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Abstract

We study uncertainty averse preferences, that is, complete and transitive preferences that are convex
and monotone. We establish a representation result, which is at same time general and rich in struc-
ture. Many objective functions commonly used in applications are special cases of this representation.
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1 Introduction

Beginning with the seminal works of David Schmeidler, several choice models have been proposed in
the past twenty years in the large literature in choice under uncertainty that deals with ambiguity,
that is, with Ellsberg-type phenomena. As a result, there are now a few possible models of choice
under ambiguity, each featuring some violation of the classic independence axiom, the main behavioral
assumption questioned in this literature.

Our purpose in this paper is to put some order in this class of models by providing a common
representation that, through its properties, allows to unify and classify them. Since a notion of minimal
independence among uncertain acts is, at best, elusive, the starting point of our analysis is that this
common representation has to be independence-free. That is, it must not rely on any independence
condition on uncertain acts, however weak it may appear.

This leads us to consider complete and transitive preferences that are monotone and convex, with-
out any independence requirement. Besides its unifying power, this is arguably the most fundamental
class of economic preferences that model decision making under uncertainty. General equilibrium re-
sults are, for example, typically based on them, as well as the classic arbitrage arguments of finance.1

Transitivity and monotonicity are fundamental principles of economic rationality. The former
requires that decision makers be consistent across their choices, while the latter requires that they
prefer acts that deliver better outcomes in each state. Convexity reflects a basic negative attitude of
the decision makers toward the presence of uncertainty in their choices, an attitude arguably shared
by most decision makers and modelled through a preference for hedging/randomization.2 Finally,
completeness – which requires decision makers to be able to compare any pair of uncertain acts – is
a common simplifying assumption that can then be weakened in subsequent analysis.3

We call uncertainty averse the preferences that satisfy these properties, that is, the complete and
transitive preferences that are monotone and convex.4 In the paper we establish a representation for
uncertainty averse preferences which is, at the same time, general and rich in structure. Specifically,
in a standard Anscombe-Aumann set up, let F be the set of all uncertain acts f : S → X, where S is
a state space and X a convex outcome space, and let ∆ be the set of all probability measures on S.
We show that a preference % is uncertainty averse and satisfies some suitable technical conditions if,
and only if, there are a utility index u : X → R and a quasiconvex function G : u (X)×∆→ (−∞,∞],
increasing in the first variable, such that the preference functional

V (f) = min
p∈∆

G

(∫
u (f) dp, p

)
∀f ∈ F (1)

represents %.
In this representation decision makers consider through the term G

(∫
u (f) dp, p

)
all possible

probabilities p – i.e., all possible “models,” in the macroeconomics language – and the associated
expected utilities

∫
u (f) dp of act f . They then summarize all these evaluations by taking their

minimum. The quasiconvexity of G and the cautious attitude reflected by the minimum in (1) derive
from the convexity of preferences. Their monotonicity, instead, is reflected by the monotonicity of G
in its first argument.

1See, e.g., Rigotti, Shannon, and Strzalecki [40] and the references therein.
2See the classic discussions in Debreu [12, p. 101] and Schmeidler [45].
3Along, for example, the lines of Bewley [6]. See also the discussion in Gilboa, Maccheroni, Marinacci, and Schmeidler

[23].
4We use the general term uncertainty – rather than a more specific term like, for example, ambiguity – because of

the great generality of this class of preferences.
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The function G plays a key role in the representation (1) and its properties are what gives (1)
its rich structure. In particular, a noteworthy feature of (1) is the presence of expected utilities
in the first argument, even though no independence assumption whatsoever is made on uncertain
acts. Remarkably, expected utility thus already emerges in the representation of uncertainty averse
preferences, and this confirms its prominent role in decision theory.

Behaviorally, G can be interpreted as an index of uncertainty aversion, as Proposition 6 shows. In
particular, higher degrees of uncertainty aversion correspond to pointwise smaller indices G. Moreover,
the index G can be elicited from choice data, that is, it is behaviorally determined. In fact, we show
that

G (t, p) = sup
f∈F

{
u (xf ) :

∫
u (f) dp ≤ t

}
,

where xf is the certainty equivalent of act f . As a result, once the utility function u is elicited,
something that can be done by standard methods, the quantity G (t, p) can be recovered from choice
data by determining the certainty equivalents of the acts f such that

∫
u (f) dp ≤ t. In this way, the

preference functional (1) itself can be behaviorally (e.g., through experimental analysis) determined
and tested.

1.1 Generality and Structure

The combination of generality and rich structure is the main feature of the representation (1). Thanks
to its generality, (1) is able to unify, as special cases, many of the choice criteria commonly used to
model choices under uncertainty, even when prima facie they may appear unrelated. Thanks to its
structure, this unification is insightful since all special cases can be regarded as the result of suitable
specifications of the uncertainty aversion index G. Moreover, novel specifications can be suggested by
the properties of G and their derivation can be significantly simplified by having the representation
(1) at hand. For the same reason, also the derivation of known specifications can be simplified.5

All this can be seen in Section 4, where we illustrate the scope of the representation (1). In
particular, we show how (1) provides a common framework for two general classes of preferences
under ambiguity, the variational preferences studied by Maccheroni, Marinacci, and Rustichini [34]
and the smooth ambiguity preferences studied by Klibanoff, Marinacci, and Mukerji [30].6

We first consider variational preferences. The main issue in studying a special case of (1) is
to determine the appropriate form of the uncertainty aversion index G. Proposition 10 shows that
variational preferences correspond to additively separable functions G. Indeed, variational preferences
are characterized by

G (t, p) = t+ c (p) ,

where c : ∆→ [0,∞] is a convex function, and in this case (1) reduces to the variational representation

V (f) = min
p∈∆

{∫
u (f) dp+ c (p)

}
. (2)

As [34] shows, the variational representation (2) includes as special cases the multiple priors model of
Gilboa and Schmeidler [24] and the multiplier preferences of Hansen and Sargent ([28], [27]), which

5For example, this is the case for the variational representation (2), whose derivation becomes easier when based on

the representation (1).
6See Ergin and Gul [17], Nau [38], and Seo [46] for works related to [30].
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can therefore be viewed as particular specifications of an additively separable uncertainty aversion
index G.7

Smooth ambiguity preferences are represented by

V (f) = φ−1

(∫
∆

φ

(∫
S

u (f (s)) dp (s)
)
dµ (p)

)
, (3)

where φ is a continuous and strictly increasing function and µ is a probability measure on ∆. Theorem
16 shows that smooth preferences with concave φ correspond to the uncertainty aversion index given
by

G (t, p) = t+ min
ν∈Γ(p)

It (ν ‖ µ) . (4)

Here, It (· ‖ µ) is a suitable statistical distance function, defined in (19), that generalizes the classic
relative entropy, and Γ (p) is the set of all second-order probabilities ν that are absolutely continuous
with respect to µ and that have p as their reduced, first-order, probability measure on S.

In the important exponential case φ (t) = −e−θt, Corollary 17 shows that (4) takes the form

G (t, p) = t+
1
θ

min
ν∈Γ(p)

R (ν ‖ µ) ,

that is, It (· ‖ µ) reduces to the relative entropyR (· ‖ µ).8 In this case the smooth preference functional
(3) can thus be represented as

V (f) = min
p∈∆

{∫
S

u (f (s)) dp (s) +
1
θ

min
ν∈Γ(p)

R (ν ‖ µ)
}
. (5)

The preference functional (5) is also variational, with c (p) = 1
θ minν∈Γ(p)R (ν ‖ µ). The exponen-

tial case thus turns out to be both smooth and variational. Our last result on smooth preferences,
Theorem 18, shows that the overlap between these two classes of preferences is basically characterized
by functions φ that are constant absolute risk averse (CARA), that is, that have either the form
φ (t) = −αe−θt + β or φ (t) = αt+ β, with α, θ > 0 and β ∈ R.

Inter alia, all these results shed light on the relations between smooth and variational preferences
by showing that, first, (1) is the general representation that encompasses them as special cases, and,
second, that the CARA case can be regarded as their overlap.

Since variational preferences feature additively separable uncertainty aversion indices, a natural
class of uncertainty preferences to consider are those characterized by multiplicatively separable un-
certainty aversion indices. To further illustrate the flexibility of the representation (1), we carry out
this exercise, which is related to the analysis of Chateauneuf and Faro [8], in Section 4.

1.2 Final Remarks and Organization

Our setting admits a game against Nature interpretation, where decision makers view themselves as
playing a zero-sum game against (a malevolent) Nature. In this case, f and p become, respectively,
the strategies of the decision maker and of Nature.

7See Strzalecki (2007) for conditions on variational preferences that characterize multiplier preferences (see also

Subsection 4.2.4 below).
8Recall that

R (ν‖µ) =

{ ∫
∆
dν
dµ

log
(
dν
dµ

)
dµ if ν � µ,

∞ otherwise.
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As detailed in Section 3, the function c : T ×∆→ (−∞,∞] such that

G (t, p) = t+ c (t, p)

can be regarded as a a parametric cost function for Nature, where c (t, p) is the cost for Nature to
play p at value t of the parameter. Using this cost function, the objective function (1) can be written
as

V (f) = min
p∈∆

{∫
u (f) dp+ c

(∫
u (f) dp, p

)}
.

This is arguably the most general form of a game against Nature. Its special cases are determined
by suitably specifying the parametric cost function c. For example, the variational representation
(2) is characterized by a parametric cost function c (t, p) that does not depend on t. The game
theoretic interpretation of our setting thus generalizes the one discussed in [34] and [35] for variational
preferences.

Notice how Nature’s cost turns out to be parametrized by both players’ strategies f and p through
their expected utility

∫
u (f) dp. Also in the game interpretation, the appearance of expected utility

at this level of generality (without any independence assumption) is remarkable. All this and more is
discussed in Sections 3 (in particular in Subsection 3.4) and 4.

The analysis of this paper is static and its dynamic extension is a natural future research topic,
along the lines of Epstein and Schneider [16] and Maccheroni, Marinacci, and Rustichini [35]. In this
regard, it is also important to notice that Siniscalchi [47] and Hanany and Klibanoff [26] have recently
studied in depth updating rules for uncertainty averse preferences; a natural direction of research is
to see how their analysis can be read in terms of the representation (1).

Finally, to derive the results of this paper we had to establish some novel duality results for
monotone quasiconcave functions. This is a further contribution of this research project, developed in
Cerreia-Vioglio, Maccheroni, Marinacci, and Montrucchio [7]. In Appendices A and B we report the
results on quasiconcave functions that are needed for our derivation. These quasiconcave methods are
quite different from the concave duality methods that [34] use in their study of variational preferences.

The rest of the paper is organized as follows. Section 2 presents some preliminary notions, needed
to establish in Section 3 the main representation results. Section 4 studies some special classes of
uncertainty averse preferences. Appendix C provides some more material on the statistical distance
functions It, while Appendix D contains the proofs of the results.

2 Preliminaries

2.1 Decision Theoretic Set Up

We consider a set S of states of the world, an algebra Σ of subsets of S called events, and a set X
of consequences. We denote by F the set of all the (simple) acts: functions f : S → X that are
Σ-measurable and take on finitely many values.

Given any x ∈ X, define x ∈ F to be the constant act such that x(s) = x for all s ∈ S. With the
usual slight abuse of notation, we thus identify X with the subset of the constant acts in F . If f ∈ F ,
x ∈ X, and A ∈ Σ, we denote by xAf ∈ F the act yielding x if s ∈ A and f (s) if s /∈ A.

We assume additionally that X is a convex subset of a vector space. For instance, this is the case
if X is the set of all the lotteries on a set of prizes, as it happens in the classic setting of Anscombe
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and Aumann [3]. Using the linear structure of X we can define in the usual way, for every f, g ∈ F
and α ∈ [0, 1], the act αf + (1− α)g ∈ F ; it yields αf(s) + (1− α)g(s) ∈ X for every s ∈ S.

We model the decision maker’s preferences on F by a binary relation %. As usual, � and ∼ denote
respectively the asymmetric and symmetric parts of %. If f ∈ F , an element xf ∈ X is a certainty
equivalent for f if f ∼ xf .

2.2 Mathematical Preliminaries

We denote by B0 (Σ) the set of all real-valued Σ-measurable simple functions – so that u (f) ∈ B0 (Σ)
whenever u : X → R and f ∈ F – and by B (Σ) the supnorm closure of B0 (Σ). If T is an interval of
the real line, set B0 (Σ, T ) = {ψ ∈ B0 (Σ) : ψ (s) ∈ T for all s ∈ S}.

As well known, the dual space of B0 (Σ) (or indifferently of B (Σ)) can be identified with the set
ba (Σ) of all bounded finitely additive measures on (S,Σ). The set of probabilities in ba (Σ) is denoted
by ∆ and is a weak* compact and convex subset of ba (Σ). Elements of ∆ are denoted by p or q.
Finally, we denote by B (∆) the Borel σ-algebra generated by the weak* topology on ∆.

When Σ is a σ-algebra we denote by ∆σ the set of all countably additive probabilities in ∆. In
particular, given q ∈ ∆σ, we denote by ∆σ (q) the set of all probabilities in ∆σ that are absolutely
continuous with respect to q; i.e., ∆σ (q) = {p ∈ ∆σ : p� q}.

Functions of the form G : T×∆→ (−∞,∞], where T is an interval of the real line, will play a key
role in the paper. We denote by G (T×∆) the class of these functions such that:

(i) G is quasiconvex on T×∆,

(ii) G (·, p) is increasing for all p ∈ ∆,

(iii) infp∈∆G (t, p) = t for all t ∈ T .

We denote by H (T×∆) the class of functions in G (T×∆) such that:

(iv) G is lower semicontinuous on T×∆,

(v) G (·, p) is extended-valued continuous on T for each p ∈ ∆.9

Set domG (·, p) = {t ∈ T : G (t, p) <∞}. We denote by E (T×∆) the set of functions in H (T×∆)
that have the following additional properties:

(vi) domG (·, p) ∈ {∅, T} for all p ∈ ∆,

(vii) G (·, p) are uniformly equicontinuous on T with respect to all p ∈ ∆ such that domG (·, p) = T .10

Property (vi) requires that the functions in E (T×∆) be either real valued or constant at ∞; that
is, either domG (·, p) = T or domG (·, p) = ∅, respectively. Property (vii) requires that, when real
valued, the functions G (·, p) are uniformly equicontinuous on T .

A function G : T×∆→ (−∞,∞] is linearly continuous if the map

ψ 7→ inf
p∈∆

G

(∫
ψdp, p

)
9That is, limt→t0 G (t, p) = G (t0, p) ∈ (−∞,∞] for all t0 ∈ T and p ∈ ∆. For instance, G (t, p) =∞ for all t ∈ T is

continuous in this sense.
10That is, for every ε > 0 there is δ > 0 such that t, t′ ∈ T and |t− t′| ≤ δ imply |G (t, p)−G (t′, p)| ≤ ε, for all p ∈ ∆

such that domG (·, p) = T .
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from B0 (Σ, T ) to [−∞,∞] is extended-valued continuous.11 Next we show that a function is linearly
continuous if it belongs to H (T×∆), something easily verified with a routine real analysis check.

Lemma 1 If G ∈ H (T×∆), then it is linearly continuous.

A last piece of notation: we denote by U (X) the set of all nonconstant affine functions u : X → R.

3 Uncertainty Averse Preferences

3.1 Basic Axioms

Our analysis relies on the next three main behavioral assumptions on the preference %, which formalize
the requirements of completeness, transitivity, monotonicity, and convexity that we discussed in the
Introduction.

Axiom A. 1 (Weak Order) The binary relation % is nontrivial, complete, and transitive.

Axiom A. 2 (Monotonicity) If f, g ∈ F and f(s) % g(s) for all s ∈ S, then f % g.

Axiom A. 3 (Uncertainty Aversion) If f, g ∈ F and α ∈ (0, 1), f ∼ g implies αf+(1− α) g % f .

These classic axioms are all falsifiable through choice behavior. In Axiom A.1, nontriviality means
that f � g for some f, g ∈ F . Axiom A.2 is a monotonicity assumption, which requires that an act
is preferred if, state by state, delivers a preferred outcome. Axiom A.3 is a convexity assumption
that, as argued by Debreu [12] and Schmeidler [45], models a negative attitude toward the presence
of uncertainty.

Definition 2 A preference % is uncertainty averse if it satisfies axioms A.1-A.3.

As argued in the Introduction, uncertainty averse preferences are the most fundamental class of
preferences that model decision making under uncertainty.

