Slice sampling σ-stable Poisson-Kingman mixture models

Stefano Favaro
S.G. Walker

© 2013 by Stefano Favaro and S.G. Walker. Any opinions expressed here are those of the authors and not those of the Collegio Carlo Alberto.
Slice sampling σ-stable Poisson-Kingman mixture models

S. Favaro1 and S.G. Walker2

1 Università degli Studi di Torino and Collegio Carlo Alberto.
E-mail: stefano.favaro@unito.it

2 Institute of Mathematics, Statistics and Actuarial Science, University of Kent
E-mail: S.G.Walker@kent.ac.uk

Abstract

The paper is concerned with the use of Markov chain Monte Carlo methods for posterior sampling in Bayesian nonparametric mixture models. In particular we consider the problem of slice sampling mixture models for a large class of mixing measures generalizing the celebrated Dirichlet process. Such a class of measures, known in the literature as σ-stable Poisson-Kingman models, includes as special cases most of the discrete priors currently known in Bayesian nonparametrics, e.g., the two parameter Poisson-Dirichlet process and the normalized generalized Gamma process. The proposed approach is illustrated on some simulated data examples.

Key words and phrases: Bayesian nonparametrics; Mixture models; MCMC posterior sampling; Normalized random measures; σ-stable Poisson-Kingman models; Stick-breaking representation; Size-biased random permutation; Slice sampling.

1 Introduction

Density estimation is a standard issue in Bayesian nonparametrics and requires the specification of priors selecting almost surely distributions admitting a density function. A useful and general device for defining a prior on densities has been introduced by Lo [17] in terms of the so-called infinite dimensional mixture model. The basic idea consists in introducing an almost surely discrete random probability measure \tilde{P} on \mathcal{X}, a Polish space endowed with the usual Borel σ-field \mathcal{X}, which is convoluted with a suitable kernel k. Specifically, let \tilde{P} be an almost surely discrete random probability measure on \mathcal{X}, i.e.,

$$\tilde{P} = \sum_{j \geq 1} \tilde{P}_j \delta_{X_j}$$

(1)
for some sequence \((X_j)_{j \geq 1}\) of \(X\)-valued random locations and some sequence \((\tilde{P}_j)_{j \geq 1}\) of nonnegative random masses that sum to one almost surely. A random density function can then be defined as follows

\[
f_{\tilde{P}}(y) = \int_X k(y|x) d\tilde{P}(x),
\]

where the \(k(y|x)\) is a continuous and possibly multivariate density function for each fixed \(x \in X\). The original formulation by Lo [17] set the mixing measure \(\tilde{P}\) to coincide with the Dirichlet process introduced by Ferguson [4]. Hence, it takes on the name of Dirichlet process mixture model. However, it is apparent that one can replace the Dirichlet process with any almost surely discrete random probability measure \(\tilde{P}\). See Lijoi and Prünster [16] for a detailed overview on some classes of mixing measures alternative to the Dirichlet process.

Various Markov chain Monte Carlo (MCMC) methods for sampling from the posterior distribution of \(f_{\tilde{P}}\) have been proposed in the literature. Early work in this direction exploited the integration with respect to the underlying mixing measure \(\tilde{P}\) thus removing the infinite dimensional aspect of the problem. The main references in this area are represented by the algorithms devised in Escobar [1] and Escobar and West [2], and originally developed for the Dirichlet process mixture model. See also the subsequent variants proposed by MacEachern [18], MacEachern [19], MacEachern and Müller [20] and Neal [21]. These sampling methods are usually referred to as marginal methods and, as noted by Ishwaran and James [7], they can be applied to any mixing measure \(\tilde{P}\) for which the induced system of predictive distributions is known in explicit form.

An alternative family of sampling methods rely on the simulation of the whole posterior mixture model and, hence, of the underlying mixing measure \(\tilde{P}\) as well. These methods, usually referred to as conditional methods, do not remove the infinite dimensional aspect of the problem and they focus on finding appropriate ways for sampling a sufficient but finite number of random masses of \(\tilde{P}\) in (1). Recently, for the Dirichlet process mixture model, there has been interest in developing conditional methods that only use a finite number of random masses and allows inference according to the true infinite dimensional mixing measure \(\tilde{P}\). The retrospective sampler of Papaspiliopoulos and Roberts [22] used a carefully constructed Metropolis-Hastings update, whereas Walker [31] used slice sampling ideas. See also Kalli et al. [9] and Griffin and Walker [6] for some recent developments on the slice sampling approach.
In the present paper we focus on the mixture model (2) with mixing measure \(\hat{P} \) in a large class of almost surely discrete random probability measures generalizing the Dirichlet process and known in the literature as \(\sigma \)-stable Poisson-Kingman models. Such a class of models has been introduced by Pitman [27] and includes as special cases most of the discrete priors currently known in Bayesian nonparametrics. Indeed, apart from the Dirichlet process, it includes the two parameter Poisson-Dirichlet process by Perman et al. [23] (see also Pitman [24] and Pitman and Yor [26]) and, consequently, the normalized \(\sigma \)-stable process introduced by Kingman [12] in the context of optimal storage problems. It also includes the normalized generalized Gamma process by Pitman [27] (see also Lijoi et al. [15]) and, consequently, the normalized inverse Gaussian process introduced by Lijoi et al. [14] in the context of Bayesian nonparametric mixture modeling. Our aim consists in extending the slice sampling ideas of Walker [31], originally introduced for the Dirichlet process mixture model, to the \(\sigma \)-stable Poisson-Kingman mixture model, i.e., a mixture model with an underlying \(\sigma \)-stable Poisson-Kingman mixing measure. The proposed slice sampling is achieved by resorting to a collection of results on size-biased sampling of Poisson point processes, introduced by Perman et al. [23] and here applied in order to derive a stick-breaking representation for the \(\sigma \)-stable Poisson-Kingman models. Indeed, the proposed stick-breaking representation of the underlying mixing measure \(\hat{P} \) turns out to be a key tool for MCMC posterior sampling via the slice sampling approach of Walker [31].

