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Abstract

This paper considers local and global multiple-prior representations of ambiguity for

preferences that are (i) monotonic, (ii) Bernoullian, i.e. admit an affine utility represen-

tation when restricted to constant acts, and (iii) locally Lipschitz continuous. We do not

require either Certainty Independence or Uncertainty Aversion. We show that the set of pri-

ors identified by Ghirardato, Maccheroni, and Marinacci (2004)’s ‘unambiguous preference’

relation can be characterized as a union of Clarke differentials. We then introduce a behav-

ioral notion of ‘locally better deviation’ at an act, and show that it characterizes the Clarke

differential of the preference representation at that act. These results suggest that the priors

identified by these preference statements are directly related to (local) optimizing behavior.
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1 Introduction

Several popular models of choice under ambiguity represent preferences over uncertain prospects

(acts) via some function of their expected utilities, computed with respect to a distinguished

set of probabilities. For instance, the maxmin-expected utility (MEU) model of Gilboa and

Schmeidler (1989) ranks acts according to V (h) = minQ∈D EQ[u ◦ h], where D is a set of pri-

ors over the state space S. For multiplier preferences (Hansen and Sargent, 2001), V (h) =

minQ∈∆(S)EQ[u ◦ h] + θ · R(Q‖P), where R(Q‖P) is the relative entropy of Q with respect to an

approximating model P . In the smooth ambiguity model of Klibanoff, Marinacci, and Mukerji

(2005), V (h) =
∫

∆(S)
φ
�

EQ[u ◦h]
�

dµ(Q), where µ is a ‘second-order belief’ over all priors.

The same preference may admit multiple representations that employ different sets of pri-

ors (see Siniscalchi, 2006, for examples). Despite this fact, Ghirardato et al. (2004, GMM hence-

forth) show that a preference can be associated with a ‘canonical’ set of priors that is indepen-

dent of its functional representation. Their identification strategy is as follows. Let ¼ be the

individual’s preference; say that act f is ‘unambiguously preferred’ to act g , written f ¼∗ g , if

f ¼ g and this ranking is preserved across mixtures:

λ f +(1−λ)h ¼λg +(1−λ)h for all λ∈ (0, 1] and all acts h. (1)

GMM show that, under suitable assumptions, there exist a utility function u and a unique set C

of priors such that, for all acts f and g , f ¼∗ g if and only if EP[u ◦ f ]≥ EP[u ◦ g ] for all P ∈C (a

representation introduced by Bewley, 2002). Furthermore, under the assumptions in GMM, the

representation V of the individual’s preferences¼ can be written as V (h) = I (u ◦h) for a suitable

real functional I ; GMM then show that C is the Clarke (1983) differential of I , evaluated at the

constant function 0. This characterization makes it practical to compute the set C for many

decision models, including MEU, α-MEU, and Choquet-expected utility (Schmeidler, 1989).

Notably, these results are not restricted to preferences that satisfy Uncertainty Aversion in the

sense of Schmeidler (1989).1

However, the analysis in GMM has two limitations. First, GMM’s differential characteriza-

tion of the set C depends crucially on the assumption that preferences satisify the ‘Certainty

1Uncertainty Aversion has been questioned both theoretically and experimentally: cf. Epstein (1999), Ghi-

rardato and Marinacci (2002), Baillon, L’Haridon, and Placido (forthcoming).
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Independence’ axiom of Gilboa and Schmeidler (1989).2 This axiom restricts ambiguity atti-

tudes, and rules out several recent models of choice under ambiguity, including multiplier and

smooth ambiguity preferences.3 Second, the results in GMM do not fully reveal the usefulness

and economic significance of the set of priors C , beyond the fact that it characterizes the un-

ambiguous preference ¼∗.

The objective of this paper is to address both limitations. To begin, we do not assume Cer-

tainty Independence; as a result, our analysis does not impose any restriction on ambiguity at-

titudes, and accommodates virtually all classical and recent decision models under ambiguity,

including those discussed above or referenced in footnote 3. Our first main result generalizes

GMM’s differential characterization of the set C : writing the representation of preferences as

V (h) = I (u ◦h), we show that, up to convex closure, C is the union of all (suitably normalized)

Clarke differentials of the functional I , computed at all interior points rather than just at zero.

The Clarke differential of non-smooth functions plays a similar role in optimization prob-

lems as the gradient of smooth functions. In particular, a function attains a local extremum

at a point only if its Clarke differential at that point contains the zero vector—an analog of the

familiar first-order conditions. Our result then implies that the probabilities in the set C are (up

to convex closure) those that identify candidate solutions to optimization problems. Example 3

below illustrates this in a canonical portfolio choice application.

Our second main result has no counterpart in GMM, and sheds further light on the role of

priors in C in the individual’s choices. To illustrate, think of acts f , g as representing the state-

contingent consequences of two actions the individual may choose, and act h as the status quo.

Then Eq. (1) states that choosing the f action with some probability λ, thereby ‘moving’ from

h toward f in utility terms, is always at least as good as moving toward g , no matter what the

initial status-quo point h is and how far one moves away from h. That is, f is a uniformly bet-

2On the other hand, the existence of a set C of priors that characterizes the unambiguous preference¼∗ follows

under minimal regularity assumptions: see Sec. 3.

3 Other models that do not assume Certainty Independence include variational preferences (Maccheroni, Mari-

nacci, and Rustichini, 2006), confidence-function preferences (Chateauneuf and Faro, 2009), uncertainty-averse

preferences (Cerreia-Vioglio, Maccheroni, Marinacci, and Montrucchio, 2008), vector expected utility (Siniscalchi,

2009), and mean-dispersion preferences (Grant and Polak, 2011a,b).
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ter deviation than g . However, one is typically interested in optimality conditions at a specific

status-quo point h. With this in mind, we ‘localize’ Eq. (1); that is, we apply it to a small neigh-

borhood around a single status-quo point h, and only consider small (but discrete) movements

away from the status quo. Say that f is a better deviation than g near h, written f ¼∗h g , if

λ f +(1−λ)h ′ ¼λg +(1−λ)h ′ for all λ small and all acts h ′ near h (2)

(see Sec. 4.3 for details). This definition is naturally related to optimizing behavior at a point h:

it identifies small profitable and unprofitable deviations away from the status quo. Our second

result shows that the relation ¼∗h characterizes the normalized Clarke differential C (h) of the

functional I at the point h.4 In our view, this result illustrates the connection between priors

and optimizing behavior in a clearer and more direct way than GMM’s global result (and our

generalization thereof). That said, the local and global results are closely related: f ¼∗ g if and

only if f ¼∗h g for all acts h, and C is the union of all sets C (h).

Finally, a caveat. GMM suggest that the set C may represent ‘ambiguous beliefs’ or ‘per-

ceived ambiguity.’ However, they also discuss (GMM, p. 137) potential difficulties with this

interpretation; in particular, C may incorporate aspects of ambiguity attitude. We prefer to em-

phasize the connection between the priors in the set C and optimizing behavior, and do not

take a stand as to whether such priors reflect beliefs, ambiguity attitudes, or both.

1.1 Intuition for the results and examples

For simplicity, let the state space be S = {s1, s2} and assume linear utility. To make the intuition

as sharp as possible, we assume that I is continuously differentiable, so its Clarke differential at

a point h is the gradient∇I (h), and, importantly, the map h 7→∇I (h) is continuous.

Under these assumptions, C is the convex closure of the set of all the probabilities ∇I (k )
∇I (k )·[1,1]

for all k ∈ R2. To see that, for every f , g ∈ R2, P · f ≥ P · g for all P ∈ C implies Eq. (1), fix

h ∈ R2 and λ ∈ (0, 1]. By assumption, ∇I (k ) · ( f − g ) ≥ 0 for all k ∈ R2: then, by the mean value

theorem, there is a point k ∗ in the segment joining λ f + (1−λ)h and λg + (1−λ)h such that

4¼∗h is not a Bewley preference, and its connection with C (h) is more subtle than the relationship between ¼∗

and C : see Sec. 4.3 for details.
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I (λ f +(1−λ)h)− I (λg +(1−λ)h) =∇I (k ∗) ·[λ f +(1−λ)h−λg +(1−λ)h] =∇I (k ∗) ·λ( f −g )≥ 0,

so Eq. (1) holds. This argument generalizes to the non-smooth case.

For the converse implication, suppose that P∗ · f < P∗ · g for some P∗ ∈C , and hence∇I (k ∗) ·

( f − g ) < 0 for some k ∗; then, since ∇I (k ) is continuous in k , ∇I (k ) · ( f − g ) < 0 for all k in

some neighborhood N of k ∗. But then we can let h = k ∗ and choose λ sufficiently small so that

the segment joining λ f + (1−λ)k ∗ and λg + (1−λ)k ∗ lies entirely in N ; thus, the mean value

theorem implies that I (λ f + (1−λ)k ∗)− I (λg + (1−λ)k ∗) < 0, so Eq. (1) does not hold. This

argument relies crucially on the fact that there is a unique gradient at every point k , and that

the gradient is continuous in k . Both properties fail in the non-smooth case, so our proof of

Theorem 2 takes a different approach.

Turn now to our local characterization result: C (h) = {P(h)}, where P(h) = ∇I (h)
∇I (h)·[1,1] . Assume

that Eq. (2) holds, and in particular consider the sequence hn = 1
1−λn h. Then it is easy to see

that, for all n large, I (λ f +h)−I (h)
λn ≥ I (λg+h)−I (h)

λn ; since I is differentiable, this implies that∇I (h) · f ≥

∇I (h) · g . Thus, f ¼∗h g implies that P(h) · f ≥ P(h) · g . Here, differentiability allows us to focus

on a specific sequence (hn ), and directly link Eq. (2) to a property of the unique differential of I

at h. The non-smooth case again requires a different approach.

The converse implication is more delicate, even in the smooth case. By differentiability, if

∇I (h) · f >∇I (h) · g , then I (λ f +h)−I (h)
λn > I (λg+h)−I (h)

λn for n large, so Eq. (2) holds for the sequence

hn = 1
1−λn h considered above. To to extend this conclusion to other sequences, one needs to in-

voke the fact that a continuously differentiable function is ‘strictly differentiable’ (Clarke, 1983,

Prop. 2.2.1). But, if∇I (h) · f =∇I (h) · g , this argument clearly does not apply. Example 4 in Sec.

