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Abstract

In this paper, we study the asymptotic properties of a sequence of posterior
distributions based on an independent and identically distributed sample and when
the Bayesian model is misspecified. We find a sufficient condition on the prior
for the posterior to accumulate around the densities in the model closest in the
Kullback–Leibler sense to the true density function. Examples are presented.
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1 Introduction

This paper is concerned with asymptotics for Bayesian nonparametric models. In
particular, we consider generalizations of the recent literature on consistency; see for
example, Barron, Schervish and Wasserman (1999), Ghosal, Ghosh and Ramamoorthi
(1999), and Walker (2004). The standard assumption for consistency is that the true
density function, which we denote by f0, is in the Kullback–Leibler support of the
prior, denoted by Π. Further sufficient conditions on the prior are then established
in order to ensure that the sequence of posterior distributions accumulate in suitable
neighborhoods of f0. The three papers just cited deviate in the precise form of the
further sufficient conditions.

We make the support of the prior assumption more general now by assuming that
the closest density in the support of the prior is a possibly non–zero Kullback–Leibler
divergence away from f0; specifically, if f1 is the closest density, in the Kullback-
Leibler sense, in the support F of the prior (to be made more precise later), then δ1

is defined to be the Kullback–Leibler divergence between f0 and f1. We then look
for further sufficient conditions under which the posterior distributions accumulate in
suitable neighborhoods of f1. In particular, we work around the ideas presented in
Walker (2004) and the sufficient conditions for accumulation at f1 can be seen as a
generalization of the condition appearing in Walker (2004).

The convenience of working in this setting is quite evident. When considering
asymptotics, there are two possible scenarios: δ1 = 0 or δ1 > 0. The former involves
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a well specified model and the latter a misspecified model. Typically, the latter is
more likely, though in reality it will be unknown. However, one can assume δ1 = 0
and derive conditions on the prior for posterior accumulation at f0, and then assume
δ1 > 0 and derive another set of conditions on the prior for posterior accumulation at
f1. It is to be sure that the latter conditions will be stronger than the former. In this
case, and the value of δ1 unknown, it makes perfect sense to construct the prior under
the condition that δ1 ≥ 0, and hence under the misspecified case.

Early work for the misspecified problem has been done by Berk (1966) and more
recently by Bunke and Milhaud (1998), Shalizi (2009), and Kleijn and van der Vaart
(2006). In particular, the strategy followed by Kleijn and van der Vaart (2006) consists
of defining a neighborhood around f1 according to a suitable semi-metric on the space
of densities that satisfies an entropy condition related to the Hellinger integral hα (to
be defined later); see their equation (2.2). Kleijn and van der Vaart concentrate on the
notion of a single f1 for which accumulation of the posterior takes place and extend
this to a finite number of such f1.

On the other hand, we focus our efforts directly on a set F1 rather than on a
single f1, acknowledging the fact that in general one does not know how big the set of
densities associated with the minimum Kullback-Leibler distance δ1 is. Hence, we find
it appropriate to define

F1 = {f ∈ F̄ : D(f0, f) ≤ δ1}, (1.1)

where F̄ is the Hellinger closure of F and D(f0, f) is the Kullback-Leibler divergence
of f relative to f0. When F1 is non–empty, our working assumption throughout the
paper, we show accumulation at F1 with respect to the Hellinger distance. When F1

is empty, we show that the posterior accumulates in a different set that we define and
explain at the end of Section 3.

In reality, and in general, it is not known whether F1 is empty or not, since f0 is
not known. A notable exception is when F is convex, in which case F1 reduces to a
single density f1. However, our key prior condition, given in Section 3, covers both
F1 empty or non–empty. Kleijn and van der Vaart (2006) only establish what the
posterior does when F1 is a finite set. For a chosen Π it may be possible to find CΠ

such that if f0 ∈ CΠ then F1 is empty, whereas if f0 ∈ CcΠ then F1 is non–empty. But
in spite of this being a difficult task, it would not even be known if f0 was in CΠ or
not, and hence the objective in this area would focus on finding Π for which CΠ can be
shown to be empty. To date this is only known to be true when F is convex. Therefore
knowing what happens when f0 ∈ CΠ is important, and one of the contributions of
the paper is to fill this gap in the literature.

The rest of the paper is organized as follows. In Section 2 we start with some
notation, definitions, and preliminary results. The main results are presented in Section
3 and illustrations involving various priors are given in Section 4. We conclude with a
discussion in Section 5.
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2 Notation and preliminary results

We introduce the notation of the paper, together with essential preliminary results.
Let X be a separable metric space endowed with its Borel σ-field B, and denote by Ω
the space of density functions on (X,B) relative to some reference measure (that
is omitted henceforth for ease of notation). For d a distance on Ω and A ⊂ Ω,
we denote by N(δ, A, d) the minimum number of balls of radius at most δ, with
respect to the metric d, needed to cover A. In particular, on Ω we consider the
Hellinger distance H(f, g) = {

∫
(
√
f − √g)2}1/2 (which makes Ω a separable space)

and the Kullback–Leibler divergence D(f, g) =
∫

log(f/g)f . Moreover, we define, for
α ∈ (0, 1), the Hellinger integral hα(f, g) =

∫
f1−αgα and the α-divergence dα(f, g) =

α−1[1 − hα(f, g)], see Liese and Vajda (2006) and the references therein. We recall
here that hα(f, g) ≤ 1 for any f, g ∈ Ω and that dα(f, g) is decreasing in α with
limα→0 dα(f, g) = D(f, g) whenever D(f, g) < ∞. The case α = 1/2 yields the
Hellinger distance, since d1/2(f, g) = H2(f, g). A lemma, whose proof is deferred
to the Appendix, provides a useful inequality that relates the Hellinger distance and
the Hellinger integral hα. It is used in the proofs of Theorem 1 and Lemma 2.

