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Abstract
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sion Funds and annuity providers. Basis risk is captured by a single
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1 Introduction

Pension funds and life insurance companies providing annuities are affected
by the so-called longevity risk, which is the risk that people live longer than
expected when the fund or company priced and reserved their policies. So,
while increasing longevity is welcome from the social point of view, it is one
of the risks that annuity providers - which we will call insurers for brevity
- have to face. Being a systematic risk, it cannot be diversified away by
increasing the size of portfolios. Still, insurers can hedge it, using mortality
derivatives, which were first proposed by Blake and Burrows (2001). So far,
such derivatives have been most frequently traded over-the-counter (OTC)
and written on the insurer’s specific policyholders’ population. So, they are
customized to fulfil the needs of the insurer. Alongside these deals, a market
for standardized products has slowly emerged. These products leave the
insurance company exposed to so-called basis risk, because they are written
on a reference population that does not coincide with the insured one. In
the surge of markets for longevity derivatives, the debate on the pros and
cons of fully customized versus index-based products is very much open. In
practice, actors seeking coverage with a fully customized OTC product build
a full, static hedge, such as an s-forward or a longevity swap, while not fully
customized derivatives (non-OTC for brevity) provide a partial, dynamic
hedge.1 In the first case, the hedging strategy is not adjusted over time. In
the second case, coverage calls for adjustment over time. In the absence of
basis risk, dynamic strategies would converge to a full, instead of a partial or
approximated coverage, if rebalancing would be continuous. With basis risk,
they do not converge. In both cases, they "cost", in the sense that – to make
them self-financing – the insurer must fund them through a "bank account",
whose final value is the hedging cost. So, while static hedges have an initially
defined and considerable cost, dynamic strategies have a cost, whose amount
depends on the rebalancing technique, frequency and the actual path of the
underlying insurance contracts. All in all, dynamic strategies are partial,
leave the insurer exposed to basis risk, but have potentially smaller costs
than static hedges.

Against this background, the aim of our paper is to propose a simple
framework for evaluating the effectiveness of static versus dynamic longevity-
hedging solutions, in the presence of basis risk. Our first original contri-
bution consists in providing a simple model for basis risk in longevity, by
separating forecast errors that are common to the general and the insured
population from idiosyncratic errors, which are proper of the latter popula-
tion. Longevity risk is represented through a stochastic mortality approach,
namely a mortality intensity which is itself a stochastic process. We model

1For a description of a customized and an index-based transaction involving JP Morgan
as a buyer of longevity risk, see Barrieu et al. (2012).
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basis risk by assuming that the intensity of the general population is imper-
fectly correlated with the insured one. So, we encapsulate basis risk in a
single, comovement parameter.

Once basis risk is modeled, our second important contribution consists
in providing fair prices of static and dynamic hedging instruments in closed
form. Our static hedge entails the use of an OTC longevity swap written
on the portfolio population, thereby entailing no basis risk. We consider
dynamic hedges that approximate the hedge up to the first (Delta) or second
(Delta-Gamma) or time (Theta) change in the longevity forecast error, and
are based on index-related longevity bonds.

Third, we assess the relative effectiveness of static versus dynamic strate-
gies in a calibrated environment, where the portfolio population is made
by 65-year-old Scottish males and the reference is made by 65-year-old UK
males. The dynamic strategy gives rise to two types of error or costs, that we
disentangle: the error due to its approximated nature, together with discrete-
time rebalancing (as in Dahl et al., 2011), and the error due to unhedgeable
basis risk. Since these errors are stochastic, we measure them through their
99.5 percentile of the bank account which makes the strategy self-financing.
This percentile is the greatest cost that the index-based hedge may entail,
in 99.5% of the possible cases. We determine the cost of the static hedge
which – split along the life of the swap as a fee – equates the given percentile,
and makes the two strategies cost the same. Beyond this maximum fee, the
dynamic hedge dominates the static hedge.

To anticipate on our results, we show that when basis risk is null, the
fee of the non-OTC strategy stays between 0.01% and 0.06%. In this case,
the cost of dynamic hedges is due only to their partial nature, and to dis-
crete hedging. Theta hedge does not improve much the effectiveness of a
Delta-Gamma strategy. When there is basis risk and the dynamic hedge
is performed using a Delta-Gamma-Theta strategy the fee ranges between
0.12% and 0.41%, depending on the rebalancing frequency, which stays be-
tween a quarter and one year. Comparing the two fees, with and without
basis risk, we can measure the impact of basis risk. Even if the fees we
computed are relatively low, the one when basis risk is present is around
seven to twelve times the other, depending on the rebalancing frequency. It
would be much bigger for more infrequent rebalancing and with other, less
precise dynamic hedges. We conclude that basis risk might be relevant for
annuity providers’ hedges, but hedging strategies, if appropriately designed
and calibrated, can still be very effective.

The paper unfolds as follows: in Section 2 we review some related lit-
erature, in Section 3 we set up the model for longevity and financial risk
evaluation, in Section 4 we introduce basis risk. In Section 5 we present the
liabilities to be hedged. In Sections 6 and 7 we present static and dynamic
hedges. In Section 8 we implement the strategies on the UK-Scottish male
population aged 65, both without and with basis risk, and compare their
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effectiveness. The last Section summarizes and concludes.

2 Related Literature

The effectiveness of static hedging strategies in the presence of basis risk has
been examined by Ngai and Sherris (2011). Comparing different cash-flow
matching hedging strategies achieved using various instruments, such as q-
forwards, longevity bonds or swaps, they show that static hedging is effective
in reducing tail risk (expected shortfall) and that the impact of basis risk on
effectiveness is limited. In Coughlan et al. (2011), the authors argue that,
due to the lack of a proper framework to understand Basis Risk, there has
been a widely diffused misconception that index-based longevity hedging is
ineffective. So, they describe a framework to evaluate basis risk and to deter-
mine the effectiveness of longevity hedging when standardized index-based
instruments are used. In their case study, using bootstrap from historical
data, they find that, despite the presence of basis risk, if the correlation
between the dynamics of the reference population underlying the hedging
instrument and the liability portfolio one is high, the hedge remains very
effective. The importance of considering basis risk is highlighted by Cairns
et al. (2014), who, using simulated rather than bootstrapped data, show that
population basis risk is the most important determinant of the hedge effec-
tiveness of a static value-hedge longevity swap. Haberman et al. (2014) also
point out the importance of assessing basis risk in indexed solutions, in order
to understand the residual risk left, also in the light of Solvency II capital
requirements. In their paper, they provide a comprehensive treatment of
basis risk measurement, addressing the issues of model selection and proper
calibration.

Li and Hardy (2011) compare four different extensions of the Lee-Carter
model, suitable to model basis risk. The analysis identifies the Augmented
Common Factor model as most appropriate among those tested. Such model
assumes, similarly to the model we propose in this paper, that the mortalities
of two populations depend on a common and on a population-specific factor.
Application to the hedging of a Canadian pension plan exposure to longevity
risk using a portfolio of q-forwards indexed to the US population shows that
a static longevity hedge can still be reasonably effective even when basis risk
is present.