The next assumption is peculiar to the Anscombe-Aumann setting and imposes a standard inde-
pendence axiom on constant acts, that is, acts that only involve risk and no state uncertainty.

Axiom A. 4 (Risk Independence) If x, y, z ∈ X and α ∈ (0, 1), x ∼ y implies αx + (1− α) z ∼
αy + (1− α) z.

We now introduce some technical assumptions, which make possible the mathematical derivation
in our very general set up.

Axiom A. 5 (Continuity) If f, g, h ∈ F , the sets {α ∈ [0, 1] : αf + (1− α)g % h} and {α ∈ [0, 1] :
h % αf + (1− α)g} are closed.

Axiom A.5 is a standard continuity assumption, which along with axioms A.1 and A.2 implies the
existence of a certainty equivalent xf for each act f ∈ F (see, e.g., [34, p. 1478]).

The next assumption requires that there are arbitrarily good and arbitrarily bad outcomes. In the
representation this implies that the utility function u : X → R is onto (i.e., u (X) = R).

Axiom A. 6 (Unboundedness) There are x, y ∈ X such that, for each α ∈ (0, 1), there exist
z, z′ ∈ X such that αz + (1− α) y � x � y � αz′ + (1− α)x.

11An ε-δ definition of linear continuity is given by Lemma 50 in Appendix A.
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For some results we use an additional continuity condition.

Axiom A. 7 (Uniform Continuity) For every z′ ≺ z in X, there are y′ ≺ y in X such that

f, g ∈ F and
1
2
f (s) +

1
2
y′ -

1
2
g (s) +

1
2
y ∀s ∈ S =⇒ 1

2
xf +

1
2
z′ -

1
2
xg +

1
2
z. (6)

Together, axioms A.5 and A.7 form a uniform continuity condition. Axiom A.5 implies A.7 under
minimal independence assumptions on acts and for this reason it is normally enough to assume A.5
in derivations that maintain some form of independence.

We close with a standard monotone continuity condition, due to Arrow [4], which will ensure in
our representation results that only countably additive probabilities matter. In applications this is
often a very convenient property because countably additive probabilities are much better behaved
than probabilities that are merely finitely additive (see [9] and [34] for more on this).

Axiom A. 8 (Monotone Continuity) If f, g ∈ F , x ∈ X, {En}n∈N ∈ Σ with E1 ⊇ E2 ⊇ ... and⋂
n∈N En = ∅, then f � g implies that there exists n0 ∈ N such that xEn0f � g.

3.2 The Representation

We now derive our general representation (1) for uncertainty averse preferences. It relies on Axioms
A.1-A.5, that is, on the original axioms of Gilboa and Schmeidler (1989), with the key exception of
their independence assumption on uncertain acts, here replaced by the much weaker Axiom A.4, which
applies only to constant acts.

Theorem 3 Let % be a binary relation on F . Then, the two following conditions are equivalent:

(i) % is uncertainty averse and satisfies axioms A.4 and A.5;

(ii) there exists a nonconstant affine u : X → R and a linearly continuous G : u (X)×∆→ (−∞,∞]
that belongs to G (u (X)×∆) such that, for all f and g in F ,

f % g ⇐⇒ inf
p∈∆

G

(∫
u (f) dp, p

)
≥ inf
p∈∆

G

(∫
u (g) dp, p

)
. (7)

The function u is cardinally unique and, given u, there is a (unique) minimal G? : u (X)×∆ →
(−∞,∞] in G (u (X)×∆) satisfying (7), given by

G? (t, p) = sup
f∈F

{
u (xf ) :

∫
u (f) dp ≤ t

}
∀ (t, p) ∈ u (X)×∆. (8)

Moreover, % has no worst consequence if and only if inf u (X) /∈ u (X). In this case G? is lower
semicontinuous on u (X)×∆.12

Recall that xf is a certainty equivalent of act f . Hence, thanks to (8) the function G? in Theorem
3 can be derived from behavioral data. In fact, once the utility function u is elicited (by standard
methods), the quantity

sup
f∈F

{
u (xf ) :

∫
u (f) dp ≤ t

}
,

is determined by the certainty equivalents xf of the acts such that
∫
u (f) dp ≤ t.

12Recall that % has no worst consequence if for each x ∈ X there is y ∈ X such that x � y, and that lower

semicontinuity of G? implies that infp∈∆G?
(∫
u (f) dp, p

)
= minp∈∆G?

(∫
u (f) dp, p

)
for all f ∈ F .
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As a result, Theorem 3 guarantees that, given an uncertainty averse decision maker that satisfies
the behavioral axioms A.4 and A.5, we can elicit the precise form of the representation

V (f) = inf
p∈∆

G?
(∫

u (f) dp, p
)
, ∀f ∈ F , (9)

of his preference, by using purely behavioral (e.g., experimental) data.

By Theorem 3, uncertainty averse preferences % that satisfy axioms A.4 and A.5 are characterized
by pairs (u,G?), which we call uncertainty averse representations of %.13 Such pairs have the following
uniqueness property.

Proposition 4 Let (u,G) be a uncertainty averse representation of a preference %. Then
(
ū, Ḡ

)
is

another uncertainty averse representation of % if and only if there exist α > 0 and β ∈ R such that
ū = αu+ β and Ḡ (t, p) = αG

(
α−1 (t− β) , p

)
+ β for all (t, p) ∈ ū (X)×∆.

In Theorem 3 we establish the minimality, but not the uniqueness, of the index G. The next result
shows that uniqueness holds when % satisfies A.6, that is, when u (X) = R.

Proposition 5 Let % be an uncertainty averse preference that satisfies A.4-A.6. Then, G? defined
in (8) is the unique lower semicontinuous G ∈ G (u (X)×∆) for which (7) holds.

3.3 Comparative Attitudes

Based on Ghirardato and Marinacci [22], given two preferences %1 and %2, say that %1 is more
uncertainty averse than %2 if, for all f ∈ F and x ∈ X,

f %1 x =⇒ f %2 x. (10)

In other words, %1 is more uncertainty averse than %2 if, whenever %1 is “bold enough” to prefer
an uncertain act f over a constant outcome x, then the same is true for %2.

Next we show that comparative uncertainty attitudes are determined by the functions G. Here
u1 ≈ u2 means that there exist α > 0 and β ∈ R such that u1 = αu2 + β.

Proposition 6 Given two preferences %1 and %2 with uncertainty averse representations (u1, G1)
and (u2, G2), the following conditions are equivalent:

(i) %1 is more uncertainty averse than %2,

(ii) u1 ≈ u2 and G1 ≤ G2 (provided u1 = u2).

Given that u1 ≈ u2, the assumption u1 = u2 is just a common normalization of the two utility
indices. Therefore, Proposition 6 says that more uncertainty averse preference relations are character-
ized, up to a normalization, by pointwise smaller functions G. The function G can thus be properly
interpreted as an index of uncertainty aversion.

Assume u (X) = R. Since infp∈∆G (t, p) = t, the maximally uncertainty averse index is given by
G (t, p) = t for all t ∈ R and all p ∈ ∆. Therefore, the preference functional

V (f) = min
p∈∆

∫
u (f) dp = min

s∈S
u (f (s)) ,

13In other words, a pair (u,G) ∈ U (X) × G (u (X)×∆) is an uncertainty averse representation of % if G is linearly

continuous, and (7) and (8) hold.
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represents preferences that are maximally uncertainty averse.
Subjective expected utility preferences are, instead, minimally uncertainty averse. In fact, suppose

% is a subjective expected utility preference, represented by V (f) =
∫
u (f) dq, for some q ∈ ∆. Its

uncertainty index is G (t, p) = t+ δq (p) for all (t, p) ∈ R×∆, where δq denotes the indicator function

δq (p) =

{
0 p = q,

∞ p 6= q.

Suppose G′ ∈ G (R×∆) is such that G′ ≥ G. To prove the minimal uncertainty aversion of
% we need to show that G′ = G. We have G′ (t, p) = G (t, p) = ∞ for all t ∈ R if p 6= q; while
t ≤ G (t, q) ≤ G′ (t, q) for all t ∈ R. But then, G′ (t, q) = minp∈∆G′ (t, p) = t for all t ∈ R, and so
t = G (t, q) = G′ (t, q) for all t ∈ R. We conclude that G = G′, as desired.

3.4 Games against Nature

As mentioned in the Introduction, our setting admits a game against Nature interpretation, where
decision makers believe that they are playing a zero-sum game against (a malevolent) Nature. Here f
and p become, respectively, the strategies of the decision maker and of Nature, and the interpretation
of the axioms has to be suitably modified. For example, in Axiom A.3 the reason why decision makers
prefer to randomize among indifferent acts is because this makes more costly for Nature (which has
no control on the random device) to reply.

A key ingredient in this interpretation is the specification of a cost function of Nature. To this
end, next we introduce parametric cost functions c : T ×∆→ (−∞,∞], where c (t, p) is the cost for
Nature to play p at value t of the parameter.

Definition 7 Given an interval T of the real line, a function c : T ×∆→ (−∞,∞] is a parametric
cost function if:

(i) c is nonnegative on T ×∆;

(ii) c (t, ·) is quasiconvex on ∆ for all t ∈ T ;

(iii) c (t, ·) is grounded, i.e., infp∈∆ c (t, p) = 0 for all t ∈ T .

It is easy to check that if G ∈ G (T×∆), then the difference G (t, p)− t is indeed a parametric cost
function. Therefore, in the equality

G (t, p) = t+ c (t, p) (11)

the function c is a parametric cost function. As a result, we can rewrite the representation (7) as

f % g ⇐⇒ inf
p∈∆

{∫
u (f) dp+ c

(∫
u (f) dp, p

)}
≥ inf
p∈∆

{∫
u (g) dp+ c

(∫
u (g) dp, p

)}
. (12)

As observed in the Introduction, this is arguably the most general form of a game against Nature
and special cases are determined by suitably specifying the parametric cost function c. In particular,
this cost function is parametrized by both players’ strategies f and p through their expected utility∫
u (f) dp.

Representation (12) can be summarized by a pair (u, c), where c is a parametric cost function
for Nature that corresponds, via (11), to an uncertainty averse representation. The comparative
relation (10) can now be used to behaviorally pin down such cost functions. For, notice that, given a
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decision maker’s act f , Nature can affect the relative likelihood of the act f outcomes by choosing a
probabilistic model p, unless f is a constant act (in which case Nature has no power).

Hence, if %2 prefers an uncertain act f over a constant one x whenever also %1 does, here this
means that %2 is less worried than %1 about Nature’s ability to impair his acts’ outcomes. The
following version of Proposition 6 shows that in the representation (12) this translates into higher cost
functions c for Nature.

Proposition 8 Two preferences %1 and %2, with representations (u1, c1) and (u2, c2), satisfy (10) if
and only if u1 ≈ u2 and c1 ≤ c2 (provided u1 = u2).

In other words, relative to %2, the decision maker %1 behaves as if he is believing to face a more
powerful Nature, that is, a Nature that incurs in lower costs for her actions.

3.5 More on Continuity

As we already observed, Axiom A.7 is a uniform continuity condition when added to Axiom A.5. Since
Axiom A.5 implies A.7 under minimal independence assumptions on acts, Axiom A.7 is redundant in
derivations that assume some form of independence (even very weak form of independence actually
ensure the Lipschitzianity of the representing preference functional).

In our independence-free setting, Axiom A.7 delivers an interesting version of our representation,
in which the index G belongs to E (T×∆) and thus features stronger continuity properties.

Theorem 9 Let % be a binary relation on F . Then, the two following conditions are equivalent:

(i) % is uncertainty averse and satisfies axioms A.4-A.7;

(ii) there exist an affine u : X → R, with u (X) = R, and a G : R×∆ → (−∞,∞] that belongs to
E (R×∆) such that, for all f and g in F ,

f % g ⇐⇒ min
p∈∆

G

(∫
u (f) dp, p

)
≥ min

p∈∆
G

(∫
u (g) dp, p

)
. (13)

The function u is cardinally unique and, given u, the index G is unique and given by

G (t, p) = sup
f∈F

{
u (xf ) :

∫
u (f) dp = t

}
. (14)

If, in addition, Σ is a σ-algebra, then % satisfies axiom A.8 if and only if there is q ∈ ∆σ such
that G (·, p) ≡ ∞ for all p /∈ ∆σ (q); in particular ∆ can be replaced with ∆σ (q) in (13).

Observe that, inter alia, we now have an equality sign in (14), something that simplifies the
elicitation of G since less acts f have to be considered. Moreover, inspection of the proof shows that
A.1-A.6 actually suffice to have this equality sign, as well as the possibility of replacing ∆ with ∆σ (q)
(provided Σ is a σ-algebra and % satisfies axiom A.8).

4 Special Cases

Uncertainty averse preferences are a very general class of preferences and in this section we present
important special cases that can be obtained by suitably specifying the uncertainty aversion index G.
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4.1 Variational Preferences

We begin with the variational preferences of Maccheroni, Marinacci, and Rustichini [34]. A pair (u, c)
is a variational representation of a preference % if u : X → R is an affine function and c : ∆→ [0,∞]
is a lower semicontinuous convex function, with infp∈∆ c (p) = 0, such that

f % g ⇐⇒ min
p∈∆

{∫
u (f) dp+ c (p)

}
≥ min

p∈∆

{∫
u (g) dp+ c (p)

}
, (15)

for all f and g in F .
As shown by [34], a preference admits a variational representation if and only if it is an uncertainty

averse preference that satisfies both Axiom A.5 and the following weak independence axiom, discussed
in detail in [34].

Axiom A. 9 (Weak Certainty Independence) If f, g ∈ F , x, y ∈ X, and α ∈ (0, 1),

αf + (1− α)x % αg + (1− α)x⇒ αf + (1− α)y % αg + (1− α)y.

In this case, % is said to be a variational preference. A variational preference % satisfies A.4 (it is
implied by A.9) and, setting

G (t, p) = t+ c (p) , (16)

the pair (u,G) clearly represents % in the sense of (7). More is actually true:

Proposition 10 Let u : X → R be affine with u (X) = R. If (u, c) is a variational representation of
%, then, setting

G (t, p) = t+ c (p) ∀ (t, p) ∈ R×∆, (17)

(u,G) is an (additively separable) uncertainty averse representation of %.
Conversely, if (u,G) is an additively separable uncertainty averse representation of %, i.e.,

G (t, p) = γ (t) + c (p) ∀ (t, p) ∈ R×∆,

for some γ : R → R and c : ∆ → [0,∞] with infp∈∆ c (p) = 0, then γ is the identity and (u, c) is a
variational representation of %.

Variational representations are thus nothing but additively separable uncertainty aversion repre-
sentations. Notice that in the game against Nature interpretation, the variational case corresponds
to a parametric cost function c (t, p) for Nature that does not depend on t.

4.2 Smooth Ambiguity Preferences

The smooth ambiguity preferences studied by Klibanoff, Marinacci, and Mukerji [30] provide another
example of uncertainty averse preferences. In this subsection we will study their uncertainty averse
representation.

A triplet (u, φ, µ) is a smooth (ambiguity) representation of a preference % if u : X → R is an affine
function, φ : R → R is a strictly increasing function, and µ is a countably additive Borel probability
measure on ∆ such that

f % g ⇐⇒
∫

∆

φ

(∫
S

u (f (s)) dp (s)
)
dµ (p) ≥

∫
∆

φ

(∫
S

u (g (s)) dp (s)
)
dµ (p) , (18)
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for all f, g ∈ F .14

As in standard statistical decision theory, the first-order probabilities p are possible models that
govern states’ realizations, while the second-order probabilities µ are priors on such models. As
discussed by [30], because of ambiguity the function φ may not be linear. In particular, the concavity
of φ reflects ambiguity aversion and in this case % is an uncertainty averse preference.

Throughout the paper we will consider the φ concave case. In order to establish the uncertainty
averse representation of these smooth preferences, we need to introduce a family of statistical distance
functions.15

4.2.1 A Family of Statistical Distance Functions

Denote by ∆σ (B (∆) , µ) the set of all (second-order) countably additive Borel probability measures
on ∆ that are absolutely continuous with respect to µ. In particular, given a ν ∈ ∆σ (B (∆) , µ),
denote by dν/dµ the Radon-Nikodym derivative of ν with respect to µ. Moreover, φ∗ : R→ [−∞,∞)
is the concave conjugate of φ, given by φ∗ (z) = infk∈R {kz − φ (k)}.