The paper is structured as follows. Section 2 reviews the general definition of Poisson-Kingman model. Section 3 presents the subclass of \(\sigma \)-stable Poisson-Kingman models, the corresponding stick-breaking representation and the detailed slice sampling algorithm for posterior sampling \(\sigma \)-stable Poisson-Kingman mixture models. Section 4 contains illustrations of the proposed algorithm and Section 5 concludes with a brief discussion.

2 Poisson-Kingman models

In order to review the general definition of Poisson-Kingman model we start by providing a succinct description of the class of completely random measures (CRMs) introduced by Kingman [11]. The reader is referred to the monograph by Kingman [13] for a detailed treatment on the subject of CRMs.
Let $\hat{\mu}$ be a random element defined on some probability space and taking values on the space of bounded finite measures on (X, \mathcal{X}). In Kingman [11] the random element $\hat{\mu}$ is termed CRM if for any $n \geq 1$ and A_1, \ldots, A_n in \mathcal{X}, with $A_i \cap A_j = \emptyset$ for $i \neq j$, the random variables $\hat{\mu}(A_1), \ldots, \hat{\mu}(A_n)$ are mutually independent. Kingman [11] showed that any CRM can be decomposed into the sum of three independent components: a non-random measure, a countable collection of non-negative random masses at non-random X-valued locations and a countable collection of non-negative random masses at X-valued random locations. We consider CRMs with the sole component of random masses $(\tilde{J}_j)_{j \geq 1}$ at random locations $(X_j)_{j \geq 1}$, i.e.,

$$\hat{\mu}(\cdot) = \sum_{j \geq 1} \tilde{J}_j \delta_{X_j}(\cdot). \quad (3)$$

The distribution of $\hat{\mu}$ in (3) is determined by its Laplace functional transform having the Lévy-Khintchine representation

$$\mathbb{E} \left[e^{-\int_X f(x) \hat{\mu}(dx)} \right] = \exp \left\{ - \int_{\mathbb{R}^+ \times X} (1 - e^{-sf(y)}) \nu(ds, dy) \right\},$$

for any measurable function $f : X \to \mathbb{R}$ such that $\int_X |f(x)| \hat{\mu}(dx) < +\infty$ almost surely. The measure ν on $\mathbb{R}^+ \times X$ is usually referred to as Lévy intensity measure and it characterizes uniquely $\hat{\mu}$. For our purpose it is enough to focus on Lévy intensity measures ν factorizing as $\nu(ds, dy) = \rho(ds) P_0(dy)$ for some Lévy measure ρ absolutely continuous with respect to the Lebesgue measure and some non-atomic probability measure P_0 on (X, \mathcal{X}). Such a factorization implies the independence between the random locations and the random masses so that, without loss of generality, the random locations $(X_j)_{j \geq 1}$ can be assumed to be independent and identically distributed according to P_0, while the distribution of the corresponding random masses $(\tilde{J}_j)_{j \geq 1}$ is governed by the Lévy measure ρ.

The definition of Poisson-Kingman model has been proposed by Pitman [27] in terms of a suitable transformation of CRMs. Such a definition is strictly related to the definition of homogeneous normalized random measure with independent increments (NRMI), introduced in Bayesian nonparametrics by James et al. [8]. Let $\hat{\mu}$ be a CRM with Lévy intensity measure $\nu(ds, dy) = \rho(ds) P_0(dy)$ and let $T = \sum_{j \geq 1} \tilde{J}_j$ be the corresponding total mass which is assumed to be absolutely continuous with respect to the Lebesgue measure. Now, if $\text{card} \{(\tilde{J}_j : j \geq 1) \cap (0, \epsilon)\} = \int_0^\epsilon \rho(s) ds = +\infty$ for any $\epsilon > 0$, one can
define an almost surely discrete random probability measure \(\tilde{P} \) on \(X \) as

\[
\tilde{P}(\cdot) = \frac{\tilde{\mu}(\cdot)}{T} = \sum_{j \geq 1} \tilde{P}_j \delta_{X_j}(\cdot),
\]

where

\[
\tilde{P}_j = \frac{\tilde{J}_j}{T}.
\]

and \((X_j)_{j \geq 1}\) is a sequence of random variables, independent of \((\tilde{P}_j)_{j \geq 1}\), and independent and identically distributed according to \(P_0 \). In James et al. [8] the random probability measure \(\tilde{P} \) in (4) is termed homogeneous NRMI and it is denoted by NRMI(\(\rho, P_0 \)). Intuitively, a Poisson-Kingman model can be defined as a generalization of a NRMI(\(\rho, P_0 \)) obtained by suitably deforming the distribution of the normalizing total mass \(T \). A formal definition of the class of Poisson-Kingman models is given below.

