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Abstract

In this paper we consider the classical problem of dividing a land among many agents so that
everybody is satisfied with the parcel she receives. In the literature, it is usually assumed that all
the agents are endowed with cardinally comparable, additive, and monotone utility functions. In
many economic and political situations violations of these assumptions may arise. We show how a
family of cardinally comparable utility functions can be obtained starting directly from the agents’
preferences, and how a fair division of the land is feasible, without additivity or monotonicity
requirements. Moreover, if the land to be divided can be modelled as a finite dimensional simplex,
it is possible to obtain envy-free (and a fortiori fair) divisions of it into subsimplexes.

The main tool is an extension of a representation theorem of Gilboa and Schmeidler (1989).

JEL classification: D01; D74
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1 Introduction

In this paper we consider the classical problem of dividing a land among many agents so that
everybody is satisfied with the parcel she receives. See Brams and Taylor (1996) and Robertson
and Webb (1998) for complete references on this subject, which was pioneered by Steinhaus (1948)
and Dubins and Spanier (1961).

In the fair division literature, agents’ preferences are usually described by cardinally compa-
rable, additive, and monotone utility functions on parcels of land.1 Whether this setup (utility
functions on parcels of land) and these assumptions (additivity and monotonicity) are the most
natural ones, or not, critically depends on the land division problem at hand.

Relative to the setup, land properties frequently consist of several shares of different parcels
rather than referring to entire parcels. For example, an agent may own 50% of her flat (the
remaining part belonging to her husband) and 20% of her family house (the remaining parts
belonging to her brethren). Analogously, two different ethnic groups may be sharing different
regions of the same territory with different population densities, and for each region one might
consider the percentage of inhabitants belonging to a group and living in the region as the group’s
property share of it. For this reason, we will consider preferences on land property shares rather
than utility functions on land parcels.

This ordinal perspective also has the advantage of referring to observable choice behavior, and
it clarifies the economic underpinning of the standing mathematical assumption of existence of
cardinally comparable utility functions.

Relative to the behavioral assumptions, the additivity of the agents’ utility functions:

υ (A ∪H)− υ (A) = υ (H)

for all disjoint parcels A and H, means literally that the agent’s utility is marginally constant.
This assumption is not more innocuous in land division than it is in the rest of economics. Clearly,
the value added by the annexation of a coastal region may greatly differ according to whether
or not the annexing region already has a coast line or not. Analogously, increasing maintenance
costs might lead to decreasing marginal utilities, while scale or combination effects might lead to
increasing marginal ones.

Last, but not least, monotonicity of preferences is violated in any situation in which there are
some undesirable regions in the land. An agent might not be willing to expand her estate because
this might make it adjacent to the one of a neighbor she dislikes, or worse still, the addition of a
contaminated field might cause serious troubles for a whole farm.

Motivated by these considerations, in this paper we show that simple assumptions on the
agents’ preferences on land property shares guarantee the existence of cardinally comparable utility
functions (neither additive nor monotone, in general), and guarantee the existence of a solution to
the fair division problem.

Surprisingly enough, in the important special case of a segment to be divided among agents
with equal initial shares, such fair solution can be constructed by the classical Steinhaus-Banach-
Knaster technique,2 and a division into subsegments is obtained.

More in general, wherever land is concerned, it is important that the parcels into which it is
divided are nicely shaped (think of owning a one kilometer-square park consisting of one million
disconnected plots measuring a square meter each). We show that, if the land to be divided can

1Important exceptions are discussed below.
2See next section.
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be modelled as a simplex, our preference assumptions guarantee the existence of a division into
subsimplexes which is not only fair but also envy free, thus extending the results obtained by
Ichiishi and Izdik (1999) in the classical setup.

The literature of fair division has already dealt, at least singly, with some departures from
the classical settings. The cited Ichiishi and Izdik (1999) model agents’ preferences as signed
measures with finite positive total mass, thus dropping monotonicity (while retaining additivity).
In another direction, Berliant, Dunz and Thomson (1992) tackle the case of decreasing marginal
(but monotone) utilities with a notion of concavity based on set-dependent density functions.
Maccheroni and Marinacci (2003) extend the results of Dubins and Spanier (1961) to the class of
nonatomic concave capacities.

A different approach is the one taken by Berliant and Dunz (2004) who – under suitable
continuity, “separation by hyperplanes,” and “nonwasteful partitions” assumptions on preferences
over land parcels – establish welfare theorems and the existence of the core for a land trading
economy. These solution notions rely on the agents’ willingness to trade and cooperate. This
might not be the case for bitterly disputing agents who, for example, rely on an external referee
to achieve a satisfactory division.

When the division regards chores exclusively, the original assumptions regarding the additivity
and monotonicity of the agents’ utilities are usually maintained with the proviso that the agents
aim at partitions which “reward” them as little as possible. An example of this approach is given
by Peterson and Su (2002).

Finally, for the representation of binary relations over the subsets of a given set by means of
probabilities, the reader is referred to the classical works of de Finetti (1931), Koopman (1940),
Savage (1954), and the recent Barbanel and Taylor (1995). While the – closer to our setting
– problem of non-additive representation of preferences over random variables was pioneered by
Gilboa and Schmeidler (1989).

The paper is organized as follows. Section 2 briefly reviews some classic results of Dubins
and Spanier (1961) and clarifies a “hidden” assumption of classic fair division models. Section
3 introduces our setup and behavioral assumptions. In Section 4, we present our main results:
preference representation (Theorem 2) and land division (Theorem 3). In the final Section 5
(Proposition 1), we consider the special case in which the land to be divided can be represented as
a simplex. Proofs and related material are collected in the Appendix.

2 Dubins-Spanier Theorem

A finite set of n agents owns a piece of land S. The set of all parcels into which S can be divided
is modelled as a σ-algebra Σ. For all i ∈ I, αi denotes the property share of S owned by agent i,
and the nonatomic probability measure µi : Σ → [0, 1] represents agent’s i utility function on the
various parcels of S.

Theorem 1 (Dubins-Spanier) Let µ1, µ2, ..., µn be nonatomic probability measures on Σ. Given
any α1, α2, ..., αn ≥ 0 with

∑n
i=1 αi = 1, there exists a partition {A1, A2, ..., An} of S in Σ such

that
µi(Ai) ≥ αi (1)

for all i = 1, ..., n. Moreover, if µj 6= µh for some j 6= h and α1, α2, ..., αn > 0, then A1, A2, ..., An

can be chosen to satisfy µi(Ai) > αi for all i = 1, ..., n.

As anticipated in the introduction, Theorem 1 guarantees the existence of a fair division of the
land, provided the agents’ preferences on land parcels can be represented by cardinally comparable
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utility functions which are marginally constant, monotone, nonatomic; under the implicit assump-
tion that the comparison µi(Ai) ≥ αi of a subjective utility and an objective property share can be
interpreted as: “the agent is satisfied that the parcel she receives is worth at least as much as the
share of the whole land which she was due (before the division took place).”

However, from an economic perspective, it is important to notice that in the Dubins and Spanier
model (as well as in all the derived literature) preference comparisons between land parcels A and
property shares α of S are not explicitly modelled, but implicitly related to the comparison between
µi (A) and α = µi (αχS). Here χS is the indicator function of S, and µi is naturally extended to
the space of all simple measurable functions X : S → R by µi (X) =

∫
S
Xdµi.

Dubins and Spanier (1961) also rephrase the Steinhaus-Banach-Knaster technique to obtain
division (1) in the case in which α1 = α2 = ... = αn = 1/n:

“... A knife is slowly moved over the cake. The first person to indicate satisfaction with
the slice then determined by the position of the knife receives that slice... The process
is repeated with the other n− 1 participants and with that remains of the cake...”

3 Setup and Axioms

While we maintain the description of the object to be divided as a measurable space (S,Σ), we
model the agents’ preferences explicitly by a family {%i}i=1,...,n of binary relations on land property
shares. The simple measurable function

X = β1χB1 + β2χB2 + ...+ βmχBm

represents the property of share β1 of parcel B1, β2 of parcel B2, ... , βm of parcel Bm. Therefore,
the set X of all land property shares consists of all Σ-measurable simple functions on S taking
values in [0, 1], denoted by X,Y, Z.... In this perspective, it is natural to identify parcel A with
a 100% property share of parcel A itself, that is with the indicator function χA. Under this
identification, %i induces a binary relation on Σ, still denoted by %i.

A parcel N in Σ is null for %i if A ∪N ∼i A for all A in Σ. An atom for %i is a non-null part
A such that for every B ⊆ A, either B or A \B is null.

