 ∈ FO∗M : a1 %L a∗∗L . Of course, by the continuity of

the preference %L, it cannot be then but a1 ∼L a∗∗L (see the right-hand side diagram of Figure 5).

In this case, it is an equilibrium for this contract to be offered as a pooling policy at stage 1 in

order to be honored at stage 3. Correspondingly, its suppliers believe that its applicants form a

representative sample of the population and indeed every customer is applying for this contract.

9A similar argument to that in footnote 5 applies also here. The deviant strategy now offers â at stage 1 as

a pooling policy. Along the subgame that starts at the beginning of stage 2 and in which â and a∗ are the only

policies that have been introduced at stage 1, the deviant plan is to honor the former contract at stage 3. In this

contingency, the deviant firm expects strictly-positive profits irrespectively of whether or not a∗ gets withdrawn. In

any other subgame, the deviant plan is to withdraw â at stage 3 if and only if some contract a ∈ R2
+ : a �L â has

been introduced at stage 1. Needless to say, in this event, neither a∗ can be honored.
10a4

L is constructed in the same way as aL in Case 1 of Section C.3.1 in the Appendix, once a0
L is replaced by a∗∗L .

This gives a∗∗L �h a4
L for either risk-type. Hence, a∗∗H �H a4

L given that a∗∗H ∼H a∗∗L at the RSW allocation. For the

low-risk agents, on the other hand, letting ∆ = UL (a∗∗L )−max {UL (a∗∗H ) , UL (a)} suffices for a4
L �L a∗∗H ,a. Finally,

since the low-risk agents are under-insured at the RSW allocation, the substitution of a0
L with a∗∗L works also for

the profits, giving ΠL

(
a4
L

)
> ΠL (a∗∗L ) = 0. Needless to say, there are also here two possible ways to select (κ, ε),

partitioning the shaded area in the left-hand side diagram of Figure 5 on the basis of whether or not w4
0L ≥ w∗∗0L.
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Figure 5: Deviations and Equilibria in Hellwig’s game

As before, the reason why each of these two scenarios can be supported as equilibrium is the

very fact that no deviation can mount a credible threat against either unless it pulls away low-risk

customers.11 In both equilibrium outcomes, however, the low-risk type enjoys the welfare she gets

under the RSW allocation. It follows then that she cannot be offered a strictly-better outcome by

any deviant menu that is designed to be strictly-profitable while separating. Given, moreover, that

the Nash equilibrium does exist in the previous version of the game, the only deviant contracts

that can attract the low-risk agents and be strictly-profitable as pooling policies are those whose

pools of applicants exhibit a fraction of low-risk agents higher than λ.12

But against these contracts, withdrawing the equilibrium policy is both credible and sufficient

a threat. To see this for the pooling policy a1, let the deviant firm believe that honoring its policy

at stage 3 will be profitable, a consistent belief only if the policy-selection strategies at stage 2 are

such that a larger than λ fraction of its customers are low-risk. Given these strategies, however, a

smaller than λ fraction of those selecting a1 are low-risk. As a result, the firms offering the latter

11Indeed, no contract can attract only the high-risk type and avoid losses doing so. With respect to the RS menu,

this has been established in Footnote XX. Regarding the pooling policy a1, suppose to the contrary that a ∈ R2
+

gives ΠH (a) ≥ 0 and a1 %L a �H a1. Then if, on the one hand, a1 �H a∗∗H , the separating menu
{
a1,a

}
Pareto-

dominates the RSW allocation (recall that a1 ∼L a∗∗L ) while satisfying the constraints of the efficiency problem the

latter solves (observe that pL < pH implies that pL < p and, thus, ΠM

(
a1
)
≤ ΠL

(
a1
)
, the inequality being strict as

long as a1 6= 0; recall also that ΠM

(
a1
)

= 0). If, on the other hand, a∗∗H %H a1, the contradiction becomes that the

separating (recall that a1 ∼L a∗∗L �L a∗∗H ) menu
{
a1,a∗∗H

}
solves the RSW problem ∀µ [0, 1] even though it is not the

RSW allocation.
12For â ∈ R2

++, let p̂∗ ∈ (0, 1) be given by Πp̂∗ (â) = 0. Since d
dp

(
1−p
p

)
< 0, we have (p− p̂∗) Πp (â) < 0

∀p ∈ (0, 1) \ {p̂∗} so that P̂ = [0, p̂∗] is the set of average accident probabilities across its customers that allow â

to avoid losses. Observe now that, the previous version of the game having a Nash equilibrium in pure strategies,

it cannot be â �L a∗∗L unless p 6∈ P̂ . As long as â �L a∗∗L , therefore, the former contract may avoid losses only if

p > p̂ = λ̂pL +
(

1− λ̂
)
pH , where λ̂ is the share of low-risk customers in its pool of applicants. As pL < pH , however,

the last inequality is equivalent to λ̂ > λ.
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policy ought to expect losses and plan to withdraw it at stage 3. Yet, anticipating this at stage 2,

none of the customers should apply for a1. Their only sequentially-rational choice is to select the

deviant contract, rendering it pooling with an average quality of applicants exactly equal to the

population one. Which contradicts, of course, the deviant suppliers’ original belief that honoring

their policy at stage 3 will be profitable. Needless to say, the same scenario supports also the RS

menu as equilibrium. As this delivers zero profits in every possible contingency, its withdrawal is

not necessitated by the deviation but suffices as a credible threat against it.

The equilibrium predictions are different, however, and dramatically so, whenever the previous

version of the game has no Nash equilibrium in pure strategies. As we know already, this obtains

when there are contracts that expect positive (resp. zero) profits as pooling policies and are weakly

(resp. strictly) preferred by the low-risk type to her RS contract. In this case, the RS menu and

any pooling policy a∗ ∈ FO∗M : a∗ %L a∗∗L can be sustained as pure-strategy sequential equilibria.

These are the pooling contracts on the segment between a1 and a5 in Figure 4. Recall that none of

them were equilibrium in the previous version because, for each one, there existed deviant contracts

certain to make strictly-positive profits (in some cases as pooling policies, in others servicing only

the low-risk type) in the presence of the original policy. Yet, policies can be withdrawn now at

stage 3 and this, being common knowledge amongst the players, renders the actual profitability of

these deviations dependent upon the players’ beliefs about their profitability.

Once again, these policies can be supported as equilibria because no deviation can mount a

credible threat against them unless it pulls away low-risk customers. Given, however, that the low-

risk type is at least as well-off as under the RSW allocation, she cannot be offered a strictly-better

outcome by any deviant menu that is designed to be a strictly-profitable separating policy. In this

version of the game, on the equilibrium path, all agents apply for the equilibrium pooling policy or

the RS contract designed for their type. Threats of deviations can only arise from pooling contracts

but none is introduced at stage 1 because everyone believes that, were it to be introduced, it would

be loss-making and, hence, withdrawn at stage 3. Off the equilibrium path, the very fact that a

deviant contract may be withdrawn at stage 3 turns itself into a self-fulfilling prophecy if a firm

decides to offer it at stage 1. In this contingency, the equilibrium strategy may entail two different

prescriptions. One works only against some deviations but does so robustly in a sense to be made

precise shortly. The other may be deployed against any deviant contract without, however, the

latter property.

The first scenario requires that also the equilibrium policy is withdrawn and may be used against

deviations that lie above the line FO∗M (e.g. the interior points of the lower shaded area in the

right-hand side diagram of Figure 2). These contracts are strictly-profitable as pooling policies only

if a larger than λ fraction of their customers are low-risk. For this reason, they cannot be honored

at stage 3 if the equilibrium policy is withdrawn. Otherwise, they would be selected by either type

at stage 2 and become loss-making, their fraction of low-risk customers being then exactly λ (see

Section C.2.1 in the Appendix). This equilibrium scenario is described also in Hellwig [13] (pp.

323), his focus being explicitly on fending off deviations that are potentially-profitable against the

Wilson pooling policy, the contract that maximizes the welfare of the low-risk type along FO∗M

13



(depicted on the left-hand side diagram in Figure 2).13

Yet, the equilibrium set includes also other pooling contracts on FO∗M as well as the RS menu,

which can be challenged also by deviations on or below FO∗M . Such deviations are depicted by

the interior points of the shaded areas in Figure 4 and in the right-hand side diagram og Figure 1

as well as of the upper shaded area in the diagram on the right-hand side of Figure 2 and of the

shaded area on the left-hand side diagram of Figure 1 that lies below the line FO∗M . These cases

call for the second strategic scenario, which is based on an equilibrium-sustaining argument that is

equally straightforward although perhaps not as intuitive.

It rests entirely on the fact that the notion of sequential equilibrium puts rather limited con-

straints on the beliefs players may entertain on information sets off the equilibrium path. As before,

any deviant contract, if introduced at stage 1, will be withdrawn at stage 3 because its suppliers

expect it to be loss-making given their belief about the average quality of its applicants. Now,

however, the equilibrium policy will not be withdrawn in this off-equilibrium event. Threatening to

do so is without bite because the deviant contract can be profitable as a stand-alone pooling policy,

even if a smaller than λ fraction of its applicants are low-risk. It cannot be profitable, though, if

this fraction is too small (in particular, it makes losses on the high-risk type) and the correspond-

ing beliefs of the deviant suppliers are what the equilibrium rests upon (see Section C.2.2 in the

Appendix).

2.3 Equilibrium Selection

Re-introducing the third stage of the game, so that the insurance companies may withdraw their

policies if they so wish, leads to a dramatic reversal of the results. Existence of a Nash equilibrium in

pure strategies is no longer an issue. If anything, there are multiple equilibria whenever admissible

pooling policies Pareto-dominate the RS menu. In fact, the issue now becomes that of equilibrium

selection as the Wilson contract strictly Pareto-dominates all other equilibrium allocations.

With this in mind, Hellwig viewed the Wilson policy as the most plausible outcome, being

the only equilibrium to survive the stability criterion of Kohlberg and Mertens [15]. Even though

Hellwig’s claim can be easily substantiated, it was not in his paper; an omission that has misled

later scholars, working on applications of this model, into the view that it can be supported by

the intuitive criterion of Cho and Kreps [3]. Of course, the criterion is indeed an interpretation of

stability and, admittedly, the most straightforward one. In the game under study, however, it lacks

the power to single out the Wilson policy.

13This is the contract aW ∈ FO∗M : aW %L a ∀a ∈ FO∗M and features prominently in Wilson [26]. Notice that no

strictly-profitable pooling policy may attract the low-risk agents away from aW , unless it lies above FO∗M . This is

because, together, ΠM (â) > 0 and â %L aW imply ∃a ∈ FO∗M : a �L aW (recall the opening observation in Section

C.1.3 in the Appendix), an absurdity.
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The Intuitive Criterion

To restrict the out-of-equilibrium beliefs in a way that justifies rejecting a given sequential equilib-

rium, the intuitive criterion rests upon two integral conditions. The first identifies the sender’s types

that do not have any incentive to send an out-of-equilibrium message. These types should strictly

prefer the equilibrium outcome to anything else they might get out of the receiver’s sequentially-

rational response to the message, given that the receiver might have any belief with support amongst

the types that are allowed to send it. The second condition selects, out of the remaining types of

sender, those that do have incentives to send the out-of-equilibrium message. For these types, the

equilibrium must be strictly worse than any outcome they may get when the receiver responds to

the message optimally, the receiver’s belief being again any belief with support amongst the types

that are allowed to send it (excluding, of course, the types for whom the first condition applies).

Designed for signaling games, the intuitive criterion may be deployed over the sub-game that

begins at stage 2, an out-of-equilibrium sub-path on which, alongside the equilibrium policy, a

deviant one has been introduced at stage 1. In this two-stage subgame, the customers move first,

selecting the insurance policy they wish to apply for. Inducing the firms’ beliefs about the average

quality of applications, these choices are signals the informed players send to the uninformed.

Following the receipt of these signals, a firm chooses whether or not to honor the policy it has on

offer.

In the signalling sub-game, let the two policies introduced at stage 1 be a sequential equilibrium

of the overall game and one of its potentially-profitable deviations, a contract that attracts at least

the low-risk type away in its presence. We will establish that, applying the intuitive criterion, we

may dismiss a non-trivial subset of pooling equilibria as unreasonable. We will also show, however,

that this kind of reasoning rejects neither the also non-trivial remaining subset of pooling equilibria

nor the RS policy.

With respect to the first claim, let the two policies be a pooling equilibrium, other than the

Wilson one, and a deviant contract which (i) lies below the fair-odds market line, and (ii) is strictly-

better (resp. -worse) for the low-risk (resp. high-risk) agents.14 As we already know, in this case,

the fact that the deviation meets condition (i) means that the sequential-equilibrium strategy has

the equilibrium contract being honored in the signaling subgame so that the equilibrium allocation

corresponds to being insured under the equilibrium contract. By the very choice of deviation,

therefore, the high-risk type strictly prefers this outcome over even the best-case scenario that

might follow her application to the deviant policy (the event in which the latter is honored at stage

3). Of course, the same claim cannot be made for the low-risk agents.

The high-risk type being the only one with strong incentive to not send the out-of-equilibrium

message, the two conditions of the intuitive criterion sort here the two risk-types so that the deviant

suppliers should believe that, with probability one, applications for their policy originate from low-

risk agents. As a result, they should expect their policy to be strictly profitable and, thus, plan

14Examples are points in the interior of the shaded area below the line FO∗M in the left-hand side diagram of Figure

1 and of the area that lies between the two indifference curves and below FO∗M in its right-hand side diagram.
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to honor it at stage 3. Applying, therefore, the Cho-Kreps criterion in this example, we are led

to regard intuitively unreasonable that the deviant contract gets withdrawn at stage 3 when the

equilibrium one is not. In other words, we are led to characterize intuitively unreasonable the very

premise upon which our sequential equilibrium argument was based.

Clearly, any of the pooling equilibria that is susceptible to potentially-profitable deviations that

satisfy conditions (i)-(ii) is rejected by the intuitive criterion. This is the case for the entire part of

the segment between a1 and a5 in Figure 4 that lies above aW . In our quest to single out the latter

contract, however, we are still left with the remainder of the segment as well as the RS menu. Each

of these may be challenged only by deviations that Pareto-dominate the equilibrium outcome or lie

above the line FO∗M , in which case the sequential equilibrium strategy requires that the equilibrium

policy is withdrawn at stage 3.15 They are all, hence, susceptible only to deviant contracts that,

if honored at stage 3, Pareto-dominate the equilibrium outcome. And this renders the intuitive

criterion impotent.

When the Pareto-dominance is strict, in the sense that both risk-types are strictly worse off

under the equilibrium outcome, the criterion fails because there is no type without strong incentive

to send the out-of-equilibrium message. Technically speaking, no type meets the criterion’s first

condition, which means that also no type meets the second. Intuitively, we may reason as follows.

As a pooling policy, the deviant contract avoids losses only if the fraction of its customers that

are low-risk does not fall below some cutoff. It will be honored, therefore, as long as its suppliers

entertain the corresponding beliefs, which they may well do since no risk-type (in particular, the

low-risk) is excluded from applying to their policy.

The deviant policy being honored, though, is an outcome that both risk-types prefer strictly to

the given equilibrium. As a consequence, there is no intuitive restriction we may put on the beliefs

of the deviant suppliers regarding the average quality of the applications they receive. Precisely

because either risk-type (in particular, the high-risk) has reason to aspire to their policy, we cannot

rule out that the fraction of their applicants who are low-risk is in fact below the cutoff. It is also

possible, therefore, that they will not honor their policy at the end, leaving whoever chose it at

the endowment point; a prospect unpleasant enough to induce both types to stay at the incumbent

equilibrium.16

This argument needs but a slight modification when the deviant contract Pareto-dominates

the equilibrium outcome, albeit not strictly. In the game under study, this obtains when the

low-risk agents are indifferent between their equilibrium and the deviant contract. In this case,

15Deviations with the former property are the points in the interior of the shaded area of Figure 4 and of the upper

shaded area in the right-hand side diagram of Figure 2. With respect to the latter property, consider the points in

the interior of the lower shaded area in the latter diagram, of the shaded area in the left-hand side diagram of the

same figure, or of the area delimited by the low-risk indifference curve and the lines FO∗M and FO∗L in Figure 4.
16The worst case scenario for an agent who applies for the deviant policy is to be left at the endowment point. This

is an outcome that cannot be strictly preferred to the equilibrium one by either risk-type. Relative to the equilibrium

outcome, the endowment is strictly worse for either risk-type whenever the equilibrium strategy prescribes that the

equilibrium contract should be honored against the given deviation. It is as good as the equilibrium outcome whenever

the equilibrium contract is withdrawn.
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one type does lack strong incentives to send the out-of-equilibrium message; it (weakly) satisfies

the first condition.17 Being, however, the low-risk type, the intuitive criterion has again no bite.

If anything, intuition should have now the deviant suppliers believe that their applications come

exclusively from high-risk agents. They should expect, therefore, their policy to make losses and

plan to withdraw it at stage 3. Anticipating this, in turn, their applicants should expect to be left

at the endowment point. As before, the feasibility of this prospect is enough to justify that both

types apply for the equilibrium policy even though a Pareto-dominant one is available.

Divinity

Given the impotence of the intuitive criterion in selecting the Pareto-preferred equilibrium, another

obvious recourse is interpreting stability as divinity in the sense of Banks and Sobel [1]. This is a

criterion whose real force comes into play precisely when the first intuitive condition fails to identify

types with no incentive to send the out-of-equilibrium message. Facing situations, such as the ones

described above, where both risk-types wish to defect from the current equilibrium, divinity guides

the receiver’s beliefs by placing more weight on the type more likely to do so.

Inevitably, this entails utility comparisons across types and, hence, considerable loss of generality

for our study.18 More importantly perhaps, adverse selection becomes most pressing an economic

issue exactly if high-risk agents gain more than low-risk ones under a socially-desirable policy

change. And in this case, by placing more likelihood on the high-risk type, divinity as well precludes

the Pareto-dominant alternative from mounting a successful challenge to the current equilibrium.

In fact, in the only case when utility gains here can be unambiguously compared across the two

risk-types (the selection problem in the paragraph preceding the last), divinity leads to exactly the

same conclusion as the intuitive criterion.19

17Such deviations are depicted by points on the low-risk indifference curve boundary of the shaded area in Figure

4 and of the lower shaded area in the diagram on the right-hand side of Figure 2. In the strict sense of the intuitive

criterion as presented in Cho and Kreps [3] (Section IV.3), even in this case, the low-risk type fails to meet the first

condition. Their definition depicts either of the criterion’s conditions as strict preference. Yet, one could consider

relaxing the first to a weak preference (as, in fact, the authors themselves do in Section IV.5). In the game under

study, however, even this cannot render the criterion useful. There is no type that satisfies (even weakly) the second

condition. Even if there were, actually, it could only be the high-risk and the withdrawal of the deviant policy would

again be the only intuitive outcome.
18Upon receipt of a message, our receiver has only two pure responses available, withdraw (W) or honor (NW) the

policy on offer. We may depict, therefore, her mixed strategy by the probability r ∈ [0, 1] with which she withdraws

her policy at stage 3. Then, in terms of the divinity presentation in Cho and Kreps [3] (Section IV.4), for either

risk-type h, D0
h = {rh} and Dh = [0, rh), with rh being the deviant suppliers’ mixed response which corresponds to

an expected utility for h equal to the utility she derives from her current equilibrium contract. Clearly, to identify the

relative sizes of these sets across h, we need to rank the probabilities rh. The same requirement arises with respect to

the the divinity characterization in Banks and Sobel [1] (Section 3). Following an application for the deviant policy,

to construct the beliefs of its suppliers that are consistent with no withdrawal - the set Γ (0) - we have to compare

the schedules µ (h, rh) = [0, 1] and µ (h, r) = 0 (1), if r > rh (r < rh), across h.
19In this case, DL = ∅ and D0

L = {NW} ⊂ DH = [0, rH) with rH > 0. According to Criterion D1, therefore, no

pooling application may come from low-risk agents. Observe also that, having only two types of sender in this game,

the Criteria D1 and D2 coincide. Regarding the exposition in Banks and Sobel [1], we have now µ (L, 0) = [0, 1] and
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Stability

In our attempt to single out the Wilson policy as the only reasonable equilibrium, we have yet to

deal with a non-trivial set of pooling equilibria as well as with the RS menu. These share a common

feature: they are all susceptible to deviant contracts that are strictly better, at least for the low-risk

type, and lie below the market fair-odds line. And against deviations of this kind, the sequential

equilibrium obtains only via the following strategic scenario (Section C.2.2). The deviant contract

is deemed loss-making and gets withdrawn at stage 3. By contrast, the equilibrium one is honored

because it is believed to be avoiding losses. Anticipating this at stage 2, all agents apply for the

equilibrium contract with probability one.