Continuous-time modeling and dynamic hedging of longevity basis risk,
as in our paper, are tackled by Dahl et al. (2008) and Wong et al. (2014).
The former consider two populations and model mortality improvements us-
ing two mean-reverting CIR processes driven by a bi-dimensional standard
Brownian Motion. In this setting, the paper provides risk-minimizing strate-
gies of longevity risk by dynamically trading in a survivor swap when basis
risk is present. Wong et al. (2014) derive the mean-variance hedging strategy
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for longevity risk using an instrument contingent on a mortality index, where
the mortality intensity of the insurer’s portfolio population is correlated and
cointegrated to the mortality index itself. Differently from these two papers,
our work focuses on local rather than global hedging and provides a cali-
brated assessment of the impact of basis risk and hedging frequency on the
effectiveness of dynamic strategies.

3 Longevity and interest rate risk modeling

We model longevity risk assuming that the time to death of an individual
belonging to a specific generation follows a Poisson process with stochastic
intensity. We consider a standard filtered probability space (Ω,F ,Q) sat-
isfying the usual assumptions and on which a filtration Ft is defined. The
measure Q is the so-called risk-neutral measure. Below, we will discuss the
relationship between this measure and the historical one.

The mortality intensity of a specific generation is described by a so-called
Cox-Ingersoll and Ross (CIR) process, i.e. a Feller process of the type:

dλ(t) = (a+ bλ(t))dt+ σ
√
λ(t)dW (t), (1)

with a > 0, b > 0, σ > 0, λ(0) = λ0 ∈ R++. The reason behind the as-
sumption b > 0 is that the process is expected to have no mean reversion.
The previous SDE describes the evolution (for a given generation) of the in-
tensity of mortality arrival over calendar time. Because the generation ages
over time, the drift simply ensures that the expected change in the intensity
is affine and increasing in the intensity itself.
If the initial point λ0 is strictly positive and the coefficients satisfy the fol-
lowing condition:

a ≥ σ2

2
, (2)

then the mortality intensity λ(t) is strictly positive for every t, almost surely.
Hence, to obtain a satisfactory calibrated model for the intensity process, we
impose this condition on the parameters in the calibration procedure.

Consistently, we assume that the spot interest rate - or interest rate
intensity - follows a CIR process of the type:

dr(t) = (ā− b̄r(t))dt+ σ̄
√
r(t)dW ′(t), (3)

with ā > 0, b̄ > 0, σ̄ > 0, r(0) = r0 ∈ R++, where the Wiener process W ′

is independent of W .2 This last assumption entails independence between
longevity and interest rate risks. The negative sign preceding b̄ and its strict
positivity guarantee that the process for the interest-rate incorporates mean

2Let the filtration Ft be the filtration generated by the two Brownian motions.
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reversion, which is a usual assumption in the interest-rate domain. The coef-
ficient b̄ is called speed of mean reversion and represents the speed at which
the short rate r(t) returns to its long-run value ā.
Similarly to the longevity case, the restriction on the parameters that, to-
gether with the positivity of the initial point r0, guarantees that the interest
rate r(t) never turns negative is

ā ≥ σ̄2

2
. (4)

At each point in time, the conditional distributions of the mortality in-
tensity and the interest rate are given, up to a scale factor, by a noncentral
chi-square distribution.3

Denoting as τ the time to death, the conditional survival probability from
t to T is

S(t, T ) = P (τ > T | τ > t) . (11)

To proceed to the pricing and hedging of insurance products, the risk-neutral
dynamics of the two previous processes is needed. However, for calibration
purposes, its effective or historical version may be the one stemming from
the data, at least for the longevity case. In order to keep the notation
simple, we assume that there is no risk premium in the longevity market or,
equivalently, that equation (1) holds under both measures. Therefore, the

3In details, given two time instants u < t, then the distribution of λ(t) conditional on
λ(u) is

λ(t) ≈
σ2
(
eb(t−u) − 1

)
4b

X
′2
d (ν), (5)

where X
′2
d (ν) denotes the density of a noncentral chi-square random variable with d degrees

of freedom, where

d =
4a

σ2
, (6)

and the noncentrality parameter ν is

ν =
4beb(t−u)

σ2(eb(t−u) − 1)
λ(u). (7)

Similarly, the distribution of r(t) conditional on r(u) is

r(t) ≈
σ̄2
(
1− e−b̄(t−u)

)
4b̄

X
′2
d̄ (ν̄), (8)

where X
′2
d̄ (ν̄) denotes the density of a noncentral chi-square random variable with d̄ degrees

of freedom, with

d̄ =
4ā

σ̄2
, (9)

and the noncentrality parameter ν is

ν̄ =
4b̄e−b̄(t−u)

σ̄2(1− e−b̄(t−u))
r(u). (10)
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calibration of the longevity intensity is performed by estimating its dynamics
under the historical measure and, then, using it also under the risk-neutral
measure. The calibration of the interest rate dynamics is, on the other
hand, performed directly under the risk-neutral measure, thus incorporating
the risk premium. As a consequence, the conditional survival probability
(11) can be represented as an expectation under the risk neutral measure:

S(t, T ) = EQ
[
exp

(
−
∫ T

t
λx(s)ds

)
| Ft

]
. (12)

Given our model choice, this expectation becomes:

S(t, T ) = A(t, T )e−B(t,T )λ(t), (13)

where A(t, T ) and B(t, T ) solve an appropriate system of Riccati equations,
being

A(t, T ) = A(t, T ; a, b, σ) =

(
2γe

1
2

(γ−b)(T−t)

(γ − b)
(
eγ(T−t) − 1

)
+ 2γ

) 2a
σ2

, (14)

B(t, T ) = B(t, T ; a, b, σ) =
2
(
eγ(T−t) − 1

)
(γ − b)

(
eγ(T−t) − 1

)
+ 2γ

, (15)

where γ =
√
b2 + 2σ2. As shown in Fung et al. (2014), the above specification

guarantees also that the limit of the survival probability, when T diverges,
is zero.

For any given t, it is possible to compute the log-derivative of the survival
probability, which is referred to as the "forward" mortality intensity for time
T , since it represents its forecast at time t. By definition4

f(t, T ) = −∂lnS(t, T )

∂T
= −∂lnA(t, T )

∂T
+
∂B(t, T )

∂T
λ(t), (18)

Using a technique described in Jarrow and Turnbull (1994) and Luciano
et al. (2012), which exploits the definition of "forward" intensity, we can
write the survival as5

S(t, T ) = e−X(t,T )I(t)+Y (t,T ), (20)
4It is easy to show that

∂lnA(t, T )

∂T
=

2a

σ2

[
1

2
(γ − b)− γeγ(T−t)

eγ(T−t) − 1 + 2γ
γ−b

]
, (16)

∂B(t, T )

∂T
=

4γ2eγ(T−t)

[(γ − b) (eγ(T−t) − 1) + 2γ]
2 . (17)

5Using the fact that λ(t) = I(t) + f(0, t), (20) becomes

S(t, T ) = A(t, T )exp
(
−B(t, T )

[
I(t)− ∂lnA(t, T )

∂T

∣∣
(0,t)

+ λ(0)
∂B(t, T )

∂T

∣∣
(0,t)

])
. (19)

Hence, we have an expression for the survival equivalent to (13).
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where I(t) = λ(t) − f(0, t) and X(t, T ) and Y (t, T ) are deterministic func-
tions of the parameters of the intensity process and of time t and T :

X(t, T ) = B(t, T ),

Y (t, T ) = lnA(t, T )−B(t, T )

[
−∂lnA(t, T )

∂T

∣∣
(0,t)

+ λ(0)
∂B(t, T )

∂T

∣∣
(0,t)

]
.