4.3 illustrates further subtleties. Theorems 6 and 7 circumvent these issues.

Example 1 (Non-smooth preferences) Example 17 in GMM characterizes the set C for Cho-

quet preferences on a finite state space S = {s1, . . . , sn}. We briefly discuss the characterization

of the local priors C (h). For any permutationσ of {1, . . . , n}, a Choquet preference with capacity

ν admits an EU representation on the setFσ of acts h such that h(sσ(1))¼ h(sσ(2))¼ . . .¼ h(sσ(n )),

with prior Pσ given by Pσ(sσ(i )) = ν ({sσ(1), . . . , sσ(i )})−ν ({sσ(1), . . . , sσ(i−1)}). Fix an act h that belongs

only to Fσ; preferences are effectively EU in a ‘neighborhood’ of h, so C (h) = {Pσ}. If instead

h belongs to Fσ1 , . . . ,Fσk , then, by Theorem 2.5.1 in Clarke (1983), C (h) is the convex hull of
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{Pσ1 , . . . , Pσk }. This result extends to piecewise linear preferences (defined in GMM, §5.2).

Example 2 (Local vs. global priors) Let S = {s1, s2}, X = R+, and the risk-neutral preference

represented by I (h) = max
� 1

2
h(s1) + 1

2
h(s2),ε+min(h(s1), h(s2))

�

, for some small ε > 0.5 For

acts h such that |h(s1)−h(s2)| ≥ 2ε, preferences are consistent with EU, with a uniform prior P

on S; if ε is small, this is the case for ‘most’ acts. However, for acts close to the diagonal, this

preference behaves like MEU, with set of priors∆(S).

Our generalization of GMM’s result implies that the preference ¼∗ defined in Eq. (1) is rep-

resented by C =∆(S), despite the fact that I is consistent with EU for ‘most’ acts; we view this as

a stark demonstration of the global nature of GMM’s approach. By way of contrast, C (h) = {P}

if |h(s1)−h(s2)| > ε, and C (h) = ∆(S) if |h(s1)−h(s2)| < 2ε, and our second main result implies

that Eq. (2) correctly reflects the local behavior of this preference.

Example 3 (based on Dow and da Costa Werlang (1992)) An investor with wealth W and pref-

erences characterized by the functional I and the utility u : X → R (where X ⊂ R) considers

buying or selling an asset with uncertain returns R :Ω→R on the finite state space S, at a price

p . Thus, the agent’s utility if she buys t ∈ R units of the asset is I (u (W + t [R − p ])). Dow and

da Costa Werlang (1992) assume that I is an uncertainty-averse (i.e. concave) Choquet func-

tional (Schmeidler, 1989) and that u is strictly increasing and continuously differentiable; they

show that the agent will optimally choose t = 0 (i.e. ‘no trade’) iff I (R)≤ p ≤−I (−R).

We now generalize this result. Assume that I is locally Lipschitz continuous; then (see

Clarke, 1983, Prop. 2.3.2), a necessary condition for no trade to be optimal is that 0 be an element

of the Clarke differential of the real function t 7→ I (u (W +t [R−p ])) at t = 0. By the chain rule for

non-smooth functions (see Clarke, 1983, Prop. 2.3.9), this translates to: EQ[u ′(W )(R−p )] = 0 for

someQ ∈ ∂ I (u (W )), the Clarke differential of I at u (W ). This generalizes the familiar first-order

condition with EU preferences. Moreover, since W is constant and u ′(W )> 0, we obtain

min
P∈C (1S W )

EP[R]≤ p ≤ max
P∈C (1S W )

EP[R],

where C (1SW ) is the normalized Clarke differential characterized by Eq. (2), at h = 1SW .

5We thank an anonymous referee for suggesting this example.
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If, furthermore, the functional I and the function u are concave, this condition is also suf-

ficient. This generalizes the result of Dow and Werlang to a broad class of uncertainty-averse

preferences. Indeed, the above condition is also sufficient as long as the composite map t 7→

I (u (W + t [R −p ]) is concave, even though I is not. For instance (cf. Heath and Tversky, 1991),

the investor may be uncertainty-averse with respect to R , yet feel ‘competent’ enough to evalu-

ate other prospects in a manner consistent with uncertainty appeal.

Finally, if I is an uncertainty-averse Choquet functional, by Corollary 5 C (1SW ) =C (0S) =C ,

the GMM set of priors. But, since uncertainty-averse Choquet preferences are MEU, I (u ◦h) =

minP∈C EP[u ◦h]. This yields Dow and Werlang’s original result as a special case.

1.2 Related literature

As noted above, GMM is the starting point of our work. The discussion of Corollaries 3–5 in Sec-

tion 4.2 explains how our result specializes to GMM’s under Certainty Independence. Nehring

(2002) also identifies the set C from behavior; our paper thus also extends his results.

Gilboa, Maccheroni, Marinacci, and Schmeidler (2010) consider a DM who is endowed with

a possibly incomplete preference over acts reflecting ‘objective’ information, and a complete

preference reflecting her actual behavior. The objective preference has a Bewley-style repre-

sentation via a set C of priors. Thus, while there are natural similarities, our objectives are

clearly different. We do not posit the existence of objective information. Moreover, our main

contribution is the operational characterization of the sets C and C (h).

Siniscalchi (2006) proposes a related notion of ‘plausible priors.’ The main difference with

the present paper, and with the GMM approach, is the fact that plausible priors are identified

individually, rather than as elements of a set. This requires restrictions on preferences that we

do not need (in addition to Certainty Independence).

Klibanoff, Mukerji, and Seo (2011, KMS henceforth) consider infinite repetitions of an ex-

periment with outcomes in some set S, and impose a ‘symmetry’ requirement on preferences.

They show that, in this setting, C =
¦∫

`∞d m (`) : m ∈M
©

, where `∞ denotes the i.i.d. product

of ` ∈ ∆(S), and M ⊂ ∆(∆(S)). KMS propose a ‘relevance’ condition that identifies measures
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in the support of some m ∈M . This approach differs substantially from GMM’s identification

strategy. For instance, consider an EU preference with a prior P that, by the symmetry require-

ment, satisfies P =
∫

`∞d m for some m ∈ ∆(∆(S)). KMS deem ‘relevant’ all measures in the

support of m , whereas GMM (and we) find that C = {P}.

None of the above papers provide a counterpart to our local characterization result.

Rigotti, Shannon, and Strzalecki (2008) propose different, equivalent notions of ‘belief at

an act h’ in a setting with monetary outcomes and preferences represented by a quasiconcave

function V , and use them to analyze efficiency and trade in a competitive environment. When

V (h) = I (u (h)) and I and u are suitably regular,6 their ‘beliefs at h’ can be computed from

the set C (h) that we characterize and the derivative of u , via an appropriate chain rule (cf.

Example 3). Thus, up to marginal utilities, our Eq. (2) provides a complementary behavioral

interpretation of Rigotti et al. (2008)’s beliefs at h, and relates these to the GMM set of priors C .

On the other hand, our results do not require quasiconcavity.

Finally, Machina (2005) defines ‘event derivatives’ of a representation V (·), a subjective coun-

terpart to derivatives with respect to lotteries in Machina (1982). A representation is ‘event-

smooth’ if it admits suitably regular event derivatives. Machina shows how to generalize EU-

based characterizations of e.g. likelihood rankings or comparative risk aversion to event-smooth

representations of preferences; however, his paper does not provide a preference foundation

for event smoothness. Instead, our paper focuses on the behavioral properties that character-

ize the normalized Clarke differential C (h) at an act h. At a formal level, we consider Clarke

derivatives with respect to outcomes, rather than events, and do not assume smoothness.

2 Notation and preliminaries

We consider a state space S, endowed with a sigma-algebra Σ. The notation B0(Σ,Γ) indicates

the set of simple Σ–measurable real functions on S with values in the interval7 Γ⊂R, endowed

with the topology induced by the supremum norm; for simplicity, write B0(Σ,R) as B0(Σ). Recall

that, since Σ is a sigma-algebra, B (Σ) is the closure of B0(Σ), and it is a Banach space.

6In particular, if I is locally Lipschitz and nice in the sense of Sec. 4.1, and u is differentiable.

7That is, Γ⊂R is one of [α,β ], [α,β ), (α,β ], or (α,β ), where α=−∞ and β =∞ are allowed where applicable.
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The set of finitely additive probabilities on Σ is denoted ba1(Σ). ba1(Σ) is endowed with the

(relative) weak∗ topology; i.e., σ(ba(Σ), B0(Σ)) (equivalently, σ(ba(Σ), B (Σ))). We identify ele-

ments of ba(Σ) and the linear functionals they identify; if a ∈ B (Σ) andQ ∈ ba(Σ), Q(a ) =
∫

a dQ .

If B is one of B0(Σ,Γ) for some interval Γ or B (Σ), a functional I : B → R is: monotonic if

I (a ) ≥ I (b ) for all a ≥ b ; continuous if it is sup-norm continuous; isotone if, for all α,β ∈ Γ,

I (α1S)≥ I (β 1S) if and only if α≥ β ; normalized if I (α1S) = α for all α ∈ Γ; constant-additive if

I (a +α1S) = I (a ) +α for all a ∈ B and α ∈ R such that a +α1S ∈ B ; positively homogeneous if

I (αa ) = αI (a ) for all a ∈ B and α ∈ R+ such that αa ∈ B ; and constant-linear if it is constant-

additive and positively homogeneous.

Finally, fix a convex subset X of a vector space. (Simple) acts are Σ-measurable functions

f : S→ X such that f (S) = { f (s ) : s ∈ S} is finite; the set of all (simple) acts is denoted byF . We

define mixtures of acts pointwise: for anyα∈ [0, 1], α f +(1−α)g is the act that delivers the prize

α f (s )+ (1−α)g (s ) in state s . Given a preference ¼ onF , we say that an act h ∈F is interior if

there exist prizes x , y ∈ X such that x � h(s ) � y for all s ∈ S, and we denote the set of interior

acts byF int. (The dependence ofF int on ¼, while not made explicit, should be kept in mind.)