Consider a CRM \(\tilde{\mu} \) with Lévy intensity measure \(\nu(ds, dy) = \rho(ds)P_0(dy) \) and denote by \((J(j))_{j \geq 1}\) the decreasing rearrangement of the sequence of random masses of \(\tilde{\mu} \). Moreover, denote by \((P(j))_{j \geq 1}\) the sequence of decreasing ordered random probabilities obtained by normalizing the sequence \((J(j))_{j \geq 1}\) with respect to the total mass \(T \), i.e.,

\[
P(j) = \frac{J(j)}{T}.
\]

In other terms the sequence \((P(j))_{j \geq 1}\) represents the decreasing rearrangement of the random probabilities of \(\tilde{P} \) defined in (5).

Definition 2.1 Let \(\gamma \) be a distribution on \(\mathbb{R}^+ \) and let \(P_{\rho,t} \) be the regular conditional distribution of the sequence \((P(j))_{j \geq 1}\) of decreasing ordered random probabilities defined in (6), given the total mass \(T = t \). Then, the distribution

\[
\int_{\mathbb{R}^+} P_{\rho,t} \gamma(dt)
\]

is termed Poisson-Kingman distribution with Lévy measure \(\rho \) and mixing distribution \(\gamma \). Such a distribution is denoted by PK(\(\rho, \gamma \)).

The definition of Poisson-Kingman distribution can be applied for defining an almost surely discrete random probability measure \(P \) on \(X \) as

\[
P(\cdot) = \sum_{j \geq 1} P(j) \delta_{X_j}(\cdot),
\]
where \((P_{(j)})_{j \geq 1}\) is distributed according to a PK\((\rho, \gamma)\) distribution and \((X_{j})_{j \geq 1}\) is a sequence of random variables, independent of \((P_{(j)})_{j \geq 1}\), and independent and identically distributed according to \(P_0\). In Pitman [27] the random probability measure \(P\) in (7) is termed Poisson-Kingman model and it is denoted by PK\((\rho, \gamma, P_0)\). Clearly the definition of \(\text{NRM}i\((\rho, P_0)\) can be recovered as a special case of the definition of PK\((\rho, \gamma, P_0)\) model by setting \(\gamma\) to coincide with the distribution of the total mass \(T\).

3 Sampling \(\sigma\)-stable Poisson-Kingman mixture models

The class of \(\sigma\)-stable Poisson-Kingman models, also referred to as the class of Gibbs-type random probability measures, has been introduced in Pitman [27] and further investigated by Gnedin and Pitman [5]. Consider a sequence \((P_{(j)})_{j \geq 1}\) of decreasing ordered random probabilities distributed according to a PK\((\rho^{(\sigma)}, \gamma)\) distribution where

\[
\rho^{(\sigma)}(ds) = \frac{\sigma}{\Gamma(1 - \sigma)} s^{-\sigma - 1} ds,
\]

for some \(\sigma \in (0, 1)\), and where \(\gamma\) is a distribution absolutely continuous with respect to the Lebesgue measure with density function \(g_\gamma\). In Pitman [27] the PK\((\rho^{(\sigma)}, g_\gamma, P_0)\) model is termed \(\sigma\)-stable Poisson-Kingman model. Without loss of generality we assume \(g_\gamma(t) = h(t)f_\sigma(t)\) for some nonnegative measurable function \(h\) such that \(g_\gamma\) is a proper density function, and where \(f_\sigma\) denotes the positive \(\sigma\)-stable density function, i.e.,

\[
f_\sigma(t) = \frac{1}{\pi} \sum_{i \geq 0} \frac{(-1)^{i+1}}{i!} \sin(\pi \sigma i) \frac{\Gamma(i \sigma + 1)}{i^{\sigma i + 1}}.
\]

It is worth pointing out that the class of PK\((\rho^{(\sigma)}, hf_\sigma, P_0)\) models includes most of the discrete priors currently known in Bayesian nonparametrics. Indeed, as we will see in the examples below, by a suitable specification of the function \(h\) and the parameter \(\sigma\) one can recover as special cases the Dirichlet process, the normalized \(\sigma\)-stable process, the two parameter Poisson-Dirichlet process, the normalized inverse Gaussian process and the normalized generalized Gamma process.

For our purpose it is useful to consider a different rearrangement of the sequence of random probabilities \((P_{(j)})_{j \geq 1}\) distributed according to a PK\((\rho^{(\sigma)}, \gamma)\) distribution. Such
a rearrangement is obtained via the so-called size-biased random permutation approach. Specifically, this means that

\[P_j = P(\pi_j), \]

where for any positive integer \(k \geq 1 \) and for all the finite sets \(\{i_1, \ldots, i_k\} \) of distinct positive integers, the conditional probability of the event \(\{\pi_j = i_j \text{ for all } 1 \leq i \leq k\} \) given \((P(j))_{j \geq 1} \) coincides with

\[\frac{P(i_1)}{1 - P(i_1)} \cdot \frac{P(i_2)}{1 - P(i_1)} \cdots \frac{P(i_k)}{1 - P(i_1) - \cdots - P(i_k)}. \]

The sequence of random probabilities \((P_j)_{j \geq 1} \) is termed as the size-biased random permutation of the sequence \((P(j))_{j \geq 1} \). The reader is referred to Perman et al. [23] and Pitman [25] for a detailed study on the interplay between size-biased random permutations and almost surely discrete random probability measures. In particular, Perman et al. [23] provided a collection of results that can be usefully applied in order to obtain a stick-breaking representation for the size-biased random permutation of a sequence decreasing ordered random probabilities distributed according to a \(\text{PK}(\rho^{(\sigma)}, \gamma) \) distribution. The next proposition is an application of Theorem 2.1 in Perman et al. [23] and it represents the key result for slice sampling \(\sigma \)-stable Poisson-Kingman mixture models.