Next are listed some properties of the preferences that will be used in the sequel. As usual, �i
and ∼i denote the asymmetric and symmetric parts of %i, respectively.

Axiom 1 (Weak Order) (a) For all X,Y , either X %i Y or Y %i X. (b) If X %i Y and
Y %i Z, then X %i Z.

Axiom 2 (Continuity) If Xk → X pointwise and Xk %i Y (resp. -i) for all k ∈ N, then
X %i Y (resp. -i).

Axiom 3 (Desirability) S �i ∅.

These first three axioms are adapted versions of the standard rationality, continuity, and non-
degeneracy assumptions for preferences. Axioms 1 and 2 are commonly used and well discussed in
the literature. Axiom 3, a non-triviality assumption, also means that the entire land is valuable to
agent i, that is, he is willing to take part in the division of it.

Axiom 4 (Preference for Concentration) If X ∼i Y , then X %i
1
2
X +

1
2
Y.
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This axiom means that the agent prefers concentrated property. Consider, for example, two
non-overlapping parcels: the axiom says that if the agent (e.g., an ethnic group) considers them
indifferent, then he prefers to be in full control of one of them rather than sharing both of them
50%-50% with other agents (e.g., because of coexistence problems). See also Berliant and Dunz
(2004, p. 597) for further discussion of this kind behavior in land division problems.

Axiom 5 (Constant Independence) If 0 ≤ α, β ≤ 1 and α 6= 0, then X %i Y if and only if
αX + (1− α)βχS %i αY + (1− α)βχS.

Constant Independence requires that preference is not reverted by proportional changes in the
owned shares. For example, if A is preferred to B, then a 50% property share of A is preferred to
the same share of B, and this preference is not affected by adding to both shares a constant share,
say 10%, of the whole land S.

The final nonatomicity Axiom 6 is easily seen to be crucial for division. For example, no division
is possible in the extreme case in which all the agents only care about a single point s in S.

Axiom 6 (Atomlessness) There are no atoms for %i.

It is important to notice that we will not assume additivity or monotonicity of the preference,
that is:

Independence If 0 ≤ α ≤ 1 and Z ∈ X , then X %i Y implies αX+(1− α)Z %i αY +(1− α)Z.

Monotonicity If X ≥ Y , then X %i Y .

4 Main Results

Denote by M the set of all atomless signed measures on (S,Σ) that assign value 1 to S.

Theorem 2 A binary relation %i on X satisfies Axioms 1 - 6 if and only if there exist a product
compact and convex set Ci ⊆M such that

X %i Y ⇔ max
µ∈Ci

µ (X) ≥ max
µ∈Ci

µ (Y ) . (2)

The set Ci is unique.

A possible interpretation is the following: There is a set Ci of alternative development policies
on the land agent i knows that he is able to apply (µ (A) being the payoff produced by plot A
under policy µ), then he evaluates each property share with the highest possible payoff it potentially
guarantees.

Technically, the result is an extension of Gilboa and Schmeidler (1989, Theorem 1) even if the
economic setup is quite different. The extension is not trivial since Monotonicity plays a crucial
role in their proof, but, as discussed in the introduction, it is not always sensible from a land
division perspective.

Finally, it is easy to check that the preferences discussed in Theorem 2 satisfy Independence if
and only if the set Ci is a singleton, while they satisfy Monotonicity if and only if Ci consists of
probability measures.

We are now ready to state our main fair division result:

Theorem 3 Let the binary relations %1,%2, ...,%n on X satisfy Axioms 1 - 6. Given any α1, α2, ..., αn ≥
0 with

∑n
i=1 αi = 1, there exists a partition {A1, A2, ..., An} of S in Σ such that

Ai %i αiχS
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for each i = 1, 2, ..., n. Moreover, if %j 6=%k for some j 6= k and α1, α2, ..., αn > 0, the partition
{A1, A2, ..., An} can be chosen to satisfy

Ai �i αiχS

for each i = 1, 2, ..., n.

An important corollary of Theorem 3 is the extension of the results of Maccheroni and Marinacci
(2003) for decreasing marginal utilities to the non-monotonic case. Before stating it, we need to
define some properties of utility functions υi : Σ → R. First, analogously to what happens for
preferences, a parcel N in Σ is null for υi if υi (A ∪N) = υi (A) for all A in Σ; an atom of υi is a
non-null part A such that for every B ⊆ A, either B or A\B is null. As observed by Marinacci and
Montrucchio (2004), when υ is a measure these notions coincide with the standard ones. Moreover,
a set function υi : Σ → R is:

(a) bounded if supA∈Σ |υi (A)| <∞,

(b) concave if υi (A ∪B) + υi (A ∩B) ≤ υi (A) + υi (B) for all A,B in Σ,3

(c) continuous if limk υi (Ak) = 0 = 1− limk υ (Ack) for all Ak ↓ ∅,4

(d) atomless if it has no atoms.

Corollary 1 Let υ1, υ2, ..., υn : Σ → R be bounded, concave, continuous, and atomless. Given any
α1, α2, ..., αn ≥ 0 with

∑n
i=1 αi = 1, there exists a partition {A1, A2, ..., An} of S in Σ such that

υi(Ai) ≥ αi

for each i = 1, 2, ..., n. Moreover, if υj 6= υk for some j 6= k and α1, α2, ..., αn > 0, the partition
{A1, A2, ..., An} can be chosen to satisfy

υi(Ai) > αi

for each i = 1, 2, ..., n.

5 Envy freeness and nicely shaped parcels

A partition {A1, A2, . . . , An} of S in Σ is envy free if

Ai %i Aj for all i, j = 1, . . . , n.

This means that everybody prefers the parcel Ai that she received to all the parcels the others
received.

If all agents have the same initial endowment (i.e. α1 = α2 = ... = αn = 1/n) and their
preferences can be represented by convex functions νi,5 then envy free partitions are a fortiori fair,
that is

Ai %i
1
n
χS for all i = 1, 2, ..., n.

3As observed in Maccheroni and Marinacci (2003), this is equivalent to υi (B ∪ C ∪A)−υi (B ∪ C) ≤ υi (B ∪A)−
υi (B) for all disjoint A, B, C in Σ, thus capturing decreasing marginal utility.

4In particular, υ (∅) = 0 = 1− υ (S).
5A function νi : X → R is convex if for all X, Y ∈ X and all β ∈ [0, 1]

νi (βX + (1− β) Y ) ≤ βνi (X) + (1− β) νi (Y ) .

Clearly this is the case for the functions νi (X) = maxµ∈Ci
µ (X) that represent the preferences we considered in

the previous section.
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In fact, envy freeness implies that νi (χAi
) ≥ νi

(
χAj

)
for all i, j = 1, . . . , n, then

νi (χAi
) ≥ 1

n

n∑
j=1

νi
(
χAj

)
≥ νi

 n∑
j=1

1
n
χAj

 = νi

(
1
n
χS

)
.

For historical background on these concepts, as well as further reference, we refer to Brams and
Taylor (1996).

As pointed out by Ichiishi and Izdik (1999):

“... While much of the literature concerns divisions of a good into merely measurable
subsets... it is desirable from a practical point of view to have divisions into geometrically
simple subsets...”

Important results in this direction were obtained by the same authors, who proved the exis-
tence of envy free partitions for linear preferences defined on (the simplex) [0, 1] or on the n − 1-
dimensional simplex ∆n, endowed with their Lebesgue σ-fields. Next we generalize their results to
our nonlinear preferences setup.

Consider the following axiom:

Axiom 7 (Null cuts) If S is a simplex, then (the intersection of S with) any finite union of
hyperplanes in affS is %i-null.

We call partition into polytopes of a simplex S a collection {A1, A2, ..., An} of polytopes (convex
hulls of finite subsets of S) with disjoint interiors (relative to affS) and such that S =

⋃n
i=1Ai.

Notice that, since any subset of a %i-null set is %i-null, if each preference satisfies Axiom 7, then
the union of all boundaries (relative to affS) of the elements of the collection is null for every agent.
The definitions of fairness and envy freeness hold unchanged as well as their meaning.

Proposition 1 Let S be either [0, 1] or ∆n endowed with its Lebesgue σ-field, and %1,%2, ...,%n

be binary relations on X satisfying Axioms 1 - 5 and 7. There exists a partition {A1, A2, ..., An}
of S into polytopes such that

Ai %i Aj for all i, j = 1, . . . , n, i 6= j,

and this partition is also fair.

The case S = [0, 1] is especially important since it naturally represents a transportation route
(such as a highway), a river, or the time interval in which a resource is managed.