Lemma 1. For any f, g, f0 ∈ Ω and 0 ≤ α ≤ 1
2 ,

|hα(f0, f)− hα(f0, g)| ≤ [H(f, g)]2α.

Note that for α = 1/2, we have H(f, g) ≥ |H2(f0, f) − H2(f0, g)|/2, which is
weaker than the standard triangle inequality, as it can be proved by using (A.2) in the
Appendix and the fact that H(f, g) ≤

√
2.

As we are going to deal with convergence of sets of densities, we consider the
metric space (Ω, H), and define H(A, f) = infg∈AH(g, f) to be the Hellinger distance
between A and f ∈ Ω, and H(A,B) = max{supf∈BH(A, f), supf∈AH(B, f)} to be
the Hausdorff distance (relative to the Hellinger) between A and B. In particular, it
can be shown that

H(A, f) ≤ H(B, f) +H(A,B). (2.1)

Since the Hellinger is a bounded distance, convergence in the Hausdorff metric of a
sequence (An) to A is equivalent to H(An, f) → H(A, f) for every f ∈ Ω (known as
Kuratowski convergence). Moreover, in case of a decreasing sequence (An), the limit
is given by

⋂
nAn, see Rockafellar and Wets (2009, Chapter 4).

Now let X1, X2, . . . be independent and identically distributed random variables
taking values in (X,B) with common density function f0 ∈ Ω and, given F ⊆ Ω, let
Π be a prior probability measure on F . The Bayesian posterior measure is given by

Πn(A) =
∫
A
Rn(f)Π(df)

/∫
F
Rn(f)Π(df), (2.2)

where A is a measurable subset of F and Rn(f) =
∏n
i=1 f(Xi)/f0(Xi). We denote

by F∞0 the infinite product measure relative to f0. Finally, upon definition of δ1 =
inff∈F D(f0, f), we refer to F1 in (1.1) as the set of pseudo-true densities f1. An
associate editor has suggested an alternative definition of the minimum Kullback–
Leibler distance as δ1 = inf{t : Π(f : D(f0, f) ≤ t) > 0}; we explicitly work with the
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former but note the latter is effectively equivalent for the purposes of our paper, see
also (3.5) below. Existence of a pseudo-true density is a delicate issue. Given the lower
semicontinuity of D(f0, ·) as a map from the metric space (Ω, H) to R, see Lemma 8.2
in Kleijn and van der Vaart (2006), a (rather) stringent sufficient condition is the
compactness of F . To our knowledge, most of the theoretical results are based on the
hypothesis of convexity of F , supf∈F

∫
log(f)f0 being finite the essential additional

requirement. See Liese and Vajda (1987, Chapter 8), Pfanzagl (1990) and Patilea
(2001).

3 Main results

In the well–specified case with δ1 = 0, strong consistency corresponds to

Πn(f : H(f0, f) > ε)→ 0 F∞0 − a.s. (3.1)

for any ε > 0, entailing that the posterior concentrates all the mass in an arbitrarily
small Hellinger neighborhood of the true f0. In the misspecified case, it is reasonable
to ask that the posterior concentrates mass around the set of pseudo-true densities F1

in (1.1),
Πn({f : H(F1, f) > ε})→ 0 F∞0 − a.s.

In order to establish this result, we follow a route different from the one in Kleijn and
van der Vaart (2006) in that we keep on working, although in an instrumental way, on
neighborhoods around the true f0. Specifically, we consider the sets

Aα,ε = {f ∈ F : dα(f0, f) > δ1 + ε/α}, (3.2)

Aα = {f ∈ F : dα(f0, f) > δ1 + α}. (3.3)

Note that the latter can be recovered from (3.2) with ε = α2, although any ε = ε(α)
decreasing in α with ε(α)/α → 0 as α → 0 would work. The idea is that Acα is
monotonically decreasing in α to F1.

Lemma 2. Let Aα and F1 be as in (3.3) and (1.1), respectively. Then,
⋂
αA

c
α ⊆ F1.

The proof of Lemma 2 is provided in the Appendix. We aim now at establishing
sufficient conditions for

Πn(Aα,ε)→ 0 F∞0 − a.s. (3.4)

for any α and ε sufficiently small. To this aim, we first adapt the Kullback–Leibler
property to the misspecified case as

Π(f ∈ F : D(f0, f) ≤ δ1 + η) > 0 (3.5)

for any η > 0, see Theorem 2.1 in Kleijn and van der Vaart (2006). In fact, a simple
corollary of Lemma 3 and 4 in Barron, Schervish and Wasserman (1999) implies that,
for all large n and for any c > 0,

In ≥ e−n(δ1+c), F∞0 − a.s., (3.6)

4



where In =
∫
F Rn(f)Π(df) is the denominator of (2.2). As for the numerator, the key

condition can be stated, similar to Walker (2004), in terms of summability of powers
of prior probabilities. To this end, for a given α ∈ (0, 1), let (Bj,ε)j≥1 be Hellinger
balls of size ε > 0 that cover F such that∑

j≥1

Π(Bj,ε)α <∞. (3.7)

We are now ready to state and prove our main result.