Proposition 3.1 Let \((P_j)_{j \geq 1} \) be the size-biased random permutation of a sequence \((P(j))_{j \geq 1} \) of decreasing ordered random probabilities distributed according to a \(\text{PK}(\rho^{(\sigma)}, \gamma) \) distribution. Then

\[P_j = V_j \prod_{i=1}^{j-1} (1 - V_i) \]

for a sequence of random variables \((V_j)_{j \geq 1} \) such that \(V_j | T, V_1, \ldots, V_{j-1} \) is absolute continuous with respect to the Lebesgue measure, and its density function on \((0,1)\) coincides with

\[g(v_j | t, v_1, \ldots, v_{j-1}) = \frac{\sigma(tz_j)^{-\sigma}}{(1 - \sigma) f_\sigma(tz_j)} v_j^{-\sigma} f_\sigma(tz_j(1 - v_j)) \]

for any \(j \geq 1 \), where \(z_j := \prod_{i=1}^{j-1} (1 - v_i) \) with the proviso \(z_1 = 1 \). The corresponding \(\text{PK}(\rho^{(\sigma)}, \gamma, \gamma_0) \) model \(P \) can be represented as

\[P(\cdot) = \sum_{i \geq 1} P_j \delta_{X_j}(\cdot) \]

where \((X_j)_{j \geq 1} \) is a sequence of random variables, independent of \((P_j)_{j \geq 1} \), and independent and identically distributed according to \(P_0 \).
The following examples discuss the stick-breaking representations of two PK($\rho(\sigma), h_{f_\sigma}, P_0$) models well known in Bayesian nonparametrics: the two parameter Poisson-Dirichlet process and the normalized generalized Gamma process. Both the stick-breaking representations include as special case the celebrated stick-breaking representation of the Dirichlet process introduced by Sethuraman [30].

Example 3.1

Let $(P(j))_{j \geq 1}$ be a sequence of decreasing ordered random probabilities distributed according to a PK($\rho(\sigma), w^{(\theta, \sigma)}$) distribution with

$$w^{(\theta, \sigma)}(t) = \frac{\Gamma(\theta + 1)}{\Gamma(\theta/\sigma + 1)} t^{-\theta} f_\sigma(t)$$

for some $\sigma \in (0, 1)$ and $\theta > -\sigma$. The corresponding PK($\rho(\sigma), w^{(\theta, \sigma)}, P_0$) model P is known in the literature as two parameter Poisson-Dirichlet process. It includes as special cases the normalized σ-stable process recovered by setting $\theta = 0$, and the Dirichlet process recovered by setting $\sigma \to 0$. An application of Proposition 3.1 leads to the stick-breaking representation of the two parameter Poisson-Dirichlet process

$$P(\cdot) = \sum_{j \geq 1} V_j \prod_{i=1}^{j-1} (1 - V_i) \delta_{X_j}(\cdot), \quad (12)$$

where $(V_j)_{j \geq 1}$ is a sequence of independent random variables such that V_j distributed according to a Beta distribution with parameter $(1 - \sigma, \theta + j\sigma)$, for any $j \geq 1$. Moreover, $(X_j)_{j \geq 1}$ is a sequence of random variables, independent of $(V_j)_{j \geq 1}$, and independent and identically distributed according to P_0. The stick-breaking representation (12) was originally obtained in Perman et al. [23] and further investigate in Pitman [25].

Example 3.2

Let $(P(j))_{j \geq 1}$ be a sequence of decreasing ordered random probabilities distributed according to a PK($\rho(\sigma), v^{(b, \sigma)}$) distribution with

$$v^{(b, \sigma)}(t) = e^{b\sigma - bt} f_\sigma(t)$$

for some $\sigma \in (0, 1)$ and $b > 0$. The corresponding PK($\rho(\sigma), v^{(b, \sigma)}, P_0$) model P is known in the literature as normalized generalized Gamma process. It includes as special cases the normalized inverse Gaussian process recovered by setting $\sigma = 1/2$ and the normalized σ-stable process recovered by setting $b = 0$. An application of Proposition 3.1 leads to the stick-breaking representation of the normalized generalized Gamma process

$$P(\cdot) = \sum_{j \geq 1} V_j \prod_{i=1}^{j-1} (1 - V_i) \delta_{X_j}(\cdot), \quad (13)$$
where \((V_j)_{j \geq 1}\) is a sequence of random variables such that \(V_j|V_1, \ldots, V_{j-1}\) is absolute continuous with respect to the Lebesgue measure, and its density function on \((0, 1)\) coincides with

\[
g(v_j|v_1, \ldots, v_{j-1}) = \frac{\sigma}{\Gamma(1-\sigma)}(v_j z_j)^{-\sigma} \int_0^{+\infty} t^{-(j-1)\sigma} e^{-bt} f_\sigma(t z_j) dt - \sigma \int_0^{+\infty} t^{-(j-1)\sigma} e^{-bt} f_\sigma(t z_j) dt
\]

for any \(j \geq 1\), where we set \(z_j := \prod_{i=1}^{j-1} (1-v_i)\) with the proviso \(z_1 = 1\). Moreover, \((X_j)_{j \geq 1}\) is a sequence of random variables, independent of \((V_j)_{j \geq 1}\), and independent and identically distributed according to \(P_0\). See Favaro et al. [3] for a detailed analysis of the stick-breaking representation (13) with \(\sigma = 1/2\).