For all t ∈ R, define It (· ‖ µ) : ∆σ (B (∆) , µ)→ [−∞,∞] by

It (ν ‖ µ) = φ−1

(
inf
k≥0

[
kt−

∫
φ∗
(
k
dν

dµ

)
dµ

])
− t. (19)

The function It (· ‖ µ) is a statistical distance on ∆σ (B (∆) , µ), as next we show.

Proposition 11 For all t ∈ R,

(i) It (µ ‖ µ) = 0;

(ii) It (ν ‖ µ) ≥ 0 for each ν ∈ ∆σ (B (∆) , µ);

(iii) It (· ‖ µ) is quasiconvex;

(iv) It (· ‖ µ) is lower semicontinuous and coercive, i.e., the lower contour sets {ν ∈ ∆σ (µ) : It (ν ‖ µ) ≤ c}
are weakly compact in ∆σ (B (∆) , µ) for all c ∈ R.

Example 12 The classic relative entropy R (ν ‖ µ) is an example of function It. For, consider φ (t) =
−e−θt, with θ > 0. Simple algebra based on Proposition 15 below shows that

It (ν ‖ µ) =
1
θ
R (ν ‖ µ) , ∀t ∈ R.

In particular, when θ = 1 we get It (ν ‖ µ) = R (ν ‖ µ) for all t ∈ R. Notice that in this special case
It does not depend on t. N

In a different context, this family of statistical distances has been considered in Mathematical
Finance by Frittelli [19] and Bellini and Frittelli [5]. There is an interesting relation between the
degree of concavity of φ and the magnitude of the induced distance It.

Proposition 13 Suppose Σ is not trivial. Then, given two strictly increasing and concave functions
φ1, φ2 : R→ R, the following conditions are equivalent:

14In richer settings (whose specification is beyond the scope of this paper), Ergin and Gul [17], Klibanoff, Marinacci,

and Mukerji [30], Nau [38], and Seo [46] provide behavioral conditions that underlie the representation (18). Observe

that, when needed, φ and φ−1 denote the extended-valued continuous extentions of φ and φ−1 from [−∞,∞] to [−∞,∞].

See (65) in Appendix B.
15See [32] for a thorough study of statistical distance functions.
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(i) φ1 is more concave than φ2;16

(ii) I1
t (· ‖ µ) ≤ I2

t (· ‖ µ) for all µ ∈ ∆σ (B (∆)) and t ∈ R.

In particular, φ1 ≈ φ2 implies I1 = I2. This means, inter alia, that in terms of I the functions φ
are unique up to positive linear transformations, and can therefore be normalized.

We now introduce a class of functions for which it is relatively easy to compute It. Here it is
convenient to normalize φ by setting φ (0) = 0 and φ′ (0) = 1.

Definition 14 A normalized function φ : R → R is order Orlicz if it is strictly increasing, strictly
concave, differentiable, and there exists α > 1 such that kφ′ (k) /φ (k) ≥ α/ (α− 1) for k < 0 small
enough and kφ′ (k) /φ (k) ≤ α/ (α+ 1) for k > 0 large enough.

Order Orlicz functions are thus characterized by “tail” conditions on the elasticities kφ′ (k) /φ (k)
of φ. The normalized negative exponential is an example of order Orlicz function.

Proposition 15 If φ is order Orlicz, then

It (ν ‖ µ) = φ−1

(∫
(φ ◦ ψ)

(
k (ν)

dν

dµ

)
dµ

)
− t, ∀t ∈ R, ν ∈ domIt (· ‖ µ) (20)

where ψ = (φ′)−1 and k (ν) ∈ (0,∞) is the only solution to the equation∫
ψ

(
k
dν

dµ

)
dν = t. (21)

In other words, when φ is order Orlicz, the index It can be computed in two stages. First, k (ν) is
determined via (21), and then it is used to determine It via (20). This procedure is known (see [29]),
our contribution is to identify a class of functions in which it works (see also [44]).

4.2.2 Uncertainty Averse Representation

We can now state the announced representation. A piece of notation: p =
∫

∆
qdν (q) means

p (A) =
∫

∆

q (A) dν (q) ∀A ∈ B (∆) .

Theorem 16 Let u : X → R be an affine function with u (X) = R, φ : R → R a strictly increasing
and concave function, and µ a countably additive Borel probability measure on ∆. The following
conditions are equivalent:

(i) (u, φ, µ) is a smooth representation of %,

(ii) (u,G) is an uncertainty averse representation of %, where, for all (t, p) ∈ R×∆,

G (t, p) = t+ min
ν∈Γ(p)

It (ν ‖ µ) , (22)

with

Γ (p) =
{
ν ∈ ∆σ (B (∆) , µ) : p =

∫
∆

qdν (q)
}
,

under the convention G (·, p) ≡ ∞ when Γ (p) = ∅.
16That is, there exists a strictly increasing and concave h : φ1 (R)→ R such that φ2 = h ◦ φ1.
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The important part of Theorem 16 is (22), which provides an explicit formula for the uncertainty
aversion index G in the smooth case.

To interpret this formula, first observe that the term Γ (p) has a very simple decision theoretic
interpretation in terms of the standard operation of reduction of compound lotteries (i.e., of averaging
of second-order probability measures, in our general setting). In fact, Γ (p) is nothing but the set of
all second-order probabilities ν that are absolutely continuous with respect to µ and that have p as
their reduced, first-order, probability measure on S.

When the support of µ is finite, say supp (µ) = {q1, ..., qn}, there is at most one second-order prob-
ability ν with this property provided the first-order probabilities in supp (µ) are linearly independent.
In fact, in this case we can identify µ with a vector (µ1, ..., µn) ∈ ∆n, where ∆n denotes the simplex
in Rn. Thus, ∆σ (B (∆) , µ) can be identified with ∆n, and

Γ (p) =

{
ν ∈ ∆σ (B (∆) , µ) : p =

n∑
i=1

qiνi for all i = 1, ..., n

}
, ∀p ∈ ∆.

In other words, Γ (p) is the set of all possible weights ν = (ν1, ..., νn) ∈ ∆n such that p can be written
as a convex combination of the probabilities qi in supp (µ). The set Γ (p) is nonempty if and only if p
belongs to the convex hull of the support of µ; that is, Γ (p) 6= ∅ if and only if p ∈ co (supp (µ)). When
this happens, Γ (p) is a singleton if the probabilities in supp (µ) are linearly independent. Thus, the
nonsingleton nature of Γ (p) reflects a linear dependence of the probabilities in supp (µ).

In view of this decision theoretic interpretation of Γ (p), we can say that G (t, p) is determined
in formula (22) by evaluating all second-order probabilities ν in Γ (p) through the distance It (ν ‖ µ)
with respect to µ. The least distant one is then selected. Probabilistically, the term G (t, p)− t, that
is, minν∈Γ(p) It (ν ‖ µ), is called the It distance of µ from Γ (p) and an element of Γ (p) where the
minimum is achieved is called projection of µ on Γ (p) (see Csiszar [10]).

Summing up, by Theorem 16,

φ−1

(∫
∆

φ

(∫
S

u (f) dp
)
dµ (p)

)
= min

p∈∆

(∫
S

u (f) dp+ min
ν∈Γ(p)

I∫
S
u(f)dp (ν ‖ µ)

)
(23)

for all f ∈ F . Here the game against Nature interpretation is especially stark. In fact, the parametric
cost function of Nature c : R×∆→ (−∞,∞] is given by

c (t, p) = min
ν∈Γ(p)

It (ν ‖ µ) ,

that is, by the It distance of µ from Γ (p).

4.2.3 Exponential Case and Overlap

Consider the important exponential case φ (t) = −e−θt, which corresponds to constant ambiguity
aversion (see [30, p. 1866]). In this case we have the following version of Theorem 16, where It (·‖µ)
reduces to the relative entropy R (·‖µ).

Corollary 17 Let u : X → R be an affine function with u (X) = R, θ > 0 a real number, and µ a
countably additive Borel probability measure on ∆. The following conditions are equivalent:

(i)
(
u,−e−θ(·), µ

)
is a smooth representation of %,
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(ii) (u,G) is an uncertainty averse representation of %, where

G (t, p) = t+
1
θ

min
ν∈Γ(p)

R (ν ‖ µ) , ∀ (t, p) ∈ R×∆.

(iii) (u, c) is a variational representation of %, where c (p) = 1
θ minν∈Γ(p)R (ν ‖ µ) for all p ∈ ∆.

Hence, here (23) becomes:

−1
θ

log
∫

∆

e−θ
∫
S
u(f(s))dp(s)dµ (p) = min

p∈∆

{∫
S

u (f (s)) dp (s) +
1
θ

min
ν∈Γ(p)

R (ν ‖ µ)
}
.

Corollary 17 thus shows what we already observed in the Introduction: the exponential case is
thus both a smooth and a variational representation. Next we show that the exponential case is also,
basically, the extent to which these two representations overlap.

Theorem 18 Let u : X → R be affine with u (X) = R and φ : R → R be a strictly increasing and
concave function. The triplet (u, φ, µ) represents a variational preference for all countably additive
Borel probability measures µ on ∆ if and only if φ is CARA.

4.2.4 Quasi-Arithmetic Representation and Multiplier Preferences

We close this subsection by briefly considering preferences % that correspond to an objective function

V (f) = φ−1

(∫
S

(φ ◦ u) (f) dq
)
, ∀f ∈ F , (24)

where u : X → R is an affine function, φ : R→ R is a strictly increasing and continuous function, and
q ∈ ∆σ is a (countably additive) probability on S.17 We call (u, φ, q) a quasi-arithmetic representation
of % and we refer the interested reader to Strzalecki (2007) for a recent discussion of this setting.

When φ is the negative exponential −e−θt, the representation (24) takes the variational form

V (f) = min
p∈∆σ(q)

{∫
S

u (f) dp+R (p ‖ q)
}
, (25)

with the relative entropy R (p ‖ q) as cost function. This variational representation corresponds to
the Hansen and Sargent multiplier preferences ([28], [27]). In particular, Strzalecki (2007) provided
behavioral conditions on variational preferences that characterize (25).

When φ is a general concave function, not necessarily exponential, the quasi-arithmetic represen-
tation (24) is uncertainty averse but, in general, no longer variational. The next result, based on the
techniques that we just developed to represent smooth preferences, establishes the general uncertainty
averse representation of (24), thus generalizing its variational representation (25) obtained for the φ
exponential case.18

Theorem 19 Let u : X → R be an affine function with u (X) = R, φ : R → R a strictly increasing
and concave function, and q ∈ ∆σ a probability measure on S. The following conditions are equivalent:

17It can be checked that a preference % satisfies Savage’s axioms P1-P6 and Axioms A.4, A.5, and A.8 if and only if

it can be represented by (24) with a nonatomic q. Moreover, % also satisfies Axioms A.3, A.6, and A.9 if and only if φ

is CARA (these observations have been made jointly with Larry Epstein).
18We omit the proof of this result because it is essentially an elementary version of the more complicated Theorem

16 and Corollary 17. Similarly, we omit the proof of Proposition 20, which is a simpler version of that of Theorem 18.
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(i) (u, φ, q) is a quasi-arithmetic representation of %,

(ii) (u,G) is an uncertainty averse representation of %, where for each t ∈ R,

G (t, p) =

{
t+ It (p ‖ q) if p ∈ ∆σ (q) ,
∞ else.

(26)

In particular, φ (t) ≈ −e−θt, with θ > 0, if and only if It (p ‖ q) = θ−1R (p ‖ q).

By (26), we thus have

φ−1

(∫
S

(φ ◦ u) (f) dq
)

= min
p∈∆σ(q)

{∫
u (f) dp+ I∫ u(f)dp (p ‖ q)

}
for all f ∈ F . In the game against Nature interpretation, this means that Nature’s parametric cost
function c (t, p) is given by the statistical distance It (p ‖ q).

Finally, a result parallel to Theorem 18 holds here.

Proposition 20 Let u : X → R be affine with u (X) = R and φ : R→ R be a strictly increasing and
concave function. A triplet (u, φ, q) represents a variational preference for all probabilities q ∈ ∆σ if
and only if φ is CARA.

In other words, the multiplier representation (25) is basically the overlap between variational and
quasi-arithmetic representations.

4.3 The Homothetic Case

Proposition 10 showed that variational preferences correspond to additively separable uncertainty
indices. Next we study the multiplicatively separable case. A related model has been studied by
Chateauneuf and Faro (2006), as we detail below.

Behaviorally, this case turns out to be characterized by the following weak independence axiom
with respect to a reference outcome x∗ (think for example of the agent endowment).

Axiom A. 10 (Homotheticity) If f, g ∈ F and α, β ∈ (0, 1],

αf + (1− α)x∗ % αg + (1− α)x∗ =⇒ βf + (1− β)x∗ % βg + (1− β)x∗.

Relative to axiom A.9, here the weights α and β can differ, while the constant act x∗ is fixed.
Axioms A.9 and A.10 can thus be regarded as symmetric weakenings of the Certainty Independence
axiom of Gilboa and Schmeidler [24] (see the discussion in [34, pp. 1454-1455]). In particular, a
preference satisfies the Certainty Independence axiom if and only if satisfies both axioms A.9 and
A.10.

Theorem 21 Let % be an uncertainty averse preference that satisfies axioms A.4-A.7 and (u,G) be an
uncertainty averse representation of % such that u (x∗) = 0. The following conditions are equivalent:

(i) % satisfies axiom A.10;

(ii) there exist a nonempty, weak* closed, and convex subset C of ∆ and two functions c1, c2 : C →
[0,∞], such that

(a) c1 is concave and upper semicontinuous, with 0 < infp∈C c1 (p) ≤ maxp∈C c1 (p) = 1;
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(b) c2 is convex and lower semicontinuous, with minp∈C c2 (p) = 1;

(c) for all (t, p) ∈ R×∆,

G (t, p) =


t

c1(p) if t ≥ 0 and p ∈ C
t

c2(p) if t < 0 and p ∈ C
∞ if p ∈ ∆ \ C

(27)

(iii) there exist γ : R → R+, with γ (t) = 0, if and only if t = 0, and d1, d2 : ∆ → (−∞,∞] such
that, for all (t, p) ∈ R×∆,

G (t, p) =

{
γ (t) d1 (p) if t ≥ 0 and p ∈ ∆
γ (t) d2 (p) if t < 0 and p ∈ ∆

with the convention 0 · ∞ =∞.

By Theorem 21, we have the following representation result.

Corollary 22 Let % be a binary relation on F . Then, the two following conditions are equivalent:

(i) % is uncertainty averse and satisfies axioms A.4-A.7, and A.10;

(ii) there exist an affine u : X → R, with u (X) = R and u (x∗) = 0, a nonempty, weak* closed, and
convex subset C of ∆, and two functions c1, c2 : C → [0,∞] as in points (a) and (b) of Theorem
21 such that, for all f and g in F , f % g if and only if

min
p∈C

((∫
u (f) dp

)+
c1 (p)

−
(∫
u (f) dp

)−
c2 (p)

)
≥ min

p∈C

((∫
u (g) dp

)+
c1 (p)

−
(∫
u (g) dp

)−
c2 (p)

)
. (28)

In this case, u is unique up to multiplication by a positive scalar, C, c1, and c2 are unique.
If, in addition, Σ is a σ-algebra, then % satisfies axiom A.8 if and only if there is q ∈ ∆σ such

that C ⊆ ∆σ (q).

For example, if f (s) , g (s) % x∗ for all s ∈ S, then (28) becomes:

f % g ⇐⇒ min
p∈C

∫
u (f) dp
c1 (p)

≥ min
p∈C

∫
u (g) dp
c1 (p)

.

This is the specification studied by Chateauneuf and Faro (2006), who assume the existence of a worst
outcome with respect to which A.10 holds.

We close with couple of remarks. First notice that c2 can take value∞. In particular, we can have
c2 (p) =∞ for all p ∈ C. In this case G (t, p) = 0 for all t < 0 and p ∈ C, and (28) becomes:

f % g ⇐⇒ min
p∈C

(∫
u (f) dp

)+
c1 (p)

≥ min
p∈C

(∫
u (g) dp

)+
c1 (p)

.