The term I is called longevity risk factor. It is the difference between the
actual intensity at time t and its forecast made at time 0. Expression (20)
will play a crucial role in hedging, because it encapsulates all riskiness in the
I factor, which has the intuitively nice interpretation of a forecast error.6

The discount factor or bond price for time t, under any stochastic process
for the spot rate, is

D(t, T ) = E
[
exp

(
−
∫ T

t
r(u)du

)
|Ft
]
, (21)

which, in the CIR case, becomes

D(t, T ) = Ā(t, T )e−B̄(t,T )r(t),

where Ā(t, T ) = A(t, T ; ā,−b̄, σ̄) and B̄(t, T ) = B(t, T ; ā,−b̄, σ̄) and γ̄ =√
b̄2 + 2σ̄2. As in the longevity case, the bond value can be reformulated as

D(t, T ) = e−X̄(t,T )J(t)+Ȳ (t,T ), (22)

where

X̄(t, T ) = B̄(t, T ),

Ȳ (t, T ) = lnĀ(t, T )− B̄(t, T )

[
−∂lnĀ(t, T )

∂T

∣∣
(0,t)

+ r(0)
∂B̄(t, T )

∂T

∣∣
(0,t)

]
,

and J is the financial risk factor, measured by the difference between the
short and forward rate:

J(t) = r(t)− F (0, t).

The forward rate F (t, T ) represents the fair price at time t for a forward
contract on the spot rate at T . It is computed, similarly to the forward

6As we know, the forecast error in longevity has been substantial over the last decades.
Approximately, expected lifetime improvement has been underestimated by 3 years over
the last century (see International Monetary Fund (IMF) (2012)).
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mortality intensity, as7

F (t, T ) = −∂ lnD(t, T )

∂T
= −∂lnĀ(t, T )

∂T
+
∂B̄(t, T )

∂T
r(t), (25)

So, also in the bond case, the reformulation in terms of the risk factor allows
us to synthesize in a unique spread the forecast error that economic agents
can make and that they may be willing to hedge.

4 Basis risk

Up to now we have examined a benchmark case, in which, for each sex and
generation, there is a unique intensity process. To signal that, we could have
used an index x for the process λ, and turned it into λx. In practice, this
setting could be restrictive. Indeed, we have non-OTC mortality derivatives
written on a Reference population, while insurance companies face the need
to hedge the longevity risk arising from their insureds, who represent the
Portfolio population. In this case, basis risk arises since the two intensity
processes governing the mortality of the two populations may differ. As a
consequence, no perfect dynamic hedge is possible. Hence, the insurer willing
to hedge her longevity risk can choose between a non-perfect dynamic hedge
or a static hedge, such as a OTC longevity swap tailored to her Portfolio
population, thus bearing no basis risk.

We focus on Delta-Gamma longevity risk hedging as a dynamic hedging
strategy. To account for basis risk, we assume that the intensity of generation
x in the Reference population follows the SDE

dλnpx (t) = (a+ bλnpx (t))dt+ σ
√
λnpx (t)dWx(t), (26)

where, to simplify notation, we omit the subscript x for the parameters. We
assume that the insurance portfolio is composed by a sub-population of the
Reference population. The mortality intensity of generation x belonging to
the Portfolio population is

λppx (t) = δxλ
np
x (t) + (1− δx)λ

′
x(t), (27)

with

dλ′x(t) = (a′ + b′λ′x(t))dt+ σ′
√
λ′x(t)dW ′x(t), (28)

7Here

∂lnĀ(t, T )

∂T
=

2ā

σ̄2

[
1

2
(γ̄ + b̄)− γ̄eγ̄(T−t)

eγ̄(T−t) − 1 + 2γ̄
γ̄+b̄

]
, (23)

∂B̄(t, T )

∂T
=

4γ̄2eγ̄(T−t)[
(γ̄ + b̄) (eγ̄(T−t) − 1) + 2γ̄

]2 , (24)
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where Wx and W ′
x are two independent standard Brownian Motions, a′ > 0,

σ′ > 0, b′ ∈ R and 0 ≤ δx ≤ 1. The intensity of the insurer’s Portfolio
population λppx is modelled as a convex combination of the Reference popu-
lation’s intensity λnpx and an idiosyncratic component λ′x orthogonal to λnpx .
The idiosyncratic component λ′x is specific to the Portfolio population and
cannot be hedged by trading in the longevity bonds written on the Reference
population. Intuitively, the parameter δx measures the degree of dependence
between the evolution of the Portfolio population’s mortality intensity and
the Reference population one. Therefore, 1 − δx could be interpreted as
a measure of basis risk. Indeed, the benchmark case without basis risk is
obtained by assuming δx = 1. We assume b′ ∈ R, thus allowing the idiosyn-
cratic component to be either mean-reverting or not. The sign of b′ will
therefore be decided by the calibration that provides the lowest calibration
error.

Straightforward application of Ito’s Lemma shows that the dynamics of
λppx follow a two-factor CIR process. Indeed:

d
(
δxλ

np
x

)
(t) = dλ̃npx (t) = (α+ βλ̃npx (t))dt+ η

√
λ̃npx (t)dWx(t), (29)

with

α = δxa,

β = b,

η2 = δxσ
2,

and

d
(
(1− δx)λ

′
x

)
(t) = dλ̃

′
x(t) = (α

′
+ β

′
λ̃
′
x(t))dt+ η

′
√
λ̃′x(t)dW

′
x(t), (30)

with

α′ = (1− δx)a′,

β′ = b′,

(η′)2 = (1− δx)(σ′)2.

Since λnpx (t) and λppx (t) follow a 1-factor and a 2-factor CIR process re-
spectively, we can compute their conditional moments.