Theorem 1. Suppose Π satisfies (3.5) and that (3.7) holds for some α ∈ (0, 1/2),
where the sets Bj,ε are Hellinger balls of size ε = 2(ε/2)1/(2α) whose union covers F .
Then (3.4) holds.

Proof. Let (Aj)j≥1 be a partition of Aα,ε (to be specified later) and define fn,j to be
the predictive density with posterior distribution restricted, and normalized, to the set
Aj . Note that

fn,j(x) =
∫
Aj

f(x)
Πn(df)
Πn(Aj)

=

∫
Aj
f(x)Rn(f)Π(df)∫
Aj
Rn(f)Π(df)

,

so that, letting Ln,j =
∫
Aj
Rn(f)Π(df),

Ln+1,j/Ln,j = fn,j(Xn+1)/f0(Xn+1),

see also Walker (2004). Then, we have

Πn(Aα,ε) =
∑
j≥1

Πn(Aj) ≤
∑
j≥1

Πn(Aj)α =
∑
j≥1

Lαn,j/I
α
n , (3.8)

E(Lαn+1,j |X1, . . . , Xn) = hα(f0, fn,j)Lαn,j . (3.9)

Take Aj ⊆ A∗j = {f : H(fj , f) < ε/2}, where ε = 2(ε/2)1/(2α) and (fj)j≥1 are densities
in Aα,ε. By using Lemma 1, we have that

hα(f0, fn,j)− hα(f0, fj) ≤ [H(fj , fn,j)]2α < ε/2

which, together with hα(f0, fj) < 1− α(δ1 + ε/α) (since fj ∈ Aα,ε), yields

hα(f0, fn,j) < 1− αδ1 − ε/2.

Hence, from (3.9), we get

E(Lαn,j) < (1− αδ1 − ε/2)nΠ(Aj)α < e−n(αδ1+ε/2)Π(Aj)α.

As for the numerator of (3.8), by the Markov Inequality,

P
(∑
j≥1

Lαnj > ende−n(αδ1+ε/2)

)
< e−nd

∑
j≥1

Π(Aj)α.
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Since (3.7) implies that
∑

j≥1 Π(Aj)α < ∞, we get that
∑

j≥1 L
α
nj < e−n(αδ1+ε/2−d)

F∞0 –a.s. for all large n, for any d > 0. As for the denominator of (3.8), note that (3.6)
implies that, for all large n and for any c > 0, Iαn ≥ e−nα(δ1+c) F∞0 –a.s. Therefore,

Πn(Aα,ε) ≤
∑
j≥1

Lαnj/I
α
n ≤ e−n(ε/2−d−αc) → 0 F∞0 − a.s.

by taking c and d sufficiently small.

A corollary to Theorem 1 and Lemma 2 provides the sufficient condition for accu-
mulation of the posterior at F1 in the Hellinger sense.

Corollary 1. Suppose Π satisfies (3.5) and that∑
j≥1

Π(Bj,εα)α <∞ (3.10)

for all α ∈ (0, 1/2), where εα = 2(α2/2)1/(2α). Then, as n → ∞, if F1 is non–empty,
Πn({f : H(F1, f) > ε})→ 0 F∞0 –a.s. for any ε > 0.

Proof. Condition (3.10) implies that, for all α ∈ (0, 1/2), Πn(Aα) → 0 F∞0 –a.s. So,
clearly,

Πn(f ∈ F : H(Acα, f) ≤ ξ)→ 1 F∞0 − a.s.

for any ξ > 0 and all α ∈ (0, 1/2). Now define A =
⋂
αA

c
α and use (2.1) to get

H(A, f) ≤ H(Acα, f) +H(Acα, A). Since Acα → A in Kuratowski sense, and because of
the equivalence of Kuratowski and Hausdorff convergence, H(Acα, A) → 0 as α → 0.
It follows that, for any ε > 0, there are ξ and α sufficiently small such that {f ∈ F :
H(A, f) ≤ ε} ⊆ {f ∈ F : H(Acα, f) ≤ ξ}, and we can conclude that

Πn(f ∈ F : H(A, f) ≤ ε)→ 1 F∞0 − a.s.

for any ε > 0. The thesis follows from Lemma 2, since A ⊆ F1.

Remark 1. We discuss the alteration of Corollary 1 if F1 is empty. Suppose Π satisfies
(3.5) and (3.10) for all α ∈ (0, 1/2), where εα = 2(α2/2)1/(2α). Then, as n → ∞, the
posterior still accumulates at Acα for any α > 0. The lack of elements in F1 now means
there is no further development possible. However, it is to be noted that (3.10) is the
key condition we need from the prior in order to establish what happens to the posterior
no matter the state of F1. Hence, it is this condition we examine in the examples of
Section 4.

At this point it is useful to see how consistency is recovered in the well–specified
case. First note that (3.4) for α = 1/2 and any ε > 0 corresponds to strong consistency
in the well–specified case. In fact it is easy to check that the conditions of Theorem 1
for δ1 = 0 and α = 1/2 correspond to Theorem 4 of Waker (2004). However, as noted
by Walker, Lijoi and Prünster (2005), the prior summability condition can be replaced
with an arbitrary power α.
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Theorem 2. (Walker, 2004) Let δ1 = 0. If Π satisfies (3.5) and (3.7) for some
α ∈ (0, 1), then Πn({f : H(f0, f) > ε})→ 0 F∞0 –a.s.