In all cases, the management of a given segment clearly involves costs and benefits which
are influenced by scale factors. For example, when a highway is considered, costs are given by
maintenance, while benefits derive mainly from pay-tolls. For a river, pollution-cleaning is clearly
a cost, while revenues derive from fishing, irrigation, energy production, and again transportation
activities. Finally, in the case of a time span, it is clear how costs and benefits depend on the
period of exploitation (think for example of the multi-property of a mountain cottage).

Moreover, for S = [0, 1], it is easily checked that the Steinhaus-Banach-Knaster technique
quoted in Section 2 delivers a fair division for the preferences considered here. This partition,
however, may fail to be envy free. The technique of Su (1999) can be used instead to obtain an
approximately envy free division.
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A Proofs and related material

In this section we denote by B0 (I) the set of all real valued measurable simple functions on (S,Σ)
taking value in the interval I (notice that B0 ([0, 1]) = X ). For any interval I, B0 (I) is a convex
subset of the normed space B0 (R) (endowed with the supnorm). A functional ν : B0 (I) → R is
constant affine if ν (αX + (1− α)β) = αν (X) + (1− α)β for all X ∈ B0 (I), all α ∈ [0, 1], and all
β ∈ I. It is easy to see that a constant affine functional ν : B0 (R) → R is constant linear, that
is, ν (aX + b) = aν (X) + b for all X ∈ B0 (R), a, b ∈ R, a ≥ 0. Moreover, any constant affine
functional ν : B0 (I) → R admits a unique constant linear extension to B0 (R), provided I contains
at least two points.

The vector space of all bounded and additive set functions – charges – on (S,Σ) is denoted
by ba (Σ). The subspaces of ba (Σ) consisting of signed measures and atomless signed measures
are denoted by ca (Σ) and na (Σ), respectively. The cone of non-negative charges is ba+ (Σ), while
ba1 (Σ) = {µ ∈ ba (Σ) : µ (S) = 1}; ca+ (Σ), na+ (Σ), ca1 (Σ), and na1 (Σ) are analogously defined
(notice that na1 (Σ) = M).

When endowed with the total variation norm, ba (Σ) is isometrically isomorphic to the norm
dual of B0 (R), the duality being

µ (X) =
∫
Xdµ

for all X ∈ B0 (R) and all µ ∈ ba (Σ). The weak* topology σ (ba (Σ) , B0 (R)) induced by this
duality on ba (Σ) coincides with the product topology (when ba (Σ) is regarded as a subset of RΣ)
and it is denoted by τΣ. For the properties of such classical spaces and topologies, we refer to
Dunford and Schwartz (1958) and Gänssler (1971); here we just recall some definitions. Let C be
a subset of ca (Σ):

• |C| = {|µ| : µ ∈ C}, where |µ| denotes the total variation of µ.6

• C# is the set of all λ ∈ ca+ (Σ) of the form λ =
∑
n∈N 2−n

|µn|
1 + |µn| (S)

with µn ∈ C for every

n ∈ N.

• C is dominated by λ ∈ ca+ (Σ), denoted by C � λ, if every element of C is absolutely
continuous with respect to λ.

• C is uniformly dominated by λ ∈ ca+ (Σ), denoted by C ≪ λ, if for every ε > 0 there exists
δ (ε) > 0 such that λ (A) < δ implies supµ∈C |µ (A)| < ε.

Lemma 1 Let {µl} be a sequence in ca (Σ) and λ ∈ ca+ (Σ) such that {µl} � λ. If µl
τΣ→ µ0, and

{Xl} is a norm bounded sequence in L∞ (S,Σ, λ) converging to X0 in measure (w.r.t. λ), then∫
Xldµl →

∫
X0dµ0.

Proof. Notice that:

• λ (A) = 0 implies µl (A) = 0 for every l ∈ N, and µ0 (A) = liml µl (A) = 0, that is µ0 � λ.

• By the Vitali-Hahn-Saks Theorem (see Gänssler, 1971, 1.9), {µl} ≪ λ and by the Nikodym
Theorem (ibid. 1.12) supl∈N ‖µl‖ <∞.

• L∞ (S,Σ, µl) ⊆ L∞ (S,Σ, λ) for all l ∈ N∪{0}.

• X0 ∈ L∞ (S,Σ, λ) since there exists a subsequence
{
Xlj

}
converging to X0 λ-almost every-

where.
6For all A ∈ Σ the total variation of µ on A is defined as |µ| (A) = sup

Pn
i=1 |µ (Ai)| where the supremum is

taken over all finite partitions {A1, ..., An} of A in Σ.
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For all l ∈ N,∣∣∣∣∫ X0dµ0 −
∫
Xldµl

∣∣∣∣ ≤ ∣∣∣∣∫ X0dµ0 −
∫
X0dµl

∣∣∣∣+ ∣∣∣∣∫ X0dµl −
∫
Xldµl

∣∣∣∣
≤
∣∣∣∣∫ X0dµ0 −

∫
X0dµl

∣∣∣∣+ ∣∣∣∣∫ (X0 −Xl) dµl

∣∣∣∣
≤
∣∣∣∣∫ X0dµ0 −

∫
X0dµl

∣∣∣∣+ ∣∣∣∣∫
R+
µl {(X0 −Xl) ≥ t} dt−

∫
R−

µl {(X0 −Xl) ≤ t} dt
∣∣∣∣

≤
∣∣∣∣∫ X0dµ0 −

∫
X0dµl

∣∣∣∣+ ∫
(0,∞)

|µl {(X0 −Xl) ≥ t}| dt+
∫

(−∞,0)

|µl {(X0 −Xl) ≤ t}| dt,

and
∣∣∫ X0dµ0 −

∫
X0dµl

∣∣→ 0 as l→∞, since µl weak converges to µ0 (ibid. 2.15).
Next we show that ∫

(0,∞)

|µl {(X0 −Xl) ≥ t}| dt→ 0 as l→∞.

• Given l ∈ N, for all k ∈ N the function fl,k : (0,∞) → R+ defined by fl,k (t) = |µk {(X0 −Xl) ≥ t}|
is Lebesgue measurable, then gl (t) = supk∈N |µk {(X0 −Xl) ≥ t}| is Lebesgue measurable
too, and gl (t) ≥ |µl {(X0 −Xl) ≥ t}| for all t > 0. So that∫

(0,∞)

|µl {(X0 −Xl) ≥ t}| dt ≤
∫

(0,∞)

gl (t) dt

for all l ∈ N.

• By norm boundedness of {Xl}, there exists T > 0 such that for all l ∈ N and all t > T , we
have λ {s ∈ S : (X0 −Xl) (s) ≥ t} = 0, that is gl (t) = 0 (µk � λ for all k ∈ N). Whence∫
(0,∞)

gl (t) dt =
∫
(0,T )

gl (t) dt for all l ∈ N.

• For all l ∈ N and all t ∈ (0, T ),

gl (t) = sup
k∈N

|µk {(X0 −Xl) ≥ t}| ≤ sup
k∈N

‖µk‖ <∞.

• If t > 0, convergence in measure implies

0 ≤ λ {(X0 −Xl) ≥ t} ≤ λ {|X0 −Xl| ≥ t} → 0 as l→∞.

Then for every δ > 0 there is l (δ) ≥ 0 such that λ {(X0 −Xl) ≥ t} < δ if l ≥ l (δ). Let
ε > 0, there exists δ (ε) > 0 such that λ (A) < δ (ε) implies supk∈N |µk (A)| < ε; therefore for
l ≥ l (δ (ε)), λ {(X0 −Xl) ≥ t} < δ (ε) and supk∈N |µk {(X0 −Xl) ≥ t}| < ε. This allows us
to conclude that

0 ≤ gl (t) = sup
k∈N

|µk {(X0 −Xl) ≥ t}| → 0 as l→∞.

Since this is true for all t ∈ (0, T ), the Dominated Convergence Theorem yields
∫
(0,T )

gl (t) dt→
0 and

∫
(0,∞)

|µl {(X0 −Xl) ≥ t}| dt→ 0 as l→∞.

Next we show that ∫
(−∞,0)

|µl {(X0 −Xl) ≤ t}| dt→ 0 as l→∞.