Second, we already observed that a preference satisfies the Certainty Independence axiom of Gilboa
and Schmeidler [24] if and only if satisfies both axioms A.9 and A.10. This means that a preference
is both variational and homothetic if and only if is multiple priors. This can be seen also from the
properties of the uncertainty aversion indices. In fact, by (17) and (27), an index G is both variational
and homothetic if:

t+ c (p) = t
c1(p) if t ≥ 0 and p ∈ C,

t+ c (p) = t
c2(p) if t < 0 and p ∈ C,

t+ c (p) =∞ if p ∈ ∆ \ C.
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It is easy to check that the unique solution is c (p) = 0 and c1 (p) = c2 (p) = 1 for all p ∈ C, and
c (p) =∞ if p /∈ C. We thus get

f % g ⇐⇒ min
p∈C

∫
u (f) dp ≥ min

p∈C

∫
u (g) dp, (29)

which is the multiple priors criterion. Notice that for fixed u and C, by Proposition 6, the agent using
criterion (29) is the most uncertainty averse of those using criterion (28).
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A Quasiconcave Monotone Functionals

In this Appendix we report the properties of a duality notion for monotone quasiconcave functionals
on which the results of the paper rest. This topic is studied in detail in [7], to which we refer the
interested reader.19

Notation 23 In this section and in the next one we denote by X (resp, g : X → [−∞,∞]) an ordered
vector space (resp, an extended valued function).

This makes it easier to refer to [7]. See [33] and [2, Ch. 9] for all notions on ordered vector spaces
used here.

A.1 Preliminaries

A.1.1 Set Up

The Space and its Geometry

Assumption 1 (X, ‖·‖ ,≥) is a normed Riesz space with order unit e and ‖·‖ is its supnorm, i.e.

‖x‖ = inf {α ∈ R : |x| ≤ αe} ∀x ∈ X.

Recall that any norm on a normed Riesz space with order unit is equivalent to the supnorm induced
by the unit.

The most relevant example for this paper is the function space B0 (Σ), with order unit 1S . B0 (Σ)
also have the following important property: for every ideal J of B0 (Σ), the quotient space B0 (Σ) /J
is Archimedean. Normed Riesz spaces with this property are called hyper-Archimedean, and every
hyper-Archimedean space is actually Riesz isomorphic to suitable space B0 (Σ) (see, e.g., [33, Thm.
37.7]).

If y, z ∈ X, [y, z] is the order interval {x ∈ X : y ≤ x ≤ z}. Notice that the closed unit ball of X
coincides with

[−e, e] = {x ∈ X : −e ≤ x ≤ e} . (30)

Denoting by X+ and X− is the positive and negative cones in X, then the positive and negative unit
balls are

[−e, e] ∩X+ = [0, e] and [−e, e] ∩X− = [−e, 0] .

A subset Y of X is lower open (resp. upper open) if for all y ∈ Y there exists ε > 0 such that
[y − εe, y] ⊆ Y (resp. [y, y + εe] ⊆ Y ). Clearly, open sets are lower and upper open (but, there are
subsets of R2 which are lower and upper open, without being open).

For every x ∈ X, set

ess sup (x) = inf {α ∈ R : x ≤ αe} and ess inf (x) = −ess sup (−x) .

By definition of supnorm, ‖·‖ = ess sup (|·|). For any interval T of the real line, set

X (T ) = {x ∈ X : [ess inf (x) , ess sup (x)] ⊆ T} .
19For the sake of completeness, in this version of the paper we report the proofs of almost all the formal statements

with the following mark-up: an asterisk “*” for those results that are special cases of those in [7], a pound “#” for

standard verifications.
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It is easy to check that X (T ) is convex, and either lower open (if and only if inf T /∈ T ) or upper open
(if and only if supT /∈ T ) or it is an order interval ([(inf T ) e, (supT ) e]). Moreover, it is open if and
only if T is open.

If X = B0 (Σ), then X (T ) = B0 (Σ, T ) is the set of functions in B0 (Σ) whose range is contained
in T .

We denote by X∗ the topological dual of X. Elements of X∗ are usually denoted by ξ, and 〈ξ, x〉,
with x ∈ X, denotes the duality pairing ξ (x). X∗+ the set of all positive functionals in X∗. Notice
that, by (30), ‖ξ‖ = 〈ξ, e〉 for all ξ ∈ X∗+. In particular the set

∆ =
{
ξ ∈ X∗+ : ‖ξ‖ = 1

}
is (and weak* compact and) convex since it coincides with

{
ξ ∈ X∗+ : 〈ξ, e〉 = 1

}
.

Assumption 2 ∆ is equipped with the weak* topology.

A subset C of X is evenly convex if it is the intersection of a family of open half spaces.20 Evenly
convex sets are convex, and intersections of evenly convex sets are evenly convex.

Lemma 24 A set C is evenly convex if and only if for all x̄ /∈ C there is ξ̄ ∈ X∗ such that
〈
ξ̄, x̄
〉
<〈

ξ̄, x
〉

for all x ∈ C.

By standard separation results, both open convex sets and closed convex sets are then evenly
convex.

Lemma 25 For every interval T of R, X (T ) is evenly convex.

Proof.# If T is a closed half line, then X (T ) is of the form z ± X+ for some z ∈ 〈e〉, and it is closed
and convex.

If T is a open half line, then X (T ) is the interior of a set of the form z ± X+ for some z ∈ 〈e〉,
and it is open and convex.

Else, there exist two half lines T ′ and T ′′ such that T = T ′ ∩ T ′′, in this case

X (T ) = X (T ′ ∩ T ′′) = {x ∈ X : [ess inf (x) , ess sup (x)] ⊆ T ′ ∩ T ′′}

= X (T ′) ∩X (T ′′) ,

and X (T ) is evenly convex being an intersection of evenly convex sets. �

Functions
If Y ⊆ X, g : Y → [−∞,∞], and a ∈ [−∞,∞], we set

{g ≥ a} = {y ∈ Y : g (y) ≥ a} ,

{g > a}, {g ≤ a}, and {g < a} are defined in the same way.
For functions g : X → [−∞,∞], the relevant notion of effective domain, dom (g) depends on

whether we consider the hypograph or the epigraph of g. In the former case we have dom (g) =
{g > −∞}, while in the latter case we have dom (g) = {g <∞}. For functions g : X → [−∞,∞) it
is natural to consider hypographs, and so dom (g) = {g > −∞}. Symmetrically, we have dom (g) =
{g <∞} for functions g : X → (−∞,∞]. In any other case the definition of dom (g) will be explicitly
given.

A function g : X → [−∞,∞] is:
20With the convention that such intersection is X if the family is empty. The notion of even convexity and its basic

properties are due to Fenchel [18].
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• monotone if x ≥ y implies g (x) ≥ g (y);

• evenly quasiconcave if the sets {g ≥ α} are evenly convex for all α ∈ R;

• evenly quasiconvex if the sets {g ≤ α} are evenly convex for all α ∈ R;

• positively homogeneous if g (λx) = λg (x) for all λ > 0 and x ∈ X;

• normalized if g (αe) = α for all α ∈ R;

• translation invariant if g (x+ αe) = g (x) + α for all α ∈ R.

Clearly, evenly quasiconcave functions are quasiconcave. Moreover, both lower and upper semi-
continuous quasiconcave functions on X are evenly quasiconcave.

Observe that when g is positively homogeneous on X, then g (0) = λg (0) for all λ > 0, so that
either g (0) = ±∞ or g (0) = 0. In particular, g (0) = 0 if it is finite.

If g is defined on a subset Y of X the above definitions remain unchanged with the additional
requirement that all the arguments of g (·) belong to Y .21

If {xn} is a sequence in X, write xn ↗ x (resp. xn ↘ x) if it is increasing (resp., decreasing) and
it converges to x in norm. A function g : Y → R is:

• left (sequentially) continuous at x ∈ Y if {xn} ⊆ Y and xn ↗ x implies g (xn)→ g (x);

• right (sequentially) continuous at x ∈ Y if {xn}n ⊆ Y and xn ↘ x implies g (xn)→ g (x).

Upper (and Lower) Semicontinuous Envelopes
Given x ∈ X, denote by Nx the set of all neighborhoods of x in X. Given a function g : X →

[−∞,∞], its upper semicontinuous envelope g+ : X → [−∞,∞] is defined by (see [11, Ch. 3])

g+ (x) = inf
U∈Nx

sup
y∈U

g (y) , ∀x ∈ X;

and hence {
g+ ≥ α

}
=
⋂
β<α

{g > β}, ∀α ∈ R. (31)

Moreover, g+ is the least upper semicontinuous function on X that pointwise dominates g.

Lemma 26 If g : X → [−∞,∞] is monotone, then g+ is monotone and g+ (x) = infn g (xn) for all
x ∈ X and every sequence xn such that xn → x and xn > x for all n ∈ N.22

Moreover, g+ is quasiconcave provided g is.

Proof. Let x ∈ X. For each n ≥ 1, set Vn = [2x− xn, xn] = [x− en, x+ en], where en = xn − x
for all n ∈ N. Belonging to the interior of X+, en is an order unit for all n ∈ N, and en → 0. In
particular, Vn ∈ Nx for all n ∈ N. Therefore, infU∈Nx supy∈U g (y) ≤ infn supy∈Vn g (y). Moreover,
since en → 0, for each U ∈ Nx there is nU ∈ N such that VnU ⊆ U ,23 and we also have

sup
y∈U

g (y) ≥ sup
y∈VnU

g (y) ≥ inf
n

sup
y∈Vn

g (y) .

21For example, positive homogeneity becomes: g (λx) = λg (x) for all λ > 0 and x ∈ X such that λx, x ∈ Y .
22xn > x means that xn − x belongs to the interior of X+ (while xn  x means that xn ≥ x and xn 6= x).
23There exists δ > 0 such that [x− δe, x+ δe] ⊆ U , but en → 0 implies that eventually −en, en ⊆ [−δe, δe], and

[x− en, x+ en] ⊆ [x− δe, x+ δe] ⊆ U .
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Then infU∈Nx supy∈U g (y) ≥ infn supy∈Vn g (y), and g+ (x) = infn supy∈Vn g (y). By monotonicity of
g, supy∈Vn g (y) = g (xn) and g+ (x) = infn g (xn).

If z ∈ X and x ≤ z, then g
(
x+ n−1e

)
≤ g

(
z + n−1e

)
for all n ∈ N, whence

g+ (x) = inf
n
g
(
x+ n−1e

)
≤ inf

n
g
(
z + n−1e

)
= g+ (z) ,

thus g+ is monotone.
Finally, if g is quasiconcave, (31) implies that g+ as well is quasiconcave. �

Totally analogous results hold for lower semicontinuity: Given a function g : X → [−∞,∞], its
lower semicontinuous envelope g− : X → [−∞,∞] is defined by (see [11, Ch. 3])

g− (x) = sup
U∈Nx

inf
y∈U

g (y) , ∀x ∈ X;

and hence {
g− > α

}
=
⋃
β>α

{g > β}◦ , ∀α ∈ R. (32)

Moreover, g− is the greatest lower semicontinuous function on X that is pointwise dominated by g.

Lemma 27 If g : X → [−∞,∞] is monotone, then g− is monotone and g− (x) = supn g (xn) for
all x ∈ X and every sequence xn such that xn → x and x > xn for all n ∈ N. Moreover, g− is
quasiconcave provided g is.

Proof.# Let x ∈ X. For each n ≥ 1, set Vn = [xn, 2x− xn] = [x− en, x+ en], where en = x − xn
for all n ∈ N. Belonging to the interior of X+, en is an order unit for all n ∈ N, and en → 0. In
particular, Vn ∈ Nx for all n ∈ N. Therefore, supU∈Nx infy∈U g (y) ≥ supn infy∈Vn g (y). Moreover,
since en → 0, for each U ∈ Nx there is nU ∈ N such that VnU ⊆ U ,24 and we also have

inf
y∈U

g (y) ≤ inf
y∈VnU

g (y) ≤ sup
n

inf
y∈Vn

g (y) .

Then supU∈Nx infy∈U g (y) ≤ supn infy∈Vn g (y), and g− (x) = supn infy∈Vn g (y). By monotonicity of
g, infy∈Vn g (y) = g (xn) and g− (x) = supn g (xn).

If z ∈ X and x ≤ z, then g
(
x− n−1e

)
≤ g

(
z − n−1e

)
for all n ∈ N, whence

g− (x) = sup
n
g
(
x− n−1e

)
≤ sup

n
g
(
z − n−1e

)
= g− (z) ,

thus g− is monotone.
Finally, if g is quasiconcave, then for all ∀α ∈ R and β > α the sets {g > β} and {g > β}◦ are

convex. Moreover, if x, y ∈
⋃
β>α

{g > β}◦ there are βx, βy > α such that x ∈ {g > βx}◦ and y ∈

{g > βy}◦, wlog βx > βy, then {g > βx} ⊆ {g > βy}, {g > βx}◦ ⊆ {g > βy}◦, and x, y ∈ {g > βy}◦.
Therefore, since {g > βy}◦ is convex, all the convex combinations of x and y belong to {g > βy}◦ ⊆⋃
β>α

{g > β}◦. Conclude that
⋃
β>α

{g > β}◦ is convex and, by (32), g− is quasiconcave. �

24There exists δ > 0 such that [x− δe, x+ δe] ⊆ U , but en → 0 implies that eventually −en, en ⊆ [−δe, δe], and

[x− en, x+ en] ⊆ [x− δe, x+ δe] ⊆ U .
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A.1.2 Two Key Auxiliary Functions

Let ∅ 6= Y ⊆ X and g : Y → [−∞,∞]. Set

gξ (t) = sup {g (x) : x ∈ Y and 〈ξ, x〉 = t}

and
Gξ (t) = sup {g (x) : x ∈ Y and 〈ξ, x〉 ≤ t}

for all (t, ξ) ∈ R×∆, with the usual convention sup ∅ = −∞.
These two functions, which will play a key role in what follows, can take values on [−∞,∞]. For

our analysis, the set where they can take on value ∞ is more relevant than that where they take on
value −∞. Hence, throughout the appendix we set dom (gξ) = {gξ <∞} and dom (Gξ) = {Gξ <∞}.

The function Gξ is monotone and dominates gξ. In fact, Gξ (t) = supk≤t gξ (k). Moreover:

(i) gαξ (αt) = gξ (t) for all α ∈ R\ {0};

(ii) Gαξ (αt) = Gξ (t) for all α > 0.

Denote by g+
ξ and G+

ξ the upper semicontinuous envelopes of gξ and Gξ, respectively. In particular,
by Lemma 26, G+

ξ (t) = inf {Gξ (t′) : t′ > t} since Gξ is monotone.

The next lemmas give some basic properties of the function Gξ (the proofs, when omitted, can be
found in [7]).

Lemma 28 For any function g : Y → [−∞,∞], the map (t, ξ) 7→ Gξ (t) is quasiconvex over R×∆.
Moreover,

lim
t→∞

Gξ (t) = sup
ζ∈∆

sup
t∈R

Gζ (t) = sup
x∈Y

g (x) , ∀ξ ∈ ∆.

Proof.* Let (t1, ξ1) , (t2, ξ2) ∈ R × ∆ and α ∈ (0, 1). Consider the point (t′, ξ′), with t′ = αt1 +
(1− α) t2 and ξ′ = αξ1 + (1− α) ξ2. We have

{x ∈ Y : 〈ξ′, x〉 ≤ t′} ⊆ {x ∈ Y : 〈ξ1, x〉 ≤ t1} ∪ {x ∈ Y : 〈ξ2, x〉 ≤ t2} , (33)

which implies Gξ′ (t′) ≤ max {Gξ1 (t1) , Gξ2 (t2)}, as desired.
Moreover, Gζ (t) ≤ supx∈Y g (x) for all t ∈ R and all ζ ∈ ∆, so that supζ∈∆ supt∈R Gζ (t) ≤

supx∈Y g (x). Similarly, g (y) ≤ Gξ (〈ξ, y〉) for all y ∈ Y and all ξ ∈ ∆.
There exists a sequence {xn} ∈ Y such that g (xn) ↑ supx∈Y g (x). Since t 7→ Gξ (t) is monotone,

we have g (xn) ≤ Gξ (〈ξ, xn〉) ≤ limt→∞Gξ (t) for all n ∈ N. Hence,

sup
x∈Y

g (x) = lim
n
g (xn) ≤ lim

t→∞
Gξ (t) ≤ sup

ζ∈∆
sup
t∈R

Gζ (t) ≤ sup
x∈Y

g (x)

as desired. �

Lemma 29 Let Y be lower open and g : Y → [−∞,∞] be monotone and lower semicontinuous.
Then, the map (t, ξ) 7→ Gξ (t) is lower semicontinuous on R×∆.

Proof. Let λ ∈ R and
(
t̄, ξ̄
)
∈ R×∆ be such that Gξ̄ (t̄) > λ. We want to show that Gξ (t) > λ for

all (t, ξ) in a suitable neighborhood of
(
t̄, ξ̄
)
.