3 Preferences

The main object of study is a binary relation ¼ on F . As usual, � (resp. ∼) denotes the asym-

metric (resp. symmetric) component of ¼. With a small abuse of notation, we denote with the

same symbol the prize x and the constant act that delivers x for all s . We assume throughout

that the preference ¼ admits a numerical representation that satisfies a regularity property:

Definition 1 A preference relation¼ is (non-trivial) monotonic, Bernoullian, and Locally Lip-

schitzian (henceforth MBL) if there exists a non-costant, affine function u : X →R and a mono-

tonic, isotone functional I : B0(Σ, u (X ))→R that is locally Lipschitz in the interior of its domain,

and such that, for all f , g ∈F .

f ¼ g ⇐⇒ I (u ◦ f )≥ I (u ◦ g ). (3)

MBL preferences admit certainty equivalents: for any f ∈F , there is x f ∈C such that x f ∼ f .
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Most preference models considered in the classic and recent literature on ambiguity belong

to this class. Virtually all have monotonic, isotone, Bernoullian, and continuous representa-

tions; Cerreia-Vioglio, Ghirardato, Maccheroni, Marinacci, and Siniscalchi (2011) provide an

axiomatization of preferences satisfying these assumptions. Furthermore, if the representing

functional is also constant-additive, it is globally Lipschitz; this applies to the preferences con-

sidered by GMM (including MEU, α-MEU and CEU), as well as multiplier, variational, VEU and

mean-dispersion preferences (Grant and Polak, 2011a). Alternatively, if the representing func-

tional is concave or convex, then it is locally Lipschitz on the interior of its domain, by a classic

result of Roberts and Varberg (1974): this includes smooth uncertainty-averse preferences and

the confidence-function preferences studied by Chateauneuf and Faro (2009). Also, if I is con-

tinuously Frechet differentiable, then again it is locally Lipschitz (see Clarke, 1983, Prop. 2.2.1

and Corollary).

In addition, Online Appendix A introduces a novel axiom that is equivalent to the existence

of a locally Lipschitz, normalized representation for monotonic, Bernoullian and continuous

preferences. This enables us to apply our results below even to preferences that do not fall into

any of the above categories: for instance, uncertainty-averse preferences that are not concavi-

fiable, or the generalized mean-dispersion preferences of Grant and Polak (2011b).

Though MBL preferences are more general than those considered in GMM, these authors’

notion of ‘unambiguous preference’ still identifies a unique set of priors via a Bewley-like rep-

resentation. The proof is a straightforward adaptation of GMM’s, and hence omitted. As we

argued in the Introduction, it is useful to interpret GMM’s definition as stating that an act f is

a better deviation than another act g regardless of what the ‘status-quo’ h is, and regardless of

how far one moves away from h (i.e. how much weight one places on f or, respectively, g ).

Definition 2 Let f , g ∈ F . We say that f is a uniformly (weakly) better deviation than g ,

denoted by f ¼∗ g , if and only if, for each h ∈F and each λ∈ (0, 1], λ f +(1−λ)h ¼λg +(1−λ)h.

Proposition 1 (GMM, Propositions 4 and 5) Let ¼ be an MBL preference. Then, there exists a

non-empty, unique, convex and closed set C ⊂ ba1(Σ) such that for each f , g ∈F ,

f ¼∗ g ⇐⇒
∫

u ◦ f d P ≥
∫

u ◦ g d P for all P ∈C , (4)
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where u is the function in Def. 1. is independent of the choice of normalization of u .

The set C in Proposition 1 is the set of relevant priors for the preference ¼. The follow-

ing terminology is convenient: a binary relation b¼ onF admits a Bewley representation (and

hence is a Bewley preference) if there are an affine function v : X →R and a set D ⊂ ba1(Σ) such

that f b¼g if and only if P(v ◦ f ) ≥ P(v ◦ g ) for all P ∈ D.8 Thus, Proposition 1 states that ¼∗ is a

Bewley preference represented by u and C .

4 Relevant priors: characterizations

4.1 Clarke differentials

Definition 3 (Clarke 1983, Sec. 2.1; Lebourg 1979, Sec. 1) Let B denote either B0(Σ) or B (Σ).

Consider a locally Lipschitz functional I : U → R, where U ⊂ B is open. For every c ∈U and

a ∈ B (Σ), the Clarke (upper) derivative of I in c in the direction a is

I ◦(c ; a ) = lim sup
b→c ,t ↓0

I (b + t a )− I (b )
t

.

The Clarke (sub)differential of I at c is the set

∂ I (c ) = {Q ∈ ba(Σ) : Q(a )≤ I ◦(c ; a ), ∀a ∈ B}.

It is important to point out that, like the usual notion of gradient, the definition of Clarke

differential is seldom used directly (although we do so in proving the results in this section). It

is useful chiefly because of its convenient calculus properties (see e.g. Clarke, 1983).

Consider an MBL preference with representation (I , u ). Given an interior act h, the func-

tionals in ∂ I (u ◦ h) are linear, but in general not normalized. For consistency with the GMM

approach, we normalize the elements of ∂ I (u ◦h) to obtain:

C (h) =
�

Q

Q(S)
: Q ∈ ∂ I (u ◦h), Q(S)> 0

�

. (5)

Given C (h) 6= ; and u , we can define a Bewley preference ¼C (h) onF as follows:

f ¼C (h) g ⇔ P(u ◦ f )≥ P(u ◦h) ∀P ∈C (h). (6)

8Clearly, a set D ⊂ ba1(Σ) and its convex closure co D induce the same Bewley preference. Prop. A.2 in GMM

characterizes Bewley preferences.
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Say that the functional I is nice at c ∈ int B0(Σ,Γ) if the zero measure Q0 ∈ ba(Σ) is not

an element of ∂ I (c ). This condition strengthens monotonicity and loosely speaking, requires

that preferences remain non-trivial in arbitrarily small neighborhoods of an act. It plays a role

in our local results (Propositions 6 and 7), though not in our global result (Theorem 2). All

preferences considered by GMM and, more generally, all MBL preferences represented by a

constant-additive functional I , are everywhere nice; the same is true for concave preferences:

see Online Appendix B. To cover the remaining cases, Online Appendix B also provides an axiom

for arbitrary MBL preferences that ensures the existence of a nice representation.

4.2 Global Characterization

We are ready to state our first main result.

Theorem 2 For any MBL preference¼with representation (I , u ) and relevant priors C ,

C = co





⋃

h∈F int

C (h)



 .

Proof: See Appendix A.2.

Thus, up to convex closure, the set C can be computed by considering the normalized Clarke

differentials C (h) for all interior acts h, then taking the union of such objects. Equivalently,

f ¼∗ g if and only if P(u ◦ f )≥ P(u ◦ g ) for all P ∈C (h) and h ∈F int.

We now review specific independence properties of the preference ¼ that have been ana-

lyzed in the literature. This will also clarify the relationship between Theorem 2 and its coun-

terpart in GMM. First, if preferences satisfy the ‘Weak Certainty Independence’ axiom of Mac-

cheroni et al. (2006), the functional I is constant-additive, and all elements Q ∈ ∂ I (e ) satisfy

Q(S) = 1 (see part 2 of Prop. A.3 in GMM). Thus, C (h) = ∂ I (u ◦h), and we obtain

Corollary 3 If I is normalized and constant-additive, then C = co
�
⋃

h∈F int ∂ I (u ◦h)
�

.

If instead an MBL preference satisfies the ‘Homotheticity’ axiom of Cerreia-Vioglio et al.

(2008), I is positively homogeneous. If I is normalized, and there is a prize z ∈ X with u (z ) =

0∈ int u (X ), then ∂ I (u ◦h)⊂ ∂ I (0) for all h ∈F int (cf. part 1 of Prop. A.3 in GMM). We obtain

Corollary 4 If I is normalized and positively homogeneous, and z is as above, then C = co C (z ).
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Finally, GMM consider preferences that satisfy ‘Certainty Independence,’ and hence admit

a representation with I normalized and constant-linear. With z as above, we obtain

Corollary 5 (GMM, Theorem 14) If I is constant-linear, then C = ∂ I (0) =C (z ).

Notice that, if I is constant-linear, the Clarke upper derivative at 0 in the direction a ∈ B takes a

particularly simple form (cf. GMM, Prop. A.3), which GMM exploit in their proofs:

I ◦(0; a ) = sup
b∈B

I (b +a )− I (b ).

4.3 Local Characterization

We turn to the behavioral characterization of ‘locally relevant’ priors. Recalling the discussion

in the Introduction, the definition of locally better deviation concerns the behavior of ¼ ‘near’

an interior act h.9 Thus, its formal statement requires a notion of convergence for acts. We say

that a sequence ( f n ) ⊂F converges to an act f ∈ F , written f n → f , iff, for all prizes x , y ∈ X

with x � y , there exists K such that k ≥ K implies

∀s ∈S,
1

2
f (s )+

1

2
y ≺

1

2
f k (s )+

1

2
x and

1

2
f k (s )+

1

2
y ≺

1

2
f (s )+

1

2
x .

This corresponds to uniform convergence in B0(Σ, u (X )).

Intuitively, we then apply Def. 2 to a neighborhood of an interior act h: we consider mixtures

of the acts f and g with an act ‘near h,’ assigning ‘most’ of the weight to the latter.

Definition 4 For any triple of acts f , g , h ∈F , say that f is a (weakly) better deviation than g

near h, written f ¼∗h g , if, for every (λn )n≥0 ⊂ [0, 1] and (hn )n≥0 ⊂F such that λn ↓ 0 and hn → h,

λn f +(1−λn )hn ¼λn g +(1−λn )hn eventually. (7)

Unlike ¼∗, the relation ¼∗h is not always a Bewley preference, because it may fail continuity

(Online Appendix E indicates the properties it does satisfy). Our first main result in this section

shows that it nonetheless uniquely identifies the set C (h).