• Given l ∈ N, for all k ∈ N the function fl,k : (−∞, 0) → R+ defined by fl,k (t) =
|µk {(X0 −Xl) ≤ t}| is Lebesgue measurable, then hl (t) = supk∈N |µk {(X0 −Xl) ≤ t}| is
Lebesgue measurable too, and hl (t) ≥ |µl {(X0 −Xl) ≤ t}| for all t < 0. So that∫

(−∞,0)

|µl {(X0 −Xl) ≤ t}| dt ≤
∫

(−∞,0)

hl (t) dt

for all l ∈ N.
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• By norm boundedness of {Xl}, there exists T < 0 such that for all l ∈ N and all t < T , we
have λ {s ∈ S : (X0 −Xl) (s) ≤ t} = 0, that is hl (t) = 0 (µk � λ for all k ∈ N). Whence∫
(−∞,0)

hl (t) dt =
∫
(T,0)

hl (t) dt for all l ∈ N.

• For all l ∈ N and all t ∈ (T, 0),

hl (t) = sup
k∈N

|µk {(X0 −Xl) ≤ t}| ≤ sup
k∈N

‖µk‖ <∞.

• If t < 0, convergence in measure implies

0 ≤ λ {(X0 −Xl) ≤ t} ≤ λ {|X0 −Xl| ≥ −t} → 0 as l→∞.

Then for every δ > 0 there is l (δ) ≥ 0 such that λ {(X0 −Xl) ≤ t} < δ if l ≥ l (δ). Let
ε > 0, there exists δ (ε) > 0 such that λ (A) < δ (ε) implies supk∈N |µk (A)| < ε; therefore for
l ≥ l (δ (ε)), λ {(X0 −Xl) ≤ t} < δ (ε) and supk∈N |µk {(X0 −Xl) ≤ t}| < ε. This allows us
to conclude that

0 ≤ hl (t) = sup
k∈N

|µk {(X0 −Xl) ≤ t}| → 0 as l→∞.

Since this is true for all t ∈ (T, 0), the Dominated Convergence Theorem yields
∫
(T,0)

hl (t) dt→
0 and

∫
(−∞,0)

|µl {(X0 −Xl) ≤ t}| dt→ 0 as l→∞. �

Lemma 2 Let C be a τΣ conditionally compact subset of ca (Σ) and λ ∈ ca+ (Σ) such that C � λ.
If {Xl} is a norm bounded sequence in L∞ (S,Σ, λ) converging to X0 in measure (w.r.t. λ), then

lim
n

(
sup
µ∈C

∫
Xndµ

)
= sup

µ∈C

∫
X0dµ.

Proof. Notice that supµ∈C ‖µ‖ < ∞ (ibid. 2.14), hence supµ∈C
∫
Y dµ < ∞ for all Y ∈

L∞ (S,Σ, λ). Therefore, for all n ∈ N, there exists µn ∈ C and cn ∈ (0, 1/n) such that supµ∈C
∫
Xndµ =∫

Xndµn + cn.
First we show that supµ∈C

∫
X0dµ ≤ limn

(
supµ∈C

∫
Xndµ

)
. Let

{
Xnj

}
be a subsequence of

Xn such that

sup
µ∈C

∫
Xnjdµ→ limn

(
sup
µ∈C

∫
Xndµ

)
= `

as j →∞, then
∫
Xnj

dµnj
+ cnj

→ ` as j →∞. But Xnj

λ→ X0, then there exists a subsequence{
Xnjk

}
converging to X0 λ-almost everywhere. For all µ ∈ C � λ,

{
Xnjk

}
converges to X0

µ-almost everywhere and
∫
Xnjk

dµnjk
+ cnjk

≥
∫
Xnjk

dµ, passing to the limits as j →∞ (by the
Dominated Convergence Theorem) we obtain ` ≥

∫
X0dµ; therefore ` ≥ supµ∈C

∫
X0dµ.

Then we show that limn

(
supµ∈C

∫
Xndµ

)
≤ supµ∈C

∫
X0dµ. Let Xnj be a subsequence of Xn

such that

sup
µ∈C

∫
Xnj

dµ→ limn

(
sup
µ∈C

∫
Xndµ

)
= `

as j → ∞, then
∫
Xnj

dµnj
= supµ∈C

∫
Xnj

dµ − cnj
→ ` as j → ∞. Since C is τΣ conditionally

compact, then C is τΣ sequentially conditionally compact (ibid. 2.6). In particular, there exists
a subsequence µnjk

of µnj
that τΣ converges to µ0 ∈ ca (Σ). By Lemma 1, limk

∫
Xnjk

dµnjk
=∫

X0dµ0, but, since µnjk
weak converges to µ0 (ibid. 2.15), then

∫
X0dµ0 = limk

∫
X0dµnjk

≤
supµ∈C

∫
X0dµ, summing up

` = lim
k

∫
Xnjk

dµnjk
=
∫
X0dµ0 = lim

k

∫
X0dµnjk

≤ sup
µ∈C

∫
X0dµ.

Finally, supµ∈C
∫
X0dµ ≤ ` ≤ ` ≤ supµ∈C

∫
X0dµ, as wanted. �

9



Lemma 3 Let C be a τΣ compact subset of ba (Σ). The following statements are equivalent:

(a) C ⊆ ca (Σ).

(b) limn

(
maxµ∈C

∫
Xndµ

)
= maxµ∈C

∫
(limnXn) dµ for every uniformly bounded pointwise con-

vergent sequence {Xn} in B0 (R).

(c) limn

(
maxµ∈C

∫
Xndµ

)
= maxµ∈C

∫
(limnXn) dµ for every monotonely convergent sequence

{Xn} in B0 (R).

Moreover, if µ1 (S) = µ2 (S) for all µ1, µ2 ∈ C, then (a) is equivalent to:

(d) maxµ∈C µ (An) → 0 and maxµ∈C µ (Acn) → maxµ∈C µ (S) for every sequence {An} in Σ such
that An ↓ ∅.

Finally, if all the elements of C are positive, then (a) is also equivalent to:

(e) maxµ∈C µ (An) → 0 for every sequence {An} in Σ such that An ↓ ∅.

Proof. (a) ⇒ (b) Since C is τΣ compact subset in ca (Σ), there exists λ ∈ ca+ (Σ) such that C � λ

(ibid. 2.6). Moreover, every uniformly bounded pointwise convergent sequence Xn → X0 in B0 (R)
converges to X0 in measure (w.r.t. λ). Apply Lemma 2.

(b) ⇒ (c) is trivial.
(c) ⇒ (a) Let En ↓ ∅ and µ̄ ∈ C. Then, by (b), limnµ̄ (En) ≤ limn (maxµ∈C µ (En)) = 0.

Moreover, −1En ↑ 0, hence

0 = lim
n

(
max
µ∈C

µ (−1En
)
)

= lim
n

(
−min
µ∈C

µ (En)
)

= − lim
n

(
min
µ∈C

µ (En)
)

and limnµ̄ (En) ≥ limn (minµ∈C µ (En)) = 0. As wanted.
Since (a) implies (c), a fortiori it implies (d) and (e).
Let µ1 (S) = µ2 (S) = m for all µ1, µ2 ∈ C.
(d) ⇒ (a) Let En ↓ ∅ and µ̄ ∈ C. Then limnµ̄ (En) ≤ limn (maxµ∈C µ (En)) = 0 and

limnµ̄ (Ecn) ≤ limn (maxµ∈C µ (Ecn)) = maxµ∈C µ (S) = m. Hence−limn (−m+ µ̄ (En)) = limnµ̄ (Ecn) ≤
m, limn (−m+ µ̄ (En)) ≥ −m, limnµ̄ (En) ≥ 0. As wanted.

Let C consist of positive set functions.
(e) ⇒ (a) Let En ↓ ∅ and µ̄ ∈ C. Then 0 ≤ limn µ̄ (En) ≤ limn (maxµ∈C µ (En)) = 0. As

wanted. �

Marinacci and Montrucchio (2004, p. 55-57) show that if µ ∈ ba (Σ), E ∈ Σ is null for µ iff
|µ| (E) = 0 (that is, E is null for |µ|, or equivalently, µ (F ) = 0 for all F ∈ Σ ∩E), and they prove
the following:

Lemma 4 Let C be a τΣ compact subset of ca1 (Σ) and υ (A) = maxµ∈C µ (A) for all A ∈ Σ.

1. E ∈ Σ is υ-null iff it is µ-null for every µ ∈ C.

2. If C � λ ∈ ca+ (Σ), every λ-null set is υ-null.

3. If λ ∈ C# is such that C ≪ λ,7 then E ∈ Σ is υ-null iff it is λ-null.

4. υ is atomless iff C ⊆ na (Σ).

7Such a λ always exists (see Gänssler, 1971, 2.6).
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For the sake of completeness we provide a short proof.