To support this scenario, we need to construct a sequence of vanishing trembles
{
rkL, r

k
H

}
k∈N ∈

(0, 1) with the intended interpretation that an agent of risk type h applies to the equilibrium and

deviant contracts with probability σkh = 1 − rkh and 1 − σkh, respectively. This ought to evolve in

such a way that, at least along a subsequence, the deviant suppliers believe that the ratio of low-

to high-risk amongst their applicants does not exceed the quantity λ̂∗ = 1−p̂∗
p̂∗ (the probability as

defined in footnote XX). And since strategies ought to be sequentially-consistent, this ratio is given

by
1−σkL
1−σkH

, the relative frequencies with which the two risk-types apply for the deviant contract.

Let us perturb, however, the game by assigning to each risk-type an independent probability of

accidentally implementing a fully-randomized strategy, instead of the one she is supposed to play.

More precisely, consider a strategy profile (q̃L, q̃H) ∈ (0, 1)2 and a mixture (εL, εH) ∈ (0, 1]2 to mean

that an agent of risk-type h, whose strategy in the original game was to apply for the equilibrium

and deviant policies with probability σh and 1 − σh respectively, does so in the perturbed game

with probability σ̃h = (1− εh)σh + εhq̃h and 1 − σ̃h, respectively. Define then any closed subset

of the set of equilibria of the original game to be prestable if ∀ε0 ∈ R++ ∃ε ∈ R++ such that

∀ (q̃L, q̃H) ∈ (0, 1)2 and ∀ (εL, εH) ∈ (0, ε)2 the perturbed game has at least one equilibrium in the

ε0-neighborhood of this subset. Equilibrium stability, in the sense of Kohlberg and Mertens [15], is

an identifying feature of the minimal prestable sets.20

Given this characterization, the sequential equilibrium scenario under study cannot be stable

unless it remains a sequential equilibrium also under perturbations. Yet, as shown in Section C.2.3,

we may construct perturbations that are arbitrarily close to the original game but for which no se-

quence of trembles can meet the condition limk→∞
1−σ̃kL
1−σ̃kH

≤ λ̂∗. Intuitively, the original equilibrium

µ (L, r) = 0 for any r > 0, while µ (H, rH) = [0, 1] and µ (H, r) = 0 (1) for r > rH (r < rH). Clearly, ∀r ∈ [0, 1],

µ (L, r) = 1 implies µ (H, r) = 1 while the opposite direction is not true. Observe also that this is the only case

in which another refinement, neologism proofness (Farrell [8]), may be deployed here. Given, though, that only the

high-risk type strictly prefers the deviant outcome, this concept, as presented by Banks and Sobel (Section 5), also

suggests that deviant applications ought to come exclusively from this type.
20This definition of stability is in the spirit of Section 5.6 in Myerson R.B. Game Theory: Analysis of Conflict,

Harvard University Press (1997). Of course, analogous perturbations should be considered also regarding the insurers’

strategies. In the subgame under study, these players can be indexed by i ∈ {incumbent, deviant}. Its pure strategies

being to withdraw or honor its policy at stage 3, let σi be the probability that the ith firm chooses the latter. In

the perturbed game, this becomes σ̃i = (1− εi)σi + εiq̃i where the mixture εi ∈ (0, 1] and the randomized strategy

q̃i ∈ (0, 1) are chosen arbitrarily and are independent from those of other firms and customers.
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hinges crucially upon forcing the deviant suppliers to be pessimistic enough regarding the average

quality of the applications they would have received had they not withdrawn their policy. Perturb-

ing, however, the strategies by which the customers select contracts at stage 2, translates under

the sequential-equilibrium reasoning to perturbing the deviant suppliers’ belief about the average

quality of their applicants. And although the mixtures in these perturbations need to stay close to

the original strategic profile, the additional range in the deviant suppliers’ beliefs granted by the

arbitrary introduction of the randomized profile precludes them from being pessimistic enough. As

a result, they find it now optimal to honor their policy at stage 3, a response anything but close to

the one they undertook in the original game.21

Needless to say, this strategic instability manifests itself also when the scenario under consider-

ation is deployed to support the Wilson policy. Yet, the defining characteristic of this policy is that

it is susceptible only to deviations above the market fair-odds line. As a consequence, it can always

be supported also by the sequential equilibrium scenario in which both itself as well as the deviant

contract are withdrawn at stage 3. Being then indifferent between selecting either policy at stage

2, an agent of risk-type h applies for the Wilson policy with probability σh ∈ [0, 1) : 1 ≤ 1−σL
1−σH ≤ λ̂

∗

(Section C.2.1).

And this is a set of strategic profiles that contains a stable subset. Specifically, as we show in

Section C.2.4, every profile in the set
{

(σL, σH) ∈ [0, 1)2 : 1 < 1−σL
1−σH < 1+λ̂∗

2

}
remains a sequential

equilibrium under arbitrary perturbations. Which also means, of course, that each of these pertur-

bations has some equilibrium arbitrarily close to the end points of the set. Its closure, therefore, is

prestable. In fact, it is stable because it is minimally prestable. Indeed, with respect to any profile

such that 1+λ̂∗

2 < 1−σL
1−σH ≤ λ̂

∗, there are perturbations that are arbitrarily close to the original game

and for which the deviant contract will not be withdrawn.

Endogenous Commitment

As the preceding discussion suggests, to single out the Pareto-optimal amongst the many equilibria

of the standard Hellwig game, the notion of stability must be deployed in its pure sense. This is

arguably too abstract a refinement, especially when it comes to applications of Hellwig’s model.

An equally successful but more intuitive one is to restrict the out-of-equilibrium beliefs directly via

contractual commitment. By allowing, that is, insurance suppliers to publicly pre-commit, if they

so wish, at stage 1 upon honoring their contracts at stage 3. This works as equilibrium selection

devise because rendering commitment upon delivering on a contract endogenous is useful here only

to deviant suppliers.

Indeed none of the equilibrium contracts identified in Section 2.2 would ever be introduced via

“pre-approved” application forms because each faces deviations against which it survives only via

the threat of its withdrawal. The Wilson contract aside, however, each is susceptible also to deviant

21Recall the preceding footnote. To show instability, we establish that some strategy σi, substantially different than

the equilibrium σ∗i in the original game, is optimal for the ith firm against the perturbed selections of customers. Of

course, in the perturbed game, the firm’s actual strategy is restricted to be σ̃i. Nevertheless, this can be arbitrarily

close to σi by appropriate choice of εi and q̃i.

19



contracts that lie below FO∗M and offer strict welfare improvements for either risk-type. And against

such deviations, the equilibrium scenario is based entirely on offsetting the customers’ preference

by the belief that the deviant contracts will be withdrawn at stage 3. Yet, this belief is no longer

in the support of their reasonable beliefs if the deviations are introduced through “pre-approved”

application forms. If their suppliers pre-commit upon honoring them, the deviant contracts will be

chosen by all customers at stage 2 and turn into strictly-profitable pooling deviations.

3 Efficient Insurance Provision

Enabling insurance firms not only to withdraw their contracts at stage 3 but also commit at stage

1 upon not withdrawing them singles out the Wilson policy, the only stable equilibrium outcome

of the standard Hellwig game. As a notion, therefore, endogenous commitment on the contractual

level is powerful in delivering uniqueness of equilibrium in pure strategies. And its power increases

even more, along the efficiency dimension, when one allows also insurance suppliers to subsidize

net income across contracts.

The latter structural change enlarges the space of admissible insurance menus {aL,aH} into

consisting of ones that satisfy (1)-(2) and λ̃ΠL (aL) +
(

1− λ̃
)

ΠH (aH) ≥ 0, where λ̃ is the average

ratio of low- to high-risk customers amongst the applicant pool. In equilibrium, of course, the

menu must serve both types of customers and the belief of its provider about the average quality

of applicants cannot but coincide with the population average (λ̃ = λ). This, along with the act

that contractual commitment is now endogenous, restricts dramatically our predictions regarding

the outcome of the augmented Helwig game. There is now a unique sequential equilibrium which

Pareto-dominates even the most desirable pooling equilibrium of the standard version. In fact, the

equilibrium allocation solves the IIE problem22

max
(wL,wH)∈R4

++

µUL (wL) + (1− µ)UH (wH) s.t. (1)-(2) and

λΠL (aL) + (1− λ) ΠH (aH) ≥ 0 (4)

when the weight is placed entirely upon the welfare of the low-risk type (µ = 1).

We will establish this in two steps. First, we will show that the outcome in question, referred

to henceforth as the IIE(1) allocation, is the only candidate equilibrium allocation. Then, we

will argue that the unique menu which delivers this allocation is a sequential equilibrium of the

augmented three-stage game. To establish that only the IIE(1) may be an equilibrium allocation, it

suffices to show that, as long as the corresponding allocation {w∗L,w∗H} of a candidate equilibrium

menu {a∗L,a∗H} does not solve the IIE(1) problem, we can construct a profitable deviation. This is

based upon the fact that, in this case, we can always find another menu
{
a0
L,a

0
H

}
whose allocation{

w0
L,w

0
H

}
is IIE for some µ0 ∈ (0, 1] and which constitutes a welfare increase (resp. decrease) for

the low-risk (resp. high-risk) agents (w0
L �L w∗L but w∗H �H w0

H).

22The solutions to this problem are the IIE allocations, relative to zero reservation profits, in the sense of Maskin

and Tirole [18]. For their identification in the economy under study here, see Appendix B.
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Suppose then that some firm introduces this menu at stage 1 soliciting applications for a0
L

via “pre-approved” forms. In this event, being guaranteed a strictly-better outcome, the low-risk

customers will leave the equilibrium menu with only high-risk potential applicants on whom it does

not expect but losses. It follows that the equilibrium strategy cannot but withdraw the contract

a∗H at stage 3. Anticipating this at stage 2, the high-risk type cannot but also opt for the deviant

menu; albeit, for the contract a0
H since the menu is separating (being IIE).

Of course, the deviation just described does not offer a clear incentive to potential challengers

of the hypothetical equilibrium. It does attract the low-risk type away but expects zero not strictly

positive profits in doing so. Nonetheless, a strictly profitable deviation obtains by replacing one

of the contracts in
{
a0
L,a

0
H

}
with another in a way that generates a strictly-profitable menu while

maintaining the two crucial elements of a successful challenge: the new menu continues to be

separating and, relative to the equilibrium one, strictly-better for the low-risk customers. As it

turns out, which element of
{
a0
L,a

0
H

}
we need to replace depends on whether or not the hypothetical

equilibrium menu is itself IIE and, if it is for some µ∗ ∈ [0, 1), on whether or not µ∗ ≥ λ.

Figure 6: Deviations against IIE policies

If {w∗L,w∗H} is IIE for some µ∗ ∈ [λ, 1) (Case 1 of Section C.3.1 in the Appendix), the menu{
a0
L,a

0
H

}
can be chosen so that

{
w0
L,w

0
H

}
is IIE for some µ0 ∈ (µ, 1]. There exists, moreover, a

contract aL which is strictly preferred to a∗L by the low-risk type, expects more profits than a0
L

when chosen by this type, and sorts strictly the types in conjunction with a0
H (aL �L a0

H �H aL).

Examples are points in the interior of the shaded area in the left-hand side diagram of Figure 6.

Here, either of the two IIE allocations offer full insurance to the high-risk customers and under-

insurance to the low-risk ones (see our analysis of the IIE problem in the Appendix). In addition,

both menus leave the high-risk type indifferent between the two constituent contracts while both

expect to exactly break even if selected by a representative sample of the population of customers.

By contrast, the menu
{
aL,a

0
H

}
expects strictly positive profits.

In all other respects, the scenario remains as described before: the deviant strategy is to offer

the menu
{
aL,a

0
H

}
at stage 1 being pre-committed upon honoring aL at stage 3. This applies also

when {w∗L,w∗H} is IIE but for some µ∗ ∈ [0, λ) (Case 2 of Section C.3.1). In this case,
{
a0
L,a

0
H

}
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can be constructed so that its allocation is IIE with µ0 ∈ (µ, λ). There exists then a contract aH

which is strictly worse than a∗H for the high-risk customers, expects smaller losses when chosen

only by them, and sorts strictly the types in conjunction with a0
L. This is depicted by points in the

interior of the shaded area in the right-hand side diagram of Figure 6. Here, the two IIE allocations

offer full insurance to the low-risk customers and over-insurance to the high-risk ones. They both

leave also the former risk-type indifferent between their elements while both expect to break even

if selected by a representative sample of the population. By contrast, the menu
{
a0
L,aH

}
expects

strictly positive profits and the deviant strategy enters it at stage 1 soliciting applications for a0
L

with “pre-approved” forms.

Offering a strictly-profitable separating menu under “pre-approved” applications for the low-risk

contract is a present and insurmountable challenge also when the hypothetical equilibrium menu

does not correspond to an IIE allocation (Case 3 in Section C.3.1). The only difference is that now

the menu
{
a0
L,a

0
H

}
may not be IIE but can be chosen to constitute a welfare improvement for all

customers (a0
h �h a∗h for either h). Situations of this kind are depicted in Figure 7 with respect

to the RS menu and the Wilson contract. As we know already, the latter is the only equilibrium

pooling candidate under endogenous contractual commitment. The former is an example of the

case in which the RS menu is not interim incentive efficient even though it is an equilibrium in the

Rothschild-Stiglitz setting. Such cases form a non-zero measure subset of the parameter space in

the economy under study (see the necessity part of Section B.3).

Figure 7: Deviations against non-IIE policies

It remains to show that the unique equilibrium candidate, the menu
{
a1
L,a

1
H

}
that corresponds

to the IIE(1) allocation, is indeed an equilibrium. This follows from its characteristic features. It

is the unique maximizer of the welfare low-risk customers can get from any menu that satisfies (4).

Moreover, it meets the latter condition as equality. Uniqueness implies that, by not withdrawing

the contract a1
L at stage 3, a firm offering this menu can successfully guard itself against deviations

designed to attract away only the high-risk type.23 The remaining properties ensure that, by

23There is no policy able to attract away only the high-risk type and remain strictly-profitable doing so. For it

would have to post a contract âH such that a1
L %L âH �H a1

H . Since a1
H ∼H a1

L, this means that the menu
{
a1
L, âH

}
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withdrawing the menu at stage 3, the firm can fend off any deviation that may attract away low-

risk customers. In this case, anticipating the withdrawal, the high-risk customers cannot but opt

also for the deviant menu at stage 2. Contrary to the initial plans of its suppliers, this turns now

into one that serves both types. And no menu that does so may be preferred (even weakly) to a1
L

by the low-risk type unless it is loss-making.

To completely define the equilibrium strategy, a remark is in order regarding the credible threat

just described. For one might think sufficient to withdraw only the contract a1
H from the IIE(1)

menu. Recall, however, that the high-risk type is indifferent between this contract and a1
L (Claim

1). As a result, in front of a deviation that attracts away only the low-risk type (a1
H �H â �L a1

L),

the high-risk will select a1
L at stage 2 if it is not withdrawn at stage 3. In this case, it is necessary

that the IIE(1) menu gets withdrawn entirely.

4 Discussion and Related Literature

Evidently, contractual endogenous commitment - the fact that insurance firms may choose at stage

1 to pre-commit upon honoring a given contract at stage 3 - plays exclusively here the role of

restricting the out-of-equilibrium beliefs so that only the IIE(1) menu may be supported as sequen-

tial equilibrium. For as we saw, on the equilibrium path, this menu must be introduced at stage 1

without “pre-approved” application forms on either of its two contracts. Nonetheless, some com-

mitment has to be present also in equilibrium; more precisely, on the policy level. As will become

apparent by what follows, the IIE(1) menu needs to be introduced at stage 1 as an insurance policy,

carrying the binding promise that none of its constituent contracts may be withdrawn unless the

menu itself is.

Our equilibrium outcome has been known in the literature (see Crocker and Snow [4]) as the

Miyazaki-Wilson allocation. It was established by Miyazaki [19] as the unique equilibrium in a

labor market with adverse selection (due to two types of workers in terms of marginal productivity

schedules) and firms possessing Wilson foresight. In Wilson [26], it is assumed that each firm

correctly anticipates which policies already offered by other firms will become unprofitable as a

consequence of any changes in its own offer. It expects then their withdrawal and calculates the

profitability of its new offer accordingly. For the insurance provision problem under investigation

here, this kind of firm behavior supports always an equilibrium which, with only two risk-types, is

almost always unique. Depending on the primitives of the economy, it entails either the RS menu

or the Wilson contract - apart from the knife-edge case in which aW ∼L a∗∗L and both are valid.

Of course, being able to adjust its current actions according to their effect upon the future

choices of its opponents, Wilson’s typical firm is not restricted to Nash strategies. And it is the

extent of the subsequent complexity in firms’ interactions that delivers equilibrium uniqueness.

This becomes evident in Hellwig [13] which could be viewed as an attempt to reconcile anticipatory

is separating. Moreover, λΠL

(
a1
L

)
+ (1− λ) ΠH

(
a1
H

)
= 0 and ΠH (âH) > 0 > ΠH

(
a1
H

)
render it also strictly

profitable against a representative sample of customers. In other words, the new menu would also solve the IIE(1)

problem, an absurdity since its solution is unique.
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and Nash-type behavior. The three-stage game permits some anticipation of future reactions but

the resulting flexibility in firms’ behavior is nowhere near that envisioned by Wilson. Requiring,

in addition, sequential rationality and consistent beliefs leads to a rich superset of equilibrium

outcomes.

The latter observation is of importance when comparing Miyazaki’s result with ours. Both stud-

ies regard firms as sophisticated enough to aggregate profits across contracts within douplet menus.

And both deliver the IIE(1) allocation as the unique outcome, albeit of a Wilson equilibrium in one

but sequential in the other.24 We obtain it from Hellwig’s game when commitment on insurance

promises becomes endogenous. This is what keeps our equilibrium set singleton. It also adds a

realistic component in the dynamics of insurance provision. Our analysis treats both the practice

of requiring applications (which sellers regularly include as part of the insurance transaction) as

well as the option to refrain from it (which is also commonly observed) as rational strategies for

identifying high-risk buyers and enticing low-risk ones.

As a strategic element, the application process was first studied in Grossman [11]. It induced the

high-risk buyers to conceal their identity by mimicking the low-risk choice when offered a separating

contractual arrangement. Given that competition imposes zero aggregate profits on menus, the

high-risk contract is necessarily loss-making and the firm has a clear incentive to avoid its delivery.

Having sorted its customers with a separating menu, it can do so by rejecting applications known

to be coming from the high-risk type. It will deliver instead her RS contract, the full-information

allocation a high-risk customer can guarantee herself simply by announcing her type. Being able

to foresee this, high-risk customers cannot but dissemble their preferences, turning the low-risk

contract into a loss-making pooling policy. For the insurance economy under consideration here,

we are led back to the Wilson equilibrium even if firms can subsidize net income across contracts.

Now, of course, also the high-risk customers engage in non-Nash strategic behavior, anticipat-

ing the effect of their current choices on the sellers’ future reactions. This notwithstanding, the

strategic dimension of the application process remains at work even when the underlying structure

is game-theoretic. Interpreting the rejection of an application as the withdrawal of the respective

contractual offer at stage 3, we cannot but conclude that no separating menu can be sustained as

Nash equilibrium, unless it gets introduced as a policy. Yet, this is now a result of signalling rather

than preference dissembling. The high-risk customers ought to be served on the equilibrium path.

If they apply, however, for the high-risk contract at stage 2, the firm can infer their type at stage 3.

In the signalling subgame, therefore, its optimal response is to withdraw this contract. And, this

24There is another difference between the two studies, the underlying economic problem. In a labor market, it is

natural to interpret contractual agreements as points in the wage-effort space and take effort as affecting firms’ profits

through the marginal productivity of labor. This schedule differs across worker-types but it may do so isomorphically-

enough for the IIE(1) allocation to be actually first-best. As shown by his example, under certain parameter values

of Miyazaki’s model, it may be efficient even under full information. This cannot happen in our standard model of

an insurance market. Taking the accident probabilities as given exogenously, independent of one’s contractual choice,

the iso-profits are always linear. More importantly, they have a particular conal shape between the risk-types which,

in conjunction with the downward-sloping indifference curves, precludes the IIE(1) allocation from ever solving the

full-information efficiency problem.
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being a subgame reached in equilibrium, refusing service must be in the firm’s overall strategy.

Grossman presented his insight mainly as a critique against Miyazaki’s thesis which identified a

given menu of wage-effort contracts with the internal wage structure of a particular firm. It viewed

subsequently free exit from the market as sanctioning the withdrawal of entire menus, but not of

only an individual contract from a menu. This is admittedly too strong an assumption regarding

the market for insurance provision. Here, firms conventionally require customers to apply for

particular contracts on a personal basis and they can do so independently of their practice on other

elements in their menus. For this reason, the withdrawal of individual insurance contracts ought

to be part of an environment with menus. And, as we saw in the preceding paragraph, it ought

then to preclude separating contractual arrangements in equilibrium if the underlying structure is

Hellwig’s three-stage game.