Theorem 6 For any MBL preference¼with representation (I , u ), and any interior act h ∈F :

9Clearly, given a representation (I , u )of¼, h ∈F int if and only if the function u ◦h is in the interior of B0(Σ, u (X )).
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1. for all f , g ∈F , f ¼∗h g implies that P(u ◦ f )≥ P(u ◦ g ) for all P ∈C (h);

2. if I is nice at u ◦h, then the preference¼C (h) is the unique minimal Bewley preference that

extends¼∗h (i.e., the intersection of all Bewley preferences that contain¼∗h ).

Proof: See Appendix A.1.

Thus, f ¼∗h g always implies f ¼C (h) g ; moreover, if I is nice at u ◦h, ¼∗h fully identifies the set

C (h). There is however a different, more direct, way to identify C (h) from ¼∗h . The following

example illustrates this idea, as well as the role of the niceness assumption.

Example 4 Let S = {s1, s2}, X = R, and let u be the identity. Thus, F = B0(2S , u (X )) = R2, and

we identify acts h with vectors [h1, h2] ∈R2. Fix p ∈
�

1
2

, 1
�

, let P1 = [p , 1−p ] and P2 = [1−p , p ],

and consider the smooth ambiguity preference represented by u and by the strictly increasing

and continuously differentiable (hence, locally Lipschitz) function I :R2→R defined by I (h) =
∑

i=1,2(P
i · h)3. For any h, the Clarke differential ∂ I (h) coincides with the gradient ∇I (h) =

3(P1 ·h)2P1+3(P2 ·h)2P2. Therefore, for h 6= 0, C (h) =
¦

1
3
∇I (h)

©

, while C (0) = ; since∇I (0) = 0.

As expected, f ¼∗h g implies f ¼C (h) g . As to the opposite implication, we argue in Online

Appendix C that, if f �C (h) g —i.e., ∇I (h) · f > ∇I (h) · g — then Eq. (7) eventually holds for all

sequences λk ↓ 0 and hn → h. We now show that, if f ∼C (h) g or C (h) = ;, Eq. (7) does not

necessarily hold. Again, details and proofs of all claims below are found in Online Appendix C.

Let f = [1, 0] and g = [0, 1]. Fix h ∈R2 arbitrarily, and define sequences (λn ), (hn ), (k n ) by

λn =
1

n
, hn =

1

1−λn
(λn [2, 1]+h) , k n =

1

1−λn
(λn ([1, 2]+h) .

Notice that as n→∞, λn ↓ 0, hn → h and k n → h. Then f ¼∗h g requires that, for n large,

λn f +(1−λn )hn ¼λn g +(1−λn )hn and λn f +(1−λn )k n ¼λn g +(1−λn )k n . (8)

We focus on three cases (we omit the other cases for brevity).

Case 1: h1 > h2 ≥ 0. In this case, f �C (h) g . As noted above, this implies f ¼∗h g .

Case 2: h1 = h2 = γ> 0. In this case ∇I (h) · f = ∇I (h) · g , i.e. f ∼C (h) g . Then, for n large,

the second preference in Eq. (8) is violated, so it is not the case that f ¼∗h g . However, clearly

∇I (h) · ( f +ε)>∇I (h) · (g −ε) for any ε> 0. As noted above, this implies that f +ε¼∗h g −ε.

14



Case 3: h1 = h2 = 0. Since ∇I (0) = 0, I is not nice at h = 0. Then Eq. (8) does not hold, and

continues to be violated if f and g are replaced with with f +ε and g −ε, for ε > 0 sufficiently

small. Thus, neither f ¼∗h g nor f +ε¼∗h g −ε hold.

Example 4 suggests that, while f ¼C (h) g may not imply f ¼∗h g , it may still imply that f ′ ¼∗h g ′

for all f ′, g ′ with f ′(s ) � f (s ) and g (s ) � g ′(s ) for all s ∈ S; we call such a pair of acts ( f ′, g ′) a

spread of ( f , g ). The following result confirms that this is indeed the case, and provides a direct

characterization of C (h) in terms of ¼∗h .

Theorem 7 Consider an MBL preference¼ and a representation (I , u ). Fix an interior act h ∈F

and assume that I is nice at u ◦h. Then C (h) is the only weak∗-closed, convex set D ⊂ ba1(Σ) for

which the following statements are equivalent for every pair ( f , g ) of interior acts:

(1) f ′ ¼∗h g ′ for all spreads ( f ′, g ′) of ( f , g ).

(2) P(u ◦ f )≥ P(u ◦ g ) for all P ∈D

Proof: See Appendix A.1.

Case (3) in the Example shows that niceness is required in Theorems 6 and 7.10

Finally, as noted in the Introduction, there is a tight connection between the global prefer-

ence ¼∗ and the local preferences ¼∗h :

Corollary 8 For all f , g ∈F : f ¼∗ g if and only of f ¼∗h g for all interior h ∈F .

Proof: See Appendix A.2.

5 Extensions

All the results in this paper apply verbatim if preferences are defined on the set of bounded

(rather than simple) acts, as defined e.g. in Gilboa and Schmeidler (1989).

10 In Example 4, ∂ I (0) contains only the zero vector. However, we show in Online Appendix C how to modify

preferences so that ∂ I (0) contains vectors other than 0, without changing the conclusions of the example.
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Theorem 2 can be generalized to preferences that are continuous but possibly not locally

Lipschitz. For details, see Ghirardato and Siniscalchi (2010).

Online Appendix D shows that, given an interior act h, whether a given probability P ∈

ba1(Σ) belongs to the set C (h) can be directly ascertained using the DM’s preferences, without

invoking Theorems 6 or 7.

Finally, for preferences that satisfy the ‘Weak Certainty Independence’ axiom of Maccheroni

et al. (2006) (e.g. multiplier, variational, or vector expected utility preferences), and under addi-

tional regularity conditions (in particular, concavity or continuous differentiability of I suffice),

the sets C (h) pin down the preference ¼ uniquely. This follows from non-smooth analogs of the

Fundamental Theorem of Calculus (cf. Ngai, Luc, and Théra, 2000). We leave a fuller investiga-

tion of this fact to future research.

A Proofs of the main results

A.1 Proof of Theorems 6 and 7, and Corollary 4

Throughout, ¼ is an MBL preference with representation (I , u ) and relevant priors C . For any

D ⊂ ba1(Σ), we also use the notation f ¼D g to mean that P(u ◦ f )≥ P(u ◦ g ) for all P ∈D.

We use freely the following facts. (i) Since I is monotonic, ∂ I (u ◦h) consists of positive linear

functionals (Rockafellar, 1980, Thm.6 Cor. 3), and consequently a 7→ I ◦(c ; a ) is monotonic. (ii)

a 7→ I ◦(u ◦h; a ) is continuous by Rockafellar (1980), Cor. 1 p. 268.

Lemma 9 C is the smallest weak∗ compact, convex set D ⊂ ba1(Σ) such that, for all f , g ∈ F ,

f ¼D g implies f ¼ g .

Proof: That C satisfies this property is clear, because f ¼C g implies f ¼∗ g by Proposition 1,

and hence f ¼ g . Now suppose another set D ⊂ ba1(Σ) also satisfies this property. If f ¼D g ,

then, for all λ ∈ (0, 1] and h ∈ F , also λ f + (1− λ)h ¼D λg + (1− λ)h. Then, by assumption,

λ f + (1−λ)h ¼ λg + (1−λ)h for all λ ∈ (0, 1] and h ∈ F : that is, f ¼∗ g . But by Prop. 1, this

implies that f ¼C g . By Prop. A.1 in GMM, this implies that C ⊂ co D.
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Lemma 10 f ¼∗h g implies that, for all µ ∈ (0, 1] and c ∈ B0(Σ), I ◦(u ◦ h;µu ◦ f + (1− µ)c ) ≥

I ◦(u ◦h;µu ◦ g +(1−µ)c ).11

Proof: (Step 1) Fix (λn ), (hn ) as in Def. 4. Functionally, Eq. (7) is equivalent to I (λn u ◦ f + (1−

λn )u ◦hn )≥ I (λn u ◦ g +(1−λn )u ◦hn ) eventually; in other words,

I (λn u ◦ f + cn )≥ I (λn u ◦ g + cn ) eventually

for all sequences (λn ) ↓ 0 and (cn ) such that cn = (1−λn )u ◦hn for some sequence (hn )⊂F with

hn → h.

(Step 2) For any sequence (λn ) ↓ 0 and (cn )→ u ◦h, and for any µ∈ (0, 1] and c ∈ B0(Σ),

λn [µu ◦ f +(1−µ)c ]+ cn = (λnµ)u ◦ f +
�

λn (1−µ)c + cn
�

≡ (λnµ)u ◦ f +d n ,

and analogously λn [µu ◦ g + (1− µ)c ] + cn = (λnµ)u ◦ g + d n . Since cn → u ◦ h, eventually

(1− λnµ)−1d n ∈ int B0(Σ, u (X )) because h is interior, λn (1− µ)c → 0, and 1− λnµ → 1; also,

d n → u ◦h. Therefore, there is a sequence (hn )⊂F such that (1−λnµ)u ◦hn = d n ; this sequence

necessarily satisfies hn → h, and so, by Step 1, eventually

I (λn [µu ◦ f +(1−µ)c ]+cn ) = I
�

(λnµ)u ◦ f +d n
�

≥ I
�

(λnµ)u ◦g+d n
�

= I (λn [µu ◦g+(1−µ)c ]+cn ).

Subtracting I (cn ) from both sides and dividing by λn > 0 yields

I (λn [µu ◦ f +(1−µ)c ]+ cn )− I (cn )
λn

≥
I (λn [µu ◦ g +(1−µ)c ]+ cn )− I (cn )

λn
eventually

for all (λn ) ↓ 0, µ∈ (0, 1], c ∈ B0(Σ) and (cn )→ u ◦h.

(Step 3) Finally, fixµ, c , and ε> 0. By the definition of I ◦(u ◦h;µu ◦g +(1−µ)c ), there are se-

quences (λn )⊂ [0, 1], (cn )⊂ B0(Σ, u (X )) such thatλn ↓ 0, cn → u ◦h, and limn
I (λn [µu ◦g+(1−µ)c ]+cn )−I (cn )

λn
≥

I ◦(u ◦h;µu ◦ g + (1−µ)c )− ε. Taking a subsequence if necessary,12 it follows from Step 2 that

limn
I (λn [µu ◦ f +(1−µ)c ]+cn )−I (cn )

λn
≥ I ◦(u ◦h;µu ◦ g +(1−µ)c )−ε. This implies that I ◦(u ◦h;µu ◦ f +

(1−µ)c )≥ I ◦(u ◦h;µu ◦ g +(1−µ)c )−ε. Since ε> 0 was arbitrary, the claim follows.