Assuming 0 ≤ u ≤ t, in particular, the conditional covariance and corre-
lation between λnpx (t) and λppx (t) are

Covu
[
λppx (t), λnpx (t)

]
= δxV aru

[
λnpx (t)

]
, (31)

Corru
[
λppx (t), λnpx (t)

]
= δx

√
V aru

(
λnpx (t)

)
V aru

(
λppx (t)

) , (32)
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where

V aru
[
λnpx (t)

]
=
aσ2

2b2
(
eb(t−u) − 1

)2
+
σ2

b
eb(t−u)

(
eb(t−u) − 1

)
λnpx (u), (33)

V aru
[
λ
′
x(t)

]
=
a
′
(σ
′
)2

2(b′)2

(
eb
′
(t−u) − 1

)2
+

(σ
′
)2

b′
eb
′
(t−u)

(
eb
′
(t−u) − 1

)
λ
′
x(u),

(34)

V aru
[
λppx (t)

]
= δ2

xV aru
[
λnpx (t)

]
+ (1− δx)2V aru

[
λ
′
x(t)

]
. (35)

Equations (31) and (32) further clarify the interpretation of δx as a measure
of the degree of comovement between the intensity of the two populations.
Indeed, when δx = 0 the two intensities have zero correlation, while δx = 1
implies perfect positive correlation. δx positive ensures that λpp is strictly
positive. Corru

[
λppx (t), λnpx (t)

]
stays between 0 and 1. Though this may

seem restrictive, this assumption is justified by the intuition that when a
shock hits the Reference population, increasing for example its mortality
intensity, the sub-population is affected similarly, but with a different sen-
sitivity, while divergence between the two intensities is entirely captured by
the idiosyncratic risk factor λ′ .

The survival probabilities of the Reference population are given by:

Snp(t, T ) = Anp(t, T )e−B
np(t,T )λnpx (t),

where Anp(t, T ) and Bnp(t, T ) are defined as in (15). The survival probabil-
ities of the Portfolio population can be written as functions of the common
and idiosyncratic intensities as follows:

Spp(t, T ) = S̃np(t, T )S̃
′
(t, T ) (36)

= Ãnp(t, T )Ã
′
(t, T )e−B̃

np(t,T )δxλ
np
x (t)−B̃′ (t,T )(1−δx)λ

′
x(t), (37)

with Ãnp(t, T ) = A(t, T ;α, β, η), B̃np(t, T ) = B(t, T ;α, β, η) and Ã′(t, T ) =
A(t, T ;α′, β′, η′), B̃′(t, T ) = B(t, T ;α′, β′, η′), where γ̃ =

√
β2 + 2η2 and

γ̃
′

=
√

(β′)2 + 2(η′)2.
As in the benchmark case, we use the Jarrow-Turnbull (1994) formula-

tion of the survival probabilities in order to make their dependence on the
longevity risk factor, defined as I(t) = λnpx − fnpx (0, t), explicit. The survival
probability of the Reference population can therefore be written as:

Snp(t, T ) = e−X
np(t,T )I(t)+Y np(t,T )

11



where

Xnp(t, T ) =Bnp(t, T ), (38)
Y np(t, T ) =lnAnp(t, T )−Bnp(t, T )fnpx (0, t), (39)

=lnAnp(t, T )−Bnp(t, T )
[
− ∂lnAnp(t, T )

∂T

∣∣∣∣
(0,t)

+ (40)

+ λnpx (0)
∂Bnp(t, T )

∂t

∣∣∣∣
(0,t)

]
, (41)

and

∂lnAnp(t, T )

∂T
=

2a

σ2

[1

2
(γ − b)− γeγ(T−t)

eγ(T−t) − 1 + 2γ
γ−b

]
, (42)

∂Bnp(t, T )

∂T
=

4γ2eγ(T−t)

[(γ − b)(eγ(T−t) − 1) + 2γ]2
. (43)

Similarly, for the survival probabilities of the Portfolio population we have:

Spp(t, T ) = e−X
pp(t,T )δxI(t)−X

′
(t,T )(1−δx)λ

′
x(t)+Y pp(t,T ),

where

Xpp(t, T ) = B̃np(t, T ), (44)

X
′
(t, T ) = B̃

′
(t, T ), (45)

Y pp(t, T ) = lnÃnp(t, T ) + lnÃ
′
(t, T )− B̃np(t, T )fnpx (0, t). (46)

5 Sensitivity of the insurance portfolio

We assume that the liabilities of the insurance company are represented by
an annuity contract8 – with maturity T and annual installments R paid at
year-end – written on an individual belonging to the Portfolio population,
aged x at time 0. The extension to term insurance, pure endowments or
other non-indexed contracts is straightforward.
For the case without basis risk, the fair value of the annuity contract, which is
also the value of its reserve, depends at any time 0 ≤ t ≤ T on the mortality
intensity λx in equation (1). Thus, using the Jarrow and Turnbull (1994)
representation, we can write:

8Indeed, for simplicity, we abstract from idiosyncratic risk and consider the annuity as
a perfectly-diversified portfolio on annuities issued on homogeneous individuals.
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N(t, T ) = R
T−t∑
u=1

D(t, t+ u)S(t, t+ u), (47)

= R
T−t∑
u=1

e−X̄(t,t+u)J(t)+Ȳ (t,t+u) · e−X(t,t+u)I(t)+Y (t,t+u). (48)

The marginal effect on the value of the reserve caused by any unexpected
change in the common mortality risk factor or in the interest rate process,
can approximated as follows:

dN =
∂N

∂t
dt+

∂N

∂I
dI +

1

2

∂2N

∂I2
(dI)2 +

∂N

∂J
dJ +

1

2

∂2N

∂J2
(dJ)2 , (49)

where
∂N

∂I
= R

T−t∑
u=1

D(t, t+ u)∆M (t, t+ u),

∂2N

∂I2
= R

T−t∑
u=1

D(t, t+ u)ΓM (t, t+ u),

∂N

∂J
= R

T−t∑
u=1

∆F (t, t+ u)S(t, t+ u),

∂2N

∂J2
= R

T−t∑
u=1

ΓF (t, t+ u)S(t, t+ u),

with

∆M (t, T ) :=
∂S(t, T )

∂I
= −X(t, T )S(t, T ) ≤ 0, (50)

ΓM (t, T ) :=
∂2S(t, T )

∂I2
= X(t, T )2S(t, T ) ≥ 0, (51)

∆F (t, T ) :=
∂D(t, T )

∂J
= −X̄(t, T )D(t, T ) ≤ 0, (52)

ΓF (t, T ) :=
∂2D(t, T )

∂J2
= X̄(t, T )2D(t, T ) ≥ 0. (53)

The signs of these Greeks help understand the effects of a mortality or
a financial shock on the price of the annuity. The negative sign of ∆M and
∆F shows that, as one would expect, the value of the annuity is decreasing
in both the longevity and the interest rate risk factors. The positivity of ΓM

and ΓF indicates, instead, that the higher I or J , the higher is the annuity
value sensitivity to their changes.

13



If instead there is basis risk, then at any time 0 ≤ t ≤ T , the fair value
of the annuity contract is driven by the mortality intensity λppx and can be
written as:

Npp(t, T ) = R

T−t∑
u=1

D(t, t+ u)Spp(t, t+ u), (54)

or equivalently as:

Npp(t, T ) = (55)

= R
T−t∑
u=1

e−X̄(t,t+u)J(t)+Ȳ (t,t+u) · e−Xpp(t,t+u)δxI(t)−X
′
(t,t+u)(1−δx)λ

′
x(t)+Y pp(t,t+u).