Since supy∈Y :〈ξ̄,y〉≤t̄ g (y) > λ, there is y0 ∈ Y such that
〈
ξ̄, y0

〉
≤ t̄ and g (y0) > λ. Since Y is lower

open, eventually the sequence yn = y0−n−1e belongs to Y and yn ↗ y0. As g is lower semicontinuous,
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there exists n̄ ∈ N such that yn̄ ∈ Y and g (yn̄) > λ. Moreover,
〈
ξ̄, yn̄

〉
=
〈
ξ̄, y0

〉
− n̄−1

〈
ξ̄, e
〉
≤ t̄− δ

for δ = n̄−1.
The set U =

{
ξ ∈ ∆ : 〈ξ, yn̄〉 <

〈
ξ̄, yn̄

〉
+ δ/2

}
is open in the induced weak* topology of ∆, and

for all (t, ξ) ∈ (t̄− δ/2,∞)× U we have

〈ξ, yn̄〉 ≤
〈
ξ̄, yn̄

〉
+ δ/2 ≤ t̄− δ + δ/2 = t̄− δ/2 < t.

Hence, Gξ (t) = supy∈Y :〈ξ,y〉≤t g (y) ≥ g (yn̄) > λ, as wanted. �

Remark 30 In particular, for all ξ ∈ ∆, the map t 7→ Gξ (t) is lower semicontinuous and monotone,
therefore it is left continuous.

In the next Lemmas we assume Y = X.

Lemma 31 If g : X → [−∞,∞] is monotone, then Gξ = gξ for all ξ ∈ ∆.

Proof.* Clearly, gξ (t) ≤ Gξ (t) for all (t, ξ) ∈ R×∆. Suppose, by contradiction that gξ (t) < Gξ (t)
for some ξ ∈ ∆ and t ∈ R. This implies that

sup {g (x) : x ∈ X and 〈ξ, x〉 = t} < sup {g (x) : x ∈ X and 〈ξ, x〉 ≤ t}

= sup {g (x) : x ∈ X and 〈ξ, x〉 = t} ∨ sup {g (x) : x ∈ X and 〈ξ, x〉 < t}

and
sup {g (x) : x ∈ X and 〈ξ, x〉 = t} < sup {g (x) : x ∈ X and 〈ξ, x〉 < t} .

Therefore there exists a point x̄ ∈ X for which gξ (t) < g (x̄) ≤ Gξ (t) and 〈ξ, x̄〉 < t. But 〈ξ, x̄+ αe〉 =
t, for α = t− 〈ξ, x̄〉 > 0. Hence, g (x̄) ≤ g (x̄+ αe) ≤ gξ (t) that leads to a contradiction. �

Lemma 32 Let h : X → [−∞,∞], ϕ : h (X) → [−∞,∞] be extended-valued continuous and mono-
tone, and g = ϕ ◦ h. Then, Gξ (t) = ϕ (Hξ (t)) and gξ (t) = ϕ (hξ (t)) for all (ξ, t) ∈ R×∆.

Proof.# We prove that, in general

sup
x∈C

g (x) = ϕ

(
sup
x∈C

h (x)
)

for each nonempty set C, h : C → [−∞,∞], ϕ : h (C) → [−∞,∞] extended-valued continuous and
monotone, and g = ϕ ◦ h.

It is then sufficient to observe that, for all (ξ, t) ∈ R × ∆, the sets {x ∈ X : 〈ξ, x〉 ≤ t} and
{x ∈ X : 〈ξ, x〉 = t} are not empty.

Since C is not empty, there exists sequence xn in C such that h (xn) → supx∈C h (x). Therefore
H = supx∈C h (x) ∈ h (C). By definition H ≥ h (x) for all x ∈ C and monotonicity of ϕ implies
ϕ (H) ≥ ϕ (h (x)) = g (x) for all x ∈ C. That is, ϕ (H) is an upper bound for g on C. Assume, per
contra, there exists an upper bound m for g on C such that m < ϕ (H), then ϕ (h (xn))→ ϕ (H) and
eventually m < ϕ (h (xn)) = g (xn), a contradiction. �
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A.2 General Representation

A.2.1 A Theorem of de Finetti and its Extension

The next result shows that a function g can be recovered from the scalar functions gξ (t) and Gξ (t)
as long as g is quasiconcave. Here we only consider the monotone case, and we refer the reader to [7]
for a general version and for a proof. An early version of this result for the function gξ can be found
in de Finetti [13, p. 178], while a closely related general formulation can be found in [39, Theorem
2.6]. Notice that versions of this result play an important role in microeconomic duality theory (see,
e.g., Diewert [15]).

Theorem 33 A function g : X → [−∞,+∞] is evenly quasiconcave and monotone if and only if

g (x) = inf
ξ∈∆

Gξ (〈ξ, x〉) = inf
ξ∈∆

gξ (〈ξ, x〉) , ∀x ∈ X. (34)

Moreover:

(i) If g is lower semicontinuous, then the infima in (34) are attained for all x ∈ X.

(ii) If g is upper semicontinuous, then Gξ and gξ in (34) can be replaced with G+
ξ and g+

ξ , respectively.

Proof.* First, by Lemma 31, Gξ (〈ξ, x〉) = gξ (〈ξ, x〉), for all x ∈ X and ξ ∈ ∆. Therefore it suffices
to prove the statement only for the functions Gξ.

“If” Suppose g is evenly quasiconcave and monotone.
If g ≡ ±∞, then

Gξ (t) = sup {g (y) : y ∈ X and 〈ξ, y〉 ≤ t} = ±∞

for all (t, ξ) ∈ R×∆, and the result is trivial.
Else, since

g (x) ≤ Gξ (〈ξ, x〉) , ∀x ∈ X, ∀ξ ∈ ∆, (35)

then
g (x) ≤ inf

ξ∈∆
Gξ (〈ξ, x〉) , ∀x ∈ X. (36)

If x̄ is a global maximum for g on X, equality holds in (35), and so in (36). Assume that x̄ ∈ X is
not a global maximum.

Let r ∈ R be such that {g ≥ r} 6= ∅ and x̄ /∈ {g ≥ r}. Since the latter set is evenly convex, by
Lemma 24, there exists ξ̄ ∈ X∗ such that

〈
ξ̄, x̄
〉
<
〈
ξ̄, x
〉

for all x ∈ {g ≥ r}. Clearly, ξ̄ 6= 0 hence〈
ξ̄/
∥∥ξ̄∥∥ , x̄〉 < 〈ξ̄/∥∥ξ̄∥∥ , x〉 for all x ∈ {g ≥ r}. Wlog ξ̄ belongs to the unit ball in X∗. Next we show

that ξ̄ is positive, thus (wlog) ξ̄ ∈ ∆. Let z ∈ X+ and take y ∈ {g ≥ r}. Notice that, by monotonicity,
y + nz ∈ {g ≥ r} for all n ∈ N, and so

〈
ξ̄, x̄
〉
<
〈
ξ̄, y
〉

+ n
〈
ξ̄, z
〉
. Then,

〈
ξ̄, z
〉
> n−1

(〈
ξ̄, x̄
〉
−
〈
ξ̄, y
〉)

for all n ∈ N, which implies
〈
ξ̄, z
〉
≥ 0, as desired. We have shown the following:

Fact For all r ∈ R such that {g ≥ r} 6= ∅ and x̄ /∈ {g ≥ r}, there exists ξ̄ = ξ̄r ∈ ∆ such that〈
ξ̄, x̄
〉
<
〈
ξ̄, x
〉

for all x ∈ {g ≥ r}.

Case 1: Suppose g (x̄) ∈ R. Since x̄ is not a global maximum, there is ε̄ > 0 such that {g ≥ g (x̄) + ε} 6=
∅ for all ε ∈ (0, ε̄]. For all such ε, x̄ /∈ {g ≥ g (x̄) + ε} 6= ∅. Then there exists ξ̄ = ξ̄ε ∈ ∆
such that

〈
ξ̄, x̄
〉
<
〈
ξ̄, x
〉

for all x ∈ {g ≥ g (x̄) + ε}. That is, {g ≥ g (x̄) + ε} ⊆
{
ξ̄ >

〈
ξ̄, x̄
〉}

and{
ξ̄ ≤

〈
ξ̄, x̄
〉}
⊆ {g < g (x̄) + ε}. Thus, Gξ̄

(〈
ξ̄, x̄
〉)
≤ g (x̄) + ε and

g (x̄) ≤ inf
ξ∈∆

Gξ (〈ξ, x̄〉) ≤ Gξ̄
(〈
ξ̄, x̄
〉)
≤ g (x̄) + ε.
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Since this is true for all ε ∈ (0, ε̄], it implies equality in (36).

Case 2: Suppose g (x̄) /∈ R. Then g (x̄) = −∞, because g (x̄) = +∞ implies that x̄ is a global
maximum. Since g 6≡ −∞, there is n̄ ∈ N such that {g ≥ −n} 6= ∅ for all n ≥ n̄. For all such n,
x̄ /∈ {g ≥ −n} 6= ∅. Then there exists ξ̄ = ξ̄n ∈ ∆ such that

〈
ξ̄, x̄
〉
<
〈
ξ̄, x
〉

for all x ∈ {g ≥ −n}. That
is, {g ≥ −n} ⊆

{
ξ̄ >

〈
ξ̄, x̄
〉}

and
{
ξ̄ ≤

〈
ξ̄, x̄
〉}
⊆ {g < −n}. Thus Gξ̄

(〈
ξ̄, x̄
〉)
≤ −n and

g (x̄) ≤ inf
ξ∈∆

Gξ (〈ξ, x̄〉) ≤ Gξ̄
(〈
ξ̄, x̄
〉)
≤ −n.

Since this is true for all n ≥ n̄, infξ∈∆Gξ (〈ξ, x̄〉) = −∞ = g (x̄), and again equality holds in (36).

“Only if”. Suppose (34) holds, i.e., g (x) = infξ∈∆Gξ (〈ξ, x〉) for all x ∈ X.
Let r ∈ R and x̄ /∈ {g ≥ r}, i.e., g (x̄) < r. It follows that there is ξ̄ ∈ ∆ for which Gξ̄

(〈
ξ̄, x̄
〉)
< r.

If there is y ∈ {g ≥ r} such that
〈
ξ̄, y
〉
≤
〈
ξ̄, x̄
〉
, then g (y) ≤ Gξ̄

(〈
ξ̄, x̄
〉)

< r, a contradiction.
Therefore,

〈
ξ̄, x̄
〉
<
〈
ξ̄, y
〉

for all y ∈ {g ≥ r}. By Lemma 24, {g ≥ r} is evenly convex. Since this is
true for all r ∈ R, g is evenly quasiconcave.

If x ≥ y, then 〈ξ, x〉 ≥ 〈ξ, y〉 for all ξ ∈ ∆, Gξ (〈ξ, x〉) ≥ Gξ (〈ξ, y〉) for all ξ ∈ ∆, and g (x) ≥ g (y).
That is g is monotone.

(i) Suppose that g is lower semicontinuous, then – by Lemma 29 – the map (t, ξ) 7→ Gξ (t) is lower
semicontinuous on R×∆. For all x ∈ X, the map ξ 7→ (〈ξ, x〉 , ξ) is continuous, thus their composition
ξ 7→ Gξ (〈ξ, x〉) is lower semicontinuous and, by the Weierstrass Theorem, it admits minimum point
on the compact set ∆.

(ii) Let x̄ ∈ X. If x̄ is a global maximum for g on X, then, by (35) and the definition of upper
semicontinuous envelope,

g (x̄) ≤ Gξ (〈ξ, x̄〉) ≤ G+
ξ (〈ξ, x̄〉) ≤ Gξ (〈ξ, x̄〉+ 1) ≤ g (x̄) , ∀ξ ∈ ∆,

and g (x̄) = infξ∈∆G+
ξ (〈ξ, x̄〉).

If x̄ is not a global maximum for g on X. There exists a sequence {rn} ⊆ R such that rn ↓ g (x̄)
and x̄ /∈ {g ≥ rn} (that is g (x̄) < rn) for all n ∈ N (in fact, it cannot be g (x̄) =∞). Moreover, since
there exists ȳ ∈ X such that g (ȳ) > g (x̄), eventually g (ȳ) > rn and {g ≥ rn} 6= ∅. Wlog {g ≥ rn} 6= ∅
for all n ∈ N.

Let n ∈ N. Since {g ≥ rn} is closed, convex, and nonempty, by a strong separation theorem there
are ξn ∈ X∗ and εn > 0 such that 〈ξn, x̄〉 + εn < 〈ξn, x〉 for all x ∈ {g ≥ rn}. Since ξn 6= 0, then
〈ξn/ ‖ξn‖ , x̄〉+ εn/ ‖ξn‖ < 〈ξn/ ‖ξn‖ , x〉 for all x ∈ {g ≥ rn}. Wlog ξn belongs to the unit ball in X∗.
Next we show that ξn is positive, thus (wlog) ξn ∈ ∆. Let z ∈ X+ and take y ∈ {g ≥ rn}. Notice
that, by monotonicity, y + mz ∈ {g ≥ rn} for all m ∈ N, and so 〈ξn, x̄〉 + εn < 〈ξn, y +mz〉. Then,
〈ξn, z〉 > m−1 (〈ξn, x̄〉+ εn − 〈ξn, y〉) for all m ∈ N, which implies 〈ξn, z〉 ≥ 0. This is true for all
n ∈ N.

Therefore, {g ≥ rn} ⊆ {ξn > 〈ξn, x̄〉+ εn} with ξn ∈ ∆ and εn > 0 for all n ∈ N. That is,
{ξn ≤ 〈ξn, x̄〉+ εn} ⊆ {g < rn}. This implies Gξn (〈ξn, x̄〉+ εn) ≤ rn. Therefore, for all n ∈ N,

g (x̄) = inf
ξ∈∆

Gξ (〈ξ, x̄〉) ≤ inf
ξ∈∆

G+
ξ (〈ξ, x̄〉) ≤ G+

ξn
(〈ξn, x̄〉) ≤ Gξn (〈ξn, x̄〉+ εn) ≤ rn,

which yields the result. �

The next result considers the representation (34) for a monotone function defined on a subset Y .
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Theorem 34 Let g : Y → R be a quasiconcave and monotone function defined on a convex subset Y
of X. Then,

g (y) = inf
ξ∈∆

Gξ (〈ξ, y〉) = inf
ξ∈∆

gξ (〈ξ, y〉) , ∀y ∈ Y , (37)

provided at least one of the following conditions hold:

(i) g is lower semicontinuous and Y is lower open;

(ii) g is upper semicontinuous and Y is either upper open or it is an order interval.

Moreover, under condition (i) the infima in (37) are attained for all y ∈ Y .

Proof. (i) Suppose that g is lower semicontinuous and that Y is lower open. We want to prove (37)
with min in place of inf. The function ĝ : X → [−∞,∞] defined by

ĝ (x) = sup {g (y) : Y 3 y ≤ x} . (38)

is the minimal monotone extension of g to X (with the usual convention sup ∅ = −∞).
Assume first that Y is open. Since

{x ∈ X : ĝ (x) > t} = {y ∈ Y : g (y) > t}+X+, ∀t ∈ R,

the function ĝ is quasiconcave and lower semicontinuous. By Theorem 33,

ĝ (x) = min
ξ∈∆

Ĝξ (〈ξ, x〉) = min
ξ∈∆

ĝξ (〈ξ, x〉) ,

for all x ∈ X. Hence, given y ∈ Y , there is ξy ∈ ∆ such that

ĝ (y) = Ĝξy (〈ξy, y〉) ≥ Gξy (〈ξy, y〉) ≥ g (y) = ĝ (y) .

Hence, g (y) = minξ∈∆Gξ (〈ξ, y〉), and so the first part of (37) holds. Analogously, there is ζy ∈ ∆
such that

ĝ (y) = ĝζy (〈ζy, y〉) ≥ gζy (〈ζy, y〉) ≥ g (y) = ĝ (y) .

Hence, g (y) = minξ∈∆ gξ (〈ξ, y〉), and so the second part of (37) holds.
If Y is only lower open, consider the lower semicontinuous envelope ĝ− of ĝ, simply denoted by g̃.

Since ĝ is monotone and quasiconcave so is g̃ (see Lemma 27). Moreover, g̃ extends g. In fact, for all
y ∈ Y ,

g̃ (y) = sup
n
ĝ
(
y − n−1e

)
= lim

n
ĝ
(
y − n−1e

)
= lim

n
g
(
y − n−1e

)
since eventually y − n−1e ∈ Y , and by monotonicity and lower semicontinuity of g on Y

g (y) ≥ lim
n
g
(
y − n−1e

)
≥ g (y) .