11By Lemma 5,¼∗h is independent. Thus, just showing that f ¼∗h g implies I ◦(u ◦h; u ◦ f )≥ I ◦(u ◦h; u ◦ g )would

be enough to establish the claim in this Lemma for c ∈ B0(Σ, u (X )). However, the proof of Theorem 6 requires that

the claim hold for all c ∈ B0(Σ).

12The sequence I (λn [µu ◦ f +(1−µ)c ]+cn )−I (cn )
λn

may fail to converge. However, since I ◦(u ◦h;µu ◦ f +(1−µ)c )<∞ as I

is locally Lipschitz, this sequence must be bounded and hence contain a convergent subsequence.
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Corollary 11 If ∂ I (u ◦h) 6= {Q0} (the zero measure), then¼∗h agrees with¼ on X .

Proof: By monotonicity of ¼, x ¼ y implies x ¼∗h y , so it is enough to prove that x � y im-

plies that y ¼∗h x does not hold. By contradiction, suppose that x � y (hence, x ¼∗h y ) and

y ¼∗h x . Then, by Lemma 10, for every c ∈ B0(Σ) and µ ∈ (0, 1], y ¼∗h x implies I ◦(u ◦h;µu (y ) +

(1−µ)c ) ≥ I ◦(u ◦ h;µu (x ) + (1−µ)c ). Now let c = 1S and choose µ > 0 small enough so that

α ≡ µu (x ) + (1−µ) > 0 and β ≡ µu (y ) + (1−µ) > 0. Then I ◦(u ◦ h;α) = maxQ∈∂ I (u ◦h)αQ(S) =

αmaxQ∈∂ I (u ◦h)Q(S)≡αM and similarly I ◦(u ◦h;β ) =βM , because α,β > 0. By assumption Q0 is

not the only functional in ∂ I (u ◦h), and therefore, since I is monotonic, M > 0. But then α≤β ,

which contradicts the fact so u (x )> u (y ).

Lemma 12 Assume that I is nice at u ◦h. For any pair f , g ∈F , f ¼C (h) g implies that f ′ ¼∗h g ′

for any spread ( f ′, g ′) of ( f , g ).

Proof: The claim is vacuously true if f or g are not interior acts, because in this case there is no

spread of ( f , g ). Thus, consider a spread ( f ′, g ′) of an interior pair of acts ( f , g ). Then there is

ε> 0 such that u ◦ f ′ ≥ u ◦ f +ε and u ◦ g ′ ≤ u ◦ g −ε. Thus, P(u ◦ f ′)> P(u ◦ g ′) for all P ∈C (h).

Suppose there are sequences (λn ) ⊂ [0, 1] and (hn ) ⊂ F such that λn ↓ 0, hn → h and, by

taking subsequences if necessary, λn f ′+(1−λn )hn ≺λn g ′+(1−λn )hn for all n . Passing to the

functional representation of¼, I (λn u ◦ f ′+(1−λn )u ◦hn )< I (λn u ◦ g ′+(1−λn )u ◦hn ) for all n .

Let c n = λn u ◦ f ′ + (1− λn )hn , so λn u ◦ g ′ + (1− λn )u ◦ hn = c n + λn [u ◦ g ′ − u ◦ f ′], and

c n → u ◦h. Then, I (c n )< I (c n +λn [u ◦ g ′−u ◦ f ′]) for all n , so I (c n+λn [u ◦g ′−u ◦ f ′])−I (c n )
λn > 0 for all n .

It follows that maxQ∈∂ I ◦(u ◦h)Q(u ◦g ′−u ◦ f ′) = I ◦(u ◦h; u ◦g ′−u ◦ f ′)≥ 0. Hence, since I is nice

at u ◦h, there exists Q 6=Q0 in ∂ I (u ◦h) such that Q(u ◦ g ′)≥Q(u ◦ f ′); then, for P = Q
Q(S) ∈C (h),

P(u ◦ g ′)≥ P(u ◦ f ′): contradiction.

Proof of Theorem 6: (1): If ∂ I (u ◦ h) = {Q0}, then C (h) = ;, so the assertion holds vacuously.

Thus, assume henceforth that there is Q 6=Q0 such that Q ∈ ∂ I (u ◦h).

Define a relation≥∗h on B0(Σ)by letting a ≥∗h b iff I ◦(u ◦h;λa+(1−λ)c )≥ I ◦(u ◦h;λb+(1−λ)c )

for all λ ∈ (0, 1] and c ∈ B0(Σ). Since the map a 7→ I ◦(u ◦ h; a ) is monotonic and continuous,

adapting the proof of in Prop. 4 in GMM one can easily show that ≥∗h is monotonic, reflexive,
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transitive, continuous (if a n → a , b n → b and a n ≥∗h b n , then a ≥∗h b ) and conic (if a ≥∗h b

then λa + (1−λ)c ≥∗h λb + (1−λ)c for all λ ∈ (0, 1] and c ∈ B0(Σ)). Finally, let α > β > 0, and

suppose that ≥∗h is trivial. Then, since α ≥∗h β by monotonicity, we must have β ≥∗h α, so for

all λ ∈ (0, 1] and c ∈ B0(Σ), I ◦(u ◦ h;λβ + (1− λ)c ) ≥ I ◦(u ◦ h;λα+ (1− λ)c ). Take c = 1S and

any λ ∈ (0, 1]; then λα+ 1−λ,λβ + 1−λ > 0, so I ◦(u ◦ h;λβ + (1−λ)) = [λβ + (1−λ)]M and

I ◦(u ◦ h;λα+ (1− λ)) = [λα+ (1− λ)]M , where M = maxQ∈∂ I (u ◦h)Q(S) > 0 because ∂ I (u ◦ h)

contains positive functionals other than Q0. Hence, β ≥∗h α requires λβ +(1−λ)≥ λα+(1−λ),

a contradiction. Thus ≥∗h is non-trivial.

Prop. A.2 in GMM yields a unique weak∗-compact, convex set C (h)⊂ ba1(Σ) such that a ≥∗h b

iff P(a )≥ P(b ) for all P ∈C (h). We claim that C (h) = co
n

Q
Q(S) : Q ∈ ∂ I (u ◦h),Q(S)> 0

o

≡D(h).

First, we show that C (h) is the smallest weak∗-compact, convex set D ⊂ ba1(Σ) with the

following property, henceforth (P): P(a ) ≥ P(b ) for all P ∈ D implies I ◦(u ◦ h; a ) ≥ I ◦(u ◦ h;b ).

Clearly, C (h) satisfies (P), so consider another set D that also satisfies (P). If P(a ) ≥ P(b ) for all

P ∈D, then, for all λ ∈ (0, 1] and c ∈ B0(Σ), also P(λa +(1−λ)c )≥ P(λb +(1−λ)c ) for all P ∈D,

so by assumption I ◦(u ◦h;λa + (1−λ)c ) ≥ I ◦(u ◦h;λb + (1−λ)c ). But this means that a ≥∗h b .

In other words, the relation ≥D , defined by a ≥D b iff P(a )≥ P(b ) for all P ∈D, is a subset of ≥∗h .

By Prop. A.1 in GMM, C (h)⊂ co D, as claimed.

We now show that D(h) is also the smallest weak∗ compact convex set that satisfies (P),

which obviously implies the claim. First, suppose that, P(a )≥ P(b ) for all P ∈D(h), so P(b−a )≤

0 for all P ∈D(h). Then also Q(b −a )≤ 0 for all Q ∈ ∂ I (u ◦h) [this is trivially true for Q =Q0, in

case Q0 ∈ ∂ I (u ◦h)]. Hence I ◦(u ◦h;b ) = I ◦(u ◦h; a + (b −a )) ≤ I ◦(u ◦h; a ) + I ◦(u ◦h;b −a ) ≤

I ◦(u ◦h; a ), because I ◦(u ◦h;b −a ) = supQ∈∂ I (u ◦h)Q(b −a )≤ 0. Thus, D(h) satisfies (P).

Let D ⊂ ba1(Σ) be another weak∗ compact, convex set that satisfies (P). Suppose there is

P ∈ D(h) \D. By the Separating Hyperplane theorem13, there is a ∈ B0(Σ) and α ∈ R such that

P(a ) > α and P ′(a ) ≤ α for all P ′ ∈ D. Letting b = a − α, we have P(b ) > 0 and P ′(b ) ≤ 0 for

all P ′ ∈ D. By assumption, P ′(b ) ≤ 0 for all P ′ ∈ D implies I ◦(u ◦ h; 0) ≥ I ◦(u ◦ h;b ); however,

13E.g. Aliprantis and Border (2007), Corollary 5.80 and Theorem 5.93. Note that, since the topologies

σ(ba(Σ), B (Σ)) and σ(ba(Σ), B0(Σ)) coincide on ba1(Σ) (Maccheroni et al., 2006, Appendix A), we can restrict at-

tention toσ(ba(Σ), B0(Σ))-continuous linear functionals on ba(Σ).
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P(b ) > 0 implies that there is14 Q ∈ ∂ I (u ◦ h) with Q(S) 6= 0 and Q(b ) > 0, so I ◦(u ◦ h;b ) =

supQ ′∈∂ I (u ◦h)Q
′(b )≥Q(b )> 0= supQ ′∈∂ I (u ◦h)0 ·Q ′(S) = I ◦(u ◦h; 0): contradiction. Thus, D(h)⊂D.

To complete the proof, assume that f ¼∗h g . Then, by Lemma 10, u ◦ f ≥∗h u ◦ g ; hence

P(u ◦ f )≥ P(u ◦ g ) for all P ∈C (h) =D(h).