(56)

Under the previous assumptions, if there is any unexpected change in
the common mortality risk factor, in the idiosyncratic component or in the
interest rate process, the marginal effect on the reserve is as follows:

dNpp =
∂Npp

∂t
dt+

∂Npp

∂I
dI +

1

2

∂2Npp

∂I2
(dI)2 +

∂Npp

∂λ′
dλ′ +

1

2

∂2Npp

∂(λ′)2
(dλ′)2+

+
∂Npp

∂J
dJ +

1

2

∂2Npp

∂J2
(dJ)2 , (57)

where
∂Npp

∂I
= R

T−t∑
u=1

D(t, t+ u)∆M
pp(t, t+ u),

∂2Npp

∂I2
= R

T−t∑
u=1

D(t, t+ u)ΓMpp(t, t+ u),

∂Npp

∂λ′
= R

T−t∑
u=1

D(t, t+ u)∆′pp(t, t+ u),

∂2Npp

∂(λ′)2
= R

T−t∑
u=1

D(t, t+ u)Γ′pp(t, t+ u),

∂Npp

∂J
= R

T−t∑
u=1

∆F (t, t+ u)Spp(t, t+ u),

∂2Npp

∂J2
= R

T−t∑
u=1

ΓF (t, t+ u)Spp(t, t+ u),
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with

∆M
pp(t, T ) :=

∂Spp(t, T )

∂I
= −Xpp(t, T )δxS

pp(t, T ) ≤ 0, (58)

ΓMpp(t, T ) :=
∂2Spp(t, T )

∂I2
=
(
Xpp(t, T )δx

)2
Spp(t, T ) ≥ 0, (59)

∆′pp(t, T ) :=
∂Spp(t, T )

∂λ′
= −X ′(t, T )(1− δx)Spp(t, T ) ≤ 0, (60)

Γ′pp(t, T ) :=
∂2Spp(t, T )

∂(λ′)2
=
(
X ′(t, T )(1− δx)

)2
Spp(t, T ) ≥ 0, (61)

∆F (t, T ) :=
∂D(t, T )

∂J
= −X̄(t, T )D(t, T ) ≤ 0, (62)

ΓF (t, T ) :=
∂2D(t, T )

∂J2
= X̄(t, T )2D(t, T ) ≥ 0. (63)

The same comments about the signs of the Delta and Gamma of the
annuity for the case with no basis risk, apply here. Moreover, from equation
(58), we can also observe that the sensitivity of the annuity with respect to
the common longevity risk factor I is directly proportional to the parameter
δx.

6 Static Hedging Strategies

In order to hedge the unexpected changes formalized above, the insurance
company can buy a static, OTC hedge, provided by a so-called s-swap or
longevity swap, usually customized, or written on the Portfolio population.
A longevity swap is a sequence of s-forwards. An s-forward signed at t with
maturity T is a contract in which – for reasons to be explained below –
one party agrees to pay a fixed amount K(T ) in exchange for the number
of survivors at T belonging to a specific generation x of the Portfolio pop-
ulation. We normalize the number of individuals in generation x to one.
We thus abstract from annuitant-specific risk and consider a single annuity
as equivalent to a well-diversified homogeneous portfolio of annuities. If the
maturity of the forward is T , and the fixed payment is K(T ), then the payoff
at maturity, from the point of view of who pays fixed, is

exp

(
−
∫ T

t
λppx (s)ds

)
−K(T ), (64)

An s-forward (unit hedge) helps providers of annuities to hedge their ex-
posure: if the provider has sold a pure endowment on generation x with
maturity T , and buys an s-forward, he will pay K(T ) for sure instead of
being exposed to the randomness of the payment, exp

(
−
∫ T
t λppx (s)ds

)
. Un-

der the assumption of no arbitrage, and assuming independence between
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mortality and interest-rate risk, the fair value at time t of such a contract is

[S(t, T )−K(T )]D(t, T ) =

= Et
[
exp

(
−
∫ T

t
λppx (s)ds

)
−K(T )

]
Et
[
exp

(
−
∫ T

t
r(u)du

)]
.

where index t signals that the expectation is the Ft− one. Since, in order to
enter such a contract, no price is paid at inception, the no-arbitrage value of
K(T ), which equates the fair value to zero, is S(t, T ).

A longevity swap is a sequence of s-forwards. If the exchange of amounts
happens once a year, the payment for the period (T − 1, T ) is K(T ) and the
contract lasts until the last individual of the generation is dead (at age ω),
the payoffs are given by (64) for T = 1, .., ω− t. Under the assumption of no
arbitrage, and still assuming independence between mortality and interest-
rate risk, the value at time t of such a contract is

ω−t∑
T=t+1

[S(t, T )−K(T )]D(t, T ) =

=
ω−t∑

T=t+1

Et
[
exp

(
−
∫ T

t
λppx (s)ds

)
−K(T )

]
Et
[
exp

(
−
∫ T

t
r(u)du

)]
,

which is equal to zero, as a fair pricing would require, if K(T ) is set equal to
the survival probability up to time T . We call K(T ) the swap rate for the
time period (T − 1, T ).9

Usually, the previous swap is not offered to the insurance company at
fair value. It entails a cost, which we take to be fixed and equal to C0. It
follows that the fees K(T ) are raised to K ′(T ), where the sequence K ′(T )
solves

−C0 =
ω−t∑

T=t+1

[
S(t, T )−K ′(T )

]
D(t, T ).

For the sake of simplicity, we assume that the cost C0 is evenly distributed
along the "life" of the swap, by increasing the swap rates K by the same
amount, i.e. K ′(T ) = K (T )(1 + m) = S(t, T )(1 + m) where the premium

9An alternative would be to fix a unique swap rate for all periods, K(T ) = K. In this
case fairness would be guaranteed by setting K equal to the following value:

K =

ω−t∑
T=t+1

E
[
exp

(
−
∫ T

t

λx(s)ds

)]
E
[
− exp

(∫ T

t

r(u)du

)]
ω−t∑
T=1

E
[
− exp

(∫ T

t

r(u)du

)] .
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loading m is determined as follows:

m =
C0

ω−t∑
T=t+1

S(t, T )D(t, T )

=
C0

ω−t∑
T=t+1

e−X̄(t,T )J(t)+Ȳ (t,T ) · e−X(t,T )I(t)+Y (t,T )

.

In principle, the insurance company can be interested in hedging interest
rate risk too. We neglect this coverage here. However, given the similarity
of the two processes, the formulas for an interest rate swap would be similar
to the survival one.

7 Greeks and Delta-Gamma hedging strategy

An alternative to the previous hedge is a dynamic hedging strategy that uses
longevity bonds based on the survivorship of a Reference population.10.