For completeness, the proof of Theorem 2 is provided in the Appendix. It is now
clear how the sufficient condition in the misspecified case differs from that in the well–
specified case: for the latter, according to Theorem 2, condition (3.7) needs to be
satisfied for a single α ∈ (0, 1) (and any ε > 0) in order to have Hellinger consistency.

4 Examples

In this section we consider a number of examples. In each case we consider an infinite–
dimensional model and find the prior summability conditions in Section 3 established
on each prior Π. If Π has full support and inference is possible for the infinite–
dimensional model, then we revert to the well–specified case and the required con-
dition is weaker ((3.7) only needs to hold for a single α). However, typically infinite–
dimensional models are truncated, or do not have full support, and if f0 is out of the
range of the truncation or the support of the prior, then our results are required for
all α, (3.10). Specifically, truncation has to be intended in terms of: the number of
components in the mixture of priors of Section 4.1; the number of elements in the
orthonormal basis of the infinite–dimensional exponential family example of Section
4.2; the support of the prior for the scale parameters σ and λ in Section 4.3 and 4.4,
respectively. We find the condition on the infinite–dimensional model as this obviously
covers all levels of truncation.

4.1. Mixture of priors. Consider the prior on Ω given by

Π =
∑
N≥1

pNΠN ,

where
∑

N≥1 pN = 1 and ΠN is supported on a set of densities CN ⊂ Ω. This example
has been considered in Walker (2004). Let CN ⊆ CN+1, CN increasing to some F ⊆ Ω
as N → ∞. We assume that, for each N , CN is totally bounded with respect to
the Hellinger metric, N(ε, CN , H) < ∞ for any ε > 0. An example is given by the
Bernstein polynomial prior of Petrone and Wasserman (2002).

For fixed ε, let (Bj,ε) be the Hellinger balls of size ε that cover F . We may assume
without loss of generality that, for IN := N(ε, CN , H), CN ⊆

⋃
j≤IN Bj,ε, so that

ΠN (Bj,ε) = 0 for any j > IN . For α ∈ (0, 1), we consider∑
j≥1

Π(Bj,ε)α =
∑
j≥1

( ∑
N :IN≥j

pNΠN (Bj,ε)
)α
≤
∑
j≥1

( ∑
N≥Mj

pN

)α
where Mj = min{N : IN ≥ j}. Since IN depends on ε, so does Mj , hence we write
Mj(ε). Consequently, by defining P̄ (m) =

∑
N≥m pN , if

∑
j≥1 P̄ (Mj(ε))α < ∞, then

(3.7) holds. Hence, it is sufficient that

P̄ (Mj(ε)) < a j−
1
α
−r (4.1)
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for some r > 0 and a > 0 for all large j.
For example if IN = (c/ε)N , for some c not depending on ε, as in the case of

Bernstein polynomial prior, then Mj(ε) = blog j/ log(c/ε)c, so that (4.1) yields

P̄ (N) < a
(
c/ε
)−( 1

α
+r)N = a exp{−ψ(ε, α)N}, (4.2)

where ψ(ε, α) = log(c/ε)(α−1 + r). Note that (4.2) puts a constraint on the prior mass
on large CN . Since ψ(ε, α) increases to ∞ as ε decreases to zero, (3.7) holds for any
ε > 0 (consistency in the well–specified case) if P̄ (N) < ae−ψN for any ψ > 0 and
all large N , which holds if N−1 log P̄ (N) → −∞. Hence, we recover the condition
of Section 6 in Walker (2004). Establishing (3.10) does not change the result, in fact
ψ(εα, α) also increases to ∞ as α decreases to zero. Therefore, in this example, the
required condition for the misspecified case is that for the well–specified case.

4.2. Infinite–dimensional exponential family. Let Θ = (θj)j≥1 be a sequence of
independent random variables with θj ∼ N(0, σ2

j ), and let (φj)j≥1 be a sequence of
orthogonal polynomials on [0, 1]. Define the family of densities as

fΘ(x) = exp
{∑
j≥1

θjφj(x)− c(Θ)
}

where c(Θ) makes fΘ a density. This example has been considered in Barron, Schervish
and Wasserman (1999) and Walker (2004). For illustration, we work with the orthonor-
mal basis

φ1(x) = 1 and φj(x) =
√

2 cos(jπx) for j ≥ 2,

so that ‖φj‖∞ =
√

2 and ‖φ′j‖∞ = j, for any j ≥ 2. To ensure that fΘ is a density
with probability 1, it is sufficient that

∑
j σj <∞.

We next consider how to construct a Hellinger covering (Bj,ε)j≥1 in (3.7) for the
density set F on which Π is supported, the prior being induced by the distribution on
the infinite sequence Θ. Suppose, for i = 1, 2, we put

fi(x) =
ewi(x)∫
ewi(y)dy

.