In this case, the set of equilibrium outcomes would still be much richer than the one Grossman

imagined, even with two risk-types. In fact, it would coincide with the one in the standard Hellwig

model because the analysis of Section 2.2 applies even when firms are allowed to cross-subsidize net

income within menus. Specifically, sequential rationality would allow for deviations by separating

menus to be neutralized by the perception that the composition of their pools of applicants would

be such that they are deemed loss-making and withdrawn. However, in the light of the latter part

of the preceding section, this depends crucially upon the firms’ being unable to commit on the

contractual or policy level.

Under endogenous commitment, a dramatic reversal takes place: the equilibrium cannot but

entail a separating contractual arrangement. As follows immediately from our analysis, if firms

may choose whether to commit but only on individual contracts, the equilibrium is uniquely the

RS menu whenever this is the IIE(1) allocation; otherwise, an equilibrium in pure strategies does not

exist. If, in addition, they can introduce menus as policies, the equilibrium is uniquely and always

the IIE(1) policy. For it should be clear from the preceding discussion that, on the equilibrium

path, the firm ought to condition itself to not withdraw an individual contract from the equilibrium

menu unless it withdraws the latter all together. Yet, this is now a matter of strategic choice, not

exogenous restriction. It is the firm’s optimal response to the equilibrium strategy of the high-risk

type. The latter selects the high-risk contract from the IIE(1) menu only if this has been introduced

as a policy; otherwise, it opts for the low-risk contract.

Given this epexegesis regarding the strategic underpinnings of our equilibrium outcome, we may

turn our attention to its properties and compare it with equilibria in the pertinent literature. In

doing so, our principal aim is to provide a convincing account for the central message of the present

paper. Namely, under a simple theoretical structure, the augmented version of Hellwig’s three-stage

game, the forces of market competition should converge upon a single insurance allocation, the most

desirable out of those that are efficient under adverse selection. To this end, it is best to first fix

ideas about what efficiency ought to mean in the economic environment under investigation.

The standard efficiency concept in economics is the Pareto criterion, mainly due to its obvious

appeal when information is complete (no individual has information, about her preferences, endow-

ments, or productive capacity, which is not known by all other individuals). By definition, whenever
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a given allocation is Pareto-inefficient, there exists another feasible allocation which improves the

individuals’ welfare unambiguously (in the sense that certainly some individual will be made better

off and, equally certainly, no individual will be made worse off). All it takes, therefore, to achieve

an unambiguously better economic outcome is for a good (and benevolent) enough outsider to

identify and suggest this alternative. And even in the absence of such a welfare economist or social

planner, an argument often known as Coase’s Theorem suggests that we should still expect to move

towards the Pareto-dominant allocation, as long as the costs of bargaining amongst individuals are

insignificant. For if bargaining is costless, any of the individuals who will be made better off under

the new outcome has a clear incentive to propose the reallocation while no one else has reason to

object.

The strength of endorsing Pareto efficiency this way lies in anonymity: to justify a departure

from Pareto-inefficient outcomes, there is no need for weighted distributions of gains and losses

amongst individuals because no one looses. Its weakness is that it leaves open the question of

who is to find the Pareto-improving allocation, an outside planner or members of the economy. It

entails, that is, a normative and a positive justification, respectively. Of course, this distinction

does not matter under complete information because, without loss of generality, we may assume

that the planner knows everything individuals know, which is everything known (indeed, nothing

precludes us from anointing any individual as planner).

The distinction is important, though, for economies with incomplete information. In these

economies, the individual members have different private information at the time when choices

are made. As a result, their decisions and the subsequent outcome depend upon the state of

the individuals’ information. What matters, therefore, is the decision rule or mechanism, the

specification of how decisions are determined as a function of the individuals’ information. When

the comparison is between mechanisms, however, the normative and positive interpretation of the

Pareto criterion may no longer be in agreement. Indeed, the former might admit decision rules the

latter would not allow. For it could well be that individuals would unanimously agree to substitute

one decision rule with another even though an outside planner could not have identified the new

rule as Pareto-improving.

Yet, the role of an outside planner is precisely what an economic theorist assumes when it comes

to mechanism design and implementation. To ensure, therefore, that our normative view of Pareto

efficiency is not contradicted by that of the individuals in the economy under study, we cannot but

disregard a decision rule if it depends upon information individuals hold privately and do not want

to reveal. We have to restrict attention, that is, to incentive-compatible decision rules, mechanisms

that incentivise each individual to report her private information honestly given that everyone else

does the same.

Within the class of incentive-compatible mechanisms, the resulting Pareto-optimal allocations

are the ones that achieve incentive efficiency. Albeit stemming from an intuitive requirement, this

criterion is subject to when decision rules come up for welfare evaluation because what is optimal for

an individual depends crucially on what information she possesses at the time. And, for economies

like the market for insurance under consideration here, where at the time she is called upon to
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act each buyer knows only her private information (her own probability of incurring an income

loss), the relevant evaluation stage is the interim one. Indeed, IIE is the appropriate criterion since

there cannot be unanimous agreement to depart from an IIE decision rule if some individual knows

just her own private information (see Theorem 1 and the subsequent discussion in Holmstrom and

Myerson [14]).

In the present setting, a (degenerate) decision rule is nothing but a (douplet) menu of contracts.

This describes completely, in each state of the world, how income is allocated between customers and

firms per customer-type. As a result, on the one hand, since only one individual (the customers) is

informed, condition (1) defines the incentive-compatible allocations. On the other, as competition

ensures that firms cannot extract social surplus, the objective function for Pareto-optimality is

given by that of the IIE problem, where the weights depend only on the type of the informed party

precisely because interim efficiency is the relevant concept.25 In fact, the two optimality problems

of the preceding section define, respectively, the RSW and interim incentive efficient allocations in

Maskin and Tirole [18], the reservation allocation being the null trade.26

Section 7 of that seminal study considered a three-stage game similar to the one we do, but

under a significant generalization of what is meant by contractual arrangement. It assumed that

at least two uniformed parties (UP) begin by simultaneously proposing contracts to one informed

(IP). A contract, though, is actually a mechanism; it specifies a game form to be played between the

two parties, the set of possible actions for each, and an allocation for each pair of their strategies.

Following the proposal stage, the IP responds at stage 2. If she accepts a proposal, that game

is played out and each party receives the respective outcome at stage 3. Otherwise, each gets its

reservation payoff; a contingency that, in a modification, gets replaced by another game in which

the two parties alternate in making proposals.

Under this three-stage game, the ensuing set of equilibrium outcomes is very large, even in our

simple economy. Since any IIE allocation meets (4) with equality and whatever the value of λ, it

does satisfy condition (iv) of Maskin and Tirole’s Proposition 7. Any allocation, therefore, is an

equilibrium one as long as it satisfies (1), (2), and (4), the latter with equality (see their Proposition

12). It is supported as such by a strategy which prescribes that, following a strictly-profitable

deviation by another UP, the outcome of the equilibrium mechanism would be an allocation that

all IP types prefer strictly to that of the deviant.

25Technically speaking, this claim needs more general decision rules, mapping the type-space {H,L} to possibly

random allocations (probability distributions on the feasible set A). With respect to such mechanisms, the functions

Uh (·) are linear and, consequently, the constraint set is convex as required. For the economy under study, however,

the claim does apply even when only deterministic allocations are considered because, as shown by our analysis in

the Appendix, the solutions to the IIE problem are of this kind. These were described also in Crocker and Snow [?]

(see their Theorem 1). Yet, the present formulation is more general and our analysis more complete as we follow

the Khun-Tucker approach. Given that the constraint set is not convex when attention is restricted to deterministic

allocations, it is not immediate that the Lagrange conditions are necessary and sufficient for optimality.
26To be exact, we refer to their respective counterparts when only deterministic allocations are considered. This is,

however, without loss of generality (recall the preceding footnote). We introduce also, with (2), individual-rationality

constraints for the customers but this is again without consequence as they do not matter in either problem.
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Yet, this allocation is offered by the equilibrium strategy as a latent threat, not to be delivered

necessarily in equilibrium. And this is important in explaining why the Maskin-Tirole result seems

so at odds with ours. It indicates fundamental dependence on mechanisms that are much more

general that the ones in the present paper, even when attention is restricted to deterministic

allocations. Both papers focus on incentive-compatible allocations; hence, on mechanisms in which

truthful revelation is a Nash equilibrium (it is in the interest of each informed player to report her

type honestly given that everyone else does the same). Nevertheless, seen as mechanisms, all of the

games in the two preceding sections stay within the realm of direct revelation. They do not allow

equilibrium strategies with latent contracts, to be offered in some off-equilibrium contingency but

never implemented in equilibrium.

Of course, this is not the only difference between the two studies. Another emerges in the

light of the modified game where mechanism design gets influenced also by the IP. In this case,

the equilibrium set shrinks to the outcomes that satisfy the constraints of the IIE problem and

(weakly) Pareto-dominate the RSW allocation (see Propositions 13 and 6 in Maskin and Tirole [18]).

Equivalently, to the set of equilibrium allocations when the original game entails signalling rather

than screening, the IP being now the one to propose mechanisms. And, under this perspective, the

distinction between the two papers is drawn even sharper. Our augmented version of the Hellwig

game leads to a unique equilibrium allocation with such properties that this game ought to be

singled out by the IP under any reasonable theory of mechanism selection. It requires, however,

that commitment on insurance provision is endogenous, both on the contractual and the policy

level. And, within the Maskin-Tirole approach, the IP cannot exploit this element, even when she

is able to stir the process towards a unique equilibrium.

When customers are the ones acting at stage 1, the game form restricts itself to the signalling

subgame, the signal being now to suggest a particular contractual arrangement rather than select

one already on offer. Adjusting, hence, our analysis in Section 2.2, it is easy to see that any ad-

missible menu with the requisite dominance property, be it separating or trivial, may be supported

as sequential equilibrium. It can be guarded against any deviation by the perception that the

composition of the pool of customers who suggest the deviant menu renders it loss-making and,

thus, precludes any firm from accepting it at stage 2. This logic was deployed above to import

Grossman’s insight into a version of Hellwig’s game that was standard, apart from the fact that

firms could subsidize net income across contracts. Under signalling, however, it produces a rich set

of separating equilibrium allocations because, standing on the receiving end of insurance proposals,

firms are no longer able to sort customers at will.

They can do so only with the consent of the low-risk type and by using the intuitive criterion,

a combination powerful enough to admit only one equilibrium outcome. Given any equilibrium

menu, separating or trivial, low-risk customers can signal their type by suggesting a contract which

makes them (resp. the high-risk) strictly better (resp. worse) off and is strictly profitable when sold

only to the low-risk type. More importantly, under the intuitive criterion, their communication is

credible since firms interpret it as originating exclusively from this type. The lone survivor is the

RS menu, the only allocation the low-risk type cannot improve upon unilaterally without violating
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(3) for h = L. This can be verified using diagrammatic examples from the preceding section. It is

also immediate from Proposition 7 in Maskin and Tirole [18]: their condition (ii) is met since our

IP has only two types while the boundary of the feasibility set does not matter.

Hence, when the IP selects mechanisms in the Maskin-Tirole general context, she cannot guar-

antee herself the IIE(1) allocation apart from a special case (when the RS menu is an IIE and,

consequently, the IIE(1) allocation - see the sufficiency part of Section B.3 in the Appendix). Yet,

the latter is the IP’s only reasonable choice when she is called upon to propose mechanisms. This

follows from Myerson [20]. In this seminal investigation of mechanism design, an informed party,

the principal, plays essentially the same signalling game as above but for the generalization that

the other parties, the subordinates, may also be informed. Myerson identified a subset of incentive

compatible allocations, the core allocations, and characterized a subset of these, the neutral optima.

These are sequential equilibrium outcomes of the game and form the smallest class of allocations

satisfying four fundamental axioms of mechanism selection.

Intuitively, if an allocation is not core, there must exist another incentive compatible allocation

that would be (i) strictly preferred by some of the principal’s types and (ii) implementable given

the information revealed by its selection, provided that all the principal’s types who prefer the

new allocation are expected to propose it. In the paper, the second property is defined as the new

allocation being conditionally incentive compatible for the subordinates. Here, however, it can be

characterized more simply since the subordinates are uninformed. Suppose that the UP expects

the new allocation to be proposed only if the IP’s type falls in a particular subset of her type-space.

Then the UP should accept it even when he knows that the IP’s type lies in this subset.

In the simple insurance economy under investigation here, free entry and exit ensures that

firms will acquiesce to a feasible allocation {aL,aH} (separating or trivial) as long as it is incentive

compatible and satisfies (4), if it is selected by both risk types, or the relevant condition in (3),

otherwise. Within the realm of these restrictions, the IIE(1) allocation is the unique selection of

the low-risk type and, by satisfying (4) and ΠL (a∗L) > 0, implementable if a∗h �h ah for either h

or a∗L �h aL but aH %H a∗H . In the latter case, moreover, the new proposal comes exclusively

from the high-risk type and implementability is ruled out as aH �H a∗H �H a∗∗H necessitates that

ΠH (aH) < 0 (see the argument preceding Step 1 of our IIE analysis in the Appendix). Clearly, the

IIE(1) is the only core allocation; hence, the unique neutral optimum.

5 Concluding Remarks

In this sense, one may conclude that the present paper leads back to the issue Rothschild and

Stiglitz raised originally, albeit under a different perspective. Our result suggests that the lack of

efficient outcomes in competitive markets under adverse selection may not be due to the presence

of private but rather due to the absence of public information. More precisely, due to the lack

of institutions that guarantee the enforcement of two kinds of public commitments by insurance

suppliers: to deliver on contracts their customers have applied to via “pre-approved” forms and to

abide by insurance promises themselves have marketed as policies.
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Our analysis rests upon augmenting contractual admissibility along two dimensions, an ac-

counting and a strategic. The former allows firms to subsidize their net income across contractual

offers via the deployment of menus. The latter has firms choosing the extent to which they commit

upon their offers. In either of its two forms, the endogeneity of commitment allows the suppliers’

promises to play the same strategic role as the public actions do in Myerson [20]. Indeed, be it on

the contractual or the policy level, an insurance offer with commitment is a decision which a firm

can publicly commit itself to carry out even if it may turn out ex-post to be harmful to itself.

For the insurance economy under consideration here, the interaction between these two dimen-

sions of contactual admissibility renders the IIE(1) allocation the unique sequential equilibrium

outcome of a simple direct revelation mechanism that has been used extensively in the literature

on applications of contract theory. The game-theoretic structure of Hellwig’s model addresses the

issue of existence of market equilibrium in pure strategies in a way that is both simple and realistic.

Its standard version, however, admits multiple equilibria of which only the RS allocation may be

incentive efficient.27 And, when this is not the case, the selection of the Pareto-optimal equilibrium

calls for the exact specification of the equilibrium strategies because it requires the deployment of

stability in its technical sense.

As we saw, endogenous contractual commitment can be used as an alternative selection method.

Yet, even though intuitively straightforward, this restricts the out-of-equilibrium beliefs of market

participants to an extent that precludes the existence of equilibrium in pure strategies if admissibil-

ity is augmented also along the accounting dimension. Existence of equilibrium but also uniqueness

as well as Pareto-efficiency are restored when the strategic dimension of admissibility allows en-

dogenous commitment also on the policy level. In this sense, our equilibrium outcome demands

the simultaneous application of two facets of endogenous commitment in a way that is probably

too difficult to establish via real-world market institutions. More realistic settings, such as that

in Guerrieri et al. [12], might be viewed as approximating it via the unique equilibrium of an-

other mechanism involving market imperfections. Under this view, the present paper outlines the

benchmark mechanism for such approximations.
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Appendices

A Preliminaries

Lemma 1 Let the functions F, F̃ : I 7→ R be defined on the open interval I ⊆ R and the function

κ : I4 7→ R be given by κ (x,y) = F (y2)−F (y1) + F̃ (x2)− F̃ (x1). Suppose, moreover, that F and

F̃ are differentiable on I with f, f̃ : I 7→ R the respective derivatives. If x∗,y∗ ∈ I2 are such that

x∗1 < x∗2 and y∗ = kx∗ for some k ∈ R∗, then

∆ (x∗,y∗) =
[
kf (kθ) + f̃ (θ)

]
(x∗2 − x∗1)

for some θ ∈ (x∗1, x
∗
2).

Proof. By the fundamental theorem of calculus, we have

F (y∗2)− F (y∗1) =

∫ y∗2

y∗1

f (z) dz =

∫ kx∗2

kx∗1

f (z) dz = k

∫ x∗2

x∗1

f (kt) dt

∆ (x∗,y∗) =

∫ x∗2

x∗1

[
kf (kt) + f̃ (t)

]
dt = G (x∗2)−G (x∗1)
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where G : I 7→ R is defined by G (t) = F (kt) + F̃ (t). Letting g : I 7→ R be its derivative function,

the required result is an immediate consequence of the mean value theorem, which guarantees the

existence of some θ ∈ (x∗1, x
∗
2) s.t. ∆ (x∗,y∗) = g (θ) (x∗2 − x∗1).

Lemma 2 Consider an arbitrary risk-type h and contracts a and ã related as follows

ã = a + (κ, 1) ε κ, ε ∈ R∗

(i) For the corresponding income allocations, we have

Uh (w̃)− Uh (w) =

{
[phu

′ (w1 + ε̃)− κ (1− ph)u′ (w0 − κε̃)] ε if ε > 0

[phu
′ (w1 − ε̃)− κ (1− ph)u′ (w0 + κε̃)] ε if ε < 0

for some ε̃ ∈ (0, |ε|). In addition,

(ii) ã �h a if one of the following hold

(a) κ ∈
(

0, ph
1−ph

]
, ε > 0, and w̃0 ≥ w̃1 (i.e., ã does not offer over-insurance).

(b) κ ∈
[

ph
1−ph ,∞

)
, ε < 0, and w̃0 ≤ w̃1 (i.e., ã does not offer under-insurance).

Proof. For (i), let first ε > 0 and consider the corresponding income points: w = (w0, w1) and

w̃ = w − (κ,−1) ε. We have

Uh (w̃)− Uh (w) = (1− ph) [u (w̃0)− u (w0)] + ph [u (w̃1)− u (w1)]

= (1− ph) [u (w0 − κε)− u (w0)] + ph [u (w1 + ε)− u (w1)]

and the required result follows immediately by applying the preceding lemma with x∗ = (0, ε),

κ = −k, F (z) = (1− ph)u (w0 + z), and F̃ (z) = phu (w1 + z). When ε < 0, on the other hand,

w̃ = w + (κ,−1) |ε|. In this case,

Uh (w̃)− Uh (w) = (1− ph) [u (w0 + κ|ε|)− u (w0)] + ph [u (w1 − |ε|)− u (w1)]

= (1− ph) [u (w0 + κ|ε|)− u (w0)]− ph [u (w1)− u (w1 − |ε|)]

and we may apply the lemma as before but for x∗ = (−|ε|, 0).

With respect to (ii), under (a), κ ≤ ph
1−ph and the first result above gives Uh (w̃) − Uh (w) ≥

ph [u′ (w1 + ε̃)− u′ (w0 − κε̃)] ε. Moreover, w1 + ε̃ < w1 + ε = w̃1 ≤ w̃0 = w0 − κε < w0 − κε̃.

The claim is now immediate since Uh (w̃) > Uh (w), due to ε > 0 and risk-aversion (u′′ (·) < 0).

Part (b) is equally straightforward. Now, Uh (w̃) − Uh (w) ≥ ph [u′ (w1 − ε̃)− u′ (w0 + κε̃)] ε while

w1 − ε̃ > w1 − |ε| = w̃1 ≥ w̃0 = w0 + κ|ε| > w0 + κε̃ but ε < 0.

Lemma 3 Let {aL,aH} be separating. There exists a contract a0
h = ah + (1, κ) ε, with κ > 0 and

ε < 0 (resp. ε > 0) if h = L (resp. h = H), such that a0
h �h ah whereas the menu

{
a0
h,ah′

}
(where

h 6= h′) is strictly separating (a0
h �h ah′ �h′ a0

h).

33



Proof. In the (a0, a1)-space, the indifference curve of risk-type h at an arbitrary contract point

a ∈ R2
+ has slope

Ih (a) =
da1

da0
= −

∂Uh(W−a0)
∂w0

dw0
da0

∂Uh(W−d+a1)
∂w1

dw1
da1

=

(
1− ph
ph

)
u′ (W − a0)

u′ (W − d+ a1)
> 0 h = H,L

As pH > pL, therefore, IL (a) =
(

1−pL
pL

)(
pH

1−pH

)
IH (a) > IH (a). In words, at least locally, the

low-risk indifference curve is steeper than the high-risk one.