By proceeding as in the first part of the proof, we can then prove that (37) holds.25

(ii) Suppose that g is upper semicontinuous and that Y is either upper open or it is an order
interval [w, z]. Consider the function ĝ : X → [−∞,∞] defined in (38). From point (i) we know that
ĝ is the minimal monotone extension of g to X, and that ĝ is quasiconcave. By Lemma 26, its upper
semicontinuous envelope ĝ+ is monotone and quasiconcave too. Denote it by ḡ. Next we show that ḡ
extends g.

25By Theorem 33, g̃ (x) = minξ∈∆ G̃ξ (〈ξ, x〉), for all x ∈ X. Hence, given y ∈ Y , there is ξy ∈ ∆ such that

g̃ (y) = G̃ξy (〈ξy , y〉) ≥ Gξy (〈ξy , y〉) ≥ g (y) = g̃ (y). Hence, g (y) = minξ∈∆Gξ (〈ξ, y〉), and analogously...
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• If Y is upper open. Let y ∈ Y , then

ḡ (y) = inf
n
ĝ
(
y + n−1e

)
= lim

n
ĝ
(
y + n−1e

)
= lim

n
g
(
y + n−1e

)
since eventually y + n−1e ∈ Y , and by monotonicity and lower semicontinuity of g on Y

g (y) ≤ lim
n
g
(
y + n−1e

)
≤ g (y) .

• If Y = [w, z], for some w, z ∈ X. We show that ĝ is upper semicontinuous on X, then ĝ = ĝ+ = ḡ,
and ḡ extends g, since ĝ does. Let x ∈ X+ +w. For all y ∈ Y such that y ≤ x, then y ≤ x∧z ≤ x
and w ≤ y ≤ x ∧ z ≤ z imply that x ∧ z ∈ Y and g (y) ≤ g (x ∧ z), thus

g (y) ≤ g (x ∧ z) ≤ ĝ (x) .

Since this is true for all y ∈ Y such that y ≤ x, then

ĝ (x) = sup {g (y) : Y 3 y ≤ x} ≤ g (x ∧ z) ≤ ĝ (x) ;

but the choice of x was arbitrary, hence

ĝ (x) = g (x ∧ z) , ∀x ∈ X+ + w.

If xn, x ∈ X+ +w and xn → x, then xn ∧ z → x ∧ z and lim supn ĝ (xn) = lim supn g (xn ∧ z) ≤
g (x ∧ z) = ĝ (x). This shows that ĝ is upper semicontinuous on the closed set X+ +w. Together
with ĝ (x) = −∞ for all x /∈ X+ + w, this shows that ĝ is upper semicontinuous on X.

For all ξ ∈ ∆ and t ∈ R,

Gξ (t) = sup {g (x) : x ∈ Y, 〈ξ, x〉 ≤ t} = sup {ḡ (x) : x ∈ Y, 〈ξ, x〉 ≤ t}

≤ sup {ḡ (x) : x ∈ X, 〈ξ, x〉 ≤ t} = Ḡξ (t) .

By Theorem 33, for all y ∈ Y ,

g (y) = ḡ (y) = inf
ξ∈∆

Ḡξ (〈ξ, y〉) ≥ inf
ξ∈∆

Gξ (〈ξ, y〉) ≥ inf
ξ∈∆

gξ (〈ξ, y〉) ≥ g (y) ,

as desired. �

Corollary 35 Let g : X (T )→ R be quasiconcave and monotone. If g is continuous, then

g (x) = inf
ξ∈∆

Gξ (〈ξ, x〉) = inf
ξ∈∆

gξ (〈ξ, x〉) , ∀x ∈ X (T ) .

In particular, the infima are attained if T is lower open.

A.2.2 Concavity

The next two corollaries of Theorem 33, proved in [7], give some characterizations of concavity.
Here g∗ : X∗ → [−∞,∞] denotes the classic (concave) Fenchel conjugate of g, given by g∗ (ξ) =
infx∈X {〈ξ, x〉 − g (x)} for all ξ ∈ X∗.

Corollary 36 Let g : X → R be evenly quasiconcave and monotone. The following facts are equiva-
lent:
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(i) g is concave;

(ii) gξ is concave for each ξ ∈ ∆;

(iii) Gξ is concave for each ξ ∈ ∆;

(iv) gξ (t) = infλ∈R+ {λt− g∗ (λξ)} for each (t, ξ) ∈ R×∆.

In particular, dom (Gξ) ∈ {∅,R} for all ξ ∈ ∆.

Proof.* First notice that, for all (λ, ξ) ∈ R×∆,

g∗ (λξ) = inf
x∈X
{λ 〈ξ, x〉 − g (x)} = inf

t∈R
inf

{x∈X:〈ξ,x〉=t}
{λ 〈ξ, x〉 − g (x)}

= inf
t∈R

inf
{x∈X:〈ξ,x〉=t}

{λt− g (x)} = inf
t∈R

{
λt− sup

{x∈X:〈ξ,x〉=t}
g (x)

}
= inf
t∈R
{λt− gξ (t)} = (gξ)

∗ (λ) .

Moreover, (ii) is equivalent to (iii) since Gξ = gξ for all ξ ∈ ∆, by monotonicity of g.
(i) implies (iii). In fact, for all t, r ∈ R and α ∈ (0, 1),

Gξ (αt+ (1− α) r) = sup {g (x) : x ∈ X, 〈ξ, x〉 ≤ αt+ (1− α) r}

≥ sup {g (αy + (1− α) z) : y, z ∈ X, 〈ξ, y〉 ≤ t, 〈ξ, z〉 ≤ r}

≥ sup {αg (y) + (1− α) g (z) : y, z ∈ X, 〈ξ, y〉 ≤ t, 〈ξ, z〉 ≤ r}

= α sup {g (y) : y ∈ X, 〈ξ, y〉 ≤ t}+ (1− α) sup {g (z) : z ∈ X, 〈ξ, z〉 ≤ r}

= αGξ (t) + (1− α)Gξ (r) .

(ii) implies (iv). Let ξ ∈ ∆. Since gξ : R→ (−∞,∞] and it is concave, then either gξ is finite on R
(hence continuous), or gξ ≡ ∞. In either cases

gξ (t) = inf
λ∈R

{
λt− (gξ)

∗ (λ)
}

for all t ∈ R.26 Monotonicity of gξ implies (gξ)
∗ (λ) = −∞ for all λ < 0, whence

gξ (t) = inf
λ≥0

{
λt− (gξ)

∗ (λ)
}

= inf
λ≥0
{λt− g∗ (λξ)}

for all t ∈ R.
(iv) implies (i). Assume gξ (t) = infλ∈R+ (λt− g∗ (λξ)) for each (t, ξ) ∈ R×∆. By Theorem 33,

g (x) = inf
ξ∈∆

gξ (〈ξ, x〉) , ∀x ∈ X.

By (iv) gξ is concave, for all ξ ∈ ∆. Therefore

x 7→ gξ (〈ξ, x〉) , ∀x ∈ X ,

is concave for all ξ ∈ ∆, and g (being an infimum of concave functions) is concave too. �

Next we consider normalized functions.

Corollary 37 Let g : X → [−∞,∞] be monotone and evenly quasiconcave. g is normalized if and
only if infξ∈∆Gξ (t) = t for all t ∈ R. Moreover, the following properties are equivalent:

26If gξ ≡ ∞, then g∗ξ (λ) = inft∈R {λt−∞} = −∞ for all λ ∈ R and infλ∈R (λt− (−∞)) =∞ for all t ∈ R.
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(i) g is concave and normalized;

(ii) g is translation invariant and g (0) = 0;

(iii) gξ (t) = t− g∗ (ξ) for each t ∈ R and ξ ∈ ∆.

Proof.* By Theorem 33, if g is normalized,

t = g (te) = inf
ξ∈∆

Gξ (〈ξ, te〉) = inf
ξ∈∆

Gξ (t) , ∀t ∈ R.

Conversely, if infξ∈∆Gξ (t) = t for all t ∈ R, then

g (te) = inf
ξ∈∆

Gξ (〈ξ, te〉) = inf
ξ∈∆

Gξ (t) = t, ∀t ∈ R,

as desired.
That (ii) implies (i) is well known.
(i) implies (iii). Let ξ ∈ ∆. Since g is normalized and monotone, it is real-valued. By Corollary

36,
gξ (t) = inf

λ∈R+
{λt− g∗ (λξ)} , ∀ (t, ξ) ∈ R×∆. (39)

Since g is monotone and normalized, g∗ (ξ) = −∞ if ξ /∈ ∆. Hence, g∗ (λξ) = −∞ if ξ ∈ ∆ and λ 6= 1,
and so, by (39), gξ (t) = t− g∗ (ξ).

(iii) implies (ii). By Theorem 33 we have:

g (x) = inf
ξ∈∆

(〈ξ, x〉 − g∗ (ξ)) , ∀x ∈ X.

Which clearly implies translation invariance. �

A.2.3 Topological Representation

Next we give a topological version of Theorem 33. Also in this case we only consider the monotone
case, and we refer to [7] for the general case and for a proof.

Theorem 38 A function g : X → R is uniformly continuous, quasiconcave, and monotone if and
only if

g (x) = min
ξ∈∆

Gξ (〈ξ, x〉) = min
ξ∈∆

gξ (〈ξ, x〉) , ∀x ∈ X, (40)

dom (Gξ) ∈ {∅,R} for all ξ ∈ ∆, and {Gξ}ξ∈∆:dom(Gξ)=R are uniformly equicontinuous.27

Proof.* Suppose g is quasiconcave and uniformly continuous. In particular, g is lower semicontinuous
and, by Theorem 33, we have the representation (40). As g is uniformly continuous, for all ε > 0,
there is some δ > 0 such that ‖x− y‖ ≤ δ implies |g (x)− g (y)| ≤ ε. In particular,

g (x+ δe) ≤ g (x) + ε and g (x− δe) ≥ g (x)− ε. (41)

Let ξ ∈ ∆, t ∈ dom (Gξ), and t′ ∈ R with |t− t′| ≤ δ. Consider two cases:

Case 1: t′ ≤ t. Then,

Gξ (t)− ε = sup {g (x)− ε : x ∈ X, 〈ξ, x〉 ≤ t} ≤ sup {g (x− δe) : x ∈ X, 〈ξ, x〉 ≤ t}

= sup {g (y) : y ∈ X, 〈ξ, y + δe〉 ≤ t} = sup {g (x) : x ∈ X, 〈ξ, x〉 ≤ t− δ}

= Gξ (t− δ) ≤ Gξ (t′) ≤ Gξ (t) .

27That is, for every ε > 0 there is δ > 0 such that |t− t′| ≤ δ implies
∣∣Gξ (t)−Gξ (t′)

∣∣ ≤ ε, for all t, t′ ∈ R and all

ξ ∈ ∆ such that dom
(
Gξ
)

= R.
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Therefore, |Gξ (t)−Gξ (t′)| ≤ ε.

Case 2: t′ ≥ t. Then,

Gξ (t) ≤ Gξ (t′) ≤ Gξ (t+ δ) = sup {g (x) : x ∈ X, 〈ξ, x〉 ≤ t+ δ}

= sup {g (x) : x ∈ X, 〈ξ, x− δe〉 ≤ t} = sup {g (y + δe) : y ∈ X, 〈ξ, y〉 ≤ t}

≤ sup {g (y) + ε : y ∈ X, 〈ξ, y〉 ≤ t} = Gξ (t) + ε,

and again |Gξ (t)−Gξ (t′)| ≤ ε.

Therefore:

• If dom (Gξ) 6= ∅, for all t ∈ dom (Gξ), then [t− δ, t+ δ] ⊆ dom (Gξ); that is, dom (Gξ) = R.

• For all ξ ∈ ∆ with dom (Gξ) = R, |t− t′| ≤ δ implies |Gξ (t)−Gξ (t′)| ≤ ε.

As wanted.

As to the converse, assume that (40) holds, dom (Gξ) ∈ {∅,R} for all ξ ∈ ∆, and {Gξ}ξ∈∆:dom(Gξ)=R
are uniformly equicontinuous. By Theorem 33, g is evenly quasiconcave and monotone (while by
assumption it is real-valued). Moreover, for all ε > 0, there is δ > 0 such that |Gξ (t)−Gξ (t′)| ≤ ε

for all t, t′ ∈ R with |t− t′| ≤ δ and all ξ ∈ ∆ with dom (Gξ) = R. Take x, y ∈ X such that
‖x− y‖ ≤ δ. There is ξx ∈ ∆ such that g (x) = Gξx (〈ξx, x〉). Since g (x) ∈ R, then dom (Gξx) = R.
Moreover, if ‖x− y‖ ≤ δ, then |〈ξx, x〉 − 〈ξx, y〉| ≤ ‖ξx‖ ‖x− y‖ ≤ δ. By uniform equicontinuity,
|Gξx (〈ξx, x〉)−Gξx (〈ξx, y〉)| ≤ ε, and so

g (x) = Gξx (〈ξx, x〉) ≥ Gξx (〈ξx, y〉)− ε ≥ min
ξ∈∆

Gξ (〈ξ, y〉)− ε = g (y)− ε.

Exchanging the two points x and y, we obtain |g (x)− g (y)| ≤ ε, and so g is uniformly continuous.�

A.2.4 Uniqueness

Proposition 5 is based on the following result, proved in [7].

Lemma 39 Suppose g : X → [−∞,∞] and G : R×∆→ [−∞,∞] satisfy the following conditions:

(i) limt→∞G (t, ξ) = limt→∞G (t, ξ′) for all ξ, ξ′ ∈ ∆;

(ii) G (·, ξ) is increasing for each ξ ∈ ∆;

(iii) G is lower semicontinuous and quasiconvex on R×∆;

(iv) g (x) = infξ∈∆G (〈ξ, x〉 , ξ) for all x ∈ X.

Then,
G (t, ξ) = sup

x∈X:〈ξ,x〉≤t
g (x) = Gξ (t) , ∀ (t, ξ) ∈ R×∆. (42)

Proof.* Observe first that there is no loss of generality in assuming that g and G are real-valued
(bounded) functions. For, let ϕ : [−∞,∞]→ R be a strictly increasing, extended-valued continuous,
and bounded function, say ϕ (t) = arctan t. If we consider h = ϕ ◦ g and H = ϕ ◦ G, they satisfy
(i)-(iv) and are real-valued (bounded), and H (t, ξ) = supx∈X:〈ξ,x〉≤t h (x) implies (42), by Lemma 32.
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Fix ξ̄ ∈ ∆ and t ∈ R. We have

Gξ̄ (t) = sup
x∈X:〈ξ̄,x〉≤t

g (x) = sup
x∈X:〈ξ̄,x〉≤t

inf
ξ∈∆

G (〈ξ, x〉 , ξ) .

Define Γ : X × ∆ → R by Γ (x, ξ) = G (〈ξ, x〉 , ξ) for all (x, ξ) ∈ X × ∆. It is easy to show that Γ
is lower semicontinuous on X × ∆ (see, e.g., Claim 1 of Lemma 51). Moreover, Γ (x, ·) : ∆ → R is
quasiconvex on ∆ for all x ∈ X, and, by assumption (ii), Γ (·, ξ) : X → R is quasiconcave on X for
all ξ ∈ ∆. As Y =

{
x ∈ X :

〈
ξ̄, x
〉
≤ t
}

is nonempty and convex, and ∆ is nonempty, convex, and
compact, we can invoke a well known Minimax Theorem (e.g., [25, Theorem 4]) and obtain

Gξ̄ (t) = sup
x∈X:〈ξ̄,x〉≤t

inf
ξ∈∆

G (〈ξ, x〉 , ξ) = sup
x∈Y

inf
ξ∈∆

Γ (x, ξ) = inf
ξ∈∆

sup
x∈Y

Γ (x, ξ) = inf
ξ∈∆

sup
x∈X:〈ξ̄,x〉≤t

G (〈ξ, x〉 , ξ) .

It remains to study the program
sup

x∈X:〈ξ̄,x〉≤t
G (〈ξ, x〉 , ξ) .

Consider separately two cases:

(a) ξ ∈
〈
ξ̄
〉
. There exists λ ∈ R such that ξ = λξ̄, but 1 = ξ (e) = λξ̄ (e) = λ, implies ξ = ξ̄. Thus,

sup
x∈X:〈ξ̄,x〉≤t

G (〈ξ, x〉 , ξ) = sup
x∈X:〈ξ̄,x〉≤t

G
(〈
ξ̄, x
〉
, ξ̄
)

= G
(
t, ξ̄
)
,

attained, for example, at x̄ = te.