Then, ‖w1 −w2‖∞ ≤ ε implies H(f1, f2) ≤ εeε/2 (see Lemma 3.1 in van der Vaart and
van Zanten (2008)). Now take f1 = fΘ1 and f2 = fΘ2 for sequences Θ1 = (θ1j) and
Θ2 = (θ2j) such that wi(x) =

∑
j θijφj(x). Also, take Θ1 and Θ2 close in the sense

that
|θ1j − θ2j | < δj = δωj/

∑
j≥1 ωj

for some sequence (ωj) satisfying
∑

j ωj <∞. Then

‖
∑

j≥1 θ1jφj −
∑

j≥1 θ2jφj‖∞ =
√

2δ

and H(fΘ1 , fΘ2) ≤
√

2δeδ/
√

2. It follows that Bj,ε can be taken as set of the type

{fΘ : njδj < θj < (nj + 1)δj}
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for δj = δ(ε)ωj/
∑

j≥1 ωj with δ(ε) = g−1(ε)/
√

2, g−1 being the inverse of g(x) =
xex/2, and integers (nj) that vary between −∞ and +∞. Note that δ(ε) is monotonic
increasing in ε, with δ(0) = 0. Since θj ∼ N(0, σ2

j ), with independence across j, in
view of (3.7), we are interested in the finiteness of

∞∑
n1=−∞

. . .

∞∑
nM=−∞

∞∏
j=1

(
Pr[njδj < θj < (nj + 1)δj ]

)α
.

Due to symmetry, this holds if
∞∏
j=1

∞∑
n=0

(
Pr[nδj < θj < (n+ 1)δj ]

)α
.

Next, we have
∞∑
n=0

(
Pr[nδj < θj < (n+ 1)δj ]

)α ≤ 1 + (2π)−
α
2 (δj/σj)α

∞∑
n=1

exp
{
− αδ2

jn/(2σ
2
j )
}

≤ 1 + (2π)−
α
2 (δj/σj)α

[
exp

{
αδ2

j /(2σ
2
j )
}
− 1
]−1

.

Note that, for any m ≥ 1, ez − 1 ≥ zm/m!, so that we can use the inequality[
exp

{
αδ2

j /(2σ
2
j )
}
− 1
]−1 ≤ m!(2σ2

j )
m/αmδ2m

j

to get
∞∑
n=0

(
Pr[nδj < θj < (n+ 1)δj ]

)α ≤ 1 + (2π)−
α
2 (δj/σj)αm!(2σ2

j )
m/αmδ2m

j

= 1 + (2/α)mm!(2π)−
α
2 (σj/δj)2m−α.

Substituting for δj = δ(ε)ωj/
∑

j ωj , we get

∞∑
n=0

(
Pr[nδj < θj < (n+ 1)δj ]

)α ≤ 1 + ψ(ε, α)(σj/ωj)2m−α,

where
ψ(ε, α) = (2/α)mm!(2π)−

α
2 (δ(ε)/

∑
j≥1 ωj)

2m−α.

The required condition on the (σj) is then that

∞∏
j=1

{
1 + ψ(ε, α)(σj/ωj)2m−α} <∞,

or that
∑∞

j=1 log
{

1 + ψ(ε, α)(σj/ωj)2m−α} <∞, which holds if

ψ(ε, α)
∞∑
j=1

(σj/ωj)2m−α <∞.

9



The convergence of this series requires a restriction on how the sequence (σj) grows as
j → ∞. Moreover, we see that the size ε of the Hellinger covering does not play any
role. Now, if we put ωj ∝ j−1−r for any r > 0, then the condition

∞∑
j=1

(σjj1+r)2m−α <∞ (4.3)

is sufficient. Therefore, we can actually have σj ∝ j−1−q for any q > 0, by choosing
r < q and m large enough such that (r − q)2m is sufficiently smaller than −1. We
also see that α does not affect condition (4.3), therefore σj ∝ j−1−q for any q > 0 is
sufficient for (3.7) to hold for any ε > 0 and for (3.10) to hold for any α sufficiently
small. This means that the condition in Section 6 of Walker (2004) for consistency
works also in the misspecified case.

4.3. Mixtures of normal densities. We consider priors obtained via a nonpara-
metric mixture of normal densities; see Ghosal, Ghosh and Ramamoorthi (1999) and
Lijoi, Pruenster and Walker (2005). Let P̃ be a discrete random probability distribu-
tion on R with law Λ and prior guess P0. For φσ, the density function of the normal
with mean 0 and variance σ2, we model the density as

f̃
σ, eP (x) = φσ ∗ P̃ =

∫
φσ(x− θ)P̃ (dθ)

and σ, with prior distribution µ, is supported on the interval [0, σ].
We follow the proof of Theorem 1 in Lijoi, Pruenster and Walker (2005) by defining

the sets
F σ
σ,a,δ =

⋃
σ<σ<σ

{φσ ∗ P : P ([−a, a]) ≥ 1− δ},

where σ, a > 0. Recall that H2(f, g) ≤ ‖f − g‖1, where ‖f − g‖1 =
∫
|f − g| is the

L1-distance between f and g. Hence we have N(
√
δ,G , H) ≤ N(δ,G , ‖ · ‖1). From

Ghosal, Ghosh and Ramamoorthi (1999), the upper bound for the L1-metric entropy
of set F σ

σ,a,δ is given by

logN(δ,F σ
σ,a,δ, ‖ · ‖1) ≤ Cδa/σ,

where Cδ = Kδ−1 log(1/δ) for some constant K. Hence, logN(δ,F σ
σ,a,δ, H) ≤ Cδ2a/σ.