Consider now the contract a0
L = aL + (1, κ) ε for some κ ∈ (IH (aL) , IL (aL)) and ε < 0. Let

also ∆h = |κ− Ih (aL) | for h = L,H. By Lemma 2(i), we get

Uh
(
w0
L

)
− Uh (wL) =

[
phu

′ (w1L − ε̃)− κ−1 (1− ph)u′
(
w0L + κ−1ε̃

)]
kε

=

[
κ−

(1− ph)u′
(
w0L + κ−1ε̃

)
phu′ (w1L − ε̃)

]
phu

′ (w1L − ε̃) ε

=
[
κ− Ih

(
a∗L −

(
κ−1, 1

)
ε̃
)]
phu

′ (w1L − ε̃) ε

for some ε̃ ∈ (0, κ|ε|). Yet, the function Ih (·) is continuous and limε̃→0 Ih
(
aL −

(
κ−1, 1

)
ε̃
)

=

Ih (aL). For small enough |ε| (and, subsequently, ε̃), therefore, |Ih
(
aL −

(
κ−1, 1

)
ε̃
)
− Ih (aL) | <

min {∆L,∆H} for either h. But then,

UL
(
w0
L

)
− UL (wL) =

[
IL (aL)−∆L − IL

(
aL −

(
κ−1, 1

)
ε̃
)]
phu

′ (w1L − ε̃) ε

= −
[
IL
(
aL −

(
κ−1, 1

)
ε̃
)
− (IL (aL)−∆L)

]
phu

′ (w1L − ε̃) ε > 0

UH
(
w0
L

)
− UH (wL) =

[
IH (aL) + ∆H − IH

(
aL −

(
κ−1, 1

)
ε̃
)]
phu

′ (w1L − ε̃) ε < 0

imply that UL
(
w0
L

)
> UL (wL) ≥ UL (wH) and UH

(
w0
L

)
< UH (wL) ≤ UH (wH). Here, the

second inequality in either system is due to the fact that the original menu is separating. A similar

argument produces the contract a0
H = aH + (1, κ) ε, with κ as before but now ε > 0, such that

a0
H �H aH while aL �L a0

H �H aL.

B Efficiency

B.1 The Rothschild-Stiglitz-Wilson Allocation

For µ ∈ [0, 1], we are interested in the following problem

max
{wL,wH}∈R4

++

µUL (wL) + (1− µ)UH (wH) s.t. (1)-(3)

Let βh, γh, and δh be, respectively, the Lagrangean multipliers on the incentive-compatibility,

individual rationality, and non-negative profit constraints of risk-type h. The Kuhn-Tucker first-
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order conditions are then28

(µ+ β∗∗L + γ∗∗L )
∂UL (w∗∗L )

∂a0L
= β∗∗H

∂UH (w∗∗L )

∂a0L
− δ∗∗L (1− pL) (5)

(µ+ β∗∗L + γ∗∗L )
∂UL (w∗∗L )

∂a1L
= β∗∗H

∂UH (w∗∗L )

∂a1L
+ δ∗∗L pL (6)

(1− µ+ β∗∗H + γ∗∗H )
∂UH (w∗∗H )

∂a0H
= β∗∗L

∂UL (w∗∗H )

∂a0H
− δ∗∗H (1− pH) (7)

(1− µ+ β∗∗H + γ∗∗H )
∂UH (w∗∗H )

∂a0H
= β∗∗L

∂UL (w∗∗H )

∂a0H
+ δ∗∗H pH (8)

β∗∗h (Uh (w∗∗h )− Uh (w∗∗h′ )) = 0 h, h′ ∈ {H,L} (9)

γ∗∗h (Uh (w∗∗h )− uh) = 0 h ∈ {H,L} (10)

δ∗∗h Πh (a∗∗h ) = 0 h ∈ {H,L} (11)

β∗∗h , γ
∗∗
h , δh ≥ 0 h ∈ {H,L} (12)

along with (1), (2), and (3), where, for either h,

∂Uh (wh)

∂a0h
= (1− ph)u′ (w0h)

dw0h

da0h
= − (1− ph)u′ (w0h)

∂Uh (wh)

∂a1h
= phu

′ (w1h)
dw1h

da1h
= phu

′ (w1h)

It is trivial to check, of course, that (5)-(6) and (7)-(8) give, respectively,

(µ+ β∗∗L + γ∗∗L ) pL (1− pL)
[
u′ (w∗∗1L)− u′ (w∗∗0L)

]
= β∗∗H

[
pH (1− pL)u′ (w∗∗1L)

−pL (1− pH)u′ (w∗∗0L)

]
(13)

(1− µ+ β∗∗H + γ∗∗H ) pH (1− pH)
[
u′ (w∗∗1H)− u′ (w∗∗0H)

]
= β∗∗L

[
pL (1− pH)u′ (w∗∗1H)

−pH (1− pL)u′ (w∗∗0H)

]
(14)

Our analysis will proceed through a series of observations regarding the characteristics of an

RSW allocation.

1. If the low-risk profit constraint binds at the optimum, the low-risk type cannot be fully insured.

We will establish the contrapositive statement, arguing ad absurdum. Let, thus, w∗∗1L = w∗∗0L. Then,

UH (w∗∗L ) = u (w∗∗0L) and the high-risk incentive constraint would read UH (w∗∗H ) ≥ u (w∗∗0L). Which

28As we will show, the only inequality constraint that does not bind at the optimum is the low-risk incentive

compatibility one. The rank condition of the Khun-Tucker theorem requires here that the matrix
∇(wL,wH )UL (wL)− UL (wH)

∇(wL,wH )UH (wH)− UH (wL)

∇(wL,wH )ΠL (aL)

∇(wL,wH )ΠH (aH)

 =


∂UL(wL)
∂w0L

∂UL(wL)
∂w1L

− ∂UL(wH )
∂w0H

− ∂UL(wH )
∂w1H

− ∂UH (wL)
∂w0L

− ∂UH (wL)
∂w1L

∂UH (wH )
∂w0H

∂UH (wH )
∂w1H

− (1− pL) −pL 0 0

0 0 − (1− pH) −pH


has rank at least 3 at the point (w∗∗L ,w

∗∗
H ). But this is obvious; for instance, no linear combination of its last three

columns can be zero at the third entry given that pL > 0.
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cannot be, however, if ΠL (a∗∗L ) = 0 because

UH (w∗∗H ) = (1− pH)u (w∗∗0H) + pHu (w∗∗1H) ≤ u ((1− pH)w∗∗0H + pHw
∗∗
1H)

= u (W − (1− pH) a∗∗0H + pH (a∗∗1H − d))

≤ u (W − pHd)

< u (W − pLd)

= u (W − (1− pL) a∗∗0L + pL (a∗∗1L − d))

= u ((1− pL)w∗∗0L + pLw
∗∗
1L) = u (w∗∗0L)

The first inequality here is due to u (·) being everywhere strictly-concave (the binding case obtaining

only if w∗∗0H = w∗∗1H). The third inequality follows from pL < pH and u (·) being strictly-increasing.

The second and fourth equalities use that w∗∗h = (W − a∗∗0h,W − d+ a∗∗1h). The second inequality

follows from u′ (·) > 0 since− [(1− pH) a∗∗0H − pHa∗∗1H ] = −ΠH (a∗∗H ) ≤ 0, by the respective condition

in (3). The latter condition, which binds by assumption for the low-risk, is responsible also for the

second equality.

2. The high-risk profit constraint must bind ∀µ ∈ [0, 1]. The low-risk one must do so for µ > 0.

Suppose first that ΠL (a∗∗L ) > 0. Then δ∗∗L = 0, by the corresponding complementary-slackness

condition in (11), and (5)-(6) read

(µ+ β∗∗L + γ∗∗L ) (1− pL)u′ (w∗∗0L) = β∗∗H (1− pH)u′ (w∗∗0L)

(µ+ β∗∗L + γ∗∗L ) pLu
′ (w∗∗1L) = β∗∗H pHu

′ (w∗∗1L)

Recall, however, that u′ (·) > 0 and ph ∈ (0, 1) for either h. It follows that, along with the non-

negativity conditions in (12), µ > 0 requires that neither side in either equation is zero. But then

one equation may be divided by the other to give 1−pL
pL

= 1−pH
pH

, a contradiction.

A trivially similar argument, using the respective condition in (11) and (7)-(8), precludes

ΠH (a∗∗H ) > 0 when µ < 1. If µ = 1, then ΠL (a∗∗L ) = 0 by the preceding paragraph and, subse-

quently, the first observation precludes the low-risk from being fully-insured. This requires, in turn,

that β∗∗H > 0. Otherwise, as also µ > 0, β∗∗L , γ
∗∗
L ≥ 0, and pL < 1, (13) gives u′ (w∗∗1L) = u′ (w∗∗0L)

Under the strict concavity of u (·), however, u′ (·) is everywhere strictly-decreasing and the last

equality is equivalent to w∗∗1L = w∗∗0L. Even when µ = 1, therefore, it must be β∗∗H > 0 and the

argument in the preceding paragraph applies again for the respective condition in (11) and (7)-(8).

We have shown, therefore, that both profit constraints in (3) cannot but bind at the optimum,

as long as µ ∈ (0, 1]. When µ = 0, the profit constraint on the low-risk type does not have bind at

the optimum but we may take it to be so without any loss of generality. In this case, we restrict

attention to the allocation {w∗∗L ,w∗∗H } we derive below, which is then but one of many optima.

Indeed, when µ = 0, any allocation {wL,w
∗∗
H } is optimal, as long as it satisfies the constraints.

Yet, {w∗∗L ,w∗∗H } is the only optimum that remains so ∀µ ∈ [0, 1].
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In what follows, with continue our observations about the solution of the RSW problem, re-

placing (3) with its binding version:

Πh (ah) = 0 h ∈ {H,L} (15)

3. A pooling allocation cannot be optimal.

For a pooling contract a = (a0, a1) to satisfy the two zero-profit conditions in (15), we must have

a0 =
(

ph
1−ph

)
a1 for either h. Which, since pH > pL, means actually that the only admissible pooling

contract is the trivial one, a = 0. Yet, as shown by what follows, we can do much better for either

type than leaving them at the endowment point.

4. The incentive compatibility constraint of the high-risk type binds.

Suppose the opposite. By the corresponding complementary slackness condition in (9) then, β∗∗H =

0, which, as we have seen already cannot be if µ > 0 (recall observation 2). Let, thus, µ = 0.

If β∗∗L + γ∗∗L > 0, the same argument leads again to the absurd conclusion that the low-risk type

gets full insurance. On the other hand, β∗∗L + γ∗∗L = 0 can be only if β∗∗L = 0 which, along with

µ = β∗∗H = 0, γ∗∗H ≥ 0, and pH < 1, oblige (14) to require that the high-risk is fully-insured

(w∗∗1H = w∗∗0H). In this case, we may proceed directly to Step 7.

5. The incentive compatibility constraint of the low-risk type does not bind.

Otherwise, given the preceding step, both constraints in (1) bind. That is, UL (w∗∗L ) = UL (w∗∗H )

and UH (w∗∗H ) = UH (w∗∗L ) which, in turn, imply that

pL [u (w∗∗0L)− u (w∗∗0H) + u (w∗∗1H)− u (w∗∗1L)] = u (w∗∗0L)− u (w∗∗0H)

= pH [u (w∗∗0L)− u (w∗∗0H) + u (w∗∗1H)− u (w∗∗1L)]

This cannot be unless u (w∗∗0L) = u (w∗∗0H) and u (w∗∗1L) = u (w∗∗1H).29 Equivalently, unless w∗∗0L = w∗∗0H
and w∗∗1L = w∗∗1H , an absurd conclusion given that the optimal allocation must be separating.

6. The high-risk agents are fully insured.

By the preceding observation and the low-risk type’s complementary slackness condition in (9), it

must be β∗∗L = 0. We have already established (observation 4), though, that β∗∗H > 0. And as

1− µ, γ∗∗H ≥ 0 while pH < 1, (14) necessitates that u′ (w∗∗0H) = u′ (w∗∗1H). Equivalently, w∗∗0H = w∗∗1H
as required.

7. The high-risk individual-rationality constraint in (2) does not bind.

Recall the argument in Step 1. Since the high-risk profit constraint binds and this type is fully

insured, we have

uH = (1− pH)u (W ) + pHu (W − d)

< u ((1− pH)W + pH (W − d))

= u (W − pHd) = u (W − (1− pH) a∗∗0H + pH (a∗∗1H − d))

= u ((1− pH)w∗∗0H + pHw
∗∗
1H) = u (w∗∗0H) = Uh (w∗∗H ) h ∈ {L,H}

29Given α, ζ ∈ R and γ, δ ∈ R∗∗ with γ 6= δ, γ (α+ ζ) = δ (α+ ζ) = α implies α = ζ = 0.
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The high-risk individual rationality constraint is slack (γ∗∗H = 0).

8. The contract for the high-risk customers is what they would get under prefect information.

Under perfect information, each risk-type is offered the full-insurance contract that meets the

respective condition in (15). Geometrically, this the intersection point of the 45-degree and the

fair-odds line through the endowment point, FO∗h. Clearly, w∗∗H = wF
H .

9. The low-risk customers are underinsured: w∗∗0L > w∗∗1L.

We have just established that the optimal contract for the high-risk type involves full insurance.

Hence, UH (w∗∗H ) = u (w∗∗0H) = UL (w∗∗H ) and the two incentive compatibility constraints can be

put together as UH (w∗∗L ) ≤ u (w∗∗0H) ≤ UL (w∗∗L ). The inequality between the first and the last

quantities requires that (pH − pL) [u (w∗∗1L)− u (w∗∗0L)] ≤ 0. Given that pH > pL and u (·) is strictly-

increasing, this necessitates that w∗∗1L ≤ w∗∗0L. In fact, w∗∗1L < w∗∗0L since equality has been ruled out

(Step 1).

10. The low-risk individual-rationality constraint in (2) does not bind.

This is immediate once the preceding observation is combined with Lemma 2(ii), applied for h = L

with w̃ and w being, respectively, the endowment point and w∗∗L . To this end, recall that either of

the latter two points are on the line FO∗L. Hence, a∗∗L = 0 + (a∗∗0L, a
∗∗
1L) = 0 +

(
pL

1−pL , 1
)
a∗∗1L with

a∗∗1L > 0.

11. The low-risk contract is the intersection of FO∗L with the high-risk indifference curve UH (w) =

u
(
wF0H

)
.

The contract offered to the low-risk type is given by the following two equations: (i) the binding

incentive compatibility constraint of the high-risk type, UH (w∗∗L ) = u
(
wF0H

)
, and (ii) the equation

in (15) for the low-risk type.

B.2 Interim Incentive Efficient Allocations

Consider now the same optimization exercise as before but for the fact that the two profit conditions

in (3) are replaced by the one in (4). Letting δ be the Lagrangean multiplier of the new constraint,

the Khun-Tucker first-order conditions are the same as before but for the fact that δL and δH are

replaced by δλ and δ (1− λ), respectively, and (11) reads now δ [λΠL (a∗L) + (1− λ) ΠH (a∗H)] = 0.

It follows then that, as also λ ∈ (0, 1), the argument in Step 2 of the RSW analysis applies requiring

that (4) binds at the optimum ∀µ ∈ [0, 1]. We may replace it, therefore, by

λΠL (aL) + (1− λ) ΠH (aH) = 0 (16)

Observe also that, throughout this proof, we will restrict attention to high-risk contracts that satisfy

ΠH (aH) ≤ 0. This is entirely innocuous because, as it will turn out, at the IIE optimum and for

all µ ∈ [0, 1] we have UH (w∗H) > u (W − pHd) = UH (w∗∗H ), the equality following from Step 7 of

our RSW analysis. Clearly, the IIE optimal a∗H must be loss-making given that the RS contract
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a∗∗H solves the first-best efficiency problem: maxa∈R2
+:ΠH(a)≥0 UH (a).

In what follows, therefore, the relevant domain consists of menus {aL,aH} such that

ΠH (aH) ≤ 0 ≤ ΠL (aL) (17)

As before, we proceed via a series of observations.

1. A menu {aL,aH} satisfying (16)-(17), corresponds uniquely to a contract a ∈ FO∗M such that

a0 ≥ 0 (18)

[λ (1− pL) + (1− λ) (1− pH)] a0 = [λpL + (1− λ) pH ] a1 (19)

(1− ph) (a0h − a0) = ph (a1h − a1) h = H,L (20)

Let a be defined (uniquely) by (20), as the intersection of the two fair-odds lines FOh through the

members of the given menu. As pooling policy, it expects profits

ΠM (a) = λ [(1− pL) a0 − pLa1] + (1− λ) [(1− pH) a0 − pHa1]

= λ [(1− pL) a0 − pLa1] + (1− λ) [(1− pH) a0 − pHa1]

+ λ [(1− pL) (a0L − a0)− pL (a1L − a1)]

+ (1− λ) [(1− pH) (a0H − a0)− pH (a1H − a1)]

= λ [(1− pL) a0L − pLa1L] + (1− λ) [(1− pH) a0H − pHa1H ]

= λΠL (aL) + (1− λ) ΠH (aH)

exactly the same as the given menu. Hence, ΠM (a) = 0 which is just another way to express (19).

Of course, as the latter equation is satisfied also by the endowment point - the trivial contract (0, 0)

- a cannot but lie on the market fair-odds line through the endowment point. Finally, notice that(
1− pL
pL

)
a0 =

1

pL
[(1− pL) a0L − pLa1L + pLa1] =

1

pL
[ΠL (aL) + pLa1]

≥ a1 =
1

pH
[(1− pH) a0 −ΠH (aH)] ≥

(
1− pH
pH

)
a0

where the first and third equalities are due to the respective relations in (20) while the two inequal-

ities follow from the respective sides of (17). Given this, (18) follows immediately since pH > pL.

In what follows, we study the IIE problem after having substituted (16) by its equivalent system

of conditions (18)-(20) above. Of course, for the menu {aL,aH} to satisfy the two conditions in

(20), we can only consider movements along the same slope as the corresponding fair-odds lines

FOh, i.e. contract changes of the form da1h =
(

1−ph
ph

)
da0h. This means that the solution to the

IIE problem can be fully characterized in terms of its a∗0, a∗1L, and a∗1H components. For once these

three choice variables are determined, so are the remaining ones since

a∗1 =

(
1

λpL + (1− λ) pH
− 1

)
a∗0 (21)

a∗1L =
1

pL

[
(1− pL) a∗0L −

(1− λ) (pH − pL)

λpL + (1− λ) pH
a∗0

]
(22)

a∗1H =
1

pH

[
(1− pH) a∗0H +

λ (pH − pL)

λpL + (1− λ) pH
a∗0

]
(23)
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Here, the first equality follows from (19) and, given this, the other two by (20).