Proof. 1. Let E be υ-null, µ ∈ C, and F ∈ Σ ∩ E. Then

µ (F ) ≤ υ (F ) = 0

and
µ (F ) = 1− µ (F c) ≥ 1− υ (F c) = 1− υ (F c ∪ F ) = 0.

Hence E is µ null. Conversely, if E is µ-null for every µ ∈ C, then

υ (A ∪ E) = max
µ∈C

µ (A ∪ E) = max
µ∈C

(µ (A) + µ (E)− µ (A ∩ E)) = max
µ∈C

µ (A) = υ (A) .

2. If λ (E) = 0, then λ (F ) = 0 for all F ∈ Σ ∩ E, then µ (F ) = 0 for all F ∈ Σ ∩ E and all
µ ∈ C. Apply point 1.

3. If E is υ-null, by point 1., it is µ-null for every µ ∈ C, hence it is |µ|-null for every µ ∈ C,
and it is λ-null. The converse follows from point 2.

4. Let λ ∈ C# be such that C ≪ λ. Notice that: (i) A is a υ-atom iff A is not υ-null and for
every B ∈ Σ ∩ A, either B or A \ B is υ-null iff, by point 3., A is a λ-atom; (ii) λ belongs to the
weak closure of the span of |C| in ba (Σ), which coincides with the norm closure of the span of |C|
in ba (Σ).

Assume C ⊆ na (Σ). Then |C| ⊆ na (Σ), and, since na (Σ) is a norm closed subspace of ba (Σ),
the norm closure of the span of |C| in ba (Σ) is contained in na (Σ). Conclude that λ has no atoms
and hence υ has no atoms either.

Conversely if υ has no atoms, then λ has no atoms and C � λ implies C ⊆ na (Σ). �

A.1 Proof of Theorem 1

Since we focus on the preferences of a single agent, we drop the subscript i. By definition, X =
B0 ([0, 1]). Under the identification of the constant elements of B0 ([0, 1]) with the elements of
the interval [0, 1], Axioms 1, 2, 5, and the Mixture Space Theorem of Herstein and Milnor (1953)
guarantee that there exists an affine function u representing % on [0, 1], u is unique up to a positive
affine transformation, and Axiom 3 guarantees u (1) > u (0). Hence the identity is the unique affine
function representing % on [0, 1] and such that u (0) = 0, u (1) = 1.

In particular, 1 � 1
2
� 0 and Axiom 2 guarantee that there exists ε > 0 (and < 1

4 ) such that

1 � W � 0 for all W ∈ B0

((
1
2 − ε, 1

2 + ε
))

(Axiom 2 implies continuity in the supnorm). For all
X ∈ B0 ([0, 1]), εX + (1− ε) 1

2 ∈ B0

((
1
2 − ε, 1

2 + ε
))

.8 Therefore, 1 � εX + (1− ε) 1
2 � 0 for all

X ∈ B0 ([0, 1]).
Next we show that: For all X there exists a unique γ = γX ∈ (0, 1) such that

εX + (1− ε)
1
2
∼ γ.

Set γ = sup
{
δ : δ ≺ εX + (1− ε) 1

2

}
, by Axiom 2, γ - εX + (1− ε) 1

2 (hence γ < 1). If γ ≺
εX + (1− ε) 1

2 there would exist a neighborhood of γ such that W ≺ εX + (1− ε) 1
2 for all W in

the neighborhood, hence τ ≺ εX + (1− ε) 1
2 for some τ > γ, which is absurd. Clearly, it cannot

be that γ 6= δ and δ ∼ εX + (1− ε) 1
2 ∼ γ.

Set ν (X) =
γX − (1−ε)

2

ε
for all X ∈ B0 ([0, 1]). If εX+(1− ε) 1

2 ∼ γX and εY +(1− ε) 1
2 ∼ γY ,

Axiom 5 guarantees that

X % Y ⇔ εX + (1− ε)
1
2

% εY + (1− ε)
1
2
⇔ γX % γY ⇔ γX ≥ γY ⇔ ν (X) ≥ ν (Y ) .

80 ≤ X (s) ≤ 1⇒ −1 < X (s)− 1
2

< 1 ⇒ −ε < ε
�
X (s)− 1

2

�
< ε, that is 1

2
− ε < ε

�
X (s)− 1

2

�
+ 1

2
< 1

2
+ ε.
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Notice that for all X ∈ B0 ([0, 1]) and α, β ∈ [0, 1], Axiom 5 and εX + (1− ε) 1
2 ∼ γX imply

α

(
εX + (1− ε)

1
2

)
+ (1− α)

(
εβ + (1− ε)

1
2

)
∼ αγX + (1− α)

(
εβ + (1− ε)

1
2

)
but α

(
εX + (1− ε) 1

2

)
+ (1− α)

(
εβ + (1− ε) 1

2

)
= ε (αX + (1− α)β) + (1− ε) 1

2 , whence

ε (αX + (1− α)β) + (1− ε)
1
2
∼ αγX + (1− α)

(
εβ + (1− ε)

1
2

)
∈ (0, 1)

therefore

ν (αX + (1− α)β) =
αγX + (1− α)

(
εβ + (1− ε) 1

2

)
− (1−ε)

2

ε

= α
γX − (1−ε)

2

ε
+ (1− α)β = αν (X) + (1− α)β.

We can conclude that ν is constant affine on B0 ([0, 1]), and denote by ν̂ its unique constant linear
extension to B0 (R). In particular, ν̂ is positively homogeneous.

Next we show that supnorm continuity of ν, and of ν̂, descend from Axiom 2, and constant
linearity. Consider the subbase of the Euclidean topology of R consisting of all the open half-lines.
Let a ∈ R. If a ∈ ν (B0 ([0, 1])), say a = ν (X), the sets

{Y ∈ B0 ([0, 1]) : ν (Y ) < a} = {Y ∈ B0 ([0, 1]) : Y ≺ X}

and
{Y ∈ B0 ([0, 1]) : ν (Y ) > a} = {Y ∈ B0 ([0, 1]) : Y � X}

are open (by Axiom 2). If a /∈ ν (B0 ([0, 1])), since ν (B0 ([0, 1])) is an interval containing 0, then

• either ν (Y ) > a for all Y ∈ B0 ([0, 1]), hence {ν < a} = ∅ and {ν > a} = B0 ([0, 1]);

• or ν (Y ) < a for all Y ∈ B0 ([0, 1]), hence {ν < a} = B0 ([0, 1]) and {ν > a} = ∅.

Therefore ν is continuous on B0 ([0, 1]) and so is ν̂. If {Xn} ⊆ B0 (R) and Xn → X in the
supnorm, then {Xn} is norm bounded and there exist a > 0 and b ∈ R such that {aXn + b} ⊆
B0 ([0, 1]) and aXn+b→ aX+b, this implies ν̂ (aXn + b) → ν̂ (aX + b), and, by constant linearity
ν̂ (Xn) → ν̂ (X), that is, ν̂ is continuous.

Next we show that Axiom 4 guarantees that ν̂ is subadditive. If ν̂ (X) = ν̂ (Y ), take a > 0 and
b ∈ R such that aX + b, aY + b ∈ B0 ([0, 1]), hence ν (aX + b) = ν (aY + b), it follows that

ν̂

(
1
2

(aX + b) +
1
2

(aY + b)
)

= ν

(
1
2

(aX + b) +
1
2

(aY + b)
)
≤ ν (aX + b)

=
1
2
ν (aX + b) +

1
2
ν (aY + b) =

1
2
ν̂ (aX + b) +

1
2
ν̂ (aY + b)

whence ν̂ (X + Y ) ≤ ν̂ (X) + ν̂ (Y ). If ν̂ (X) 6= ν̂ (Y ) there exists b ∈ R such that ν̂ (X) =
ν̂ (Y )+ b = ν̂ (Y + b), so ν̂ (X + Y + b) ≤ ν̂ (X)+ ν̂ (Y + b), and again ν̂ (X + Y ) ≤ ν̂ (X)+ ν̂ (Y ).

In particular, we have shown that ν̂ : B0 (R) → R is positively homogeneous, subadditive, and
supnorm continuous, therefore

ν̂ (X) = max
µ∈C

µ (X) (3)

for all X ∈ B0 (R), where C is the subdifferential ∂ν̂ (0) of ν̂ at 0 (see, e.g., Phelps, 1992). Two
remarks are in order:

1. C = ∂ν̂ (0) is weak* compact, i.e. τΣ compact, and convex.
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2. For all µ ∈ C and all b ∈ R, µ (bχS) ≤ ν̂ (bχS) = b, in particular µ (S) ≤ 1 and −µ (S) =
µ (−χS) ≤ −1. That is µ (S) = 1. Thus C ⊆ ba1 (Σ) .