We consider two different longevity risk hedging strategies: the Delta-
Gamma strategy (see Luciano et al. (2012)), and an extension called Delta-
Gamma-Theta hedging strategy. The first one covers both the first and
second-order changes in the reserve, Delta and Gamma, that depend on
the changes of the CIR longevity intensity, using a portfolio composed of
longevity bonds. The second one adds a risk-free zero-coupon bond to the
hedging portfolio in order to cover also the time-derivative (the Theta) of
the value of the reserve. For consistency with the static hedge, we assume
that interest rate risk is not covered. For the same reason, we also assume
that the dynamic hedge is self-financing, a requirement formalized below. At
each rebalancing date we re-apply the self-financing Delta-Gamma(-Theta)
strategy using the same instruments. Immediately before each rebalancing
date t we evaluate the portfolio. Its value is the gain or loss of the hedg-
ing strategy, which we finance through the bank account. In other words,
any gain or loss from the hedging revision is stored or charged in the bank
account, from which the payments due because of the annuity contract are
also taken. The bank account accrues or charges the short interest rate r(t).
As customary in this literature, we refer to the absolute value of the bank
account as to the hedging error of the dynamic strategy.

10We can use a number of other instruments to cover the annuity, starting from life
assurances or death bonds, which pay the benefit in case of death. We restrict the attention
to longevity bonds for the sake of simplicity, whose payoff for the maturity T is

exp

(
−
∫ T

t

λnpx (s)ds

)
.
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7.1 No basis risk

Assume first that there is no basis risk, so that δx = 1. Under no-arbitrage,
if the longevity bond maturity is Ti, its fair value at time t, Mi(t), is

Mi(t) = S(t, Ti)D(t, Ti),

which, using the CIR assumption, can be written as

Mi(t) = Ā(t, Ti)e
−B̄(t,Ti)r(t)A(t, Ti)e

−B(t,Ti)λx(t),

or, in the Jarrow and Turnbull formulation, as

Mi(t) = e−X̄(t,Ti)J(t)+Ȳ (t,Ti)e−X(t,Ti)I(t)+Y (t,Ti).

The dynamics of Mi(t) are driven by λx(t) and r(t), and can be written
as follows:

dMi =
∂Mi

∂t
dt+

∂Mi

∂I
dI +

1

2

∂2Mi

∂I2
(dI)2 +

∂Mi

∂J
dJ +

1

2

∂2Mi

∂J2
(dJ)2 , (65)

where
∂Mi

∂I
= D(t, Ti)∆

M (t, Ti),

∂2Mi

∂I2
= D(t, Ti)Γ

M (t, Ti),

∂Mi

∂J
= ∆F (t, Ti)S(t, Ti),

∂2Mi

∂J2
= ΓF (t, Ti)S(t, Ti),

where ∆M (t, T ),ΓM (t, T ),∆F (t, T ),ΓF (t, T ) are given by (50), (51), (52),
(53), respectively.

The dynamics of the annuity N(t) is driven by the same factors:

dN =
∂N

∂t
dt+

∂N

∂I
dI +

1

2

∂2N

∂I2
(dI)2 +

∂N

∂J
dJ +

1

2

∂2N

∂J2
(dJ)2 .

In order to Delta-Gamma hedge and keep the hedge self financing, we
need three bonds at each point in time.Their maturities Ti, i = 1, 2, 3 are kept
constant along the life of the hedge. The number of bonds in the portfolio
at t is ni, i = 1, 2, 3.

At each rebalancing point t, the positions in the bonds used to hedge
solve the following system

−∂N(t)
∂I dI +

∑3
i=1 ni(t)

∂Mi(t)
∂I dI = 0,

−∂2N(t)
∂I2 (dI)2 +

∑3
i=1 ni(t)

∂2Mi(t)
∂I2 (dI)2 = 0,

−∂N(t)
∂t dt +

∑3
i=1 ni(t)

∂Mi(t)
∂t dt + n4

∂Z(t)
∂t = 0,

−N(t) +
∑3

i=1 ni(t)Mi(t) + n4Z(t) = 0,

(66)
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The first equation nullifies the Delta of the portfolio, the second nullifies the
Gamma, while the third is a self-financing condition. The terms associated
to the annuity enter with negative signs, as they represent the liability that
the company is endowed with. The longevity bond value is equal to a pure
endowment. The difference, from the standpoint of an insurance company,
is that it can sell annuities and pure endowments – or reduce its exposure
through reinsurance – and buy longevity bonds, while, at least in principle,
it cannot do the converse.11

An extension of the previous strategy, that we call Delta-Gamma-Theta
strategy, aims at covering also the deterministic changes ∂N

∂t in the value
of the annuity. The strategy requires an additional asset in the hedging
portfolio. We consider a risk-less zero-coupon bond Z(t), whose maturity
coincides with the rebalancing frequency of the dynamic strategy. Then, at
each evaluation date t, the hedging portfolio solves the following system of
4 equations in 4 unknowns:

−∂N(t)
∂I dI +

∑3
i=1 ni(t)

∂Mi(t)
∂I dI = 0,

−∂2N(t)
∂I2 (dI)2 +

∑3
i=1 ni(t)

∂2Mi(t)
∂I2 (dI)2 = 0,

−∂N(t)
∂t dt +

∑3
i=1 ni(t)

∂Mi(t)
∂t dt + n4

∂Z(t)
∂t = 0,

−N(t) +
∑3

i=1 ni(t)Mi(t) + n4Z(t) = 0,

(67)

where the third equation of system (67) nullifies the time-sensitivity of the
portfolio. The zero-coupon bond Z(t) does not appear in the first two equa-
tions because it does not depend on the longevity risk factor I(t) and hence
its Delta and Gamma are zero.

7.2 Basis risk

When there is basis risk (δx < 1), the dynamics of the annuity contract
Npp(t) written on the Portfolio population are given by equation (57). We as-
sume that at least three longevity bonds, with different maturities T1, T2, T3,
written on generation x of the Reference population are traded. For each
i = 1, 2, 3, the value of the longevity bond,Mnp

i (t, Ti) at any time 0 ≤ t ≤ Ti,
depends on λnpx and is given by:

Mnp
i (t) = D(t, Ti)S

np(t, Ti),

= e−X̄(t,Ti)J(t)+Ȳ (t,Ti) · e−Xnp(t,Ti)I(t)+Y
np(t,Ti) (68)

11Reinsurance companies have less constraints in this respect. For instance, they can
swap pure endowments or issue longevity bonds: see for instance Cowley and Cummins
(2005).
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while its dynamics can be written as

dMnp
i =

∂Mnp
i

∂t
dt+

∂Mnp
i

∂I
dI+

1

2

∂2Mnp
i

∂I2
(dI)2 +

∂Mnp
i

∂J
dJ +

1

2

∂2Mnp
i

∂J2
(dJ)2 .

(69)
A perfect hedge of longevity risk cannot be achieved, even with continuous-
time trading because changes in λ′ affectNpp, but notMnp as the comparison
between (57) and (69) shows. The fact that we cannot hedge changes in the
idiosyncratic risk factor λ′x(t) means that, in general, the value of the hedging
portfolio will not perfectly replicate the value of the insurance liabilities, i.e.
the overall hedging error will differ from zero. A nice feature of our model is
the ability to separate the source of risk that can still be hedged, i.e. I(t),
from the source of risk that remains unhedgeable, i.e. λ′x(t). This property
allows us to use the longevity bonds Mnp

i (t, Ti) as hedging instruments and
to perform either a Delta-Gamma or a Delta-Gamma-Theta hedging strategy
in order to hedge unexpected changes in the common longevity risk factor
I(t).