The IIE problem can be re-formulated, therefore, to be subject to (18), the four constraints in

(1)-(2), and

w0L = W −
(

1

1− pL

)(
pLa1L +

(1− λ) (pH − pL)

λpL + (1− λ) pH
a0

)
w1L = W − d+ a1L

w0H = W −
(

1

1− pH

)(
pHa1H −

λ (pH − pL)

λpL + (1− λ) pH
a0

)
w1H = W − d+ a1H

Letting β be the Lagrangean multiplier on (18), the Kuhn-Tucker first-order conditions are given

by (1)-(2), (5)-(11), and 30

λ

[
1− µ+ β∗H + γ∗H − β∗L

(
1− pL
1− pH

)]
u′ (w∗0H) −

(1− λ)

[
µ+ β∗L + γ∗L − β∗H

(
1− pH
1− pL

)]
u′ (w∗0L) = − β∗p

pH − pL
(24)

β∗a∗0 = 0, β∗ ≥ 0

where p = λpL + (1− λ) pH . Regarding this new formulation, notice that the slackness of (18) is

what distinguishes the IIE and RSW problems. For if a∗0 = 0, (19) requires that also a∗1 = 0 and,

hence, (20) reduces to (15). In what follows, then, we require that a∗0 > 0. As a consequence,

β∗ = 0 and (24) can be re-written as

λ

[
1− µ+ β∗H + γ∗H − β∗L

(
1− pL
1− pH

)]
u′ (w∗0H) = (1− λ)

[
µ+ β∗L + γ∗L − β∗H

(
1− pH
1− pL

)]
u′ (w∗0L)

2. At least one of the two incentive constraints in (1) binds at the optimum

To see this, suppose that they are both slack so that β∗L = 0 = β∗H by the complementary slackness

conditions in (9). It follows immediately, by the last condition above, that this cannot be if µ =

γ∗L = 0 or 1−µ = γ∗H = 0. For then, we would have, respectively, u′ (w∗1H) = 0 or u′ (w∗1L) = 0; either

an absurd conclusion given that u (·) is everywhere strictly monotone. It can only be, therefore,

µ+ γ∗L, 1− µ+ γ∗H > 0 and conditions (13)-(14) together dictate that both risk-types ought to be

fully-insured. But then, Uh
(
w∗h′
)

= u
(
w∗0h′

)
for h, h′ ∈ {H,L} and, thus, UL (w∗L) ≥ UL (w∗H) =

30In each of the cases 2(i)-(ii) below, the only inequality constraint that binds at the optimum is the respective

incentive constraint. The rank condition of the Khun-Tucker theorem, therefore, requires that the matrix ∇(wL,wH )UL (wL)− UL (wH)

∇(wL,wH )UH (wH)− UH (wL)

∇(wL,wH )λΠL (aL) + (1− λ) ΠH (aH)

 = −

 −
∂UL(wL)
∂w0L

− ∂UL(wL)
∂w1L

∂UL(wH )
∂w0H

∂UL(wH )
∂w1H

∂UH (wL)
∂w0L

∂UH (wL)
∂w1L

− ∂UH (wH )
∂w0H

− ∂UH (wH )
∂w1H

λ (1− pL) λpL (1− λ) (1− pH) (1− λ) pH


has rank at least 2 at (w∗L,w

∗
H). As in the RSW problem, this is trivial to verify. Take, for instance, a linear

combination (ζ0, ζ1) ∈ R2 \ {0} of the first two columns. For this to be zero at the first two entries, we ought to

have
∑
s=0,1 ζs

∂Uh(wL)
∂wsL

= 0 for h = L,H. Equivalently, ∂UL(wL)
∂w0L

/ ∂UH (wL)
∂w0L

= ∂UL(wL)
∂w1L

/ ∂UH (wL)
∂w1L

. Given the utility

specification here, this reads pL
pH

= 1−pL
1−pH

. Yet, pH > pL requires that pL
pH

< 1 < 1−pL
1−pH

.
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UH (w∗H) ≥ UH (w∗L) = UL (w∗L); another absurd conclusion if both incentive constraints in (1) are

slack.

This observation allows for an exhaustive investigation of the IIE problem by examining the

following three cases. In the first two, we ignore the possibility that β∗L = 0 = β∗H . As we know

already, this cannot be if µ = γ∗L = 0 or 1− µ = γ∗H = 0 whereas, in any other case, it implies that

both incentive constraints bind, exactly the situation investigated by our third case.

(i). Only the high-risk incentive constraint binds at the optimum.

Since β∗L = 0 < β∗H , (14) requires that the high-risk type gets full insurance: w∗0H = w∗1H . Which

implies, in turn, under- or full-insurance for the low-risk type: w∗0L ≥ w∗1L (recall the argument in

Step 9 of our RSW analysis). In fact, it suffices here to consider only strict inequality: w∗0L > w∗1L.

For, as we have already seen above, if both types are full-insured both incentive constraints in (1)

bind, a situation examined in Case (iii) below.

At the optimal high-risk income point (w∗0H , w
∗
1H), we have now

uH = (1− pH)u (W ) + pHu (W − d) < u ((1− pH)W + pH (W − d))

= u (W − pHd) < u

(
W − pHd+

λ (pH − pL)

λpL + (1− λ) pH
a∗0

)
= u ((1− pH)w∗0H + pHw

∗
1H) = u (w∗0H) = Uh (w∗H) h = L,H

where the second inequality follows from a∗0 > 0, pH > pL, and non-satiation. That is, the high-risk

individual rationality constraint in (2) is slack (and, thus, γ∗H = 0). For that of the low-risk agents,

on the other hand, observe that the last equality above also gives

u ((1− pH)w∗0H + pHw
∗
1H) = UL (w∗0H) = (1− pH)u (w∗0L) + pHu (w∗1L)

< u ((1− pH)w∗0L + pHw
∗
1L)

where (similarly to the first inequality before) the inequality is due to risk-aversion. Hence, by

non-satiation, we ought to have w∗1L − w∗1H > −1−pH
pH

(w∗0L − w∗0H). In addition, since w∗0L > w∗1L,

the second equality above implies also that u (w∗0H) < u (w∗0L) or w∗0H < w∗0L.

Let us allow ourselves now a small digression on the following set

Cz =
{
x ∈ R2 : x2 − z2 = l (x1 − z1) , l ∈ [l1, l2]

}
where l1 < l2 with l1l2 > 0. This is the intersection of two half-planes, the one to the left of the line{
x ∈ R2 : (x2 − z2) = l1 (x1 − z1)

}
and the one to the right of

{
x ∈ R2 : (x2 − z2) = l2 (x1 − z1)

}
.

Graphically, it is depicted by a convex cone pointed at z and separated into two half-cones, the left

(x1 < z1) and the right (x1 > z1).

Let now x,y ∈ Cz \ {z}. There must exist r1, r2 ∈ [l1, l2] such that x2 − z2 = r1 (x1 − z1) and

y2 − z2 = r2 (y1 − z1). Consider now the sets of inequalities below, (25) and (26), which ensure,

respectively, that the points both lie in the left and right half-cone.

r2 > r1 x1 ≥ y1 and x2 − y2 > r2 (x1 − y1) (25)

r2 > r1 x1 ≤ y1 and x2 − y2 < r2 (x1 − y1) (26)
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This because the second inequality in (25) is equivalent to x2 − z2 > r2 (x1 − z1). But this implies

0 = x2 − z2 − r1 (x1 − z1) > (r2 − r1) (x1 − z1) or x1 < z1. Which requires, in turn, that also

y1 < z1. The argument for (26) is trivially similar.

Returning now to our proof, given (20) and wh = (W − a0h,W − d+ a1h), condition (25) can be

applied here for z = w∗, x = w∗L, y = w∗H , r1 = −1−pL
pL

, and r2 = −1−pH
pH

. Graphically, the

situation may be depicted by the left-hand side diagram of Figure 6. Analytically, it requires that

w∗0 < w∗0H < w∗0L or a∗0L < a∗0H < a∗0. Yet, by fully-insuring the high-risk type, we also have

a∗0H = d− a∗1H (27)

and, for h = H, (20) gives a∗0H−a∗0 = pH (d− a∗1 − a∗0). It must be, therefore, d−a∗1 > a∗0. Similarly

to the low-risk contract, the pooling one also offers under-insurance: w∗1 < w∗0. Which actually

allows us to apply Lemma 2 twice, taking a∗ = 0+(a∗0, a
∗
1) and a∗L = a∗+(ε∗0L, ε

∗
1L) with a∗0 = p

1−pa
∗
1,

p = λpL+(1− λ) pH , and ε∗0L = pL
1−pL ε

∗
1L, in order to conclude that UL (w∗L) > UL (w) > uL. Hence,

the low-risk constraint in (2) is also slack (and, thus, γ∗L = 0).

Given the above, the IIE solution is fully characterized here by (21)-(22), (27), the equality

below - which is due to (27) and (23) -

a∗1H =
λ (pH − pL)

λpL + (1− λ) pH
a∗0 + (1− pH) d (28)

and the following conditions

µpL (1− pL)
[
u′ (w∗1L)− u′ (w∗0L)

]
= β∗H

[
pH (1− pL)u′ (w∗1L)

−pL (1− pH)u′ (w∗0L)

]
(29)

λ (1− µ+ β∗H)u′ (w∗0H) = (1− λ)

[
µ− β∗H

(
1− pH
1− pL

)]
u′ (w∗0L) (30)

UH (w∗L) = u (w∗0H)

a system of seven equations in the seven unknowns: a∗0, a∗1, a∗0L, a∗1L, a∗0H , a∗1H , and β∗H .

To complete the analysis, we should point out that this case is compatible only with the situation

λ < µ. This is because it combines full insurance for the high-risk agents with under-insurance

for the low-risk ones. Specifically, since u (w∗0H) < u (w∗0L), it must be u′ (w∗0H) > u′ (w∗0L) due to

risk-aversion. But then, for the right-hand side of (30), we get

(1− λ)

[
µ− β∗H

(
1− pH
1− pL

)]
u′ (w∗0L) <

[
µ (1− λ) + λβ∗H

(
1− pH
1− pL

)]
u′ (w∗0L)

≤
[
µ (1− λ) + λβ∗H

(
1− pH
1− pL

)]
u′ (w∗0H)

≤ (µ (1− λ) + λβ∗H)u′ (w∗0H)

where the first inequality is due to β∗H , u
′ (·) > 0 and ph < 1, the second one is because, by risk-

aversion, u (w∗0H) < u (w∗0L) is equivalent to u′ (w∗0H) > u′ (w∗0L), and the last inequality follows

from pH > pL. Yet, the above result rules out the case λ ≥ µ. For then, µ (1− λ) ≤ λ (1− µ) and
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(30) cannot hold.

(ii). Only the low-risk incentive constraint binds at the optimum.

Now β∗L > 0 = β∗H and, by (13), it is the low-risk type that gets full insurance. It follows, moreover

(by a trivial adaptation of the argument in Step 9 of the RSW analysis), that the high-risk agents

must be over- or fully-insured (w∗0H ≤ w∗1H). And since the equality leads to a situation examined

in (iii) below, as before, we will examine only the case: w∗0H < w∗1H .

These two findings are sufficient to conclude further that neither of the two rationality con-

straints in (2) bind so that again γ∗h = 0 for either h. Since either risk-type h is risk-averse,

uh < u (W − phd) (the corresponding argument having been made already in the preceding case

for h = H and being valid also for h = L). Moreover,

u (W − pHd) < u (W − pLd) = u ((1− pL)w∗0L + pLw
∗
1L − (1− pL) a0 − pLa1)

< u (w∗0L) = UL (w∗L) = UH (w∗L) < UH (w∗H)

where the first inequality follows from pH > pL and non-satiation, the second is due to non-satiation,

a∗0, a
∗
1 > 0, and the fact that the low-risk agents are fully-insured, while the last inequality obtains

by assumption since the high-risk incentive constraint is taken to be slack. Regarding the equalities,

on the other hand, the first one follows from (20) for h = L and the other two from the fact that

the low-risk type gets full insurance.

In this case, therefore,

a∗0L = d− a∗1L (31)

a∗1L = (1− pL) d− (1− λ) (pH − pL)

λpL + (1− λ) pH
a∗0 (32)

- the latter equality due to the former and (22) - and the IIE solution is defined by (21), (23),

(31)-(32), and the conditions

(1− µ) pH (1− pH)
[
u′ (w∗1H)− u′ (w∗0H)

]
= β∗L

[
pL (1− pH)u′ (w∗1H)

−pH (1− pL)u′ (w∗0H)

]
(33)

(1− λ) (µ+ β∗L)u′ (w∗0L) = λ

[
1− µ− β∗L

(
1− pL
1− pH

)]
u′ (w∗0H) (34)

UL (w∗H) = u (w∗0L)

giving again a unique solution for the seven unknowns: a∗0, a∗1, a∗0L, a∗1L, a∗0H , a∗1H , and β∗L.

In addition, offering full insurance to the low-risk type and under-insurance to the high-risk,

the present case necessitates that λ > µ. Specifically, w∗0H < w∗1H forces the binding incentive

constraint of the low-risk into giving u (w∗0L) < u (w∗0H). Hence, u′ (w∗0H) < u′ (w∗0L) and, regarding

the left-hand side of (34), we have

(1− λ) (µ+ β∗L)u′ (w∗0L) ≥ (1− λ) (µ+ β∗L)u′ (w∗0H) > [µ (1− λ)− λβ∗L]u′ (w∗0H)
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Here, the last inequality is due to β∗L, u
′ (·) > 0 which, along with pH > pL, requires also that the

right-hand side of (34) gives

λ

[
1− µ− β∗L

(
1− pL
1− pH

)]
u′ (w∗0H) ≤ λ (1− µ− β∗L)u′ (w∗0H)

Observe now that λ ≤ µ is equivalent to λ (1− µ) ≤ µ (1− λ). Clearly, (34) cannot hold if µ ≥ λ.

To complete the presentation, it is trivial to check (using the same substitutions as before) that

this case satisfies (26). An graphical example is given by the hypothetical equilibrium allocation

in the right-hand side diagram of Figure 6.

(iii). Both incentive constraints in (1) bind at the optimum.31

Recall Step 5 in our RSW analysis. If both incentive constraints are binding, we ought to have

w∗L = w∗H so that the optimal menu involves a pooling contract a∗. To specify it, observe that,

taking w∗sh = w∗s for (s, h) ∈ {0, 1} × {L,H}, the first-order conditions read now

(µ+ β∗L + γ∗L) pL (1− pL)
[
u′ (w∗1)− u′ (w∗0)

]
= β∗H

[
pH (1− pL)u′ (w∗1)

−pL (1− pH)u′ (w∗0)

]
(35)

(1− µ+ β∗H + γ∗H) pH (1− pH)
[
u′ (w∗1)− u′ (w∗0)

]
= β∗L

[
pL (1− pH)u′ (w∗1)

−pH (1− pL)u′ (w∗0)

]
(36)

λ

[
1− µ+ β∗H + γ∗H − β∗L

(
1− pL
1− pH

)]
= (1− λ)

[
µ+ β∗L + γ∗L − β∗H

(
1− pH
1− pL

)]
(37)

the last equation because u (·) is everywhere strictly monotone. It is trivial, however, to verify that

these three equations together give

(pH − pL) [λβ∗LpL + (1− λ)β∗HpH ]u′ (w∗1) = 0

Equivalently, λβ∗LpL + (1− λ)β∗HpH = 0 which, each term of the sum on the left-hand side being

non-negative, can be only if β∗L = β∗H = 0. Yet, the system (35)-(36) gives then

[(µ+ γ∗L) (1− pL) + (1− µ+ γ∗H) (1− pH)]
[
u′ (w∗1)− u′ (w∗0)

]
= 0

31In this case, the inequality constraints that bind at the optimum are the two incentive constraints. The rank

condition of the Khun-Tucker theorem requires now that the matrix (1− pL)u′ (w∗0) pLu
′ (w∗1) − (1− pL)u′ (w∗0) −pLu′ (w∗1)

− (1− pH)u′ (w∗0) −pHu′ (w∗1) (1− pH)u′ (w∗0) pHu
′ (w∗1)

−λ (1− pL) −λpL − (1− λ) (1− pH) − (1− λ) pH


has rank at least 3. But this is indeed the case since the 3x3 submatrix formed by the first two and the last column

is non-singular. By adding the second column to the first and the last, its determinant is the same as that of the

matrix u′ (w∗0) pLu
′ (w∗1) 0

−u′ (w∗0) −pHu′ (w∗1) 0

−λ −λpL −pH − λ (pH − pL)


which is given by [pH + λ (pH − pL)] (pH − pL)u′ (w∗0)u′ (w∗1) > 0.
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which (at least one term in the first sum on the left-hand side being strictly positive) cannot be

unless w∗0 = w∗1. The optimal pooling allocation must provide, hence, full insurance. That is,

a∗0 = d − a∗1, which along with (21), define a system of two equations in the two unknowns, a∗0
and a∗1. Needless to say, as either risk-type gets full insurance, the corresponding arguments (in

Cases (i) and (ii) for the high- and low-risk type, respectively) ensure that none of the rationality

constraints in (2) bind at the optimum (γ∗h = 0 for either h). To complete the analysis, notice also

that, by β∗L = β∗H = 0 and (37), it can only be λ = µ. �

The preceding analysis leads to a complete characterization of the IIE allocations. Specifically,

given the relation between the parameters λ and µ of the IIE problem, the contrapositive of each

of our closing observations in each of the Cases (i)-(iii) above leaves one of them as the unique

possibility. For instance, if λ < µ, our analysis rules out Cases (ii)-(iii), leaving Case (i) as uniquely

relevant. The following claim then is immediate.

Claim 1 The solution to the IIE problem is uniquely determined by (21)-(23) as well as

1. UH (w∗H) = UH (w∗L), w∗0H = w∗1H , and (29)-(30) if λ < µ.

2. UL (w∗L) = UL (w∗H), w∗0L = w∗1L, and (33)-(34) if λ > µ.

3. w∗L = w∗H = w∗ with w∗0 = w∗1 if λ = µ.

B.2.1 Properties of the Pareto-frontier

Lemma 4 In the IIE(µ) problem just analyzed, express the solution as a function of the weight on

the welfare of the low-risk type, {w∗L (µ) ,w∗H (µ)}, so that the value function V : [0, 1] 7→ R may be

written as V (µ) = µUL (µ) + (1− µ)UH (µ). Let also µ1, µ2 ∈ [0, 1] with µ1 6= µ2. Then,

(µ1 − µ2) [UL (µ1)− UL (µ2)] > 0 > (µ1 − µ2) [UH (µ1)− UH (µ2)]

Proof. Recall that the IIE(µ) allocation is unique at every µ ∈ [0, 1]. Therefore,

µ1 [UL (µ1)− UL (µ2)] + (1− µ1) [UH (µ1)− UH (µ2)] > 0

µ2 [UL (µ2)− UL (µ1)] + (1− µ2) [UH (µ2)− UH (µ1)] > 0

which gives

(µ1 − µ2) [UL (µ1)− UL (µ2)− (UH (µ1)− UH (µ2))] > 0

Hence, µ1 > µ2 requires that UL (µ1) − UL (µ2) > UH (µ1) − UH (µ2). Observe, however, two

things. First, given that µ1 and µ2 are both non-negative and at least one strictly positive, neither

of the quantities on either side of this inequality may be zero (otherwise, at least one of the initial

two inequalities above is violated). Moreover, since both allocations are Pareto-optimal, the two

quantities cannot be of the same sign. Clearly, the larger one cannot but be positive. The result

follows.

In the IIE(µ) problem, the objective function µUL (wL)+(1− µ)UH (wH) is linear in the weight

µ, for any given allocation {wL,wH}. By part (i) then of the following result, V (·) is convex.
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Claim 2 For n,m ∈ N∗, let D ⊆ Rn and M ⊆ Rm be, respectively, independent sets of choice

and parameter vectors such that the problem maxx∈D f (x, µ) is well-defined for the function f :

D ×M 7→ R.32 Let also V :M 7→ R be the associated value function V (µ) = maxx∈D f (x, µ) and

consider the notation µk = kµ′ + (1− k)µ′′ for µ′, µ′′ ∈M and k ∈ [0, 1].

Suppose that M is convex. If f (x, ·) is (strictly) convex ∀x ∈ D, then V is (strictly) convex.

Proof. In what follows, given an arbitrary µ ∈ M, x (µ) denotes an optimal point for the op-

timization problem at hand while k ∈ [0, 1] is arbitrary. Let µ′, µ′′ ∈ M . As also µk ∈ M, we

have

V
(
µk
)

= f
(
x
(
µk
)
, µk
)
≤ kf

(
x
(
µk
)
, µ′
)

+ (1− k) f
(
x
(
µk
)
, µ′′
)

≤ kf
(
x
(
µ′
)
, µ′
)

+ (1− k) f
(
x
(
µ′′
)
, µ′′
)

= kV
(
µ′
)

+ (1− k)V
(
µ′′
)

The first inequality is due to f
(
x
(
µk
)
, ·
)

being convex (and it is strict when the function is strictly

so). The second inequality results from the optimality of x (µ′) and x (µ′′).

B.3 Conditions for IIE-RSW Equivalence

To complete our investigation of the two efficiency criteria, we establish first a condition that

strengthens the IIE criterion into being RSW. As the latter admits as solution a separating allo-

cation which fully-insures the high-risk type and under-insures the low-risk one, Claim 1 restricts

our search to the case λ < µ.