Assume D is another τΣ (weak*) compact and convex subset of ba1 (Σ) such that

X % Y ⇔ max
µ∈D

µ (X) ≥ max
µ∈D

µ (Y ) .

For all X ∈ B0 ([0, 1]), since εX + (1− ε) 1
2 ∼ γX , then

max
µ∈D

µ

(
εX + (1− ε)

1
2

)
= γX = εν (X) + (1− ε)

1
2

= max
µ∈C

µ

(
εX + (1− ε)

1
2

)
,

whence maxµ∈D µ (X) = maxµ∈C µ (X), it follows that maxµ∈D µ (Y ) = maxµ∈C µ (Y ) for all
Y ∈ B0 (R) and D = C.

It remains to show that C consists of atomless measures. This will be done using Axiom 6 and
(the monotone continuity descending from) Axiom 2 that have not been used up to this point.

Let An ↑ S and δ ∈ (0, 1/2). If An - 1− δ for infinitely many n, then there exists an increasing
subsequence Anj

of An such that Anj
↑ S and Anj

- 1 − δ, hence, by Axiom 2, 1 - 1 − δ and
1 ≤ 1− δ, which is absurd. Therefore, eventually An � 1− δ. If 1

2χAn % 1
2 + δ

2 for infinitely many
n, then there exists an increasing subsequence Anj of An such that Anj ↑ S and 1

2χAnj
% 1

2 + δ
2 ,

hence, by Axiom 2, 1
2 % 1

2 + δ
2 and 1

2 ≥
1
2 + δ

2 , which is absurd. Therefore, eventually 1
2χAn ≺ 1

2 + δ
2 .

We can conclude that eventually

max
µ∈C

µ (An) > 1− δ and max
µ∈C

µ (An) < 1 + δ.

Since this is true for every δ ∈ (0, 1/2), then maxµ∈C µ (An) → 1.
Let Bn ↓ ∅, choose δ ∈ (0, 1/2). If Bn % δ for infinitely many n, then there exists a decreasing

subsequence Bnj
of Bn such that Bnj

↓ ∅ and Bnj
% δ, hence, by Axiom 2, 0 % δ and 0 ≥ δ, which

is absurd. Therefore, eventually Bn ≺ δ. If 1
2 + 1

2χBn
- 1

2 −
δ
2 for infinitely many n, then there

exists a decreasing subsequence Bnj of Bn such that Bnj ↓ ∅ and 1
2 + 1

2χBnj
- 1

2 −
δ
2 , hence, by

Axiom 2, 1
2 - 1

2 −
δ
2 and 1

2 ≤
1
2 −

δ
2 , which is absurd. Therefore, eventually 1

2 + 1
2χBn � 1

2 −
δ
2 .

We can conclude that eventually

max
µ∈C

µ (Bn) < δ and max
µ∈C

µ (Bn) > −δ.

Since this is true for every δ ∈ (0, 1/2), then maxµ∈C µ (Bn) → 0.
Lemma 3 guarantees that C ⊆ ca (Σ).
Notice that E ∈ Σ is null for % if and only if maxµ∈C µ (A ∪ E) = maxµ∈C µ (A) for all A ∈ Σ,

that is, if and only if E is null for the set function ν|Σ. As a consequence, A ∈ Σ is an atom for
% if and only if A is an atom for ν|Σ. Therefore, Axiom 6 guarantees that ν|Σ has no atoms, and
Lemma 4 implies that C ⊆ na (Σ).

The converse is a long, but relatively simple verification.

A.2 Proof of Theorem 2

Notice that Theorem 1 of Dubins and Spanier (1961) does not require the nonatomic measures
u1, ..., un to be positive. It follows that the proof of their Corollary 1.1 holds unchanged provided
u1, ..., un are nonatomic measures each with total mass 1; also Corollary 1.2 remains true in this
case, but the proof needs some minor variation.9

9E.g., replace the sentence “Without loss of generality (by symmetry) we can suppose that u1 (A) /α1 =

u2 (B) /α2.” with “By the Lyapunov Theorem, the range of the vector-valued measure (u1, u2) is convex and

contains (1, 1) and (u1 (A) , u2 (A)). Therefore, given a sequence βk in (0, 1) which strictly increases to 1, for each
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By Theorem 2, for all i = 1, 2, ..., n, there exists a product compact and convex set Ci ⊆ M
such that the function

νi (X) = max
µ∈Ci

µ (X)

for all X in X represents %i. Choose arbitrarily µi ∈ Ci. (The above extended version of) Corollary
1.1 of Dubins and Spanier (1961), guarantees the existence of a partition {A1, A2, ..., An} of S in
Σ such that µi (Ai) ≥ αi for each i = 1, 2, ..., n, hence

νi(Ai) ≥ µi (Ai) ≥ αi = νi(αiχS) that is Ai %i αiχS

for each i = 1, 2, ..., n. While, if %j 6=%k, it must be Cj 6= Ck. Choose µj ∈ Cj and µk ∈ Ck such
that µj 6= µk, and µi ∈ Ci arbitrarily, if i 6= j, k. If α1, α2, ..., αn > 0, by (the above extended
version of) Corollary 1.2 of Dubins and Spanier (1961), there exists a partition {A1, A2, ..., An} of
S in Σ such that µi (Ai) > αi for each i = 1, 2, ..., n, hence

νi(Ai) ≥ µi (Ai) > αi = νi(αiχS) that is Ai �i αiχS

for each i = 1, 2, ..., n.

A.3 Proof of Corollary 1

For all i = 1, 2, ..., n, set Ci = {µ ∈M : µ (A) ≤ υi (A) ∀A ∈ Σ}. Using the results of Marinacci
and Montrucchio (2004) it can be shown that Ci is non-empty, product compact, convex, and

υi (A) = max
µ∈Ci

µ (A)

for all A in Σ. Define %i on X by X %i Y ⇔ maxµ∈Ci µ (X) ≥ maxµ∈Ci µ (Y ) for all i = 1, 2, ..., n,
and apply Theorems 2 and 3.

A.4 On Polytopes

Let n ≥ 2, and ∆ = ∆n be the (n−1)-dimensional simplex, i.e. the convex hull of the orthonormal
base {e1, . . . , en} of Rn. From now on, we will sometimes write N instead of {1, 2, . . . , n}. If T ⊆ N

is non-empty, ∆T is convex hull of {ej : j ∈ T}.
Let δi denote the projection on the i-th component (δi (x) = xi), and set H =

[∑
i∈N δ

i = 1
]
,

then
∆ = H ∩

[
δ1 ≥ 0

]
... ∩ [δn ≥ 0] ,

and aff ∆ = H.
We recall that:

• A hyperplane in H is a set of the form [f = 0] where f is a nonconstant affine functional
f : H → R.

• If ψ and φ are nonzero linear functional on Rn and a ∈ R, then φ|[ψ=a] is nonconstant if and
only if φ is not a scalar multiple of ψ.

k there exists a measurable Ak such that

(u1 (Ak) , u2 (Ak)) = (βk + (1− βk) u1 (A) , βk + (1− βk) u2 (A)) .

Clearly (u1 (Ak) , u2 (Ak)) → (1, 1), and hence it is possible to choose k′ large enough that, denoting by Bk′ the

complement of Ak′ ,

u1 (Ak′ ) > u2 (Ak′ ) > α1 > 0,
u2 (Bk′ )

u1 (Ak′ )
<

α2

α1
, 0 < 1 +

α1

u1 (Ak′ )
(1− u1 (Ak′ )− u2 (Bk′ )) < 1.

Replace A with Ak′ .”
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• If ψ is a nonzero linear functional on Rn, φ1, ..., φm are nonzero linear functionals on Rn none
of which is a scalar multiple of ψ, and a, b1, ..., bm are real numbers, then

int[ψ=a] ([ψ = a] ∩ [φ1 ≥ b1] ∩ ... ∩ [φm ≥ bm]) = [ψ = a] ∩ [φ1 > b1] ∩ ... ∩ [φm > bm] . (4)

In particular, since [ψ = a] ∩ [φ1 ≥ b1] ∩ ... ∩ [φm ≥ bm] is closed in [ψ = a],

bdry[ψ=a]([ψ = a] ∩ [φ1 ≥ b1] ∩ ... ∩ [φm ≥ bm]) ⊆
m⋃
k=1

[ψ = a] ∩ [φk − bk = 0]

and the latter set is a finite union of hyperplanes in [ψ = a].