Now let (an)n≥1 be an increasing sequence of positive numbers such that a0 = 0 and
limn an =∞, and let (σn)n≥1 be a decreasing sequence of positive numbers such that
σ0 = σ and limn σn = 0. Set

G σ
σk,aj ,δ2

=
⋃

σk<σ<σ

{φσ ∗ P : P ([−aj , aj ]) ≥ 1− δ2, P ([−aj−1, aj−1]) < 1− δ2},

so that
⋃
j,k G σ

σk,aj ,δ2
= F . Reasoning as in Lijoi, Pruenster and Walker (2005), for any

δ there is an integer N such that G σ
σk,aj ,δ2

is included in F σ
σk,aN ,δ2

, so

logN(δ,G σ
σk,aj ,δ2

, H) ≤ Cδ2aN/σk.
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This means that for each j and k, G σ
σk,aj ,ε2

has a finite Hellinger ε-covering {Bjkl,ε : l =
1, . . . , Nj,k}, where Nj,k ≤ exp{Cε2aN/σk}, so that we consider (Bjkl,ε) in establishing
(3.7). Now, for each j ≥ 1, define the sets

B′j,ε = {P : P ([−aj , aj ]) ≥ 1− ε2, P ([−aj−1, aj−1]) < 1− ε2}.

The condition (3.7) is implied by the finiteness of the sum

∑
j,k≥1

Nj,k∑
l=1

Π(Bjkl,ε)α ≤
∑
j,k≥1

N1−α
j,k Π

(
G σ
σk,aj ,ε2

)α (4.4)

≤
∑
k≥1

e(1−α)Cε2aN/σkµ(σk < σ ≤ σk−1)α
∑
j≥1

Λ(B′j,ε)
α,

where the inequality (4.4) follows by the monotonicity of power means. We deal with
the inner sum first, showing that

∑
j≥1 Λ(B′j,ε)

α <∞ for any ε > 0 and any α ∈ (0, 1)
is implied by

P0([−a, a]c) ≤ e−ηa (4.5)

for some η > 0 and a sufficiently large. In fact, since B′j,ε ⊂ {P : P ([−aj−1, aj−1]c) >
ε2}, an application of Markov Inequality, together with (4.5), yields∑

j≥1

Λ(B′j,ε)
α ≤ ε−2α

∑
j≥1

P0([−aj−1, aj−1]c)α ≤ ε−2α
∑
j≥1

e−αηaj−1 .

Then, by taking aj ∼ j as j →∞, aj > (αη)−1(1 + s) log j for j sufficiently large and
some s > 0, so that

∑
j≥1 e−αηaj−1 <∞ for any α arbitrarily small (the size of ε does

not play any role). Note that (4.5) is stronger than the tail condition on P0 needed for
consistency,

∫
|θ|P0(dθ) < ∞, see Theorem 1 in Lijoi, Pruenster and Walker (2005).

In fact, the latter only implies P0([−a, a]c) = O(a−(1+r)) for r > 0, and so we get the
convergence of the series

∑
j≥1 Λ(Bj,ε)α only for α > (1 + r)−1. At this stage we are

left to establish that ∑
k≥1

e(1−α)Cε2aN/σkµ(σk < σ ≤ σk−1)α <∞.

If we assume that
µ{σ < k−1} ≤ e−γk (4.6)

then ∑
k≥1

e(1−α)Cε2aN/σkµ(σk < σ ≤ σk−1)α ≤
∑
k≥1

e−(γα−(1−α)Cε2aN )/σk

Let ψ(ε, α) = α−1(1 − α)Cε2aN , which goes to infinity as either α or ε go to zero.
Now set σk < ψ(ε, α)(1 − s)−1/ log k for k sufficiently large and for some s > 0; this
is possible for any α and ε by taking, for example, σk ∼ 1/k as k → ∞. Then the
finiteness of the series in the r.h.s. of the last display is implied by γ > ψ(ε, α) in (4.6),
so that in the well–specified case and the misspecified case we need (4.6) to hold for
any γ > 0.
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4.4. Gaussian process priors. We consider random densities obtained as logistic
transformations of Gaussian processes; see Leonard (1978), Lenk (1988, 1991), Tokdar
and Ghosh (2007), and van der Vaart and van Zanten (2008). Let I be a fixed bounded
interval I in R, and let

f(x) =
eW (x)∫

I eW (s)ds
,

where {W (x), x ∈ I} is a Gaussian process with mean function µ(t) and covariance
kernel σ(s, t) = Cov(W (s),W (t)). Without loss of generality we take µ = 0 and
I = (0, 1). Moreover, we let σ depend on a parameter λ > 0 via

σ(s, t) = σ0(λs, λt),

where σ0 is a fixed covariance kernel and λ has prior distribution Πλ, supported on
R+. Let W0 be the Gaussian process with covariance σ0 so that W0(λt) has covariance
σ0(λs, λt). Then, the random density f is modeled by

f |W,λ =
eW (x)∫

I eW (s)ds

W |λ = W0(λ·)

with λ and W0 independent. This defines a prior distribution Π on Ω, the space of
densities on I. As before, F is the support of Π.