Sufficiency. Our analysis of the IIE problem was in terms of the a1h components of the menu of

contracts at hand. Here, it will be more instructive to employ instead the a0h components. Given

(22)-(23), the constraints of the IIE problem can be re-written now as (1)-(2), (18), and

w0L = W − a0L

w1L = W − d+
1

pL

[
(1− pL) a0L −

(1− λ) (pH − pL)

λpL + (1− λ) pH
a0

]
w0H = W − a0H

w1H = W − d+
1

pH

[
(1− pH) a0H +

λ (pH − pL)

λpL + (1− λ) pH
a0

]
The Khun-Tucker first-order conditions are as before but for the fact that (24) is replaced by

λ

(
1− µ+ β∗H −

β∗LpL
pH

)
u′ (w∗1H) −

(1− λ)

(
µ+ β∗L −

β∗HpH
pL

)
u′ (w∗1L) = − β∗p

pH − pL
32The sets D and M being independent is meant to say that, in the given optimization problem, none of the

parameters enters the constraints.
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As, though, only Case (i) of our IIE analysis is relevant here, we ought to have w∗0H = w∗1H , β∗L = 0,

and γ∗h = 0 for either h. Thus, the last equation above reads

(1− λ)

(
µ−

β∗HpH
pL

)
u′ (w∗1L)− λ (1− µ+ β∗H)u′ (w∗0H) =

β∗p

pH − pL

and multiplying both sides by A = pH (1− pL)u′ (w∗1L)− pL (1− pH)u′ (w∗0L) gives, under (29),

β∗Ap

pH − pL
= (1− λ)

[
µ [pH (1− pL)u′ (w∗1L)− pL (1− pH)u′ (w∗0L)]

−µpH (1− pL) [u′ (w∗1L)− u′ (w∗0L)]

]
u′ (w∗1L)

−λ

[
(1− µ) [pH (1− pL)u′ (w∗1L)− pL (1− pH)u′ (w∗0L)]

+µpL (1− pL) [u′ (w∗1L)− u′ (w∗0L)]

]
u′ (w∗0H)

= (1− λ)µ (pH − pL)u′ (w∗1L)u′ (w∗0L)

−λ

[
(1− µ) (pH − pL)u′ (w∗1L)

+pL [1− µpL − (1− µ) pH ] [u′ (w∗1L)− u′ (w∗0L)]

]
u′ (w∗0H)

Recall, though, that w∗1L < w∗0L in this case. By risk-aversion (u′′ (·) < 0), pH > pL and strict

monotonicity (u′ (·) > 0), it follows then that A > (pH − pL)u′ (w∗0L) > 0. Hence, β∗ ≥ 0 iff

λpL [1− µpL − (1− µ) pH ]
[
u′ (w∗1L)− u′ (w∗0L)

]
u′ (w∗0H)

≤
[
µ (1− λ)u′ (w∗0L)− (1− µ)λu′ (w∗0H)

]
(pH − pL)u′ (w∗1L)

If this inequality is strict at the IIE optimum, β∗ > 0. But then, by complementary slackness, the

constraint a∗0 ≥ 0 must bind and, thus, the IIE and RSW problems coincide. In other words,

λpL [1− µpL − (1− µ) pH ]
[
u′ (w∗∗1L)− u′ (w∗∗0L)

]
u′ (w∗∗0H) (38)

<
[
µ (1− λ)u′ (w∗∗0L)− (1− µ)λu′ (w∗∗0H)

]
(pH − pL)u′ (w∗∗1L)

is a sufficient condition for the RSW allocation to be IIE. Observe, however that this can be

re-written as follows

0 <
(
µ (1− λ) (pH − pL)u′ (w∗∗1L) + λpL [1− µpL − (1− µ) pH ]u′ (w∗∗0H)

)
u′ (w∗∗0L)

− [λpL (1− pH) + λ (pH − pL) (1− µ+ µpL)]u′ (w∗∗1L)u′ (w∗∗0H)

whose right-hand side has the following partial derivative w.r.t. µ(
λ (1− pL)u′ (w∗∗1L)u′ (w∗∗0H) +

[
(1− λ)u′ (w∗∗1L) + λpLu

′ (w∗∗0H)
])

(pH − pL)u′ (w∗∗0L) > 0

Clearly, the RSW allocation cannot be IIE unless it is so for µ = 1.33

33For µ = 1, in fact, (38) becomes condition (4) in Rothschild and Stiglitz [?] (see Section II.3, pp.643-45), the

sufficient condition for the Rothchild-Stiglitz allocation to be efficient with respect to the optimal subsidy problem.

Their analysis follows from ours under a change of variables. Specifically, set γ = (1− λ) /λ and a = λ (pH − pL) a0/p.

Then, (27)-(28) give a0H = pHd − a. By (19)-(20), moreover, (1− pL) a0L − pLa1L = (1− pL) a0 − pLa1 =

(1− λ) (pH − pL) a0/p = γa. Notice, however, that (1− pL) a0L − pLa1L = γa is satisfied, for any ã ∈ R++, as

long as a0L = pLã/ (1− pL) + γa and a1L = ã − γa. Even though their result is identical to ours in this case, the

transformation of the IIE problem into their formulation is not one-to-one as ã cannot be pinned down. By contrast,

our approach is robust because, within the triplet {aL,aH ,a}, any contract is uniquely defined given the other two

(recall Step 1 in our IIE analysis).
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Necessity. In what follows, we restrict attention to the collection of menus that deliver zero-profits

across contracts and for which the incentive compatibility of the high-risk type binds:

A =
{

(aL,aH) ∈ R4
++ : λΠL (aL) + (1− λ) ΠH (aH) = 0, UH (wL) = UH (wH)

}
As it turns out, the RSW allocation is IIE(1) only if

max
(aL,aH)∈A

UL (wL) ≤ UL (w∗∗L ) (39)

To establish the contrapositive of this claim, observe first that the relevant set A is non-empty:

it includes the RSW allocation as well as the entire line FO∗M . The latter observation implies that

there is nothing to show if ∃a∗ ∈ FO∗M : a∗ %L a∗∗L since the corresponding pooling allocation

satisfies trivially the constraints of the IIE(1) problem but, as we have seen, fails to be optimal.

Let then a∗ ∈ FO∗M be the solution to the problem

min
a∈FO∗M

UL (w∗L)− UL (w)

and notice that w∗ cannot but be below the 45-degree line in the {w0, w1}-space. Otherwise,

w∗0 ≤ w∗1 implies that IL (a∗) =
(1−pL)u′(w∗0)
pLu′(w∗1)

≥ 1−pL
pL
≥ 1−p

p and we may repeat the construction

in Lemma 3 for κ = 1−p
p . This produces a contract a0 = a∗ +

(
1, 1−p

p

)
ε, for some ε < 0, which

for |ε| sufficiently small, gives a0 �L a∗. Yet, this is absurd given the definition of a∗ because also

a0 ∈ FO∗M (as pooling policy, it makes exactly the same profits as a∗).

It can only be, therefore, w∗0 > w∗1 and we may define εH = (1− pH) (w∗0 − w∗1) > 0 and εL > 0

such that

u (w∗1 + εH) = (1− pH)u

(
w∗0 −

pLεL
1− pL

)
+ pHu (w∗1 + εL)

Consider now the associated contracts a0
h = a∗ +

(
ph

1−ph , 1
)
εh for h ∈ {L,H}. By construction,

w0
0H = w∗0 −

pHεH
1−pH = w∗1 + εH = w0

1H so that a0
H offers full-insurance while a0

H ∼H a0
L. Needless

to say, a0
H is uniquely-defined whereas there might be, in general, two values for εL that solve its

defining equation above and, thus, two pertinent contract points a0
L. Setting, however, δ = εL−εH ,

the equation reads

u
(
w0

1H

)
= (1− pH)u

(
w∗0 −

pLεL
1− pL

)
+ pHu (w∗1 + εL)

= (1− pH)u

(
w∗0 −

pHεH
1− pH

+

(
pH

1− pH
− pL

1− pL

)
εH −

pLδ

1− pL

)
+pHu

(
w0

1H + δ
)

= (1− pH)u

(
w0

0H +

(
pH

1− pH
− pL

1− pL

)
εH −

pLδ

1− pL

)
+ pHu

(
w0

1H + δ
)

and, under strict monotonicity (u′ (·) > 0), it always admits a solution δ < 0.34

34This is because, for δ < 0, we have w0
1H + δ < w0

1H = w0
0H while

(
pH

1−pH
− pL

1−pL

)
εH − pLδ

1−pL
>(

pH
1−pH

− pL
1−pL

)
εH > 0. By contrast, if δ > 0, w0

1H + δ > w0
1H = w0

0H but the quantity adding to w0
0H is not

necessarily negative.
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We make take, hence, εL < εH . As a consequence, pLεL
1−pL < pHεL

1−pH < pHεH
1−pH so that a0

L offers less

insurance than a0
H in the case of an accident in exchange for a smaller premium. Which suffices,

in turn, for either contract to be strictly preferred to the pooling policy by the respective type

(a0
h �h a∗). This follows immediately from Lemma 2(ii.a) since a0

H and a0
L offer, respectively,

full and under-insurance. Indeed, w0
0H = w0

1H by the definition of εH while w0
0L = w∗0 −

pLεL
1−pL >

w∗0 −
pHεH
1−pH = w0

0H = w0
1H = w∗1 + εH > w∗1 + εL = w0

1L.

Observe now that, as constructed, the menu corresponds uniquely to the pooling contract and

is an element of A. Since a∗ = arg mina∈FO∗M UL (w∗∗L ) − UL (w), therefore, it must be a0
L =

arg max(aL,aH)∈A UL (wL)− UL (w∗∗L ).35 By hypothesis then, UL
(
w0
L

)
> UL (w∗∗L ). Yet,

{
a0
L,a

0
H

}
is separating and, as a∗ ∈ FO∗M , breaks even across its contracts. It does meet, in other words, the

constraints of the IIE(1) problem. Clearly, the RSW allocation cannot be the IIE(1) one.

C Results in the Text

C.1 Equilibrium in the Two-stage Game

C.1.1 Profitable deviations against pooling policies

Recall the proof of Lemma 3. We may consider the contract a1
L = a∗ + (1, κ) ε for some κ ∈

(IH (a∗) , IL (a∗)) and ε < 0. This might be any point in the interior of the shaded area in the

left-hand side diagrams of Figures 1-2 or of the lower-right shaded area in the right-hand side

diagram of the latter. Small enough |ε| gives a1
L �L a∗ �H a1

L. Hence, in the presence of a∗, the

new contract attracts only the low-risk customers. And by doing so, it delivers profits

ΠL

(
a1
L

)
= (1− pL) (a0 + ε)− pL (a1 + κε) = ΠL (a∗) + [1− pL (1 + κ)] ε

= ΠM (a∗) + [ΠL (a∗)−ΠM (a∗)] + [1− pL (1 + κ)] ε

But ΠL (a∗) > ΠM (a∗) and, thus, 1 + κ > 1
pL

(
1− 1

ε [ΠL (a∗)−ΠM (a∗)]
)

if |ε| is sufficiently small.

Equivalently, ΠL

(
a1
L

)
> ΠM (a∗) ≥ 0, the last inequality due to a∗ being an equilibrium, hence,

an admissible policy. Clearly, a1
L is a profitable deviation. �

Other possible deviations/ Deviations against the Wilson policy

In constructing the deviation above, we could have taken also κ ∈ (0, IH (a∗)). In this case, the

preceding analysis regarding the welfare of the low-risk agents would apply also for the high-risk

ones so that the new contract, say â, would attract both risk-types away from a∗ (â �h a∗ for

either h). Another possibility would be to choose ε > 0. As long as κ ∈ (−∞, IH (a∗)), however,

this corresponds to a meaningless deviation. The new contract would give Uh (ŵ) − Uh (w∗) < 0

for either h, and no agent would be tempted away from a∗. In fact, to tempt the low-risk type

35This is trivial to verify. The first-order conditions of the maximization problem are obtained by those of the

IIE(1) problem. One keeps only (1) for h = H as equality, (5)-(8), and (24), setting γ∗h = 0 for either h and β∗L = 0.

The claim follows from the fact that ∂w0L
∂a0

< 0.

49



away from a∗ when ε > 0, it must be κ > IL (a∗). In this case, we have again â �h a∗ for either h.

Observe now that, as a pooling policy, the contract â = (a∗0 + ε, a∗1 + kε) expects profits

ΠM (â) = (1− p) (a∗0 + ε)− p (a∗1 + kε) = ΠM (a∗) + [1− p (1 + k)] ε

If a∗ ∈ FO∗M , therefore, the deviation is profitable if an only if
(
κ− 1−p

p

)
ε < 0. Equivalently,

as long as κ ∈
(

1−p
p , IH (a∗)

)
for the first construction of â in the preceding paragraph or κ ∈(

IL (a∗) , 1−p
p

)
for the second. Graphically, these are shown, respectively, by points in the interior

of the shaded area in the right-hand side diagram of Figure 1 and of the upper-left shaded area in

the right-hand side of Figure 2.

To exhaust the potentially-profitable deviation scenarios, notice that ε, κ < 0 implies ΠM (â) <

ΠM (a∗). There is no way for this deviation to be profitable if a∗ ∈ FO∗M .

To complete our analysis, suppose finally that a∗ = aW , the Wilson contract. As now IL (a∗) =
1−p
p , it follows that â, in either of its two viable constructions above, cannot be profitable. Against

the Wilson policy, a profitable deviation scenario consists necessarily of introducing a contract a1
L.

This is shown by the interior of the shaded area in the left-hand side diagram of Figure 2.

C.1.2 Profitable deviations against separating policies

Let {aL,aH} be an equilibrium separating policy and recall again the proof of Lemma 3. If

Πh (ah) = δ > 0 for some h, we would have

Πh

(
a0
h

)
= (1− ph) (a0h + ε)−ph (a1h + κε) = Πh (ah)+ [1− ph (1 + κ)] ε = δ+[1− ph (1 + κ)] ε

and sufficiently small |ε| ensures that |1− ph (1 + κ) ||ε| < δ; i.e., Πh

(
a0
h

)
> 0. In this case, offering

the contracts a0
h and ah′ 6=h constitutes a separating policy that attracts at least the type-h agents

away from {aL,aH} and makes strictly positive profits. Which is, of course, absurd given that the

latter policy is supposed to be an equilibrium one.

Suppose now that {aL,aH} 6= {a∗L,a∗H}. We know that w∗H is optimal for the RSW problem

with µ = 0 and uniquely so (since its objective function UH (·) is strictly concave). Hence, it must

be UH (w∗H) > UH (wH) ≥ UH (wL), the latter inequality due to the fact that {aL,aH} is an

equilibrium policy and, thus, incentive compatible for the high-risk agents.

Define then ∆H = UH (w∗H) − UH (wL). Let also a2
L = aL + (κ, 1) ε for some κ, ε > 0 (see the

left-hand side diagram of Figure 3). For either risk-type h, the corresponding income allocation is

w2
L =

(
w2

0L, w
2
1L

)
= (w0L − κε, w1L + ε) and Lemma 2(i) gives

Uh
(
w2
L

)
− Uh (wL) =

[
phu

′ (w1L + ε̃h)− κ (1− ph)u′ (w0L − κε̃h)
]
ε

=
[
κ−1 − Ih (aL + (κ, 1) ε̃h)

]
phu

′ (w1L + ε̃h)κε for some ε̃h ∈ (0, ε)

Suppose first that w0L > w1L. Then, u′ (w0L) < u′ (w1L) by risk-aversion and we may choose κ ∈(
pL

1−pL ,
pLu

′(w1L)
(1−pL)u′(w0L)

)
. But κ−1 > IL (aL) > IH (aL) and, thus, we may define ∆ = κ−1 − IL (aL).
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By the continuity then of the function Ih (·), choosing ε (and, subsequently, ε̃h) sufficiently small,

ensures that |Ih (aL + (κ, 1) ε̃h)− Ih (aL) | < ∆ for either h. Hence,

Uh
(
w2
L

)
− Uh (wL) = [∆ + IL (aL)− Ih (aL + (κ, 1) ε̃h)] phu

′ (w1L + ε̃h)κε

≥ [∆ + Ih (aL)− Ih (aL + (κ, 1) ε̃h)] phu
′ (w1L + ε̃h)κε > 0

or a2
L �h aL for either h. Regarding the high-risk agents, however, observe also that

UH (w∗H)− UH
(
w2
L

)
= UH (w∗H)− UH (wL)−

[
UH

(
w2
L

)
− UH (wL)

]
= ∆H −

[
κ−1 − IH (aL + (κ, 1) ε̃)

]
pHu

′ (w1L + ε̃H)κε

> ∆H − pHu′ (w1L + ε̃H) ε

Yet, limε→0 pHu
′ (w1L + ε̃H) ε = 0 and a sufficiently small ε ensures that UH (w∗H) > UH

(
w2
L

)
,

completing the argument in this case. For the policy
{
a2
L,a

∗
H

}
is strictly sorting (a2

L �L a∗H �H a2
L)

and attracts either risk-type away from {aL,aH}. More importantly, by doing so, becomes a

profitable deviation because ΠH (a∗H) = 0 while

ΠL

(
a2
L

)
= ΠL (aL) + (1− pL) ε0 − pLε1 = [κ (1− pL)− pL] ε1 > 0

If w0L < w1L, on the other hand, our reasoning applies for some κ ∈
(

pLu
′(w1L)

(1−pL)u′(w0L) ,
pL

1−pL

)
and

a sufficiently small, in absolute terms, ε < 0 (see the right-hand side diagram of Figure 3). To

complete the proof, observe that the case w0L = w1L is not possible. This is because, since

Πh (ah) = 0 for either h, the argument in Step 1 of our RSW analysis would apply, contradicting

then that {aL,aH} is incentive compatible for the high-risk type.

C.1.3 Non-existence of equilibrium

Let a2 ∈ R2
+ be s.t. ΠM

(
a2
)
≥ 0 and a2 %L a∗L. If ΠM

(
a2
)

= ε > 0, the contract a = a2−(1,−1) ε

is such that ΠM (a) = ΠM

(
a2
)
−ε = 0 and a �h a2 by either h (it offers more income in either state

of the world). It is without loss of generality, therefore, to suppose that a2 ∈ FO∗M : a2 �L a∗L.

Since the low-risk individual-rationality constraint does not bind at the RSW allocation, we also

have a2 �L a∗L �L 0, the latter contract corresponding to the endowment point (also on FO∗M ).

By the continuity of the preference relation %L, therefore, there must exist a convex combination

of a2 and 0 such that the low-risk type is indifferent between this new point and her RS contract.36

That is, ∃a1 ∈ FO∗M : a1 ∼L a∗L.

Of course, a1 = πa2 for some π ∈ (0, 1). Hence, a2
1 > a1

1 which means that we ought to have

a1 = a2 −
(

p
1−p , 1

)
ε for some ε > 0. For the corresponding income points Lemma 2(i) gives

UL
(
w2
)
− UL

(
w1
)

=

[
pLu

′ (w1
1 + ε′

)
− p (1− pL)

1− p
u′
(
w1

0 −
pε′

1− p

)]
ε

36Recall that there is a one-to-one relation between contract and income points. The continuity of the relation %L
derives from continuous preferences over lotteries on wealth vectors. Given this, the existence of the wealth vector

in question (and, thus, of the corresponding contract) is a standard result to be found in textbook derivations of the

expected utility theorem. See, for instance, Step 3 of Proposition 6.B.3 in Mas-Collel A., Whinston M.D., and J.R.

Green, Microeconomic Theory, Oxford University Press (1995).
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for some ε′ ∈ (0, ε). Notice also that the allocation w′ = w1 +
(
− p

1−p , 1
)
ε′ corresponds to the

contract a′ = a1 +
(

p
1−p , 1

)
ε′ which is also on FO∗M .

Now, since a2 �L a1, it must be p
1−p <

pLu
′(w′1)

(1−pL)u′(w′0)
and we may consider another contract

a3 = a′+ (κ, 1) ε with κ ∈
(

p
1−p ,

pLu
′(w′1)

(1−pL)u′(w′0)

)
and ε > 0 (Figure 4). As a pooling policy, this gives

ΠM

(
a3
)

= ΠM

(
a′
)

+ [κ (1− p)− p] ε = [κ (1− p)− p] ε > 0

the second equality since a′ ∈ FO∗M . For either h, moreover, applying again Lemma 2(i) successively

gives

Uh
(
w3
)
− Uh

(
w1
)

= Uh
(
w3
)
− Uh

(
w′
)

+ Uh
(
w′
)
− Uh

(
w1
)

=
[
phu

′ (w′1 + ε′
)
− κ (1− ph)u′

(
w′0 − κε′

)]
ε

+

[
phu

′ (w1
1 + ε′′

)
− p (1− ph)

1− p
u′
(
w1

0 −
pε′′

1− p

)]
ε′

=
[
κ−1 − Ih

(
a′ + (κ, 1) ε′

)]
phu

′ (w′1 + ε′
)
κε

+

[
phu

′ (w1
1 + ε′′

)
− p (1− ph)

1− p
u′
(
w1

0 −
pε′′

1− p

)]
ε′

for some (ε′, ε′′) ∈ (0, ε)×(0, ε′). Yet, κ−1 > IL (a′) > IH (a′) and, letting ∆ = κ−1−IL (a′), we may

choose ε (and, subsequently, ε′) sufficiently small to guarantee that |Ih (a′ + (κ, 1) ε′)−Ih (a′) | < ∆

for either h. But then

Uh
(
w3
)
− Uh

(
w1
)

=
[
∆ + IL

(
a′
)
− Ih

(
a′ + (κ, 1) ε′

)]
phu

′ (w′1 + ε′
)
κε

+

[
phu

′ (w1
1 + ε′′

)
− p (1− ph)

1− p
u′
(
w1

0 −
pε′′

1− p

)]
ε′

>

[
phu

′ (w1
1 + ε′′

)
− p (1− ph)

1− p
u′
(
w1

0 −
pε′′

1− p

)]
ε′

>

[
phu

′ (w1
1 + ε′

)
− p (1− ph)

1− p
u′
(
w1

0 −
pε′

1− p

)]
ε′

≥
[
pLu

′ (w1
1 + ε′

)
− p (1− pL)

1− p
u′
(
w1

0 −
pε′

1− p

)]
ε′

=
[
UL
(
w2
)
− UL

(
w1
)] ε′
ε
> 0

where the second inequality follows from the fact that ε′′ < ε′ while u (·) is strictly concave and the

last one exploits that pH > pL.