(2): Suppose that ¼D is another Bewley refinement of ¼∗h ; recall that by definition ¼D on

X is represented by u , but by Corollary 11, this must be true for any Bewley refinement of ¼∗h ,

because I is nice at u ◦h and so a fortiori ∂ I (u ◦h) 6= {Q0}. Fix an interior act f ∈F , and let x

be such that u (x ) =maxP∈C (h)P(u ◦ f ). We will show that u (x )≥maxP∈D P(u ◦ f ).

Clearly, P(u (x )) ≥ P(u ◦ f ) for all P ∈ C (h). Since f is interior, and by monotonicity so is x ,

there are ε> 0, y ∈ X , g ∈F with u (y ) = u (x )+ε and u ◦ g = u ◦ f −ε. Indeed, for all δ ∈ (0,ε),

there are yδ and gδ such that u (yδ) = u (x ) +δ and u ◦ gδ = u ◦ f −δ. For each such δ ∈ (0,ε),

(yδ, gδ) is a spread of (x , f ). By Lemma 12, it must then be the case that yδ ¼∗h gδ.

Since ¼D extends ¼∗h , conclude that yδ ¼D gδ for all δ ∈ (0,ε); hence, u (yδ) = P(u (yδ)) ≥

P(u ◦ gδ) for all P ∈D. Therefore, u (x )+δ≥ P(u ◦ f )−δ for all P ∈D and all δ ∈ (0,ε). It follows

that u (x )≥ P(u ◦ f ) for all P ∈D, i.e. u (x )≥maxP∈D P(u ◦ f ), as claimed.

To sum up, for all interior f ∈ F , maxP∈C (h)P(u ◦ f ) ≥maxP∈D P(u ◦ f ). Since any a ∈ B0(Σ)

can be written as αu ◦ f +β for some f ∈F int and α,β ∈R, maxP∈C (h)P(a )≥maxP∈D P(a ) for all

a ∈ B0(Σ). By standard results (e.g. Aliprantis and Border, 2007, Theorem 7.51), this implies that

D ⊂C (h), i.e. ¼D is a richer Bewley relation than ¼∗h .

Proof of Theorem 7: fix an interior pair ( f , g ). Assume that (1) holds, and fix ε > 0 such that

u ◦ f +ε, u ◦g −ε∈ B0(Σ, u (X )). Then, for allδ ∈ (0,ε), there exist fδ, gδ ∈F with u ◦ fδ = u ◦ f +δ

and u ◦gδ = u ◦g −δ; note that ( fδ, gδ) is a spread of ( f , g ). Then fδ ¼∗h gδ, so by (1) in Theorem

6, P(u ◦ f )+δ= P(u ◦ fδ)≥ P(u ◦ gδ) = P(u ◦ g )−δ for all P ∈C (h) and all δ ∈ (0,ε). Therefore,

(2) with D =C (h) follows.

The converse, again with D = C (h), is established in Lemma 12. Finally, suppose there is

another set D for which (1) and (2) are equivalent (again using utility u in view of Corollary 11).

14This is immediate if P = Q
Q(S) for some Q ∈ ∂ I (u ◦h). If not, there is a net (Pι) in co{ Q

Q(S) : Q ∈ ∂ I (u ◦h),Q(S)> 0}

that converges to P in the weak∗ topology. Then, Pι(b )→ P(b ), so there is ῑ such that Pι(b )> 0 for all ι following ῑ.

Since any such Pι is a convex combination of elements of { Q
Q(S) : Q ∈ ∂ I (u ◦h),Q(S)> 0}, the claim follows.
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Consider a pair ( f , g ) of interior acts. Suppose that f ¼C (h) g : then (2) holds for set C (h), hence

(1) must hold. But by assumption this implies that (2) must hold for set D as well, and there-

fore f ¼D g . Since Bewley prefences satisfy Independence, ¼C (h)⊂¼D . By the same argument,

¼D⊂¼C (h). It follows that D =C (h).

A.2 Proof of Theorem 2 and Corollary 8

We must show that C is the closed convex hull of all C (h), for h ∈F int.

Claim: for all f , g ∈F , f ¼C (h) g for all h ∈F int implies f ¼ g .

Proof: assume first that f and g are interior. By Lebourg’s Mean Value Theorem (Lebourg, 1979,

Theorem 1.7), there is µ ∈ (0, 1) and Q ∈ ∂ I (µu ◦ f +(1−µ)u ◦ g ) such that I (u ◦ f )− I (u ◦ g ) =

Q(u ◦ f )−Q(u ◦ g ). Since µ f + (1−µ)g is interior, the assumption that P(u ◦ f ) ≥ P(u ◦ g ) for

all P ∈ C (µ f + (1−µ)g ) implies that Q(u ◦ f ) ≥Q(u ◦ g ) [if Q =Q0 this is trivially true]. Hence,

I (u ◦ f )≥ I (u ◦g ), i.e. f ¼ g , as claimed. If now f , g are not interior, pick x interior and consider

λx + (1−λ) f ,λx + (1−λ)g . If P(u ◦ f ) ≥ P(u ◦ g ) for all interior h and all P ∈ C (h), then also

P(λu (x )+(1−λ)u ◦ f )≥ P(λu (x )+(1−λ)u ◦ g ) for all such h, P . As was just shown, this implies

λx +(1−λ) f ¼λx +(1−λ)g . Since this holds for all λ, continuity yields f ¼ g , as required.

By Lemma 9, this Claim implies that C ⊂ co
⋃

h∈F int C (h). Conversely, suppose f ¼C g . Then

f ¼∗ g ; in particular, for every h ∈ F int, f ¼∗h g . But then, Part (1) of Theorem 6 shows that

f ¼C (h) g . Applying Prop. A.1 in GMM to the Bewley preference¼C (h) now implies that C (h)⊂C .

Note that the above also shows: f ¼C (h) g for all interior h if and only if f ¼∗ g . Since f ¼∗ g

directly and trivially implies that f ¼∗h g , and Part 1 of Theorem 6 shows that f ¼∗h g implies

f ¼C (h) g , we can also conclude that f ¼∗ g if and only if f ¼∗h g for all interior h.
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Ambiguity in the small and in the large:

Online Appendix
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June 2012

A Locally Lipschitz preferences

We consider a preference¼ that admits a monotonic, continuous, normalized, Bernoullian rep-

resentation (I , u ), and introduce a novel axiom that is equivalent to the assertion that I is locally

Lipschitz.1 Recall that xh ∈X denotes the certainty equivalent of act h ∈F .

Axiom 1 (Locally Bounded Improvements) For every h ∈F int, there are y ∈ X and g ∈F with

g (s )� h(s ) for all s such that, for all (hn )⊂F and (λn )⊂ [0, 1]with hn → h and λn ↓ 0,

λn g +(1−λn )hn ≺λn y +(1−λn )xhn eventually.

To gain intuition, focus on the constant sequence with hn = h. Since preferences are Bernoul-

lian, the individual’s evaluation of λy +(1−λ)xh changes linearly with λ. On the other hand, her

evaluation of λg +(1−λ)h may improve in arbitrary non-linear (though continuous) ways as λ

increases from 0 to 1 (recall that g is pointwise preferred to h). The Axiom states that, when λ

is close to 0, this improvement is comparable to the linear change in preference that applies to

§Department of Economics and Statistics and Collegio Carlo Alberto, Università di Torino;

paolo.ghirardato@carloalberto.org
¶Northwestern University; marciano@northwestern.edu
1That is: for every a ∈ int B0(Σ, u (X )), there are ε > 0 and L > 0 such that |I (b )− I (c )| ≤ L‖b − c‖ for all b , c ∈

B0(Σ, u (X ))with ‖b −a‖<ε and ‖c −a‖<ε.
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λy +(1−λ)xh (which may still be very rapid, if y is ‘much’ preferred to xh ). Hence, it imposes a

bound on the instantaneous rate of change in preferences, as a function of λ. Furthermore, this

bound is required to be uniform in a neighborhood of h.

Proposition 1 Let ¼ be a preference that admits a monotonic, continuous, Bernoullian, nor-

malized representation (I , u ). Then ¼ satisfies Axiom 1 if and only if I is locally Lipschitz in the

interior of its domain.

Proof: (If): Functionally, the displayed equation in Axiom 1 is equivalent to

I (λn [u ◦ g −u ◦hn ]+u ◦hn ) = I (λn u ◦ g +(1−λn )u ◦hn )< I (λn u (y )+ (1−λn )u (x n )) =

=λn u (y )+ (1−λn )u (x n ) =λn [u (y )− I (u ◦hn )]+ I (u ◦hn ). (1)

Notice that the second equality uses the assumption that I is normalized. Since u ◦hn → u ◦h in

the sup norm, for every ε∈
�

0, mins [u (g (s ))−u (h(s ))]
�

, and for n large enough, maxs |u (h(s ))−

u (hn (s ))| < mins [u (g (s ))− u (h(s ))]− ε, so that, for every s , u (hn (s )) = u (h(s )) + [u (hn (s ))−

u (h(s ))]< u (h(s ))+mins ′[u (g (s ′))−u (h(s ′))]−ε≤ u (h(s ))+u (g (s ))−u (h(s ))−ε= u (g (s ))−ε.

In other words, u (g (s ))− u (hn (s )) > ε for all s and all n large enough. Moreover, for n large

enough, λnε+hn ∈ B0(Σ, u (X )). Since I is monotonic, and rearranging terms,

I (λnε+u ◦hn )− I (u ◦hn )
λn

< u (y )− I (u ◦hn ) eventually.

Again because u ◦hn → u ◦h, eventually I (u ◦hn )≥ I (u ◦h)−ε, so finally

I (λnε+u ◦hn )− I (u ◦hn )
λn

< u (y )− I (u ◦h)+ε eventually.

This implies that, for a suitable ε> 0, I ◦(u ◦h;ε)≤ u (y )− I (u ◦h)+ε<∞.