We now consider p = (p1, . . . , pN ) ∈ ∆. For all h ∈ N , the polytope of ∆ generated by p and
{ej : j ∈ N − {h}} is

∆h(p) = conv(p,∆N−{h}) =

thp+
∑
j 6=h

tje
j :
∑
j∈N

tj = 1, tj ≥ 0 ∀j ∈ N


=
{
(thph, thp−h + t−h) : t ∈ ∆N

}
where p−h (resp. t−h) is the vector obtained by eliminating the h-th component of p (resp. t).

The following lemmas determine whether a given point belongs to one of these polytopes. We
need to consider two different cases, depending on the value of ph.

Lemma 5 Let ph 6= 0, and x = (x1, . . . , xn) ∈ ∆. Then

1. x ∈ ∆h(p) if and only if
pjxh − phxj ≤ 0 ∀j 6= h. (5)

2. The following facts are equivalent:

(i) x ∈ intH∆h(p);

(ii) xh > 0 and
pjxh − phxj < 0 ∀j 6= h; (6)

(iii) x = (thph, thp−h + t−h) for some t ∈ intH∆.10

Proof. Let
x = (thph, thp−h + t−h) (7)

for some t ∈ RN .
For all j 6= h

pjxh − phxj = pj(thph)− ph(thpj + tj) = pjphth − pjphth − phtj = −phtj (8)

hence
pjxh − phxj ≤ 0 ⇔ tj ≥ 0, (9)

and analogously
pjxh − phxj < 0 ⇔ tj > 0; (10)

moreover, for j = h

xh > 0 ⇔ th > 0. (11)

10In particular, intH∆h(p) is not empty since intH∆ is not empty.
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1. If x ∈ ∆h(p), then x = (thph, thp−h + t−h) for some t ∈ ∆N , then, by (9), pjxh − phxj ≤ 0
for all j 6= h. Conversely, assume x ∈ ∆ and pjxh − phxj ≤ 0 for all j 6= h. Define

th =
xh
ph

and tj = xj − thpj ∀j 6= h,

then
xh = thph and xj = thpj + tj ∀j 6= h,

that is x = (thph, thp−h + t−h). Moreover, hypotheses (5) and (9) guarantee that tj ≥ 0 for all
j 6= h, and clearly th ≥ 0. A simple computation yields

∑
i ti = 1. In fact

∑
i

ti =
xh
ph

+
∑
j 6=h

(
xj −

xhpj
ph

)
=
xh
ph

+
∑
j 6=h

xj −
xh
ph

∑
j 6=h

pj

=
xh
ph

+ (1− xh)−
xh
ph

(1− ph) =
xh
ph

+ 1− xh −
xh
ph

+ xh = 1.

Thus x ∈ ∆h(p).
2. By 1.,

∆h(p) = ∆ ∩∆h(p) = H ∩
⋂
i

[xi ≥ 0] ∩
⋂
j 6=h

[pjxh − phxj ≤ 0]

by (4),
intH∆h(p) = H ∩

⋂
i

[xi > 0] ∩
⋂
j 6=h

[pjxh − phxj < 0] . (12)

Then (i) ⇒ (ii).
If (ii) holds, by 1., x ∈ ∆h(p), hence x = (thph, thp−h + t−h) for some t ∈ ∆N ; apply (10) and

(11) to obtain tj > 0 for all j ∈ N . That is (ii) ⇒ (iii).
Finally, if x = (thph, thp−h + t−h) for some t ∈ intH∆, it is obvious that x ∈ H ∩

⋂
i

[xi > 0],

(10) delivers x ∈
⋂
j 6=h

[pjxh − phxj < 0] and (12) yields x ∈ intH∆h(p). That is (iii) ⇒ (i). �

Lemma 6 If ph = 0 then ∆h(p) = ∆N−{h} = {x ∈ ∆ : xh = 0}.

Proof. Just notice that in this case p ∈ ∆N−{h}. �

In particular, if ph = 0 then intH∆h(p) = ∅, in fact,

∆N−{h} = H ∩
⋂
i

[xi ≥ 0] ∩ [xh ≤ 0]

and by (4)
intH∆N−{h} = H ∩

⋂
i

[xi > 0] ∩ [xh < 0] = ∅.

Proposition 2 If {pm}m∈N ⊆ ∆N converges to p, then for each h ∈ N and each y ∈ ∆ −
bdryH∆h(p)

χ∆h(pm)(y) → χ∆h(p)(y) as m→ +∞. (13)

Proof. Since ∆h(p) is closed in H, then bdryH∆h(p) = ∆h(p)− intH (∆h(p)), therefore

∆− bdryH∆h(p) = ∆− (∆h(p)− intH (∆h(p))) = ∆ ∩ (∆h(p) ∩ [intH (∆h(p))]
c)c

= ∆ ∩ (∆h(p)c ∪ intH (∆h(p))) = (∆−∆h(p)) ∪ intH (∆h(p)) .

The proof is divided into cases depending on the position of y and the value of ph. All parts
use contradiction arguments. Throughout the proof h is fixed.
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Case 1: y ∈ ∆−∆h(p) and ph > 0. By Lemma 5, this implies the existence of some j∗ 6= h for
which

pj∗yh − phyj∗ > 0. (14)

Now suppose that the convergence in the statement does not hold, so there exists a subsequence
{pml} of {pm} for which

χ∆h(pml )(y) = 1 ∀l ∈ N

or, equivalently,
y ∈ ∆h(pml) ∀l ∈ N. (15)

Lemma 5 then implies
pml
j yh − pml

h yj ≤ 0 ∀j 6= h and l ∈ N. (16)

Passing to the limit as l→ +∞, for j = j∗, we obtain

pj∗yh − phyj∗ ≤ 0

a contradiction.

Case 2: y ∈ ∆−∆h(p) and ph = 0. In this case, according to Lemma 6, yh > 0. Now suppose
that the convergence in the statement does not hold, so there exists a subsequence {pml} of {pm}
for which

χ∆h(pml )(y) = 1 ∀l ∈ N

or, equivalently,
y ∈ ∆h(pml) ∀l ∈ N. (17)

Lemma 5 then implies
pml
j yh − pml

h yj ≤ 0 ∀j 6= h and l ∈ N. (18)

Passing to the limit as l→ +∞,
pjyh ≤ 0 ∀j 6= h.

But since pj∗ > 0 for some j∗ 6= h, then yh = 0, which is absurd.

Case 3: y ∈ intH∆h(p). Then ph > 0 (otherwise intH∆h(p) = ∅). Lemma 5 implies

pjyh − phyj < 0 ∀j 6= h. (19)

Once again, suppose that the convergence in the statement does not hold, so there exists a subse-
quence {pml} of {pm} for which

χ∆h(pml )(y) = 0 ∀l ∈ N

that is
y /∈ ∆h(pml) ∀l ∈ N.

Lemma 5 implies the existence of a sequence of indexes {jml
} ∈ N − {h} such that

pml
jml

yh − pml

h yjml
> 0 ∀l ∈ N.

We can further extract a subsequence {pmli} of {pml} such that the previous inequality holds for
a single index j∗ ∈ N − {h}:

p
mli
j∗ yh − p

mli

h yj∗ > 0 ∀i ∈ N.

Since {pmli} converges to p, passing to the limit, we obtain

pj∗yh − phyj∗ ≥ 0

again a contradiction. �
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Proposition 3 For all p ∈ ∆N , {∆h (p)}h∈N is a partition of ∆ into polytopes.

Proof. Let x ∈ ∆. If xh = 0 for some h ∈ N , then, by Lemma 6, x ∈ ∆h(p). Else xj > 0 for all

j ∈ N , consider the vector
(
p1

x1
,
p2

x2
, ...,

pn
xn

)
and choose h ∈ N such that

ph
xh

≥ pj
xj

∀j 6= h.

Clearly ph > 0 and pjxh − phxj ≤ 0 for all j 6= h, by Lemma 5, x ∈ ∆h(p). This shows that
∆ =

⋃
h∈N ∆h (p).

Let k, i ∈ N , k 6= i. If pkpi = 0, then either intH∆k(p) = ∅ or intH∆i(p) = ∅, in any case
intH∆k(p) ∩ intH∆i(p) = ∅. Else pk > 0 and pi > 0. If there exists x ∈ intH∆k(p) ∩ intH∆i(p),
then by Lemma 5:

xk > 0 and pixk − pkxi < 0

since x ∈ intH∆k(p), and
xi > 0 and pkxi − pixk < 0

since x ∈ intH∆i(p), therefore pixk < pkxi and pkxi < pixk, which is absurd. This shows that the
interiors are disjoint. �

A.5 On subintervals

Let I = [0, 1]. For all p ∈ ∆N set p0 = 0 and Ih (p) =
[∑h−1

j=0 pj ,
∑h
j=0 pj

]
for all h ∈ N .