(b) ξ /∈
〈
ξ̄
〉
. Hence, ker

(
ξ̄
)
* ker (ξ), i.e., there is y ∈ X for which

〈
ξ̄, y
〉

= 0 and 〈ξ, y〉 6= 0. This
implies that, choosing x̄ such that

〈
ξ̄, x̄
〉

= t, the straight line {x̄+ αy : α ∈ R} is included into
the hyperplane

〈
ξ̄, x
〉

= t. Thus,

sup
r∈R

G (r, ξ) ≥ sup
x∈X:〈ξ̄,x〉≤t

G (〈ξ, x〉 , ξ) ≥ sup
α∈R

G (〈ξ, x̄+ αy〉 , ξ) = sup
r∈R

G (r, ξ)

hence, in view of (i) and (ii),

sup
x∈X:〈ξ̄,x〉≤t

G (〈ξ, x〉 , ξ) = sup
r∈R

G (r, ξ) = lim
r→∞

G (r, ξ) = lim
r→∞

G
(
r, ξ̄
)
≥ G

(
t, ξ̄
)
.

Conclude that

Gξ̄ (t) = inf
ξ∈∆

 sup
x∈X:〈ξ̄,x〉≤t

G (〈ξ, x〉 , ξ)

 = G
(
t, ξ̄
)
,

as desired. �

Remark 40 Since ξ 7→ G (〈ξ, x〉 , ξ) is lower semicontinuous, the inf in (iv) is attained.

A.2.5 Positively Homogeneous Functionals

As proved in [7], Theorem 38 takes the following form for positively homogeneous and quasiconcave
functionals such that g (x) 6= 0 for some x ∈ X+.
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Theorem 41 Let g : X → R be such that g (x) 6= 0 for some x ∈ X+. Then g is monotone,
quasiconcave, uniformly continuous, and positively homogeneous if and only if

g (x) = min
ξ∈∆

Gξ (〈ξ, x〉) , ∀x ∈ X, (43)

and there exist a nonempty, closed, and convex subset ∆̃ of ∆, c1 : ∆̃ → (0,∞) concave and upper
semicontinuous with infξ∈∆̃ c1 (ξ) > 0, and c2 : ∆̃ → (0,∞] convex and lower semicontinuous, such
that

Gξ (t) =


t

c1(ξ) if t ≥ 0 and ξ ∈ ∆̃
t

c2(ξ) if t ≤ 0 and ξ ∈ ∆̃

∞ if ξ ∈ ∆ \ ∆̃.

(44)

Moreover, g is normalized if and only if maxξ∈∆̃ c1 (ξ) = minξ∈∆̃ c2 (ξ) = 1.

Proof.* We build on some Lemmas.

Lemma 42 Let (ai)i∈I , (bi)i∈I ⊆ R+. The family of functions

fi (t) =

{
ait if t ≥ 0
bit if t ≤ 0

is uniformly equicontinuous if and only if supi∈I ai, supi∈I bi <∞.

Proof of Lemma 42.* First observe that a family of monotone functions is uniformly equicontinuous
if and only if for every ε > 0 there is δ > 0 such that

fi (t+ δ) ≤ fi (t) + ε (45)

for all t ∈ R and i ∈ I.28

In our special case for all i ∈ I, t ∈ R, and δ > 0,

fi (t+ δ)− fi (t) =


aiδ if t ≥ 0
ait+ aiδ − bit if − δ < t < 0
biδ if t+ δ ≤ 0 (i.e. t ≤ −δ)

(ait < 0 if − δ < t < 0) ≤


aiδ if t ≥ 0
aiδ − bit if − δ < t < 0
biδ if t ≤ −δ

(biδ ≥ −bit ≥ 0 if − δ < t < 0) ≤


aiδ if t ≥ 0
aiδ + biδ if − δ < t < 0
biδ if t ≤ −δ

≤ (ai + bi) δ ≤
(

sup
i∈I

ai + sup
i∈I

bi + 1
)
δ.

Therefore, if supi∈I ai, supi∈I bi <∞, for all ε > 0 it suffices to take

δ <
ε

(supi∈I ai + supi∈I bi + 1)

28If for every ε > 0 there is δ > 0 such that |t′ − t′′| ≤ δ implies |fi (t′)− fi (t′′)| ≤ ε, for all t′, t′′ ∈ R and all

i ∈ I, then fi (t+ δ) − fi (t) = |fi (t+ δ)− fi (t)| ≤ ε for all t ∈ R and all i ∈ I. Conversely, if condition (45) holds,

consider t′, t′′ ∈ R with |t′ − t′′| ≤ δ, wlog t′ ≥ t′′, then t′ ≤ t′′ + δ, fi (t′′ + δ) ≤ fi (t′′) + ε, and monotonicity, deliver

fi (t′) ≤ fi (t′′ + δ) ≤ fi (t′′) + ε, whence |fi (t′)− fi (t′′)| = fi (t′)− fi (t′′) ≤ ε for all i ∈ I.
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to obtain

fi (t+ δ)− fi (t) ≤
(

sup
i∈I

ai + sup
i∈I

bi + 1
)
δ ≤ ε

for all i ∈ I, t ∈ R, which implies uniform equicontinuity.
If supi∈I ai =∞, then for all δ > 0

fi (0 + δ)− fi (0) = aiδ

and hence supi∈I (fi (0 + δ)− fi (0)) =∞, which contradicts condition (45).
If supi∈I bi =∞, then for all δ > 0 take tδ < −δ

fi (tδ + δ)− fi (tδ) = biδ

and hence supi∈I (fi (tδ + δ)− fi (tδ)) =∞, which contradicts condition (45). �

Lemma 43 Let C be a convex subset of a vector space and f1, f2 : C → R be quasiconvex functions.
If f1 ≥ 0, f2 ≤ 0, and f1f2 = 0, then f1 + f2 is quasiconvex.

Proof of Lemma 43.* Let f = f1 + f2. Set C− = {x ∈ C : f2 (x) < 0}. The set C− is convex, and
we can assume C− 6= ∅ (else f1 + f2 = f1 is quasiconvex). As f1 and f2 are quasiconvex, we have

f1 (αx1 + (1− α)x2) ≤ f1 (x1) ∨ f1 (x2) and

f2 (αx1 + (1− α)x2) ≤ f2 (x1) ∨ f2 (x2) , then

f (αx1 + (1− α)x2) ≤ f1 (x1) ∨ f1 (x2) + f2 (x1) ∨ f2 (x2)

for all x1, x2 ∈ C and α ∈ [0, 1]; we want to show that f (αx1 + (1− α)x2) ≤ f (x1) ∨ f (x2).
Consider the following cases:

(a) x1, x2 ∈ C−;

(b) x1 ∈ C− and x2 /∈ C−;

(c) x1, x2 /∈ C−.

Case (a). The convexity of C− implies αx1 + (1− α)x2 ∈ C−, and over C− we have f1 = 0, then
f|C− = f2 delivers the result.

Case (b), we have f1 (x1) = 0, f2 (x1) < 0, f2 (x2) = 0, and f1 (x2) ≥ 0. Therefore,

f (αx1 + (1− α)x2) ≤ f1 (x1) ∨ f1 (x2) + f2 (x1) ∨ f2 (x2) = f1 (x2)

and
f (x1) ∨ f (x2) = (0 + f2 (x1)) ∨ (f1 (x2) + 0) = f1 (x2)

as wanted.
Case (c) we have f2 (x1) = f2 (x2) = 0, f1 (x1) ≥ 0, f1 (x2) ≥ 0. Hence,

f (αx1 + (1− α)x2) ≤ f1 (x1) ∨ f1 (x2) + f2 (x1) ∨ f2 (x2) = f1 (x1) ∨ f1 (x2) = f (x1) ∨ f (x2)

which concludes the proof. �
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Lemma 44 Let ∆̃ be a nonempty, closed, and convex subset of ∆, c1 : ∆̃→ (0,∞) concave and upper
semicontinuous, and c2 : ∆̃→ (0,∞] convex and lower semicontinuous. Let

G (t, ξ) =


t

c1(ξ) if t ≥ 0 and ξ ∈ ∆̃
t

c2(ξ) if t ≤ 0 and ξ ∈ ∆̃

∞ if ξ ∈ ∆ \ ∆̃

and
g (x) = inf

ξ∈∆
G (〈ξ, x〉 , ξ) , ∀x ∈ X. (46)

Then g is finite, monotone, upper semicontinuous, positively homogeneous, quasiconcave and

g (x) = min
ξ∈∆̃

(
〈ξ, x〉+

c1 (ξ)
− 〈ξ, x〉

−

c2 (ξ)

)
, ∀x ∈ X. (47)

Moreover:

• Gξ (t) = G (t, ξ) for all (t, ξ) ∈ R×∆;

• if Γ̃ is a nonempty, closed, and convex subset of ∆, d1 : Γ̃ → (0,∞) is concave and upper
semicontinuous, d2 : Γ̃→ (0,∞] is convex and lower semicontinuous, and

g (x) = min
ξ∈Γ̃

(
〈ξ, x〉+

d1 (ξ)
− 〈ξ, x〉

−

d2 (ξ)

)
, ∀x ∈ X, (48)

then
(

Γ̃, d1, d2

)
=
(

∆̃, c1, c2
)

;

• g is non-negative and concave on ∆̃⊕ =
{
x ∈ X : 〈ξ, x〉 ≥ 0 for all ξ ∈ ∆̃

}
;

• g concave on X if and only if c1 (ξ) ≥ c2 (ξ) for all ξ ∈ ∆̃.

Proof of Lemma 44.* Next we show that G satisfies all the conditions of Lemma 39.
(i) If ξ ∈ ∆̃, then

lim
t→∞

G (t, ξ) = lim
t→∞

t

c1 (ξ)
=∞

since c1 (ξ) ∈ (0,∞), and the same is true if ξ /∈ ∆̃.
(ii) G (·, ξ) is obviously monotone and extended-valued continuous on R, for each ξ ∈ ∆.
(iii) Next we check that G (t, ξ) is lower semicontinuous and quasiconvex on R×∆. Notice that

G (t, ξ) =
t+

c1 (ξ)
− t−

c2 (ξ)
, (49)

for all (t, ξ) ∈ R × ∆̃. Since R × ∆̃ is closed and convex in R ×∆, and G (t, ξ) = ∞ outside R × ∆̃,
it suffices to check that G is lower semicontinuous and quasiconvex on R × ∆̃, where G is finite and
given by (49). It is convenient to study first separately the two functions (t, ξ) 7→ t+/c1 (ξ), and
(t, ξ) 7→ t−/c2 (ξ).

For all α ≥ 0, we have{
(t, ξ) ∈ R× ∆̃ :

t+

c1 (ξ)
≤ α

}
=
{

(t, ξ) ∈ R× ∆̃ : t+ − αc1 (ξ) ≤ 0
}

and the latter set is closed and convex since the functions t 7→ t+ and ξ 7→ −αc1 (ξ) are convex
and lower semicontinuous; while for α < 0 the set is empty. Therefore (t, ξ) 7→ t+/c1 (ξ) is lower
semicontinuous and quasiconvex.
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Analogously, for all α > 0, we have{
(t, ξ) ∈ R× ∆̃ :

t−

c2 (ξ)
≥ α

}
=

=
{

(t, ξ) ∈ R× ∆̃ : αc2 (ξ)− t− ≤ 0
}

=
{

(t, ξ) ∈ (−∞, 0)× ∆̃ : αc2 (ξ) + t ≤ 0
}
∪
{

(t, ξ) ∈ R+ × ∆̃ : αc2 (ξ) ≤ 0
}

=
{

(t, ξ) ∈ (−∞, 0)× ∆̃ : αc2 (ξ) + t ≤ 0
}
∪ ∅

=
{

(t, ξ) ∈ (−∞, 0)× ∆̃ : αc2 (ξ) + t ≤ 0
}
∪
{

(t, ξ) ∈ R+ × ∆̃ : αc2 (ξ) + t ≤ 0
}

=
{

(t, ξ) ∈ R× ∆̃ : αc2 (ξ) + t ≤ 0
}

and the latter set is closed and convex since the functions t 7→ t and ξ 7→ αc2 (ξ) are convex and lower
semicontinuous; while for α ≤ 0 the set is R× ∆̃. Therefore (t, ξ) 7→ t−/c2 (ξ) is upper semicontinuous
and quasiconcave.

As a consequence, the mapping (ξ, t) 7→ t+/c1 (ξ) − t−/c2 (ξ) is lower semicontinuous, and quasi-
convex by Lemma 43, and (ξ, t) 7→ G (t, ξ) is lower semicontinuous and quasiconvex on R×∆.

For every x ∈ X, ξ 7→ (〈ξ, x〉 , ξ) is affine and continuous, therefore ξ 7→ G (〈ξ, x〉 , ξ) is lower
semicontinuous and quasiconvex on ∆.

(iv) is just (46).

Lemma 39 yields the following consequences:

• G (t, ξ) = supx∈X:〈ξ,x〉≤t g (x) = Gξ (t) for all (t, ξ) ∈ R×∆.

• g is monotone, quasiconcave, and upper semicontinuous;

• since, by (iii), the inf is attained in (46), then g is finite, in particular

g (x) = min
ξ∈∆̃

(
〈ξ, x〉+

c1 (ξ)
− 〈ξ, x〉

−

c2 (ξ)

)
, ∀x ∈ X;

and g is positively homogeneous.

• If Γ̃ is a nonempty, closed, and convex subset of ∆, d1 : Γ̃ → (0,∞) is concave and upper
semicontinuous, d2 : Γ̃→ (0,∞] is convex and lower semicontinuous, and

g (x) = min
ξ∈Γ̃

(
〈ξ, x〉+

d1 (ξ)
− 〈ξ, x〉

−

d2 (ξ)

)
, ∀x ∈ X,

set

H (t, ξ) =


t

d1(ξ) if t ≥ 0 and ξ ∈ Γ̃
t

d2(ξ) if t ≤ 0 and ξ ∈ Γ̃

∞ if ξ ∈ ∆ \ Γ̃

=


t+

d1(ξ) −
t−

d2(ξ) if (t, ξ) ∈ R× Γ̃

∞ if (t, ξ) ∈ R×
(

∆ \ Γ̃
) .

Apply the previous points and obtain H (t, ξ) = supx∈X:〈ξ,x〉≤t g (x) = Gξ (t) = G (t, ξ) for all
(t, ξ) ∈ R×∆. In particular,

Γ̃ = {ξ ∈ ∆ : H (0, ξ) = 0} = {ξ ∈ ∆ : G (0, ξ) = 0} = ∆̃,

1/d1 (ξ) = H (1, ξ) = G (1, ξ) = 1/c1 (ξ) , ∀ξ ∈ ∆̃ i.e. d1 = c1,

−1/d2 (ξ) = H (−1, ξ) = G (−1, ξ) = −1/c2 (ξ) , ∀ξ ∈ ∆̃ i.e. d2 = c2.
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• For all x ∈ X such that 〈ξ, x〉 ≥ 0 for all ξ ∈ ∆̃,

g (x) = min
ξ∈∆̃

(
〈ξ, x〉+

c1 (ξ)
− 〈ξ, x〉

−

c2 (ξ)

)
= min

ξ∈∆̃

〈
ξ

c1 (ξ)
, x

〉
which is clearly concave and non-negative.

• g is concave if and only if Gξ is concave for each ξ ∈ ∆. This is automatically true, if ξ ∈ ∆ \ ∆̃,
while if ξ ∈ ∆̃ this amounts to say that the function

G (t, ξ) =

{
t

c1(ξ) if t ≥ 0
t

c2(ξ) if t ≤ 0

is concave, or equivalently
1

c1 (ξ)
≤ 1
c2 (ξ)

thus c2 (ξ) <∞ and c1 (ξ) ≥ c2 (ξ).

As wanted. �

Let g : X → R be such that g (x) 6= 0 for some x ∈ X+ and assume g is monotone, quasiconcave,
uniformly continuous, and positively homogeneous. Theorem 38 guarantees that (43) holds. Next we
prove that Gξ (t) has the representation (44).