Let now the contract a3 be offered in the presence of the RS policy. As a3 �L a1 ∼L a∗L �L a∗H
(the first two preferences by construction, the last one by the properties of the RSW allocation),

the low-risk type is pulled away. If a3 �H a∗H , this is also the case for the high-risk type so that a3

becomes a pooling policy, a strictly profitable one. Otherwise, the deviant contract attracts only

the low-risk type, delivering even higher expected profits.37 In either case, it is a strictly profitable

deviation against the RS policy.

37As pL < p < pH , an arbitrary contract gives ΠL (a) ≥ ΠM (a) ≥ ΠH (a), with either inequality strict unless

a = 0.
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C.2 The Standard Three-stage Game

C.2.1 Deviations above FO∗M

We will show that the following is a sequential equilibrium scenario. Both the equilibrium and the

deviant policies get withdrawn at stage 3. Being then indifferent between applying for either policy,

an agent of risk-type h applies for the former with probability

σh ∈ [0, 1) : 1 ≤ 1− σL
1− σH

≤ λ̂∗ where λ̂∗ =
1− p̂∗

p̂∗
(40)

To support this, consider a sequence of trembles
{
qkL, q

k
H

}
k∈N ∈ (0, 1− σh)2 such that

(
qkL, q

k
H

)
→

(0, 0). The intended interpretation is that, along the sequence, an agent of risk-type h applies for

the equilibrium and deviant contracts with probability σkh = σh + qkh and 1− σkh, respectively. This

is depicted in Figure 8 where the firm’s two available end-actions, to honor or withdraw its offer,

are given as NW and W, respectively, while its conditional belief as a deviant at the upper node of

its information set in by
λ(1−σkL)

λ(1−σkL)+(1−λ)(1−σkH)
. Hence, throughout the deviant information set, the

average accident probability is p̂k =
λ(1−σkL)pL+(1−λ)(1−σkH)pH
λ(1−σkL)+(1−λ)(1−σkH)

. Equivalently,

1− p̂k
p̂k

=
λ̂kλ (1− pL) + (1− λ) (1− pH)

λ̂kλpL + (1− λ) pH
where λ̂k =

1− σkL
1− σkH

(41)

But d
dp̂k

(
1−p̂k
p̂k

)
< 0 < ∂

∂λ̂k

(
1−p̂k
p̂k

)
∀p̂k, λ̂k ∈ R++ while 1−p̂k

p̂k
= 1−p

p for λ̂k = 1. These expressions

apply also for pk, the average accident probability on the equilibrium information set, once λ̂k is

replaced by λk = σkL/σ
k
H .

W

1−s

NW

W

ED

NW

W

NW
NW

W

1−s s

k

H

L

k k

L

s
H

k

H

L

Figure 8: The Signalling Subgame

Let now qkL < qkH ∀k and observe that σkL = σL + qkL < σL + qkH ≤ σH + qkH = σkH , the second

inequality due to (40). That is, λk < 1 or pk > p along the sequence and, being on FO∗M , the

equilibrium contract is loss-making as a pooling poling and should get withdrawn at stage 3. If

it is the RS policy, on the other hand, it cannot but break even and we may actually impose its

withdrawal without loss of generality. Regarding the deviant policy, we have λ̂ ≡ limk→∞ λ̂k =
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1−σL
1−σH ≤ λ̂∗. Equivalently, p̂ ≡ limk→∞ p̂k ≥ p̂∗ so that, taking a subsequence if necessary, this

policy will not make profits and should be withdrawn as well.

To complete the analysis, some additional observations are in order. It is immediate from the

above analysis that the scenario in question cannot be supported if the inequality (40) is violated.

For 1−σL
1−σH < 1 and 1−σL

1−σH > λ̂∗ require, respectively, that the equilibrium and the deviant contract

are honored at stage 3. It is equally immediate, however, that the scenario can be supported for

σL = σH = 1. One needs only to define σkh = 1 − rkh, for vanishing trembles
{
rkL, r

k
H

}
k∈N ∈ (0, 1)2

such that rkL > rkH ∀k.

Notice also that it is impossible to sustain a pooling equilibrium under a scenario in which

the deviant policy is not withdrawn at stage 3. For this to happen, the deviant policy must be

profitable. Being above FO∗M , though, the maximum average accident probability that allows it

to be profitable is p̂∗ < p. Hence, the deviant is profitable only if λ̂∗ > 1. Equivalently, only if

λ ≡ limk→∞ λk < 1 or limk→∞ pk > p. Yet, the equilibrium contract is on FO∗M and this inequality

forces it to make losses as a pooling policy and precipitates its withdrawal at stage 3. Anticipating

this at stage 2, all agents cannot but apply for the deviant policy. But then, p̂ = p and the deviation

delivers losses.

Other sequential equilibria

It remains to consider the scenario in which the deviant policy is withdrawn at stage 3, the equi-

librium one is not, and it is strictly dominant for either risk-type to apply for the latter at stage 2

with probability one. As sequential equilibrium, this can be supported by a sequence of trembles{(
rkL, r

k
H

)}
k∈N ∈ (0, 1)2 such that

(
rkL, r

k
H

)
→ (0, 0) and rkL/r

k
H → 0. Along the sequence now, an

agent of risk-type h applies for the equilibrium and deviant contracts with probability 1 − rkh and

rkh, respectively, and the preceding formulae apply with σh = 1 and qkh = −rkh for either h. Hence,

λ̂k = rkL/r
k
H → 0 and limk→∞

1−p̂k
p̂k

= 1−pH
pH
≤ 1−p̂∗

p̂∗ , the equality by (41) while the inequality due

to the fact that ΠH (â) ≤ 0 by (17) and, hence, p̂∗ ≤ pH . In other words, p̂ ≥ p̂∗ and, taking a

subsequence if necessary, the deviant policy is not expected to be profitable and will be withdrawn

at stage 3. Regarding the equilibrium policy, taking a further subsequence if necessary, λ̂k < 1

necessitates that λk > 1 everywhere along the subsequence. Hence, limk→∞ pk ≥ p and the equi-

librium contract is expected to be profitable and be honored at stage 3. If it is the RS policy,

honoring it at stage 3 can be imposed without loss of generality.

C.2.2 Deviations on/below FO∗M

The argument of the preceding paragraph can be applied again to support the second sequential

equilibrium scenario. Notice, moreover, that there exist deviations below the line FO∗M against

which this is the only equilibrium. This follows immediately from two observations.

First, against a deviant contract â that lies below FO∗M , no equilibrium scenario can have the

equilibrium policy withdrawn at stage 3. For, in this case, as long as the deviant suppliers honor

their policy, all agents of either risk-type cannot but apply for it at stage 2. Yet, the deviant

contract lying below FO∗M , it must be p < p̂∗ and, thus, ΠM (â) > 0. If the entire population of
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agents, therefore, applies for â, the strategy of offering it at stage 1 and honoring it at stage 3 is

indeed a profitable deviation.

Second, there are contracts such as â above which must be withdrawn at stage 3 in any sequential

equilibrium scenario. To see this, recall first that, being susceptible to deviations such as â, the

equilibrium policy a∗ cannot be the Wilson one. Hence, we can always choose â such that either

(i) â �h a∗ for either risk-type h or (ii) â �L a∗ �H â.38 Suppose now that â is honored at stage 3

on the equilibrium path. Anticipating this at stage 2, either (i) all agents of either risk-type or (ii)

only the low-risk ones would find it strictly-dominant to apply for â. In each case, the beliefs of its

suppliers is such that p̂ ≤ p < p̂∗. As before, the strategy of offering â at stage 1 and honoring it

at stage 3 would be a profitable deviation.

When the equilibrium policy is the RS one, these arguments remain valid (recall the analysis in

Section C.1.3). The claim becomes now that, under no equilibrium scenario, a∗L may be withdrawn

at stage 3. If it is, honoring their own policy becomes optimal for the deviant suppliers. And

against these strategies, the low-risk agents would find it optimal to apply for the deviant contract

so that again p̂ ≤ p < p̂∗.

C.2.3 All equilibria, but the Wilson policy, are unstable

The equilibria in question are the RS policy and the contracts on FO∗M that Pareto-dominate it,

but for the Wilson one. All of them are subject to potentially-profitable deviations that lie below

FO∗M and do satisfy one of the cases (i)-(ii) in the preceding section. And against these deviations,

any sequential equilibrium requires that the deviant policy is withdrawn at stage 3, the equilibrium

one is not, and all agents apply at stage 2 for the latter with probability one. Moreover, this will

have to be supported by some vanishing sequence of trembles
{
rkL, r

k
H

}
k∈N ∈ (0, 1)2 along which an

agent of risk-type h applies for the equilibrium and deviant policies with probability σkh = 1 − rkh
and 1− σkh, respectively (Section C.2.1).

Consider now a perturbation {εh, r̃h}h=H,L ∈ (0, 1)4. Under the equilibrium strategy profile in

question, an agent of risk-type h applies for the equilibrium and deviant contracts in the perturbed

game with probability σ̃kh = (1− εh)σkh + εhr̃h and 1− σ̃kh, respectively. To support this also on the

perturbed game, the deviant contract has to be withdrawn at stage 3 at least in the limit.

As rkH → 0, however, ∃ (n, k′′n) ∈ N2 \ {(0, 0)} : rkH < [4n (1− εH)]−1 ∀k > k′′n. Letting,

therefore, k∗ = max {k′, k′′} while choosing n ∈ (1,∞) sufficiently large, εL (1− r̃L) = λ̂∗/n, and

εH (1− r̃H) = (4n)−1, we get

1− σ̃kH ≡ (1− εH) rkH + εH (1− r̃H) <
1

4n
+

1

4n
=

1

2n
=
εL (1− r̃L)

2λ̂∗

<
(1− εL) rkL + εL (1− r̃L)

2λ̂∗
=

1− σ̃kL
2λ̂∗

∀k > k∗

38Examples of â were constructed in Section C.1.1. Graphically, case (i) is depicted by points in the interiors of

the shaded area in the right-hand side diagram of Figure 1 or of the upper-left shaded area in the right-hand side of

Figure 2. Case (ii) corresponds to points in the interior of the shaded area in the left-hand side of Figure 1 that lies

below the line FO∗M .
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That is, limk→∞ λ̂k ≥ 2λ̂∗ > λ̂∗ or p̂ < p̂∗. Hence, the deviant policy is believed to be profit-making

and will not be withdrawn at stage 3, a contradiction of the desired sequential equilibrium scenario.

To complete the argument, observe that the sequence of trembles we considered was arbitrary. It

follows, therefore, that the desired scenario cannot be supported as sequential equilibrium. Notice

also that, being free to choose the randomized profile {r̃L, r̃H} arbitrarily, our construction allows

the mixture {εL, εH} to be arbitrarily close to the original game.

C.2.4 The Wilson policy is stable

Against the Wilson policy, a potentially-profitable deviation cannot but lie above the line FO∗M .

And against this, the sequential equilibrium scenario has both contracts withdrawn at stage 3.

Being then indifferent between applying for either policy, an agent of risk-type h applies for the

Wilson contract with probability σh ∈ [0, 1) such that (40) is satisfied. We will show that this

scenario can be supported also under perturbations as long as we restrict (40) to

1 <
1− σL
1− σH

<
1 + λ̂∗

2
(42)

Consider the sequence of trembles
{
qkL, q

k
H

}
k∈N ∈ (0, 1− σL)× (0, 1− σH), with limk→∞

(
qkL, q

k
H

)
=

(0, 0) and qkH > qkL for all k, along which an agent of risk-type h applies for the Wilson and the

deviant contracts with probability σkh = σh+qkh and 1−σkh, respectively. It suffices to establish that

such trembles continue to support the given scenario even when the game undergoes an arbitrary

perturbation. To this end, consider a randomized profile (q̃L, q̃H) ∈ (0, 1)2 and the perturbation that

arises under this profile and a mixture (εL, εH) ∈ (0, ε)2 with ε < min
{
σH−σL
2+σH

, 1− σH − 1+σH−2σL
λ̂∗

}
.

Under this perturbation, and along the given sequence of trembles, an agent of risk-type h applies

for the Wilson and the deviant contract with probability σ̃kh = (1− εh)σkh + εhq̃h and 1 − σ̃kh,

respectively.

To replicate the sequential equilibrium argument, it is enough that the two required conditions,

for the Wilson and the deviant contract to be both withdrawn, are met. The former requirement

is indeed satisfied since

σ̃kH = (1− εH)
(
σH + qkH

)
+ εH q̃H > (1− ε)

(
σH + qkH

)
+ εH q̃H

> (1− ε)
(
σH + qkH

)
> σL + qkL + ε

> (1− εL)
(
σL + qkL

)
+ εq̃L > (1− εL)

(
σL + qkL

)
+ εLq̃L = σ̃kL

Here, the first and last inequalities follow from the fact that εL, εH < ε whereas the second and the

one before the last inequality use the boundedness conditions εH q̃H > 0 and q̃L < 1, respectively.

The remaining inequality uses the first upper bound of ε. Specifically, as qkL < qkH < 1, we have

ε < σH−σL
2+σH

< σH−σL
1+σH+qkH

<
σH+qkH−(σL+qkL)

1+σH+qkH
.
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It remains to verify that the other required condition, for the deviant contract to be withdrawn,

is also met. To this end, observe that, given our assumptions, we have

εL

(
σkL − q̃L

)
= εL

(
σL + qkL − q̃L

)
< εL

(
σL + qkL

)
< ε

(
σL + qkL

)
< ε

(
σH + qkH

)
= εσkH

< ε
(

1 + σkH

)
< σkH − σkL (43)

where the third inequality uses that σH > σL - by the left-hand side of (42) - and qkH > qkL while the

last inequality follows from ε <
σkH−σ

k
L

1+σkH
(as established at the very end of the preceding paragraph).

In addition,

1− σkH + εH

(
σkH − q̃H

)
> 1− σkH − εH q̃H > 1− σkH − εq̃H > 1− σkH − ε (44)

the first two inequalities following from εHsH > 0 and εH < ε, respectively, while the last one using

the fact that q̃H < 1. Regarding the last quantity above, moreover, we have

1−σkH − ε = 1−
(
σH + qkH

)
− ε > 1−σH −

1− σL
λ̂∗

− ε > 1−σH −
1 + σH − 2σL

λ̂∗
− ε > 0 (45)

Here, the first inequality obtains because, choosing a subsequence of
{
qkH
}
k∈N if necessary, we can

guarantee that qkH < 1−σL
λ̂∗

for all k. The second inequality, on the other hand, follows from σH > σL

while the last one uses the second upper bound of ε. Putting now the results (43)-(45) together,

we get
1− σ̃kL
1− σ̃kH

=
1− σkL + εL

(
σkL − q̃L

)
1− σkH + εH

(
σkH − q̃H

) < 1 + σkH − 2σkL
1− σkH − ε

For the deviant contract to be withdrawn, it suffices that the last ratio above doesn’t exceed λ̂?.

Which is indeed the case, at least along a subsequence of
{
qkL, q

k
H

}
k∈N, since

lim
k→∞

1 + σkH − 2σkL
1− σkH − ε

=
1 + σH − 2σL

1− σH − ε
< λ̂∗

by the second upper bound of ε. Observe finally that, as λ̂∗ > 1, (42) is indeed a restriction of

(40). Moreover, either upper bound of ε is well-defined: they are both positive since σH > σL while

1 + σH − 2σL < λ̂∗ (1− σH) is in fact the right-hand side of (42). �

The unstable parts

Let now 1−σL
1−σH ∈

(
1+λ̂∗

2 , λ̂∗
]
. In this case, 1−σL

1−σH = 1+λ̂∗+δ
2 for some δ ∈

(
0, λ̂

∗−1
2

]
, and we may

consider the trembles q̃L = σH , q̃H = 1
q [(1 + q)σH − σL] for some q ∈

(
σH−σL
1−σH ,+∞

)
, and the

mixtures εL = 1/n and εH = q/n2 for some n ∈ R++.39 Then,

εL (σL − q̃L)− λ̂∗εH (σH − q̃H) =

(
λ̂∗

n2
− 1

n

)
(σH − σL)

> σH − σL =
(
λ̂∗ + δ

)
(1− σH)− (1− σL)

39Here, the lower bound on q is introduced to ensure that q̃H < 1.
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where the second equality is just another way of writing our initial condition while the inequality

is due to the fact that λ̂∗ > 1 and, thus, λ̂∗ > n+1
n as long as n is taken to be sufficiently large.

Under this perturbation, therefore,

lim
k→∞

1− σ̃kL
1− σ̃kH

=
1− σL + εL (σL − q̃L)

1− σH + εH (σH − q̃H)
> λ̂∗ +

δ (1− σH)

1− σH + εH (σH − q̃H)
> λ̂∗

which is the desired contradiction: at least along a subsequence, the deviant policy is believed to

be strictly profitable and will not be withdrawn at stage 3.

With respect to the second equilibrium scenario given in Section C.2.1, recall that it had the

deviant policy withdrawn at stage 3, the equilibrium policy honored, and all agents apply at stage

2 for the latter with probability one. We have already established, though, in Section C.2.3 that

this is not stable. That argument applies also for the case in which the first scenario above obtains

with either risk-type applying for the Wilson contract with probability one.

C.3 Subsidization across Contracts and Endogenous Commitment

C.3.1 The IIE (1) is the only possible equilibrium allocation

There are three cases to consider.

1. {w∗L,w∗H} is IIE(µ) optimal for some µ ∈ [λ, 1)

Since µ < 1, we can find another IIE allocation, say
{
w0
L,w

0
H

}
, which solves the problem for

some µ0 ∈ (µ, 1). Moving, of course, to the new allocation is strictly beneficial for the low-risk

type, UL
(
w0
L

)
> UL (w∗L), but detrimental for the high-risk, UH

(
w0
H

)
< UH (w∗H) (Lemma 4).

As µ0 > µ ≥ λ, moreover, the low-risk incentive constraint is slack, UL
(
w0
L

)
> UL

(
w0
H

)
, while

the high-risk one binds, UH
(
w0
L

)
= UH

(
w0
H

)
(recall Case 1 of the analysis that led to Claim 1).

In addition, the high-risk agents ought to be fully-insured in either allocation: w0
0H = w0

1H and

w∗0H = w∗1H or a∗0H = d − a∗1H and a0
0H = d − a0

1H for the corresponding contracts. Actually, the

last two equations are equivalent to a0
H = a∗H − (−1, 1) εH for some εH ∈ R∗. In fact, it must be

εH > 0 for otherwise a0
H = a∗H + (−1, 1) |εH | and, by Lemma 2(i),

UH
(
w0
H

)
− UH (w∗H) =

[
pHu

′ (w0
1H + ε̃H

)
+ (1− pH)u′

(
w0

0H + ε̃H
)]
|εH |

= u′
(
w0

0H + ε̃H
)
|εH |

for some ε̃H ∈ (0, |εH |); an absurd conclusion, however, since a∗H �H a0
H .

Putting these observations together, in this case, there exists a menu
{
a0
L,a

0
H

}
, defined by

a0
L = a∗L − (ε0L, ε1L) and a0

H = a∗H + (1,−1) εH with ε0L, ε1L ∈ R and εH > 0, which is IIE(µ0)

optimal for some µ0 ∈ (µ, 1] and satisfies

UL
(
w0
H

)
< UL (w∗H) ≤ UL (w∗L) < UL

(
w0
L

)
UH

(
w0
L

)
= UH

(
w0
H

)
< UH (w∗H)

λ [(1− pL) ε0L − pLε1L] = (1− λ) εH
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Here, at the new wealth allocation we have w0
L = (w∗0L + ε0L, w

∗
1L − ε1L) and it follows that the

only restriction UL
(
w0
L

)
> UL (w∗L) places on ε0L and ε1L is that it cannot be (ε0L,−ε1L) ≤ 0.