3.1 The slice sampling algorithm

The stick-breaking representation in Proposition 3.1 can be usefully applied in order to slice sample \(\sigma\)-stable Poisson-Kingman mixture models. The starting point is the mixture model \(f_P\) in (2) with a mixing measure \(P\) being a PK\((\rho^{(\sigma)}, h f_\sigma, P_0)\) model. In particular, according to the series representation (11) of \(P\), we can write

\[
f_P(y) = \sum_{j \geq 1} P_j k(y|X_j). \tag{14}
\]

Using the slice sampling idea introduced by Walker [31], the infinite dimensional aspect of \(f_P\) in (14) is tackled by introducing a suitable latent random variable \(U\) which has joint density function with \(Y\) given by

\[
f_{(P,U)}(y, u) = \sum_{j \geq 1} 1(u < P_j) k(y|X_j). \tag{15}
\]

Given the latent variable \(U\), the number of components of the mixture model \(f_P\) is finite, the indices being \(A_u = \{ j : P_j > U \}\). In particular, given the latent variable \(U\), one has the finite mixture model

\[
f_{(P|U)}(y|u) = \frac{1}{N_u} \sum_{j \in A_u} k(y|X_j)
\]

where the size of the set \(A_u\) is determined by \(\sum_{j \geq 1} 1(P_j > u)\) and \(N_u = \sum_{j \in A_u} P_j\). One can then introduce a further latent random variable \(D\) which indicates the components of the mixture model from which \(y\) is taken and gives the joint density function

\[
f_{(P,U,D)}(y, u, d) = 1(u < P_d) k(y|X_d). \tag{16}
\]

9
Clearly, without the latent variable U, the latent variable D can take an infinite number of values which would make the implementation of MCMC algorithms problematic.

The latent random variable U introduced in the augmented mixture model (15) can be easily updated because it is assumed to be uniformly distributed. Moreover, given the latent variable U, the set A_u can be easily found using the stick-breaking representation of the mixing measure P. Here, in order to improve the efficiency in the search for the set A_u, we consider the more general class of slice sampler recently introduced by Kalli et al. [9], the so-called slice-efficient sampler. Specifically, we replace (16) with the joint density function

$$f_{(P,U,D)}(y, u, d) = e^{\xi d} \mathbb{1}(u < e^{-\xi d}) P_d k(y | X_d)$$

for some $\xi > 0$. See Kalli et al. [9] for details. From (17) the complete data likelihood based on a sample of size n, is then easily seen to be

$$\prod_{i=1}^{n} e^{\xi d_i} \mathbb{1}(u_i < e^{-\xi d_i}) P_{d_i} k(y_i | X_{d_i}).$$

In particular, it can be easily verified that for any $i \geq 1$, conditioning on the latent variable $U_i = u_i$, it is that $1 \leq D_i \leq N_i$ where $N_i = \lfloor -(1/\xi) \log u_i \rfloor$ with $\lfloor x \rfloor$ being the integer part of x. Therefore, to present a valid MCMC algorithm we only need to record the N_i’s at each iteration so as to adequately sample the D_i’s. Moreover, if we set $N = \max\{N_i\}$, note that we only need the P_j’s and the X_j’s for $j = 1, \ldots, N$. We conclude this section by describing the sampling of the random probabilities P_j’s defined via the stick-breaking representation (9). The sampling of the D_i’s given the P_j’s and the sampling of the X_j’s given the $D_i = d_i$’s will be discussed in the next section together with some illustrations of the proposed algorithm.

Using the stick-breaking representation of the mixing measure P, for any $N \geq 1$ we need to sample the random variables (T, V_1, \ldots, V_N) from their conditional distributions, given the allocation random variables (D_1, \ldots, D_n). For such purpose, by an application of (10) it can be easily verified that the conditional density function of (T, V_1, \ldots, V_N), given the allocation variables (D_1, \ldots, D_n), is

$$f(t, v_1, \ldots, v_N|d_1, \ldots, d_n) \propto h(t) t^{-N\sigma} f_\sigma \left(t \prod_{j=1}^{N} (1 - v_j) \right) \prod_{j=1}^{N} v_j^{-\sigma} (1 - v_j)^{n_j - (N-j)\sigma},$$

where

$$n_j = \sum_{i=1}^{n} \mathbb{1}(d_i = j)$$

10
and

\[m_j = \sum_{i=1}^{n} \mathbb{1}(d_i > j). \]

(21)