To sum up, for every h such that u ◦h ∈ intB0(Σ, u (X )), there are ε > 0 and y ∈ X such that

I ◦(u ◦ h;ε) ≤ u (y )− I (u ◦ h) + ε < ∞. Since I is monotonic, by Proposition 4 in Rockafellar

(1980), I is directionally Lipschitzian; by Theorem 3 therein, the Clarke-Rockafeller derivative

of I in the direction a at u ◦h, denoted I ↑(u ◦h; a ), equals lim infb→a I ◦(u ◦h;b ). Since I ◦(u ◦h; ·) is

monotonic because I is, this implies that, for all a such that a (s )<ε, I ↑(u ◦h; a )≤ I ◦(u ◦h;ε)<

∞. Therefore, the constant function 0 is in the interior of {a : I ↑(u ◦ h; a ) < ∞}. Again by

Theorem 3 in Rockafellar (1980), this implies that I is directionally Lipschitz with respect to the

2



vector 0; as noted on p. 267 therein, it is ‘an easy fact to verify’ that this is equivalent to the

assertion that I is locally Lipschitz at u ◦h.

(Only if): Conversely, suppose I is Lipschitz near u ◦h. Since h is interior, I is monotonic and

normalized, and I ◦(u ◦h; ·) is continuous, there is ε> 0 such that I ◦(u ◦h;ε)< u (y )− I (u ◦h)−ε

for some y ∈X . Then, for all (hn )→ h and (λn ) ↓ 0, eventually

I (λn [ε+u ◦hn ]+ (1−λn )u ◦hn )− I (u ◦hn )
λn

=
I (λnε+u ◦hn )− I (u ◦hn )

λn
< u (y )− I (u ◦h)−ε.

Now choose n large enough so that maxs |u (h(s ))−u (hn (s ))| < ε
2

. Then a fortiori, for every s ,

u (h(s ))− u (hn (s )) < ε
2

, i.e. u (h(s )) < u (hn (s )) + ε
2

, and therefore u (h(s )) + ε
2
< u (hn (s )) + ε.

Because h is interior, there is δ ∈ (0, ε
2
] such that u ◦h +δ = u ◦ g for some g ∈ F ; for such g ,

the above argument implies that u (g (s ))< u (hn (s ))+ε for all s , and of course g (s )� h(s ) for all

s . By monotonicity, conclude that, for all n sufficiently large,

I (λn u ◦ g +(1−λn )u ◦hn )− I (u ◦hn )
λn

< u (y )− I (u ◦h)−ε.

Finally, by choosing n large enough, we can ensure that I (u ◦hn )< I (u ◦h)+ε, and therefore

I (λn u ◦ g +(1−λn )u ◦hn )− I (u ◦hn )
λn

< u (y )− I (u ◦hn ).

Rearranging terms yields Eq. (1), so the axiom holds.

B Nice MBL preferences

Proposition 2 A monotonic, isotone and concave function I : B0(Σ,Γ)→ R (for some interval

Γ) is nice everywhere in the interior of its domain.

Proof: Recall that a monotone concave I is locally Lipschitz; furthermore, ∂ I coincides with

the superdifferential of I (e.g. Rockafellar, 1980, p. 278), and it is monotone, in the sense that

∀c , c ′ ∈ int B0(Σ,Γ), Q ∈ ∂ I (c ),Q ′ ∈ ∂ I (c ′), Q(c − c ′)≤Q ′(c − c ′).2 (2)

2Since ∂ I is the superdifferential of I , Q(c ′ − c ) ≥ I (c ′)− I (c ) and Q ′(c − c ′) ≥ I (c )− I (c ′). Summing these

inequalities yields the inequality in the text.
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Fix c ′ ∈ int B0(Σ,Γ) and suppose that Q0 ∈ ∂ I (c ′). Then, for every c ∈ int B0(Σ,Γ) and every

Q ∈ ∂ I (c ), Q(c − c ′) ≤ 0. Since c ′ is interior, the set Γ̂ = Γ∩ {γ ∈ R : γ > c ′(s ) ∀s } is non-empty.

Morevoer, for any γ ∈ Γ̂, and for all Q ∈ ∂ I (1Sγ), Q(1Sγ− c ′)≤ 0. But since γ− c ′(s )> 0 for all s ,

and I is monotonic, this requires that ∂ I (1Sγ) = {Q0} for all γ∈ Γ̂.

In particular, pickα,β ∈ Γ̂, withα>β . Since I is isotone, I (1Sα)> I (1Sβ ). By the mean-value

theorem (Lebourg, 1979), there must be µ∈ (0, 1) and Q ∈ ∂ I (µ1Sα+(1−µ)1Sβ ) = ∂ I ([µα+(1−

µ)β ]1S) such that I (1Sα)− I (1Sβ ) =Q(1Sα−1Sβ ) =Q(1S)(α−β ). But µα+(1−µ)β ∈ Γ̂, so Q =Q0,

and therefore I (1Sα) = I (1Sβ ): contradiction. Therefore, I must be nice at c .

We now provide an axiom for MBL preferences that ensures niceness. There are obvious

similarities with Axiom 1.

Axiom 2 (Non-Negligible Worsenings at h) There are y ∈ X with y ≺ h and g ∈ F with g (s ) ≺

h(s ) for all s such that, for all (hn )⊂F and (λn )⊂ [0, 1]with hn → h and λn ↓ 0,

λn g +(1−λn )hn ≺λn y +(1−λn )xhn eventually.

This axiom rules out the possibility that preferences may be ‘flat’ when moving from h to-

ward pointwise less desirable acts g . We argue as for Axiom 1: the individual’s evaluation of

λy + (1−λ)xh changes linearly with λ, whereas her evaluation of λg + (1−λ)h may worsen in

arbitrary non-linear ways as λ increases from 0 to 1. Axiom 2 states that, when λ is close to 0,

this worsening is comparable to the linear decrease in preference that applies to λy +(1−λ)xh

(which may still be very slow, if y is ‘almost’ as good as xh ).

Mas-Colell (1977) characterizes preferences over consumption bundles (i.e. on Rn
+) repre-

sented by a (locally) Lipschitz and ‘regular’ utility function; his notion of regularity is related to

niceness (cf. p. 1411); for instance, if utility is continuously differentiable, the requirement is

that its gradient be non-vanishing onRn
++. Mas-Colell’s axiom is not directly related to ours.

Proposition 3 Let¼ be an MBL preference with representation (I , u ), and assume that I is nor-

malized. Then¼ satisfies Axiom 2 at h ∈F int if and only if I is nice at u ◦h.

Proof: (If): As in the proof of Proposition 1, for g , y , (hn ), (λn ) as in the axiom,

I (λn [u ◦ g −u ◦hn ]+u ◦hn )<λn [u (y )− I (u ◦hn )]+ I (u ◦hn ) eventually.
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For n large, ‖u ◦hn−u ◦h‖< 1 and therefore u (hn (s ))−u (g (s )) = [u (hn (s ))−u (h(s ))]+u (h(s ))−

u (g (s )) < 1+maxs [u (h(s ))− u (g (s ))] ≡ δ. Since h(s ) � g (s ) for all s , δ > 0. Furthermore, as

n→∞, eventually λn (−δ)+u ◦hn ∈ B0(Σ, u (X )), and so, by monotonicity of I ,

I (λn (−δ)+u ◦hn )<λn [u (y )− I (u ◦hn )]+ I (u ◦hn ) eventually.

Rearranging,

I (λn (−δ)+u ◦hn )− I (u ◦hn )
λn

< u (y )− I (u ◦hn ) eventually.

Since hn → h and I is continuous, for every ε> 0, eventually I (u ◦hn )≥ I (u ◦h)−ε, and so

I (λn (−δ)+u ◦hn )− I (u ◦hn )
λn

< u (y )− I (u ◦h)+ε eventually.

Therefore, I 0(u ◦h;−δ)≤ u (y )− I (u ◦h)+ε. Since this is true for all ε> 0, I 0(u ◦h;−δ)≤ u (y )−

I (u ◦h)< 0, as y ≺ h. But since I 0(u ◦h;−δ) =maxQ∈∂ I (u ◦h)(−δ)Q(S) =−δminQ∈∂ I (u ◦h)Q(S), and

every Q ∈ ∂ I (u ◦h) is a positive measure because I is monotonic, the zero measure Q0 cannot

belong to ∂ I (u ◦h).

(Only if): Conversely, suppose I is nice at u ◦h. Since h is interior, there is δ > 0 such that

u ◦h −δ = u ◦ g for some g ∈F int. Since Q0 6∈ ∂ I (u ◦h) and I is monotonic,I 0(u ◦h;− 1
2
δ)< 0.

Hence, for all sequences λn → 0 and hn → h (acts), and for all ε∈ (0,−I 0(u ◦h;− 1
2
δ)), eventually

I (λn (− 1
2
δ)+u ◦hn )− I (u ◦hn )

λn
<−ε.

In particular, find y ∈X such that y ≺ h and I (u ◦h)−u (y )<− 1
2

I 0(u ◦h;− 1
2
δ), which is possible

because h is interior. Add − 1
2

I 0(u ◦ h;− 1
2
δ) on both sides of this inequality to conclude that

I (u ◦h)−u (y )− 1
2

I 0(u ◦h;− 1
2
δ)<−I 0(u ◦h;− 1

2
δ), and so eventually

I (λn (− 1
2
δ)+u ◦hn )− I (u ◦hn )

λn
< u (y )− I (u ◦h)+

1

2
I 0(u ◦h;−

1

2
δ).

Also, for n large, I (u (hn ))≤ I (u (h))− 1
2

I 0(u ◦h;− 1
2
δ); conclude that, eventually,

I (λn (− 1
2
δ)+u ◦hn )− I (u ◦hn )

λn
< u (y )− I (u ◦hn ).

Rewriting yields

I (λn [− 1
2
δ+u ◦hn ]+ (1−λn )u ◦hn )<λn [u (y )− I (u ◦hn )]+ I (u ◦hn ) eventually.

5



Finally, if n is large enough, ‖u ◦hn −u ◦h‖< 1
2
δ, so for all s ,− 1

2
δ+u (hn (s )) =− 1

2
δ+u (h(s ))+

[u (hn (s ))−u (h(s ))]>−δ+u (h(s )) = u (g (s )). Hence, finally, monotonicity implies

I (λn u ◦ g +(1−λn )u ◦hn )<λn u (y )− (1−λn )I (u ◦hn ) eventually,

as required.