Regarding the relations above that we haven’t already explained, the last equality follows from

the fact that both allocations are IIE and, thus, should deliver zero-profits overall. As a result,

moving from the original to new allocation, the gain by making smaller losses from the high-risk

type should be exactly offset by the fall in the profit collected from the low-risk one. The inequality

UL (w∗H) ≤ UL (w∗L), on the other hand, is due to the fact that the original allocation is IIE and,

thus, incentive compatible (for either risk-type). In fact, this inequality ought to be strict unless

µ = λ. Finally, the inequality UL
(
w0
H

)
< UL (w∗H) is due to the fact that, as established above,

a0
H = a∗H − (−1, 1) εH with εH > 0 and, for some ε̃L ∈ (0, εH), Lemma 2(i) dictates that

UL (w∗H)− UL
(
w0
H

)
=

[
pLu

′ (w0
1H − ε̃L

)
+ (1− pL)u′

(
w0

0H − ε̃L
)]
εH

= u′
(
w0

0H − ε̃L
)
εH > 0

Let now ∆ = UL
(
w0
L

)
− UL (w∗L) and consider the contract aL = a0

L + (1, κ) ε for some κ ∈(
−∞, IH

(
a0
L

))
and ε > 0. Let also ∆h = Ih

(
a0
L

)
− κ for h = L,H. Using Lemma 2(i) once again

gives

Uh (wL)− Uh
(
w0
L

)
=

[
phu

′ (w0
1L + ε̂h

)
− κ−1 (1− ph)u′

(
w0

0L − κ−1ε̂h
)]
kε

=

[
κ−

(1− ph)u′
(
w0

0L − κ−1ε̂h
)

phu′
(
w0

1L + ε̂h
) ]

phu
′ (w0

1L + ε̂h
)
ε

=
[
κ− Ih

(
a0
L +

(
κ−1, 1

)
ε̂h
)]
phu

′ (w0
1L + ε̂h

)
ε

= =
[
Ih
(
a0
L

)
−∆h − Ih

(
a0
L −

(
κ−1, 1

)
ε̂h
)]
phu

′ (w0
1L + ε̂h

)
ε

for some ε̂h ∈ (0, κε). Yet, the function Ih (·) is continuous and limε̂h→0 Ih
(
a0
L +

(
κ−1, 1

)
ε̂h
)

=

Ih
(
a0
L

)
. For small enough ε (and, subsequently, ε̂h), therefore, |Ih

(
a0
L +

(
κ−1, 1

)
ε̂h
)
− Ih

(
a0
L

)
| <

min {∆L,∆H} and, consequently, Uh (wL) < Uh
(
w0
L

)
for either h. With respect to the low-risk

type, however, observe that the last quantity above vanishes as ε→ 0. Consequently, for sufficiently

small ε, we can guarantee that UL (wL)− UL
(
w0
L

)
∈ (−∆, 0) or UL (wL) > UL (w∗L).

Hence, UL (wL) > UL (w∗L) > UL (w∗H) > UL
(
w0
H

)
and UH (wL) < UH

(
w0
L

)
= UH

(
w0
H

)
<

UH (w∗H). The menu
{
aL,a

0
H

}
is separating and such that aL �L a∗L but a∗H �H a0

H . Its intro-

duction would attract the low-risk type away from {a∗L,a∗H}, leaving the latter policy with only

high-risk customers and, thus, rendering it loss-making and forcing its withdrawal at stage 3. An-

ticipating this at stage 2, both risk-types apply for the deviant menu. Being separating, however,

the latter menu delivers strictly positive expected profits when accepted by both types. Compared

to
{
a0
L,a

0
H

}
, which is IIE optimal and, thus, makes zero total profits, the deviant makes exactly

the same expected loss from the high-risk agents but more profit from the low-risk. More precisely,

ΠL (aL)−ΠL

(
a0
L

)
=

(
1− pL
pL

− κ
)
pLε >

[
1− pL
pL

− IL
(
a0
L

)]
pLε

= (1− pL)

[
1−

u′
(
w0

0L

)
u′
(
w0

1L

)] ε > 0
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the last inequality due to the fact that, the allocation
{
w0
L,w

0
H

}
being IIE(µ0) with µ0 > λ, it

under-insures the low-risk agents (see Case 1 of the analysis that leads to Claim 1 in the Appendix:

w0
0L > w0

1L or u′
(
w0

0L

)
< u′

(
w0

1L

)
by risk aversion).

In terms of representing the preceding construction graphically, it is depicted by the interior

points in the shaded area of the left-hand side diagram in Figure 6 whose w0-coordinate does not

exceed w0
0L.40 It should be pointed out also that we could have taken the contract aL as above but

with κ ∈
(

1−pL
pL

,∞
)

and ε < 0. Letting now ∆h = κ − Ih
(
a0
L

)
(recall that IL

(
a0
L

)
< 1−pL

pL
), the

preceding argument applies again. Graphically, this construction refers to that part of the interior

of the shaded area in the diagram for which the w0-coordinate exceeds w0
0L.

2. {w∗L,w∗H} is IIE(µ) optimal for some µ ∈ [0, λ).

Reasoning in the same way as before, there ought to exist now a menu
{
a0
L,a

0
H

}
, defined by

a0
L = a∗L + (−1, 1) εL and a0

H = a∗H − (ε0H , ε1H) with εL > 0 and ε0H , ε1H ∈ R but (ε0H ,−ε1H) ≥ 0

not possible, whose allocation w0
L = w∗L + (1,−1) εL and w0

H = w∗H + (ε0H ,−ε1H) is IIE(µ0) for

some µ0 ∈ (µ, λ) and satisfies

UL (w∗L) < UL
(
w0
L

)
= UL

(
w0
H

)
UH

(
w0
L

)
< UH

(
w0
H

)
< UH (w∗H)

λεL = (1− λ) [(1− pH) ε0H − pHε1H ]

Here, UL
(
w0
H

)
= UL

(
w0
L

)
and UH

(
w0
H

)
> UH

(
w0
L

)
are because the allocation

{
w0
L,w

0
H

}
is

IIE(µ0) optimal with µ0 < λ (see Case 2 of the analysis that leads to Claim 1 in the Appendix).

On the other hand, UL
(
w0
L

)
> UL (w∗L) and UH

(
w0
H

)
< UH (w∗H) are by construction.

Let now ∆ = UH
(
w0
H

)
− UH

(
w0
L

)
and consider the contract aH = a0

H − (1, κ) ε for some

κ ∈
(
IL
(
a0
H

)
,∞
)

and ε > 0. Let also ∆h = κ− Ih
(
a0
H

)
for h = L,H. Lemma 2(i) gives

Uh
(
w0
H

)
− Uh (wH) =

[
phu

′ (w0
1H − ε̂h

)
− κ−1 (1− ph)u′

(
w0

0H + κ−1ε̂h
)]
κε

=
[
κ− Ih

(
a0
H −

(
κ−1, 1

)
ε̂h
)]
phu

′ (w0
1H − ε̂h

)
ε

=
[
Ih
(
a0
H

)
+ ∆h − Ih

(
a0
H −

(
κ−1, 1

)
ε̂h
)]
phu

′ (w0
1H − ε̂h

)
ε > 0

for some ε̂h ∈ (0, κε) and sufficiently small ε to ensure that |Ih
(
a0
H −

(
κ−1, 1

)
ε̂h
)
− Ih

(
a0
L

)
| <

min {∆L,∆H} for either h. Regarding the high-risk type, though, observe that, for sufficiently small

ε, we can also guarantee that UH (wH)−UH
(
w0
H

)
∈ (−∆, 0); consequently, UH (wH) > UH

(
w0
L

)
.

Now, UL
(
w0
L

)
= UL

(
w0
H

)
> UL (wH) , UL (w∗L) and UH

(
w0
L

)
< UH (wH) < UH

(
w0
H

)
<

UH (w∗H). The menu
{
a0
L,aH

}
is separating and such that a0

L �L a∗L but a∗H �H aH . Compared,

moreover, to
{
a0
L,a

0
H

}
, it makes exactly the same expected profit from the low-risk agents but

smaller losses from the high-risk. Indeed,

ΠH (aH)−ΠH

(
a0
H

)
=

(
κ− 1− pH

pH

)
pHε > (1− pH)

[
u′
(
w0

0H

)
u′
(
w0

1H

) − 1

]
ε > 0

40This set can be partitioned further into two subsets, depending on whether the w1-coordinate exceeds w0
1L or

not. These subsets correspond, respectively, to the cases κ ∈
(
0, IH

(
a0
L

))
and κ < 0.
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where the first inequality follows from the choice of κ whereas the last one obtains because the

allocation
{
w0
L,w

0
H

}
over-insures the high-risk agents.

Graphically, this construction is depicted by the interior points in the shaded area of the right-

hand side diagram in Figure 6 whose w0-coordinate exceeds w0
0H . Of course, we could have taken

instead aL as above but with κ ∈
(
−∞, 1−pH

pH

)
and ε < 0. Letting ∆h = Ih

(
a0
H

)
− κ (in this

case, IH
(
a0
H

)
> 1−pH

pH
), the preceding argument remains valid. This is depicted by the part of the

interior of the shaded area in the diagram for which the w0-coordinate does not exceed w0
0H .41

3. {w∗L,w∗H} is not IIE(µ) optimal for any µ ∈ [0, 1]

In what follows,
{
w1
L,w

1
H

}
denotes the IIE(1) allocation and

{
a1
L,a

1
H

}
its associated menu. Being

an equilibrium allocation, {w∗L,w∗H} satisfies the constraints of the IIE(1) problem and ought to

be strictly dominated by its optimum for the low-risk type: UL
(
w1
L

)
> UL (w∗L).

To construct a profitable deviation, we will proceed in the same way as in Case 1 albeit starting

from the IIE(1) optimal allocation. For small enough εH > 0, there exists a menu
{
a0
L,a

0
H

}
,

defined by a0
H = a1

H− (1,−1) εH and a0
L = a1

L+(ε0L, ε1L) with ε0L, ε1L ∈ R but (ε0L,−ε1L) ≤ 0 not

possible, whose allocation
{
w0
L,w

0
H

}
, with w0

L =
(
w1

0L − ε0L, w1
1L + ε1L

)
and w0

H = w1
H +(1, 1) εH ,

is IIE(µ0) optimal for some µ0 ∈ (λ, 1) and satisfies

UL
(
w0
H

)
< UL

(
w0
L

)
< UL

(
w1
L

)
UL (w∗H) ≤ UL (w∗L) < UL

(
w0
L

)
UH

(
w0
L

)
= UH

(
w0
H

)
λ [(1− pL) ε0L − pLε1L] = (1− λ) εH

Regarding these relations, µ0 > λ is ensured by the continuity of the IIE problem in the parameter

µ0: we can choose µ0 to be arbitrarily close to 1 so as to guarantee that 1 − µ0 < 1 − λ. Given

µ0 > λ then, at the solution, the incentive constraint of the low-risk type does not bind but that

of the high-risk does. Hence, UL
(
w0
H

)
< UL

(
w0
L

)
and UH

(
w0
H

)
= UH

(
w0
L

)
. The remaining

relations are by construction with only UL (w∗L) < UL
(
w0
L

)
possibly not immediate. To verify it,

let ∆1 = UL
(
w1
L

)
− UL (w∗L) and observe that, as a mapping V : [0, 1] 7→ R, the value function

of the IIE(µ) problem is continuous at any µ ∈ (0, 1).42 For µ0 sufficiently close to 1, therefore, it

must be max
{(

1− µ0
)
|UL

(
w0
L

)
− UH

(
w0
H

)
|, |V (1)− V

(
µ0
)
|
}
< ∆1/2.43 That is,

UL
(
w0
L

)
> µ0UL

(
w0
L

)
+
(
1− µ0

)
UH

(
w0
H

)
− ∆1

2

= V
(
µ0
)
− ∆1

2
> V (1)−∆1 = UL

(
w1
L

)
−∆1 = UL (w∗L)

41As before, we may partition this set into the subset for which the w1-coordinate exceeds w0
1H and the one for

which it does not. These correspond, respectively, to the cases κ ∈
(

0, 1−pH
pH

)
and κ < 0.

42Recall Claim 2 of Appendix A. Since V (µ) is convex on [0, 1], it is continuous on (0, 1) by a well-known result;

see, for example, Theorem 2.14 of Chapter 6 in De la Fuente A.: Mathematical Methods and Models for Economists,

Cambridge University Press (2000).
43Since µ0 > λ, UL

(
w0
L

)
6= UH

(
w0
H

)
. Otherwise, we would have UL

(
w0
L

)
= UH

(
w0
H

)
= UH

(
w0
L

)
but UL

(
w0
L

)
=

UH
(
w0
L

)
is absurd.

61



Define now ∆ = UL
(
w0
L

)
− max

{
UL
(
w0
H

)
, UL (w∗L)

}
and proceed to construct the contract

aL exactly as in Case 1. In the present case, UL (wL)−UL
(
w0
L

)
∈ (−∆, 0) implies that UL (wL) >

max
{
UL
(
w0
H

)
, UL (w∗L)

}
. Clearly, the menu

{
aL,a

0
H

}
attracts the low-risk type away from a∗L.

Moreover, it is separating (aL �L a0
H ∼H a0

L �H aL) and, compared to
{
a0
L,a

0
H

}
(which is IIE

optimal and, thus, makes zero total profits), makes exactly the same expected loss from the high-risk

agents but more profit from the low-risk.

The equilibrium allocation cannot be pooling

In what follows, we give the formal constructions of profitable deviations against a pooling policy

a∗ ∈ FO∗M , whose corresponding wealth allocation will be denoted by w∗. Recall that the intersec-

tion of FO∗M with the 45-degree line corresponds to the allocation that is IIE for µ = λ, a situation

covered by Case 1 of the preceding result. There remain two cases to consider.

1. w∗ lies below the 45-degree line in the {w0, w1}-space

Recall our analysis regarding the necessary condition for the RSW allocation to be IIE(1) in Ap-

pendix B. Starting from the given pooling allocation, we may construct the menu
{
a0
L,a

0
H

}
in

exactly the same way. Then, since w0
0L > w0

1L, we get (pH − pL)
[
u
(
w0

1L

)
− u

(
w0

0L

)]
< 0 or

UL
(
w0
L

)
> UH

(
w0
L

)
= UL

(
w0
H

)
, the equality because a0

L ∼H a0
H with the latter contract offering

full-insurance (Uh
(
w0
H

)
= u

(
w0

0H

)
for either h).

Given that a0
L �L a0

H while a0
h �h a∗ for either h, we can proceed as in Case 1 of the preceding

result, setting now ∆ = UL
(
w0
L

)
−max

{
UL (w∗) , UL

(
w0
H

)}
. This gives a contract aL such that

UH (wL) < UH
(
w0
L

)
= UH

(
w0
H

)
and UL (wL) > max

{
UL (w∗) , UL

(
w0
H

)}
. The menu

{
aL,a

0
H

}
is

separating and attracts either risk-type away from the original pooling policy. It delivers, moreover,

strictly positive expected profits because, compared to
{
a0
L,a

0
H

}
, makes exactly the same expected

loss from the high-risk agents but more profit from the low-risk. Graphically, aL is depicted by an

interior point in the shaded area of the left-hand side diagram in Figure 1 and of either diagram in

Figure 9. These differ in that the low-risk indifference curve at w∗ might be flatter/steeper than

or of the same slope as the line FO∗L.44

2. w∗ lies above the 45-degree line

Now, w∗0 < w∗1 and we may consider the contracts a0
h = a∗+

(
ph

1−ph , 1
)
εh with εL = (1− pL)

(
w0

0 − w0
1

)
<

0 and εH < 0 such that

u (w∗1 + εL) = (1− pL)u

(
w∗0 −

pHεH
1− pH

)
+ pLu (w∗1 + εH)

By construction, a0
L offers full-insurance, is such that a0

L ∼L a0
H , and uniquely-defined whereas

44Since pL < pH while λ ∈ (0, 1), we have p = λpL + (1− λ) pH ∈ (pL, pH). In this case, moreover, w∗0 > w∗1 and,

hence, u′ (w∗0) < u′ (w∗1) due to risk aversion. As a consequence, the indifference curve of risk type h is flatter at w∗

than FO∗h: dw1
dw0
|w∗ =

∂Uh(w∗)/∂w1

∂Uh(w∗)/∂w0
= − (1−ph)u′(w∗0)

phu
′(w∗1)

> − 1−ph
ph

. Since 1−pH
pH

< 1−p
p

, the high-risk indifference curve

at w∗ is flatter also than FO∗M .
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Figure 9: Deviations against pooling policies

there might be two values for a0
H . Yet, for δ = εL − εH , the equation reads

u
(
w0

1L

)
= (1− pL)u

(
w∗0 −

pHεH
1− pH

)
+ pLu (w∗1 + εH)

= (1− pL)u

(
w0

0L −
(

pH
1− pH

− pL
1− pL

)
εL +

pHδ

1− pH

)
+ pLu

(
w0

1L − δ
)

and admits for sure a solution δ < 0. And this, in turn, ensures that a0
H offers over-insurance. For

if w∗1 + εH = w0
1H ≤ w0

0H = w∗0 −
pHεH
1−pH , the right-hand side of the defining equation above has a

lower bound at u (w∗1 + εH) and this is absurd since, under non-satiation, εL < εH requires that

u (w∗1 + εH) > u (w∗1 + εL).

Now, since a0
L and a0

H offer, respectively, full and over-insurance, Lemma 2(ii.b) establishes that

a0
h �h a∗ for either h. In addition, as pL

1−pL < pH
1−pH , Lemma 2(ii.a) requires that a∗ �H a0

L. Let

then ∆ = UH
(
w0
H

)
−UH (w∗) and construct the contract aH exactly as in Case 2 of the preceding

result. In this case, we get UH (wH) > UH (w∗).

Therefore, a0
L ∼L a0

H �L aH while a0
L �L a∗. Moreover, aH �H a∗ �H a0

L. The menu
{
a0
L,aH

}
attracts either risk type away from the original pooling policy. It is also separating and delivers

strictly positive profits as such; compared to
{
a0
L,a

0
H

}
, it makes exactly the same expected profit

from the low-risk agents but smaller losses from the high-risk. Graphically, aH corresponds to an

interior point in the shaded area of the right-hand side diagram in Figure 1 and of either diagram in

Figure 10, the difference between the three depictions being on the slope of the high-risk indifference

curve at w∗ relative to that of the line FO∗H .45

3. w∗ is on the 45-degree line

In this case, w∗0 = w∗1 implies u′ (w∗0) = u′ (w∗1) and, thus, Ih (a∗) = 1−ph
ph

for either risk-type h. As

pL < p = λpL + (1− λ) pH < pH , however, we may consider the contract a0 = a∗ − (κ, 1) ε with

ε > 0 and κ−1 ∈
(

1−p
p , 1−pL

pL

)
. Observe now that IH (a∗) = 1−pH

pH
< 1−p

p < κ−1 < 1−pL
pL

= IL (a∗)

45In this case, u′ (w∗0) > u′ (w∗1) so that the indifference curve of risk-type h is steeper than FO∗h. For h = L, in

particular, it is steeper also than FO∗M .

63



Figure 10: Deviations against pooling policies

and let ∆h = |Ih (a∗)− κ−1| for either h. For sufficiently small ε (and, subsequently, maxh=L,H ε̂h

below) so that |Ih (a∗ − (k, 1) ε̂)− Ih (a∗) | < ∆h, Lemma 2(i) gives

Uh
(
w0
)
− Uh (w∗) =

[
κ (1− ph)u′ (w∗0 + κε̂h)− phu′ (w∗1 − ε̂h)

]
ε

=
[
Ih (a∗ − (κ, 1) ε̂h)− κ−1

]
phu

′ (w∗1 − ε̂h)κε i.e.

UL
(
w0
)
− UL (w∗) = [IL (a∗ − (κ, 1) ε̂L)− (IL (a∗)−∆L)] pLu

′ (w∗1 − ε̂L)κε

> 0

> [IH (a∗ − (κ, 1) ε̂H)− (IH (a∗) + ∆H)] pHu
′ (w∗1 − ε̂H)κε

= UH
(
w0
)
− UH (w∗)

where ε̂L, ε̂H ∈ (0, ε). That is, UL
(
w0
)
> UL (w∗) = UH (w∗) > UH

(
w0
)
, the equality because a∗

offer full-insurance. Equivalently, a0 �L a∗ �H a0 so that the new contract attracts the low-risk

type away from the original pooling policy, leaving the latter with only high-risk customers and,

thus, rendering it loss-making and forcing its withdrawal at stage 3. Anticipating this at stage 2,

both risk-types apply for the deviant contract, another pooling policy which, nevertheless, delivers

strictly positive expected profits. Specifically, we have

ΠM

(
a0
)

= ΠM (a∗) + ΠM

(
a0
)
−ΠM (a∗)

≥ ΠM

(
a0
)
−ΠM (a∗)

= − (λ [κ (1− pL)− pL] + (1− λ) [κ (1− pH)− pH ]) ε

= [p− κ (1− p)] ε > 0

where the first inequality follows from the fact that the original pooling policy is an equilibrium

one, hence, admissible.
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