In order to sample from (19) we apply the representation of Kanter [10] of the positive \(\sigma \)-stable density function \(f_\sigma \). Specifically, setting

\[
K_\sigma(z) = \left(\frac{\sin(\pi \sigma z)}{\sin(\pi z)} \right)^{-\frac{1}{\tau - \sigma}} \left(\frac{\sin((1 - \sigma)\pi z)}{\sin(\pi \sigma z)} \right)
\]

for \(0 < z < 1 \), it follows form Kanter [10] that

\[
f_\sigma(s) = \frac{\sigma}{1 - \sigma} s^{-\frac{1}{\tau - \sigma}} \int_0^1 e^{-s \cdot \frac{1}{\tau - \sigma} K_\sigma(z)} K_\sigma(z) dz.
\]

(22)

Therefore, using the representation (22) for a positive \(\sigma \)-stable density function \(f_\sigma \), we can introduce an augmented version of \(f(t,v_1,\ldots,v_N|d_1,\ldots,d_n) \) given by

\[
f^*(t, z, v_1, \ldots, v_N|d_1, \ldots, d_n) \propto h(t) t^{-N \sigma} f^*_\sigma \left(t \prod_{j=1}^{N} (1 - v_j), z \right) \prod_{j=1}^{N} v_j^{n_j - \sigma} (1 - v_j)^{m_j - (N-j)\sigma},
\]

where

\[
f^*_\sigma(s, z) \propto s^{-\frac{1}{\tau - \sigma}} e^{-s \cdot \frac{1}{\tau - \sigma} K_\sigma(z)} K_\sigma(z).
\]

In order to simplify this part of the model and to facilitate an easy MCMC implementation, we introduce a further latent random variable \(V \) which interacts with the model providing an augmented version of the density function \(f^*_\sigma(s, z) \) given by

\[
f^*_\sigma(s, z, v) \propto s^{-\frac{1}{\tau - \sigma}} K_\sigma(z) \mathbb{1} \left(v < e^{-s \cdot \frac{1}{\tau - \sigma} K_\sigma(z)} \right).
\]

Finally, we are now able to describe the full conditional distributions of the random variables \((T, V, Z, V_1, \ldots, V_N) \) which are required to be sampled. Specifically, for any \(N \geq 1 \) and for any \(j = 1, \ldots, N \), one has the following conditional density function for the \(V_j \)'s

\[
f^*(v_j| \text{ rest }) \propto (1 - v_j)^{m_j - (N-j)\sigma - \frac{1}{\tau - \sigma} v_j^{n_j - \sigma}} \mathbb{1} \left(1 - v_j > \frac{\left(K_\sigma(z) - \log v \right)^{1 - \sigma}}{t \prod_{l \neq j} (1 - v_l)} \right).
\]

Moreover, for any \(N \geq 1 \)

\[
f^*(z| \text{ rest }) \propto K_\sigma(z) \mathbb{1} \left(K_\sigma(z) < -(\log v) s^{\frac{\sigma}{\tau - \sigma}} \right).
\]
and

\[f^*(t \mid \text{rest}) \propto h(t) t^{-N \sigma - \frac{1}{1 - \sigma}} \mathbb{1}\left(t > \frac{K_{\sigma}(z)}{-\log v} \prod_{i=1}^{N} (1 - v_i) \right). \]

According to Kanter [10] the function \(K_{\sigma}(\cdot) \) is strictly decreasing on \((0, 1)\) and hence a value \(z_0 \) can be obtained easily whereby \(K_{\sigma}(z_0) > -(\log v) s^{\sigma / (1 - \sigma)} \) yet \(z_0 \) is close to \(z_1 \) where \(K_{\sigma}(z_1) = -(\log v) s^{\sigma / (1 - \sigma)} \). We can now use rejection sampling by sampling a proposal \(z^* \) as a Uniform random variable over the set \((z_0, 1)\) and accepting as a sample from \(f^*(z \mid \text{rest}) \) with probability

\[\mathbb{1}(z^* > z_1) \frac{K_{\sigma}(z^*)}{K_{\sigma}(z_0)}. \]

In particular, we know that \(z^* > z_1 \) when \(K_{\sigma}(z^*) < -(\log v) s^{\sigma / (1 - \sigma)} \). This algorithm works very well for all \(\sigma \in (0, 1) \) and \(z_1 \). An illustration is given based on the choice of \(\sigma = 0.4 \) and \(z_1 = 0.89 \); Figure 1 presents the histogram of 1000 samples based on uniform rejection sampling.

\[(\text{FIGURE 1 AROUND HERE})\]

4 Illustrations

In this section, we illustrate on simulated data and on a real data set, the slice sampling algorithm for \(\sigma \)-stable Poisson-Kingman mixture models. To start, for a \(n = 50 \) sample size, we generate independent and identically distributed random variables \(Y_i \)’s as follows: with probability \(1/2 \), \(Y_i \sim \mathcal{N}(-10, 2^2) \) and with probability \(1/2 \), \(Y_i \sim \mathcal{N}(10, 2^2) \), where we denoted by \(\mathcal{N}(\mu, \sigma^2) \) the Gaussian distribution with mean \(\mu \) and variance \(\sigma^2 \). We employ the standard Gaussian mixture model assuming a known variance \(\tau^2 = 2^2 \) for each component and assuming a mixing measure \(P \) being a PK\((\rho^{(1/2)}, h f_{1/2}, P_0)\). Hence, according to (14), the corresponding \(\sigma \)-stable Poisson-Kingman Gaussian mixture model is