The Kullback-Leibler support of Π has been studied in Tokdar and Ghosh (2007),
see also Ghosal and Roy (2006). With a regularity condition on σ0, which we assume
to be satisfied (see, e.g., Theorem 5 in Ghosal and Roy (2006)), W0(·) has differentiable
sample paths and the derivative process DW0(·) is Gaussian with continuous sample
paths. If we take

σ1(s, t) =
∂2

∂s∂t
σ0(s, t),

to be the covariance kernel of DW0(t), then the derivative process DW0(·) is sub–
Gaussian with respect to the Euclidean distance

E(DW0(s)−DW0(t))2 ≤ c1(s− t)2

for some constant c1 depending on σ1. Define σ2
1(W0) = supt∈I Var(DW0(t)) < ∞.

Then, an application of Proposition A.2.7 of van der Vaart and Wellner (1996), yields

Π
(

sup
t∈I
|DW (t)| > a

∣∣∣λ) ≤ c2 exp{−c3a
2λ−2} (4.7)

for some positive constants c2 and c3. Finally, Theorem 2.7.1 of van der Vaart and
Wellner (1996) gives the entropy bound

logN
(
ε,

{
w : sup

t∈I
|Dw(t)| ≤ a

}
, ‖ · ‖∞

)
≤ c4

a

ε
(4.8)
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for some positive constant c4. Let (an)n≥1 be an increasing sequence of positive real
numbers such that a0 = 0 and limn an =∞. For

Bj =
{
w : aj−1 < sup

t∈I
|Dw(t)| < aj

}
,

define Fj = {f(x) = ew(x)/
∫
I ew(s)ds : w ∈ Bj}. Then the sets (Fj)j≥1 are pairwise

disjoint and form a partition of F . Since N(εeε, Fj , H) ≤ N(ε, Bj , ‖ · ‖∞), see Section
4.2, there is no loss of generality in working with the sets Bj and the sup norm.

From (4.8), each Bj has a finite ε-covering {Cjl,ε : l = 1, 2, . . . , Nj}, where Nj ≤
exp(c4aj/ε). Hence we consider (Cjl,ε) in establishing (3.7), that is, we are interested
in the finiteness of the sum

∑
j≥1

Nj∑
l=1

Π(Cjl)α ≤
∑
j≥1

N1−α
j Π(Bj)α, (4.9)

where we have used the monotonicity of power means as in (4.4). Since N1−α
j grows

exponentially in aj , we need to control the behavior of Π(Bj) as j goes to infinity.
Now, from (4.7),

Π(Bj) ≤
∫ ∞

0
Π
(

sup
t∈I
|DW (t)| > aj−1

∣∣∣λ)Πλ(dλ) ≤
∫ ∞

0
c2 exp{−c3a

2
j−1λ

−2}Πλ(dλ),

and therefore we need to study the behavior, as aj →∞, of a Laplace-type transform
of the prior Πλ. To this end, we resort to a suitable version of the Tauberian Theorem
to show that if

Πλ(λ > t) ∼ e−γt
2

(4.10)

for some γ > 0 and t sufficiently large, then there exists a positive constant c5 such
that

Π(Bj) ≤ e−c5γaj−1 (4.11)

as j → ∞. The result follows by an application of Theorem 4.12.9 of Bingham,
Godie and Teugels (1987). Let µ be a measure on (0,∞) whose Laplace transform
M(τ) =

∫∞
0 e−τxdµ(x) converges for all τ > 0. With their notation, we choose α = −1

and φ(τ) ∼ τ−1 as τ → 0+. Then, for B > 0,

− log µ(0, x] ∼ Bx−1 (x→ 0+) iff − logM(τ) ∼ 2B1/2τ1/2 (λ→∞).

Now, with y = 1/
√
x, write M(τ) =

∫∞
0 e−τy

−2
dη(y) for the measure η on (0,∞)

defined as η(0, y] = µ[y−2,∞). Then

− log η(y,∞) ∼ By2 (y →∞) iff − logM(τ) ∼ 2B1/2τ1/2 (λ→∞). (4.12)

Put η(y,∞) = Πλ(y,∞) in (4.12) and assume that (4.10) is in force. Also put B = γ
and τ = c3a

2
j−1 in (4.12). Then

M(c3a
2
j−1) =

∫ ∞
0

e−c3a
2
j−1λ

−2

Πλ(dλ) ∼ exp{−2γ1/2c
1/2
3 aj−1}
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as j → ∞. It is now easy to see that (4.10) implies (4.11). Back to (4.9), by using
(4.8) and (4.11) we get∑

j≥1

N1−α
j Π(Bj)α ≤

∑
j≥1

exp
{
−
(
αc5γ − c4(1− α)/ε

)
aj
}
.

Thus, under (4.10), finiteness of the series in (4.9) and, in turn (3.7), is implied by
γ > ψ(α, ε), where

ψ(α, ε) =
c4(1− α)
εαc5

.

Since ψ(ε, α) goes to infinity as either α or ε go to zero, we conclude that the same
sufficient condition applies for (3.7) for any ε > 0 (consistency in the well–specified
case) and for (3.10) for any α > 0, namely that (4.10) is satisfied for any γ > 0.

5 Discussion

In this paper, we have generalized the condition for consistency in the well–specified
case to asymptotic results in the misspecified case. Illustrations considered suggest
that it is not too problematic to implement the sufficient conditions on the prior.