In this case, the Delta-Gamma hedging portfolio is determined by solving
the following system

−∂Npp(t)
∂I dI +

∑3
i=1 ni

∂Mnp
i (t)
∂I dI = 0,

−∂2Npp(t)
∂I2 (dI)2 +

∑3
i=1 ni

∂2Mnp
i (t)

∂I2 (dI)2 = 0,

−Npp(t) +
∑3

i=1 niM
np
i (t) = 0,

(70)

while the Delta-Gamma-Theta hedging portfolio solves

−∂Npp(t)
∂I dI +

∑3
i=1 ni

∂Mnp
i (t)
∂I dI = 0,

−∂2Npp(t)
∂I2 (dI)2 +

∑3
i=1 ni

∂2Mnp
i (t)

∂I2 (dI)2 = 0,

−∂Npp(t)
∂t dt +

∑3
i=1 ni

∂Mnp
i (t)
∂t dt + n4

∂Z(t)
∂t = 0,

−Npp(t) +
∑3

i=1 niM
np
i (t) + n4Z(t) = 0.

(71)

8 Hedging Strategies: effectiveness and performance
comparison

In order to compare the static and dynamic hedges described above we pro-
ceed as follows: we calibrate the models to the observed mortality rates
of 65-year old UK males, we determine the cost of the static hedge which
would equate a given percentile of the hedging error of a dynamic strategy,
under different assumptions on its rebalancing frequency, in the presence and
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Figure 1. Observed and fitted survival probabilities for the Reference and the Portfolio Popula-
tion.

in the absence of basis risk. We call this a value-at-risk loading principle.
Consistently with the above, we implicitly assume that interest-rate risk has
already been hedged perfectly or does not exist.

8.1 Calibration

We calibrate the parameters of our Reference (Portfolio) mortality model to
the generation of UK (Scottish) males born in 1946, who were aged 64 on
31/12/2010 (i.e. x = 65). Under the constraint given by condition (2), we
fix 01/01/1991 as the observation point (individuals have all reached aged
44) and we fit the observed survival probabilities Snp(0, t), Spp(0, t) with
t=1,...20. We fit our models minimizing the Rooted Mean Squared Error
(RMSE) between the model-implied and the observed survival probabilities.

We perform two different calibrations. The first calibration fits only
the parameters of the Reference Population, using the Human Mortality
Database data for UK. The resulting parameters, which are collected - to-
gether with the calibration error - in Table 1, are used to simulate the dy-
namic Delta-Gamma-Theta hedging strategy without basis risk.

Table 1. Reference Population calibration results.

a b σ Calibration Error

4.13 · 10−5 0.0709 0.0087 0.00006

Because condition (2) holds, the simulated mortality intensities λnpx (t)
will be strictly positive. In the simulations, we assume that the maximum
life-span of an individual belonging to generation x is ω = 115, hence the time
horizon we use for the simulations of the intensity process is 50 years. The
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Figure 2. On the left-hand side, sample paths of the Reference population intensity process
λnpx (t). On the right-hand side, sample paths of the Portfolio population intensity process λppx (t).

second calibration fits the parameters of the Reference and of the Portfolio
populations jointly, and is used for the simulations of the dynamic hedging
with basis risk. As for the Portfolio population, we use Human Mortality
Database data for 65-year-old Scottish males. This population is included
in the more general UK dataset and therefore is suitable to act as a sub-
population in our example. The calibration error is 0.00015, and the values
of the calibrated parameters are shown in Table 2.
Figure 1 shows the observed and the fitted survival probabilities for the
Reference and the Portfolio populations. Simulated sample paths of both
the λnpx (t) and λppx (t) processes are shown in Figure 2.

Table 2. Reference and Portfolio population joint calibration results.

a b σ δx a
′

b
′

σ
′

3.3357 · 10−5 0.0727 0.0082 0.9897 0.0077 0.0155 4.4463 · 10−08

We set the interest rate to a constant value r = 0.02.

8.2 Rebalancing frequency and dynamic hedging performance
without basis risk

In this section we compute the performance of the dynamic hedging strategy
we described in Section 7 under different rebalancing frequencies. We use
the results to assess reasonable ranges for the cost of a longevity swap, as
described in Section 6, when basis risk is negligible. Let us consider an
annuity provider who has sold a whole-life annuity written on UK males
aged 65 at time 0. Three longevity bonds with rolling maturities 10, 15 and
20 years, written on the same generation of 65-year-old UK males, and a
risk-free zero-coupon bond with rolling maturity equal to the rebalancing
frequency of the dynamic hedge exist.
We evaluate the effectiveness of the self-financing dynamic Delta-Gamma-
Theta hedging strategy fixing the time horizon to 30 years. We consider
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three different rebalancing frequencies of 3 months, 6 months and 1 year,
respectively.

Figure 3 shows the simulated percentiles, from the 5th to the 95th, of the
distribution of the bank account over time. The value of the bank account is
determined, at each rebalancing date, by crediting (debiting) any gain (loss)
due to the difference between the hedging portfolio value before rebalancing
and the annuity value.
Figure 4 reports the distribution of the bank account after 30 years, for
the three different rebalancing frequencies. The picture shows that – as
expected – the average cost of the hedging strategy is higher the longer
the time interval between two revisions of the strategy. Also, increasing the
rebalancing frequency reduces remarkably the dispersion of the value around
its mean. The strategy rebalanced at 1-year frequency presents the fattest
tails. Table 3 contains, for each case, the mean and standard deviation of the
hedging error after 30 years and allows to appreciate the effects of different
rebalancing frequencies.12

Given the results of our implementation of the dynamic hedging strategy,
we compute the cost of the swap based on a value-at-risk loading principle.
More precisely, the premium charged to the buyer of the swap C0 is com-
puted as the present value of the 99.5% value-at-risk of the bank account
value at t = 30 years obtained applying our hedging strategy with different
rebalancing intervals. Table 5 reports the cost C0 and loadingm of the swap.
The loading m, which represents the percentage increase in each observed
survival, ranges from 0.01% to 0.06%. This value might seem low, but it is
a benchmark value, since it is obtained in the absence of transaction costs
and basis risk.

3 months 6 months 1 year

Mean 0.00073 0.00142 0.00274
Std 0.00068 0.00140 0.00300

Table 3. Moments of the hedging error of
the Delta-Gamma-Theta strategy under dif-
ferent rebalancing frequencies.

3 months 6 months 1 year

Mean 0.00073 0.00142 0.00275
Std 0.00067 0.00143 0.00301

Table 4. Moments of the hedging error of
the Delta-Gamma strategy under different
rebalancing frequencies.

Tables 4 and 6 provide the mean, standard deviations, premiums and
loadings for the case in which Theta hedging is not performed. They show
that there is not much difference in terms of results between performing
a Delta-Gamma or a Delta-Gamma-Theta hedge. Both strategies provide
similar hedging errors, but the Delta-Gamma-Theta requires an additional
asset which could increase the overall cost of the strategy if transaction costs
were taken into account.