\[f_P(y) = \sum_{j \geq 1} P_j \mathcal{N}(y \mid \mu_j, \tau^2) \]

where \((P_j)_{j \geq 1}\) is the sequence of stick-breaking random probabilities described in Proposition 3.1. Finally, for any \(j \geq 1 \), we denote by \(\pi(\mu_j) \) the prior distribution for \(\mu_j \), which
is taken to be a Gaussian distribution with mean 0 and variance 10^2. From (18), the complete data likelihood based on the sample of size of $n = 50$ is given by

$$\prod_{i=1}^{50} e^{\xi u_i} \text{1}(u_i < e^{-\xi u_i}) P_d N(y_i | \mu_d, \tau^2)$$

for some choice of $\xi > 0$. In the applications that follow this is fixed at $\xi = 1$. For any $i \geq 1$, given the latent variable U_i, the choice of the latent variable D_i is finite and hence can be sampled. Moreover, once the latent variable D_i have been sampled, then it is possible to sample the μ_j. In order to know how many of the μ_j’s and the V_j’s we need to sample we use the values of $N_i = \lfloor (\log w_i) / \xi \rfloor$ and $N = \max \{N_i\}$. Specifically, if we sample the μ_j’s and the V_j’s for $j = 1, \ldots, N$ then we can implement a precise sampler since the D_i’s are bounded by the N_i’s, respectively.

We start illustrating the sampling algorithm by describing the full conditional distribution of (T, V_1, \ldots, V_N), for any $N \geq 1$. In particular, from (19), the conditional density function of the random variables (T, V_1, \ldots, V_N), given the allocation random variables (D_1, \ldots, D_n), is proportional to

$$h(t) f_{1/2} \left(t \prod_{j=1}^{N} (1 - v_j)^{N/2} \prod_{j=1}^{N} v_j^{n_j-1/2}(1 - v_j)^{m_j-(N-j)/2} \right)$$

with n_j and m_j specified by (20) and (21). Also, for $\sigma = 1/2$, the σ-stable density function f_{σ} in (8) reduces to

$$f_{1/2}(t) \propto t^{-3/2} e^{-\frac{1}{4} t}$$

see, e.g., Section 0.3 in Pitman [28]. In order to make the sampler easier to cope with, for the exponential term appearing in the $f_{1/2}$ density function, we included a latent random variable V which enters the latent model via the term

$$\text{1}(v < \exp \left\{ -\frac{1}{4t(1-v_1) \cdots (1-v_N)} \right\}).$$

Now the sampling of each V_j’s is straightforward and the corresponding full conditional density function is proportional to

$$v_j^{n_j-1/2}(1 - v_j)^{m_j-(N-j)/2-3/2} \text{1}(1 - v_j) > \frac{1}{(\log v)(1 - v_1) \cdots (1 - v_N)}.$$

Finally, we need to consider the full conditional density function of the total mass variable T which is proportional to

$$h(t) t^{-N/2-3/2} \text{1} \left(t > \frac{1}{(\log v)(1 - v_1) \cdots (1 - v_N)} \right).$$
Both of these densities pose no real problems in being sampled. Once we have sampled \((V_1, \ldots, V_N)\) then we have the corresponding random probabilities \((P_1, \ldots, P_N)\). Hence, we can now sample the allocation variables \((D_1, \ldots, D_n)\) according to the full conditional distribution

\[
P(D_i = j | \text{rest}) \propto P_j \, e^{\xi_j} \mathcal{N}(y_i | \mu_j, \tau^2) \mathbb{1}(j \leq N_i)
\]

and, finally, we can also sample the \(\mu_j\)'s according to the following full conditional density function

\[
\prod_{d_i = j} \mathcal{N}(y_i | \mu_j, \tau^2) \pi(\mu_j).
\]

In the specific illustrations we took the prior \(\pi\) to be a Gaussian distribution with mean 0 and variance \(10^2\). We consider the sampling algorithm for two choices of the function \(h\): \(h(t) = 1\) corresponding to the normalized 1/2-stable process (see Example 3.1 for details), and \(h(t) = e^{1-t}\) corresponding to the normalized inverse Gaussian process with parameter \(b = 1\) (see Example 3.2 for details). We ran the algorithm for 50000 iterations keeping the final 9000 for estimating the sampling density function. The algorithm took a matter of seconds to run. To sample from the predictive at each iteration we sample the weights \(P_j\)'s. If the sample \(d_{n+1} \leq N\) then we take the predictive sample from \(\mathcal{N}(\mu_{d_{n+1}}, \tau^2)\); if \(d_{n+1} > N\) then we can take \(\mu_{d_{n+1}}\) from the prior \(\pi\) and take \(y_{n+1}\) from \(\mathcal{N}(\mu_{d_{n+1}}, \tau^2)\). The predictive plot is presented in Figure 2 for the choice \(h(t) = 1\) and in Figure 3 for the choice \(h(t) = e^{1-t}\).

(FIGURES 2 AND 3 AROUND HERE)

For the latter case, i.e. for \(h(t) = e^{1-t}\), we provide further information. The estimate of the total mass parameter is 1.70 and the convergence of the running mean throughout the chain is given in Figure 4. The chain was run for 100000 iterations, and every 100th iteration was taken to construct the running average. In this case, the estimated correlation between \(V_1\) and \(V_2\) is 0.74.