The sufficient conditions we find for the prior allow us to say what happens to
the posterior under all scenarios. Basically, whether F1 is empty or not, we establish
asymptotics for either case. The search when F1 is finite and non–empty has been
important due to the lack of general theory for the case when F1 is empty. To our
knowledge we are the first to describe some general theory for the asymptotics when
F1 is empty; though we are aware of the special case of the Bernstein polynomial prior
studied in Petrone and Wasserman (2002).

In each case of misspecified prior Π we would find it difficult to find the CΠ such
that if f0 ∈ CΠ then F1 is empty, whereas if f0 ∈ CcΠ then F1 is non–empty. But
of course we would also find it difficult to use this information since the location of
f0 is not known. It would therefore be useful to identify Π for which CΠ is empty,
something which has been established only when F is convex.

Appendix

Proof of Lemma 1. Start with the inequality

|hα(f0, f)− hα(f0, g)| ≤
∫ ∣∣(f/f0)α − (g/f0)α

∣∣f0. (A.1)

Next, note that, for any a, b > 0,∣∣aα − bα∣∣1/α ≤ ∣∣aβ − bβ∣∣1/β, for 0 ≤ α ≤ β. (A.2)

To see this, it is sufficient to take a > b and show that τ(α) = (aα − bα)1/α is non
decreasing for α > 0. The latter is equivalent to (eα − 1)1/α non decreasing for α ≥ 0,
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and, in turn, to log(x− 1)/ log(x) non decreasing for x > 1. The last statement can be
easily checked by looking at the first derivative and using the inequality (x−1) log x ≤
x log x for x > 1. Since, by hypothesis, α ≤ 1/2, (A.2) yields an upper bound on the
right hand side of (A.1):∫ ∣∣(f/f0)α − (g/f0)α

∣∣f0 ≤
∫ ∣∣(f/f0)1/2 − (g/f0)1/2

∣∣2αf0.

Now use E|X|p ≤ (E|X|)p for any 0 < p < 1 to get

|hα(f0, f)− hα(f0, g)| ≤
(∫ ∣∣(f/f0)1/2 − (g/f0)1/2

∣∣2f0

)α
.

Finally, note that
∫ ∣∣(f/f0)1/2 − (g/f0)1/2

∣∣2f0 =
∫ (
f1/2 − g1/2

)2 = H2(f, g). �

Proof of Lemma 2. Let αm and εm be two positive sequences decreasing to 0 such
that ε2αmm /αm → 0. Next, let f ∈

⋂
mA

c
αm so that, for each m, there exists a sequence

(fm,rm)∞rm=1 ∈ F such that

H(f, fm,rm)→ 0 as rm →∞,
dαm(f0, fm,rm) ≤ δ1 + αm for all rm.

Clearly, f ∈ F̄ . Moreover, by using Lemma 1 and the identity dα(f, g) = α−1{1 −
hα(f, g)}, we have

dαm(f0, f) < dαm(f0, fm,r) +
1
αm

H(f, fm,rm)2αm .

By the hypothesis made, we can take, for eachm, rm large enough such thatH(f, fm,rm) ≤
εm to get

dαm(f0, f) < δ1 + αm +
1
αm

ε2αmm .

Since the last inequality holds for any m, hence for αm going to 0, we exploit the
convergence of dαm(f0, f) to D(f0, f) to conclude that

D(f0, f) < δ1 + β

for any β small enough. This implies that f ∈ F1, completing the proof. �

Proof of Theorem 2. When α ≤ 1/2, Π(Bj,ε)1/2 ≤ Π(Bj,ε)α, so that consistency
follows from Theorem 4 in Walker (2004). Let then (3.7) be satisfied for 1/2 < α < 1.
We aim at establishing that Πn(A1/2,ε2/2)→ 0 F∞0 –a.s. as n→∞, (3.2) when δ1 = 0
and (3.1). Reasoning as in the proof of Theorem 1, we consider a partition (Aj)j≥1

of A1/2,ε2/2 such that Aj ⊆ A∗j = {f : H(fj , f) < ε/2}, fj ∈ A1/2,ε2/2 so that
d1/2(f0, fj) > ε2. Then, any f ∈ Aj has d1/2(f0, f) > ε2/2 and h1/2(f0, f) < 1− ε2/4.
Now use the Hölder Inequality∫

(f0/fn,j)1−αfn,j ≤
(∫

(f0/fn,j)1/2fn,j

)2(1−α)
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(since 2(1 − α) < 1) to conclude that hα(f0, fn,j) ≤ [h1/2(f0, fn,j)]2(1−α). Moreover,
fn,j ∈ Aj implies that hα(f0, fn,j) < (1 − ε2/4)2(1−α) < e−ε

2(1−α)/2. Now, similar to
the proof of Theorem 1, we obtain that

P
(∑
j≥1

Lαn,j > e−nd
)
< ende−nε

2(1−α)/2
∑
j≥1

Π(Aj)α.

Thus condition (3.7) implies that
∑

j≥1 L
α
n,j < e−nd F∞0 –a.s. for all large n and for

any d < ε2(1 − α)/2. On the oder hand, the Kullback-Leibler property (3.5) ensures
that, for all large n and for any c > 0, Iαn ≥ e−nαc F∞0 –a.s. Therefore

Πn(A1/2,ε2/2) ≤
∑
j≥1

Lαn,j/I
α
n ≤ e−n(d−αc) → 0, F∞0 − a.s.

by taking c sufficiently smaller than ε2(1− α)/2α. �
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