C Calculations for Example 4

Since I is continuously differentiable, it is ‘strictly differentiable’: see Clarke (1983, Corollary to

Prop. 2.2.1). In particular, for all e ∈ B0(Σ), hn → h and λn ↓ 0, (λn )−1
�

I (λn e +(1−λn )hn )− I ((1−

λn )hn )
�

→∇I (h)·e . Hence, if∇I (h)· f >∇I (h)·g , then for all sequencesλn ↓ 0, hn ↓ 0, eventually

(λn )−1
�

I (λn f +(1−λn )hn )− I ((1−λn )hn )
�

> (λn )−1
�

I (λn g +(1−λn )hn )− I ((1−λn )hn )
�

, so Eq.

(7) will hold for n large: hence, in this case f ¼∗h g . This is in particular the case if h1 > h2 ≥ 0.

To analyze cases 2 and 3 in the text, note first that, for any pair f , g ∈F , using the formula

for the difference of two cubes, f ¼ g iff

∑

i=1,2

[P i · ( f − g )]
�

(P i · f )2+(P i · g )2+(P i · f )(P i · g )
�

≥ 0. (3)

Now consider ε, f , g , f ε, g ε as in the text. The rankings λn f ε+(1−λn )hn ¼λn g ε+(1−λn )hn

and λn f ε+(1−λn )k n ¼λn g ε+(1−λn )k n are then equivalent to

∑

i=1,2 P i ·λn [1+2ε,−1+2ε]
n

�

P i ·λn [3+ε, 1+ε]+γ
�2
+
�

P i ·λn [2−ε, 2−ε]+γ
�2
+ (4)

+
�

P i ·λn [3+ε, 1+ε]+γ
��

P i ·λn [2−ε, 2−ε]+γ
�

o

≥ 0,
∑

i=1,2 P i ·λn [1+2ε,−1+2ε]
n

�

P i ·λn [2+ε, 2+ε]+γ
�2
+
�

P i ·λn [1−ε, 3−ε]+γ
�2
+ (5)

+
�

P i ·λn [2+ε, 2+ε]+γ
��

P i ·λn [1−ε, 3−ε]+γ
�

o

≥ 0.

In case 3 (γ= 0), divide Eqs. (4) and (5) by (λn )3 and set ε= 0 to obtain the conditions

(2p −1)
�

(1+2p )2+4+2(1+2p )
�

+(1−2p )
�

(1+2(1−p ))2+4+2(1+2(1−p ))
�

≥ 0,

(2p −1)
�

4+(1+2(1−p ))2+2(1+2(1−p ))
�

+(1−2p )
�

4+(1+2p )2+2(1+2p )
�

≥ 0
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and by inspection the l.h.s. of the second inequality is the negative of the l.h.s. of the first.

Furthermore, the l.h.s of the first condition equals (2p−1)[(1+2p )2−(1+2(1−p ))2+4(2p−1)]> 0,

because p > 1
2

. Therefore, for any n , when ε= 0, Eq. (4) holds as a strict inequality, whereas the

inequality in Eq. (5) fails. Hence, the same is true for any n when ε is positive but small. Thus.

f ε 6¼∗h g ε for any ε≥ 0 if h = [0, 0].

In case 2 (γ> 0), first take ε= 0. We claim that Eqs. (4) and (5) can both hold only if they are

in fact equalities. To see this, note that P1 · [α,β ] = P2 · [β ,α] for any α,β ∈R; hence, when ε= 0

and h = [γ,γ], the l.h.s. of Eq. (5) can be rewritten as

∑

i=1,2

P3−i ·λn [−1, 1]
n

�

P3−i ·λn [2, 2]+γ
�2
+
�

P3−i ·λn [3, 1]+γ
�2
+
�

P3−i ·λn [2, 2]+γ
��

P3−i ·λn [3, 1]+γ
�

o

.

It is apparent that this is the negative of the l.h.s of Eq. (4) when ε= 0 and h = [γ,γ], except that

we first use P2 and then P1, rather than the opposite as in Eq. (4). This proves the claim.

Next, we claim that Eq. (4) holds as a strict inequality, which proves the assertion in the text

that f 6¼∗h g . Since p > 1
2

and γ> 0, the first and third terms in braces are strictly greater for i = 1

than for i = 2. Since P2 · [1,−1] =−P1 · [1, 1], the l.h.s. of Eq. (4) is the difference of these terms,

multiplied by P1 ·λn [1,−1]> 0, and hence it is strictly positive.

Finally, if ε > 0, and since h = [γ,γ], we have ∇I (h) · ( f + ε) =∇I (h) · f +∇I (h) · ε =∇I (h) ·

g +∇I (h) ·ε>∇I (h) · g −∇I (h) ·ε=∇I (h) · (g −ε), which, as noted above, implies that f ε ¼∗h g ε.

As noted in Footnote 10, here ∂ I (0) contains only the zero vector. However, consider the

monotonic, locally Lipschitz functional J : R2 → R given by J (h) =min(I (h), h1 + I (h)). Then

J (h) = I (h) for h ∈R2 with h1 ≥ 0, and ∂ J (0) =
�

[γ, 0] : γ∈ [0, 1]
	

(Clarke, 1983, Theorem 2.5.1).

Since all mixtures in Eq. (8) are non-negative when h ∈R2
+ and ε < 1, even if g is replaced with

g −ε (cf. the definition of k n ), the analysis in Example 4 applies verbatim to J . In particular, for

all ε ∈ [0, 1), now f +ε�C (0) g −ε, but f +ε 6¼∗0 g −ε (the argument in the second paragraph of

Ex. 4 does not apply because J is not (continuously) differentiable at 0).

D Relevant priors: a behavioral test

We conclude by showing that, given an interior act h, whether a probability P ∈ ba1(Σ) belongs

to the set C (h) can be ascertained without invoking Theorems 6 or 7; indeed, using only the
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DM’s preferences. For the result we need a notion of lower certainty equivalent of an act f for

the incomplete, discontinuous preference ¼∗h (cf. the definition of C ∗( f ) in GMM, p. 158).

Definition 1 For any act f ∈ F , a local lower certainty equivalent of f at h ∈ F int is a prize

x f ,h ∈X such that, for all y ∈X , y ≺ x f ,h implies f ¼∗h y and y � x f ,h implies f 6¼∗h y .

Furthermore, fix P ∈ ba1(Σ) and f ∈ F , and suppose that f =
∑n

i=1 x i 1E i for a collection of

distinct prizes x1, . . . ,xn and a measurable partition E1, . . . , En of S. Then, define

xP, f ≡ P(E1)x1+ . . .+P(En )xn .

That is, xP, f ∈ X is a mixture of the prizes x1, . . . ,xn delivered by f , with weights given by the

probabilities that P assigns to each event E1, . . . , En . We then have:

Corollary 4 For any P ∈ ba1(Σ) and h ∈F int such that I is nice at u ◦h, P ∈C (h) if and only if,

for all f ∈F int, x f ,h ´ xP, f .

Proof: We show that u (x f ,h) =minP∈C (h)P(u ◦ f ); thus, the condition in the Corollary states that

P satisfies P(u ◦ f ) ≥minP ′∈C (h)P ′(u ◦ f ) for all interior f , so by linearity P(a ) ≥minP ′∈C (h)P(a )

for all a ∈ B0(Σ), and P ∈C (h) then follows from standard arguments.

If x f ,h is as in Def. 1, then minP∈C (h)P(u ◦ f )≥ u (y ) for all y ≺ x f ,h by (1) in Theorem 6, and

so minP∈C (h)P(u ◦ f )≥ u (x f ,h). Conversely, for every y with u (y )<minP∈C (h)P(u ◦ f ), there are

ε > 0, y ′ ∈ X , and f ′ ∈F with u (y ′) = u (y )+ε, u ◦ f ′ = u ◦ f −ε and u (y ′)≤minP∈C (h)P(u ◦ f ′);

then, by (2) in Theorem 7, since ( f , y ) is a spread of ( f ′, y ′), f ¼∗h y . This implies that y ´ x f ,h .

Hence, minP∈C (h)P(u ◦ f )≤ u (x f ,h) as well.

E Additional properties of¼∗h

In addition to agreeing with ¼ on X , provided ∂ I (u ◦h) 6= {Q0}, ¼∗h satisfies the following addi-

tional properties.

Lemma 5 The preference¼∗h is a monotonic, independent preorder.
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Proof: Monotonicity and reflexivity are immediate from monotonicity of ¼. Transitivity is im-

mediate from the definition of ¼∗h and transitivity of ¼. It remains to be shown that ¼∗h is inde-

pendent: that is, for all k ∈ F and µ ∈ (0, 1], f ¼∗h g iff µ f + (1−µ)k ¼∗h µg + (1−µ)k . Note

that

λn [µ f +(1−µ)k ]+ (1−λn )hn = (λnµ) f +[1− (λnµ)]
�

λn (1−µ)
1− (λnµ)

k +
1−λn

1− (λnµ)
hn

�

≡

≡ λ̄n f +(1− λ̄n )h̄n

with (λ̄n ) ↓ 0 and (h̄n ) → h, and similarly for g . Hence, if f ¼∗h g , then eventually λ̄n f + (1−

λ̄n )h̄n ¼ λ̄n g +(1− λ̄n )h̄n ; repeating the argument for all (λn ), (hn ) implies that µ f +(1−µ)k ¼∗h
µg +(1−µ)k . Conversely, if µ f +(1−µ)k ¼∗h µg +(1−µ)k , define λ̃n , h̃n so that

λ̃n [µ f +(1−µ)k ]+ (1− λ̃n )h̃n =λn f +(1−λn )hn :

this requires λ̃n = λn

µ
, which is in [0, 1] for n large and converges to zero as n→∞, and

u ◦ h̃n =
(1−λn )u ◦hn − λ̃n (1−µ)u ◦k

1− λ̃n
,

which is in B0(Σ, u (X )) for n large (recall that h is interior), and indeed such that h̃n → h.

Note that λ̃n , h̃n do not depend on f . Again, for n large λ̃n [µ f + (1 − µ)k ] + (1 − λ̃n )h̃n ¼

λ̃n [µg +(1−µ)k ]+(1−λ̃n )h̃n , and therefore by construction λn f +(1−λn )hn ¼λn g +(1−λn )hn ,

and so, repeating for all sequences, f ¼∗h g .
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