(FIGURE 4 AROUND HERE)

Including and updating \(\tau\) if a prior is provided is straightforward. Suppose the prior is \(\pi(\lambda)\), where \(\lambda = \tau^{-2}\), then

\[
\pi(\lambda | \text{rest}) \propto \pi(\lambda) \, \lambda^{n/2} \exp \left\{ -0.5 \lambda \sum_{i=1}^{n} (y(i) - \mu_{d(i)})^2 \right\}.
\]
Hence a Gamma prior is most appropriate here and in the following example we take it to be a standard Exponential, i.e. \(\pi(\lambda) = \exp(-\lambda) \). Now we simulated \(n = 50 \) data points \(Y_i \)'s from a mixture of two Gaussians distributions defined as follows: with probability \(1/2 \), \(Y_i \sim \mathcal{N}(0, 1) \) and with probability \(1/2 \) \(Y_i \sim \mathcal{N}(3, 0.5^2) \). The data are provided in Figure 5 and 10 posterior samples, using the same MCMC sampler as described above, were collected throughout the chain, separated by 1000 iterations. The samples are shown in Figure 6. These density functions were constructed using the weights, means and variance, obtained at a particular iteration, and the notion of the density function being a mixture of Gaussian density functions. We computed the mixtures up to the value of \(N \), and the remaining mass, typically very small, was added to a Gaussian density function with the prior mean and the sampled variance.

(FIGURES 5 AND 6 AROUND HERE)

We also run the model, with prior on the variance term, with \(\sigma = 1/2 \) and \(h(t) = e^{1-t} \) (see Example 3.2 for details) on the Galaxy data set, see Roeder, (1990), and which consists of 82 velocities of galaxies; an obligatory exercise when working with infinite mixture models. We ran our model with 30000 iterations and every 50th iteration was used to sample from the predictive. So at the relevant iterations we sample from the density function given all the parameters. The density function estimate is given in Figure 7. Note that we have transformed the data \(Y = Y/1000 - 20 \) and the prior settings were precisely as those for the example of the mixture of two Gaussian distributions. In Figure 8 we provide 5 posterior samples taken from the chain and separated by 1000 iterations. This was done in exactly the same manner as described in the previous example.

(FIGURES 7 AND 8 AROUND HERE)

5 Discussion

We have shown how to slice sample a class of mixture models which includes all of the current popular choices of mixing measures. With “standard” stick-breaking models the stick-breaking variables \((V_j)_{j \geq 1} \) are independent, even as they appear in the full conditional distribution sampled in the posterior MCMC algorithm.

On the other hand, the models we are considering in this paper have corresponding full conditional distribution given by (19). This only leads to independent \((v_j) \) variables
in special cases which depend on the choice of σ and $h(t)$. Nevertheless, we have shown how to sample this joint distribution and hence implement a valid MCMC algorithm. The joint density function arises as a consequence of using a σ-stable Poisson-Kingman based mixture model and specifically due to the representation of such random probability measures as stick-breaking processes with not necessarily independent stick-breaking variables.

The present paper is different from the work of Griffin and Walker [6] in the following way. In Griffin and Walker [6] normalized random measure mixture models are handled using the normalized representation in terms of Lévy processes. Whereas in the present paper we remove the need to consider Lévy processes by using a representation of normalized random measures as stick-breaking processes with dependent stick-breaking variables. We argue this latter representation is in fact the simpler to deal with.

Finally, we note that the class of σ-stable Poisson-Kingman models is indexed by a function $h(t)$, in addition to this usually encountered in discrete random probability measure. This function and its role need to be properly investigated. This would not have happened to date due to the lack of tools to do posterior inference with this class of model. This is now not the case.

Acknowledgements

The first author is partially supported by MIUR, Grant 2008MK3AFZ, and Regione Piemonte.

References

Figure 1: Samples from $K_{0.4}(z)$ restricted to lie in $(0.89, 1)$.
Figure 2: Mixture of Gaussian distributions, \(Y_i \sim \frac{1}{2} \mathcal{N}(-10, 2^2) + \frac{1}{2} \mathcal{N}(10, 2^2) \): samples from the predictive density function for \(h(t) = 1 \).

Figure 3: Mixture of Gaussian distributions, \(Y_i \sim \frac{1}{2} \mathcal{N}(-10, 2^2) + \frac{1}{2} \mathcal{N}(10, 2^2) \): samples from the predictive density function for \(h(t) = e^{1-t} \).
Figure 4: Mixture of Gaussian distributions, $Y_i \sim \frac{1}{2} \mathcal{N}(-10, 2^2) + \frac{1}{2} \mathcal{N}(10, 2^2)$: running average for total mass parameter with $h(t) = e^{1-t}$.

Figure 5: Mixture of Gaussian distributions, $Y_i \sim \frac{1}{2} \mathcal{N}(0, 1) + \frac{1}{2} \mathcal{N}(3, 0.5^2)$: data.
Figure 6: Mixture of Gaussian distributions, $Y_i \sim \frac{1}{2} \mathcal{N}(0, 1) + \frac{1}{2} \mathcal{N}(3, 0.5^2)$: posterior samples of densities.

Figure 7: Predictive density for Galaxy data set using $h(t) = e^{1-t}$.
Figure 8: Posterior samples of densities for Galaxy data set using $h(t) = e^{1-t}$.

24