12We remark that this result is obtained in the absence of transaction costs, which we
neglect here and will be higher the higher the frequency.
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Hedging Rebalancing Frequency: 3 months
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Hedging Rebalancing Frequency: 6 months
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Hedging Rebalancing Frequency: 1 year
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Figure 3. Percentiles of the bank account under different assumptions on the hedging rebalancing
frequency.
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Bank Account value at t=30 years
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Figure 4. Distribution of the value of the bank account at t=30 years for different rebalancing
frequencies.

3 months 6 months 1 year

C0 0.00209 0.00447 0.01027
m 0.01% 0.02% 0.06%

Table 5. Longevity Swap premiums and
loadings equivalent to the 99.5% Value-at-
Risk of the Delta-Gamma-Theta Hedging
strategy at t = 30 years.

3 months 6 months 1 year

C0 0.00207 0.00470 0.01012
m 0.01% 0.03% 0.06%

Table 6. Longevity Swap premiums and
loadings equivalent to the 99.5% Value-at-
Risk of the Delta-Gamma Hedging strategy
at t = 30 years.

8.3 Rebalancing frequency and dynamic hedging performance
with basis risk

In this section we examine the performance of a dynamic Delta-Gamma-
Theta hedging strategy when basis risk is present. We assume that an annu-
ity provider has sold a whole-life annuity written on Scottish males aged 65
at time 0. As in the previous section, together with a risk-free zero-coupon
bond, we assume that three longevity bonds written on the generation of 65
year-old UK males are traded in the market. The two populations follow now
different processes, as described in Section 4. Basis risk enters the picture,
and a dynamic perfect hedge is not possible.

The hedging error is caused both by the presence of basis risk and by
the discrete-time rebalancing of the dynamic hedging strategy. It can be
seen from Figure 5 that the bank account is not perfectly centered at zero
and that its absolute value is higher than in the case when no basis risk
is present, because the idiosyncratic component cannot be hedged. As in
the previous case, for each rebalancing frequency, the plot is a fan chart
representing the percentiles (from the 5th to the 95th) of the distribution of
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Hedging Rebalancing Frequency: 3 months
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Hedging Rebalancing Frequency: 6 months
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HedgingRebalancing Frequency: 1 year
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Figure 5. Percentiles of the bank account with basis risk and under different assumptions on the
hedging rebalancing frequency.
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Bank Account value at t=30 years
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Figure 6. Distribution of the value of the bank account, under the assumption of basis risk, at
t=30 years for different rebalancing frequencies.

the bank account. A similar information is conveyed by Figure 6, that shows
that the distributions of the bank account are no more centered at zero and
present a high degree of asymmetry with long left tails. Table 7 reports the
first two moments of the hedging error of the Delta-Gamma-Theta strategy,
at time t = 30 years, for each rebalancing frequency. Its mean and standard
deviation are higher than the corresponding moments computed without
basis risk (see Table 3). By taking the difference between the average hedging
error in the two cases, we can isolate the part of the hedging error caused
by basis risk. For instance, fixing the rebalancing frequency at 3 months,
the error due to basis risk is 0.00824 = 0.00897− 0.00073. We observe that,
though the moments of the hedging error are decreasing in the rebalancing
frequency, basis risk is the main determinant of the hedging error, while
discrete time rebalancing has only relatively marginal effects.

3 months 6 months 1 year

Mean 0.00897 0.01146 0.02362
Std 0.00522 0.00797 0.01657

Table 7. Moments of the hedging error of
the Delta-Gamma-Theta hedging strategy,
with basis risk, under different rebalancing
frequencies.

3 months 6 months 1 year

Mean 2.08373 2.09597 2.11164
Std 0.20691 0.20715 0.20850

Table 8. Moments of the hedging error
of the Delta-Gamma hedging strategy, with
basis risk, under different rebalancing fre-
quencies.

The longevity swap premiums, computed using the value-at-risk load-
ing principle, are reported in Table 9. They range now between 0.01226 and
0.04193, and the corresponding percentage loading on the survival probabili-
ties ranges from 0.12% to 0.41%. A comparison with Table 5 highlights that
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3 months 6 months 1 year

C0 0.01226 0.02010 0.04193
m 0.12% 0.20% 0.41%

Table 9. Longevity Swap premiums and
loadings equivalent to the 99.5% Value-at-
Risk of the Delta-Gamma-Theta Hedging
strategy at t = 30 years with basis risk.

3 months 6 months 1 year

C0 1.48367 1.48762 1.49936
m 14.42% 14.46% 14.57%

Table 10. Longevity Swap premiums and
loadings equivalent to the 99.5% Value-at-
Risk of the Delta-Gamma Hedging strategy
at t = 30 years with basis risk.

when basis risk is present, the Delta-Gamma-Theta strategy yield higher
costs C0 and spreads m, as expected, but still remains fairly effective. If
we compare the values in Tables 7 and 9 with those in Tables 8 and 10, we
immediately see that the Delta-Gamma strategy achieves an hedging error
considerably higher than the Delta-Gamma-Theta strategy. Without basis
risk the performances of the two strategies were similar but, if basis risk is
present, this is no more the case. This result shows that even if hedging
when basis risk is not negligible can be effective, the hedging strategy needs
to be appropriately designed.

9 Summary and conclusions

This paper introduces a simple model for basis risk in longevity-linked securi-
ties, computes the static, customized, swap-based hedge for an annuity, and
compares it with the dynamic, Delta-Gamma-Theta based hedge, achieved
using indexed longevity bonds. All throughout, the paper assumes a non
mean reverting CIR process for mortality intensity. In the theoretical part,
we consider interest rate risk as well, while the empirical application focuses
on longevity risk only. We show that, once the model is calibrated to a
UK individual aged 65, if there is no basis risk the average hedging error
of the dynamic hedge is moderate, and both its variance and the thickness
of the tails of its distribution are decreasing with the rebalancing frequency.
We compute the fee which makes the 99.5% quantile of the distribution of
the dynamic hedging error at an horizon of 30 years equal to the cost of
the static hedge. This stays between 0.01 and 0.06%. When there is basis
risk, modelled parsimoniously and consistently, the fee ranges between 0.12%
to 0.41%. The same does not hold with simpler Delta-Gamma strategies.
We conclude that, while basis risk is indeed relevant for annuity provider’s
hedges, dynamic hedging strategies, such as Delta-Gamma-Theta, can still
be fairly effective if they are calibrated and implemented appropriately, even
when rebalancing occurs at low frequencies. So, even when basis risk is
present, a priori, one could rely on dynamic hedging strategies, instead of
structuring a fully customized OTC hedge.

This conclusion seems relevant for the development of longevity markets,
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as we show that standardized, index-based, products are effective hedges, if
appropriately managed.

Robustness of our analysis with respect to different populations, annuity
features, such as the presence of guarantees, different horizons, or longevity
model specifications, are in the agenda for future research.
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