Proposition 4 If {pm}m∈N ⊆ ∆N converges to p, then for each h ∈ N and each y ∈ I−bdryIh(p)

χIh(pm)(y) → χIh(p)(y) as m→ +∞.

Proof. Fix h ∈ N arbitrarily. Let am =
∑h−1
j=0 p

m
j , a =

∑h−1
j=0 pj , bm =

∑h
j=0 p

m
j , b =

∑h
j=0 pj ,

then 0 ≤ am ≤ bm ≤ 1, am → a, bm → b, χIh(pm) = χ[am,bm], χIh(p) = χ[a,b], and bdryIh(p) =
{a, b}. It is sufficient to show that, for all y /∈ {a, b},

χ[am,bm](y) → χ[a,b](y) as m→ +∞.

Clearly a ≤ b. If y < a, eventually y < am, thus eventually χ[am,bm](y) = 0 = χ[a,b](y). If a < y < b,
eventually am < y and eventually bm > y, thus eventually am < y < bm and χ[am,bm](y) = 1 =
χ[a,b](y). Finally, if y > b, eventually y > bm, thus eventually χ[am,bm](y) = 0 = χ[a,b](y). �

Obviously, for all p ∈ ∆N , {Ih (p)}h∈N is a partition of I into polytopes.

A.6 Proof of Proposition 1

Notice that Axiom 6 only appears in the last paragraph of the proof of Theorem 2. Thus Axioms
1 - 5 guarantee that, for all i ∈ N , there exist a τΣ compact and convex set Ci ⊆ ca1 (Σ) such that

νi (X) = max
µ∈Ci

µ (X)

for all X in X represents %i. Denote by υi the restriction of νi to the Lebesgue σ-field Σ. For all
i ∈ N , if E is contained in the intersection of S with any finite union of hyperplanes in affS, then,
by Axiom 7, A ∪ E ∼i A, hence

υi (A ∪ E) = max
µ∈Ci

µ (A ∪ E) = max
µ∈Ci

µ (A) = υi (A) ,
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that is E is υi-null. For all i ∈ N , take λi ∈ C#
i such that Ci ≪ λi, then (by Lemma 4) E ∈ Σ is

υi-null iff it is λi-null. Set λ =
∑
i∈N λi. For all i ∈ N , Ci � λ ∈ ca+ (Σ) and if E is contained in

the intersection of S with any finite union of hyperplanes in affS, then λi (E) = 0 for all i ∈ N ,
hence λ (E) = 0.

Let S = ∆N . For all i, j ∈ N consider the function from ∆ to R defined by

uji : p 7→ υi (∆j (p)) .

If pm → p, then Proposition 2 guarantees that, for all y ∈ ∆− bdryH∆j(p),

χ∆j(pm)(y) → χ∆j(p)(y) as m→ +∞,

but λ (bdryH∆j(p)) = 0, that is, χ∆j(pm) → χ∆j(p) λ-almost everywhere; Lemma 2 implies that

lim
m
υi (∆j (pm)) = lim

m

(
sup
µ∈Ci

∫
χ∆j(pm)dµ

)
= sup
µ∈Ci

∫
χ∆j(p)dµ = υi (∆j (p)) .

Therefore uji is continuous.
Let S = I. For all i, j ∈ N consider the function from ∆ to R defined by

uji : p 7→ υi (Ij (p)) .

If pm → p, then Proposition 4 guarantees that, for all y ∈ I − bdryIj(p),

χIj(pm)(y) → χIj(p)(y) as m→ +∞,

but λ (bdryIj(p)) = 0, that is, χIj(pm) → χIj(p) λ-almost everywhere; Lemma 2 implies that

lim
m
υi (Ij (pm)) = lim

m

(
sup
µ∈Ci

∫
χIj(pm)dµ

)
= sup
µ∈Ci

∫
χIj(p)dµ = υi (Ij (p)) .

Therefore uji is continuous.
Set

Cji =
{
p ∈ ∆N : uji (p) ≥ uki (p) for all k ∈ N

}
.

For each i ∈ N , and all p ∈ ∆N consider the vector
(
u1
i (p) , u2

i (p) , ..., uni (p)
)

and choose jp ∈ N
such that ujpi (p) ≥ uki (p) for all k ∈ N , then p ∈ Cjpi ; therefore, the collection

{
Cji

}
j∈N

is a cover

of ∆N . Moreover, for all i, j ∈ N

Cji =
⋂
k∈N

{
p ∈ ∆N : uji (p)− uki (p) ≥ 0

}
,

continuity of the uki s guarantees that Cji is closed.
Next we show that Cji ∩∆N−{j} = ∅ for all i, j ∈ N .
Let S = ∆N . If p ∈ ∆N−{j}, then ∆j (p) = ∆N−{j} = ∆ ∩ [xj = 0] is %i-null, hence

uji (p) = υi (∆j (p)) = υi (∆j (p) ∪ ∅) = υi (∅) = 0.

Moreover, since
⋃
k∈N bdryH∆k(p) is %i-null, then

∆k (p) = bdryH∆k(p) ∪ intH∆k(p) ∼i intH∆k(p) ∀k ∈ N and

S =
⋃
k∈N

bdryH∆k(p) ∪
⊔
k∈N

intH∆k(p) ∼i
⊔
k∈N

intH∆k(p)

where
⊔

denotes a disjoint union. Subadditivity of νi implies

1 = υi (S) = υi

( ⊔
k∈N

intH∆k(p)

)
≤
∑
k∈N

υi (intH∆k(p)) =
∑
k∈N

υi (∆k (p)) =
∑
k∈N

uki (p)

19



therefore there exists k ∈ N such that uki (p) > 0, in particular uji (p) = 0 < uki (p) and p /∈ Cji .
Let S = I. If p ∈ ∆N−{j}, then pj = 0 and Ij (p) is a singleton, and hence it is %i-null.

Therefore
uji (p) = υi (Ij (p)) = υi (Ij (p) ∪ ∅) = υi (∅) = 0.

Moreover, since
⋃
k∈N bdryIk(p) is %i-null, then

Ik (p) = bdryIk(p) ∪ intIk(p) ∼i intIk(p) ∀k ∈ N and

S =
⋃
k∈N

bdryIk(p) ∪
⊔
k∈N

intIk(p) ∼i
⊔
k∈N

intIk(p).

Subadditivity of νi implies

1 = υi (S) = υi

( ⊔
k∈N

intIk(p)

)
≤
∑
k∈N

υi (intIk(p)) =
∑
k∈N

υi (Ik (p)) =
∑
k∈N

uki (p)

therefore there exists k ∈ N such that uki (p) > 0, in particular uji (p) = 0 < uki (p) and p /∈ Cji .
Therefore, for each i ∈ N , ∆T ⊆

⋃
j∈T C

j
i for all non-empty T ⊆ N . In fact, if p ∈ ∆T , then

pj = 0 for all j ∈ N − T , therefore p ∈ ∆N−{j} for all j ∈ N − T , hence p /∈ Cji for all j ∈ N − T

and p ∈
⋃
j∈N C

j
i = ∆N , it must be the case that p ∈

⋃
j∈T C

j
i .

Summing up: for each i ∈ N ,
{
Cji

}
j∈N

is a closed cover of ∆N , and ∆T ⊆
⋃
j∈T C

j
i for all

non-empty T ⊆ N . Gale (1984)’s Lemma implies that there exist a permutation σ of N and a
point p∗ ∈ ∆N such that

p∗ ∈ Cσ(i)
i ∀i ∈ N. (20)

Equation (20) says that for all i ∈ N , uσ(i)
i (p∗) ≥ uki (p∗) for all k ∈ N , that is

• υi
(
∆σ(i) (p)

)
≥ υi (∆k (p)) for all i, k ∈ N if S = ∆N , in this case set Aj = ∆σ(j) (p∗) for all

j ∈ N ;

• υi
(
Iσ(i) (p)

)
≥ υi (Ik (p)) for all i, k ∈ N if S = I, in this case set Aj = Iσ(j) (p∗) for all

j ∈ N .

In any case, {A1, A2, . . . , An} is a partition of S into polytopes and, for all i, k ∈ N , υi (Ai) ≥
υi
(
Aσ−1(k)

)
, that is, Ai %i Aσ−1(k), or Ai %i Aj for all i, j ∈ N , as wanted.
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