By Theorem 38, dom (Gξ) ∈ {∅,R} for all ξ ∈ ∆, and {Gξ}ξ∈∆:dom(Gξ)=R are uniformly equicon-

tinuous. Set ∆̃ = {ξ ∈ ∆ : dom (Gξ) = R}, which is not empty since g is finite. Clearly, Gξ (t) = ∞
if ξ ∈ ∆ \ ∆̃. For all ξ ∈ ∆̃, the functions t 7→ Gξ (t) are (monotone and) positively homogeneous, in
fact, for all t ∈ R and λ > 0,

Gξ (λt) = sup
x∈X:〈ξ,x〉≤λt

g (x) = sup
y∈X:〈ξ,y〉≤t

g (λy) = sup
y∈X:〈ξ,y〉≤t

λg (y) = λGξ (t)

since {x ∈ X : 〈ξ, x〉 ≤ λt} = λ {y ∈ X : 〈ξ, y〉 ≤ t}. Therefore, there are two functions ρ1, ρ2 : ∆̃ →
[0,∞) such that

Gξ (t) =

{
ρ1 (ξ) t if t ≥ 0
ρ2 (ξ) t if t ≤ 0

(50)

if ξ ∈ ∆̃.
If ρ1

(
ξ̄
)

= 0 for some ξ̄ ∈ ∆̃, then Gξ̄ (t) = 0 for all t ≥ 0 and

sup
x∈X

g (x) = lim
t→∞

Gξ̄ (t) = 0

which – together with monotonicity – contradicts the assumption g (x) 6= 0 for some x ∈ X+. Thus
ρ1 : ∆̃→ (0,∞).

Step 1. ∆̃ is convex. Notice that ∆̃ = {ξ ∈ ∆ : Gξ (0) <∞}. If Gξ1 (0) , Gξ2 (0) <∞, quasiconvexity
of Gξ (t) implies Gαξ1+(1−α)ξ2 (0) <∞ for all α ∈ (0, 1) too.

Step 2. The function c1 : ∆̃ → (0,∞) defined by c1 (ξ) = 1/ρ1 (ξ) is concave over ∆̃ (remember that
ρ1 (ξ) > 0). Let ξ1, ξ2 ∈ ∆̃ and α ∈ (0, 1). Choose k1, k2 > 0 such that k1ρ1 (ξ1) = k2ρ1 (ξ2). As Gξ (t)
is quasiconvex,

Gαξ1+(1−α)ξ2 (αk1 + (1− α) k2) ≤ max {Gξ1 (k1) , Gξ2 (k2)} . (51)
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In view of (50), this amounts to

(αk1 + (1− α) k2) ρ1 (αξ1 + (1− α) ξ2) ≤ max {k1ρ1 (ξ1) , k2ρ (ξ2)} = k1ρ (ξ1) ,

and so, since k2/k1 = ρ1 (ξ1) /ρ1 (ξ2),

1
ρ1 (αξ1 + (1− α) ξ2)

≥ αk1 + (1− α) k2

k1ρ1 (ξ1)
=

α

ρ1 (ξ1)
+

1− α
ρ1 (ξ2)

.

This shows that 1/ρ1 (ξ) is concave. Consequently, in (50) we can write ρ1 (ξ) t = t/c1 (ξ), where
c1 (ξ) = 1/ρ1 (ξ) is concave on ∆̃.

Step 3. The region A =
{
ξ ∈ ∆̃ : ρ2 (ξ) > 0

}
is convex. In fact, for all ξ ∈ ∆̃, ρ2 (ξ) = −Gξ (−1) and

thus
A =

{
ξ ∈ ∆̃ : Gξ (−1) < 0

}
is convex by quasiconvexity of Gξ (t).

Step 4. The function c2 : A → (0,∞) defined by c2 (ξ) = 1/ρ2 (ξ) is convex on the set A defined
above. Let ξ1, ξ2 ∈ A ⊆ ∆̃ and α ∈ (0, 1). Pick k1, k2 < 0 such that k1ρ2 (ξ1) = k2ρ2 (ξ2). From the
quasiconvexity of Gξ (t) we have (51). Namely,

(αk1 + (1− α) k2) ρ2 (αξ1 + (1− α) ξ2) ≤ max {k1ρ2 (ξ1) , k2ρ2 (ξ2)} = k1ρ2 (ξ1) ,

that implies
1

ρ2 (αξ1 + (1− α) ξ2)
≤ αk1 + (1− α) k2

k1ρ2 (ξ1)
=

α

ρ2 (ξ1)
+

1− α
ρ2 (ξ2)

,

and c2 (ξ) = 1/ρ2 (ξ) is convex and finite on A. Clearly ρ2 (ξ) = 1/c2 (ξ) on A. Setting c2 (ξ) =∞ for
ξ ∈ ∆̃ \A, convexity of c2 : ∆̃→ (0,∞] is maintained and ρ2 (ξ) = 1/c2 (ξ) for all ξ ∈ ∆̃.

Hence, Gξ (t) has the representation (44) with ∆̃ nonempty and convex, c1 : ∆̃→ (0,∞) concave,
and c2 : ∆̃→ (0,∞] convex.

Step 5. By Lemma 42,29 infξ∈∆̃ c1 (ξ) > 0 and infξ∈∆̃ c2 (ξ) > 0 are necessary and sufficient for the
uniform equicontinuity of the family {Gξ (·)}ξ∈∆̃. (Note however that the latter will be a consequence

of the fact that c2 (ξ) is lower semicontinuous over the compact set ∆̃.)

Step 6. ∆̃ is closed and c1 is upper semicontinuous on ∆̃. The function

ξ 7→ Gξ (1) =

{
1

c1(ξ) if ξ ∈ ∆̃

∞ if ξ ∈ ∆ \ ∆̃

is lower semicontinuous on ∆, and infξ∈∆̃ c1 (ξ) > 0, that is λ = supξ∈∆̃ (1/c1 (ξ)) <∞. Then

∆̃ = {ξ ∈ ∆ : Gξ (1) <∞} = {ξ ∈ ∆ : Gξ (1) ≤ λ}

is closed. If α > 0, {
ξ ∈ ∆̃ : c1 (ξ) ≥ α

}
=
{
ξ ∈ ∆̃ : Gξ (1) ≤ α−1

}
is closed, while if α ≤ 0 then

{
ξ ∈ ∆̃ : c1 (ξ) ≥ α

}
= ∆̃. Therefore c1 is upper semicontinuous.

29Remember that in [0,∞], with 1/0 =∞ and 1/∞ = 0, a ≥ b iff 1/a ≤ 1/b, infi∈I ai = 1/ supi∈I (1/ai), supi∈I ai =

1/ infi∈I (1/ai).
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Step 7. c2 : ∆̃ → (0,∞] is lower semicontinuous. The function ξ 7→ Gξ (−1) = −1/c2 (ξ) is lower
semicontinuous (∆ and hence) on ∆̃. If α > 0,{

ξ ∈ ∆̃ : c2 (ξ) ≤ α
}

=
{
ξ ∈ ∆̃ :

1
c2 (ξ)

≥ 1
α

}
=
{
ξ ∈ ∆̃ : Gξ (−1) ≤ − 1

α

}
is closed, while if α ≤ 0 then

{
ξ ∈ ∆̃ : c2 (ξ) ≤ α

}
= ∅. Therefore c2 is lower semicontinuous.

Conversely, Lemma 44 shows that g is finite, monotone, upper semicontinuous, positively homo-
geneous, quasiconcave. Clearly dom (Gξ) ∈ {∅,R} for all ξ ∈ ∆. Moreover, infξ∈∆̃ c1 (ξ) > 0 (by
assumption) and infξ∈∆̃ c2 (ξ) > 0 (since c2 is lower semicontinuous and strictly positive over the

compact set ∆̃); therefore the family {Gξ (·)}ξ∈∆̃ = {Gξ}ξ∈∆:dom(Gξ)=R is uniformly equicontinuous
(by Lemma 42). Theorem 38 delivers uniform continuity of g.

Finally, g is normalized if and only if, for all t ∈ R,

t = g (te) = inf
ξ∈∆

Gξ (t) =

{
infξ∈∆̃

t
c1(ξ) if t ≥ 0

infξ∈∆̃
t

c2(ξ) if t ≤ 0
=

{
t infξ∈∆̃

1
c1(ξ) if t ≥ 0

t supξ∈∆̃
1

c2(ξ) if t ≤ 0

which is equivalent to maxξ∈∆̃ c1 (ξ) = minξ∈∆̃ c2 (ξ) = 1 thanks to the semicontinuity properties of
c1 and c2. �

A.3 Continuity of Monotone Functionals

A.3.1 Lower and Upper Continuity

Lemma 45 Let Y be lower open and convex. For a monotone function g : Y → R the following
conditions are equivalent:

(i) g is left continuous;

(ii) g is lower semicontinuous;

(iii) for any c ∈ R and x, y ∈ Y , the set {α ∈ [0, 1] : g (αx+ (1− α) y) ≤ c} is closed;

(iv) for any c ∈ R and x, y ∈ Y with y ≤ x and g (x) > c, there is α ∈ (0, 1) such that g (αx+ (1− α) y) >
c.

Proof. (i) implies (ii). Let c ∈ R, S (g, c) = {x ∈ Y : g (x) ≤ c}. We want to show that, {xn}n∈N ⊆
S (g, c) and xn → x ∈ Y imply x ∈ S (g, c). There is ε0 > 0 such that x − εe ∈ Y for all ε ∈ [0, ε0].
Let εm > 0 be such that {εm}m∈N ∈ [0, ε0] and εm ↓ 0. Then x − εme ∈ Y for all m ∈ N.
Since xn → x, for all m ∈ N there is nm ∈ N such that x − εme ≤ xnm and monotonicity implies
g (x− εme) ≤ g (xnm) ≤ c, and left continuity guarantees g (x) = limm g (x− εme) ≤ c. (This
implication does not require convexity.)

(ii) implies (iii). Let c ∈ R and x, y ∈ Y . Since Y is convex, αx+(1− α) y ∈ Y for all α ∈ [0, 1]. Let
{αn}n∈N ⊆ [0, 1] be such that αn → α0 and g (αnx+ (1− αn) y) ≤ c. Then αnx+(1− αn) y ∈ S (g, c)
and αnx+ (1− αn) y → α0x+ (1− α0) y ∈ Y , lower semicontinuity implies α0x+ (1− α0) y ∈ S (g, c)
(i.e. g (α0x+ (1− α0) y) ≤ c). (This implication does not require lower openness.)

(iii) implies (iv). Let c ∈ R and x, y ∈ Y (with y ≤ x) and g (x) > c. Assume, per contra,
g (αx+ (1− α) y) ≤ c for all α ∈ (0, 1). By (iii) the set A = {α ∈ [0, 1] : g (αx+ (1− α) y) ≤ c} is
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closed, thus (0, 1) ⊆ A implies [0, 1] = A and (for α = 1) we have g (x) ≤ c, which is absurd. (This
implication does not require lower openness.)

(iv) implies (i). Let xn ↗ x0 in Y . Monotonicity guarantees g (xn) ↑ c ≤ g (x0). Assume,
per contra, g (x0) > c. By (iv), for each y ∈ Y with y ≤ x0, there is αy ∈ (0, 1) such that
g ((1− αy)x0 + αyy) > c. Take ε0 > 0 such that x0 − ε0e ∈ Y . Set y = x0 − ε0e and notice
that

Y 3 (1− αy)x0 + αyy = x0 − αyx0 + αyx0 − αyε0e = x0 − αyε0e.

Since xn → x0, there is n̄ ∈ N such that for all n ≥ n̄

xn ≥ x0 − αyεe = (1− αy)x0 + αyy

and g (xn) ≥ g ((1− αy)x0 + αyy) > c, which is absurd. �

If X is hyper-Archimedean, and Y is replaced by a (non-necessarily lower open) set of the form
X (T ) the above results still hold; more indeed is true:

Proposition 46 Let X be hyper-Archimedean. For a monotone function g : X (T ) → R, conditions
(i)-(iv) of Lemma 45 are equivalent. Moreover, lower semicontinuity is also equivalent to the following
conditions:

(v) for any k ∈ T , c ∈ R and x ∈ X (T ), the set {α ∈ [0, 1] : g (αx+ (1− α) ke) ≤ c} is closed;

(vi) for any k ∈ T , c ∈ R and x ∈ X (T ) with g (x) > c, there is α ∈ (0, 1) such that g (αx+ (1− α) ke) >
c.

(vii) for any k ∈ T , c ∈ R and x ∈ X (T ) with ke ≤ x and g (x) > c, there is α ∈ (0, 1) such that
g (αx+ (1− α) ke) > c.

Lemma 47 Let X be hyper-Archimedean. If xn, x0 ∈ X (T ), xn → x0, and ess inf (x0) = inf T , then
for all α ∈ (0, 1) there is n̄ = n̄α ∈ N such that xn ≥ αx0 + (1− α) (inf T ) e for all n ≥ n̄.

Proof. Wlog, X = B0 (S,Σ) and e = 1S . The condition ess inf (x0) = inf T implies inf T ∈ T .
Let inf T = 0. There exists a partition {A0, A1, ..., Am} of S in Σ and 0 = β0 < β1 < ... < βm such

that x0 =
∑m
i=0 βi1Ai . Take ε = mini=1,...,m βi−αβi > 0. Since xn → x0 there exists n̄ ∈ N such that

x0 − εe ≤ xn ≤ x0 + εe, ∀n ≥ n̄.

In particular, for all n ≥ n̄, if s ∈ A0, αx0 (s) = 0 ≤ xn (s), else there is i ∈ {1, ...,m} such that s ∈ Ai
and

xn (s) ≥ x0 (s)− ε ≥ βi + αβi − βi = αβi = αx0 (s) ,

and xn ≥ αx0, as wanted.
Let inf T = t, then xn−te, x0−te ∈ X (T − t), xn−te→ x0−te, and ess inf (x0 − te) = ess inf (x0)−

t = 0 = inf (T − t). By what we have just shown, for all α ∈ (0, 1) there exists n̄ ∈ N such that
xn−te ≥ α (x0 − te)+(1− α) (inf T − t) e = αx0+(1− α) (inf T ) e−te and xn ≥ αx0+(1− α) (inf T ) e
for all n ≥ n̄. �

Proof of Proposition 46. If T is lower open, then X (T ) is lower open too, and Lemma 45 delivers
the equivalence of (i)-(iv). Assume t = inf T ∈ T .
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(i) implies (ii). Let c ∈ R, S (g, c) = {x ∈ X (T ) : g (x) ≤ c}. We want to show that, {xn}n∈N ⊆
S (g, c) and xn → x ∈ X (T ) imply x ∈ S (g, c). Let εm > 0 be such that εm ↓ 0 and set ym =
(x− εme) ∨ te for all m ∈ N. {ym}m∈N ⊆ X (T ) and ym ↗ x. In fact,

T 3 t ≤ ess inf ((x− εme) ∨ te) ≤ ess sup (((x− εme) ∨ te)) = ess sup ((x− εme))∨t ≤ ess sup (x) ∈ T,

moreover, (x− εme) ≤ (x− εm+1e) implies (x− εme) ≤ (x− εm+1e) ∨ te and (x− εme) ∨ te ≤
(x− εm+1e) ∨ te, thus ym is increasing and x − εme ≤ (x− εme) ∨ te ≤ x implies ym → x. Since
xn → x, for all m ∈ N there is nm ∈ N such that x− εme ≤ xnm and xnm ∈ X (T ) implies te ≤ xnm ,
whence ym ≤ xnm and g (ym) ≤ g (xnm) ≤ c, left continuity guarantees g (x) = limm g (ym) ≤ c.30

(ii) implies (iii) and (iii) implies (iv) are proved in exactly the same way as in Lemma 45.

(iv) implies (i). Let xn ↗ x0 in X (T ). Monotonicity guarantees g (xn) ↑ c ≤ g (x0). Assume,
per contra, g (x0) > c. By (iv), for each y ∈ X (T ) with y ≤ x0, there is αy ∈ (0, 1) such that
g ((1− αy)x0 + αyy) > c. If ess inf (x0) > inf T , there is ε0 > 0 such that x0 − ε0e ∈ X (T ). Set
y = x0 − ε0e and notice that

X (T ) 3 (1− αy)x0 + αyy = x0 − αyx0 + αyx0 − αyε0e = x0 − αyε0e.

Since xn → x0, there is n̄ ∈ N such that for all n ≥ n̄

xn ≥ x0 − αyεe = (1− αy)x0 + αyy

and g (xn) ≥ g ((1− αy)x0 + αyy) > c, which is absurd.
Else if ess inf (x0) = inf T = t. Set y = te, by Lemma 47, there is n̄ = n̄αy ∈ N such that

xn ≥ αyx0 + (1− α) y for all n ≥ n̄, and g (xn) ≥ g ((1− αy)x0 + αyy) > c, which is absurd.

We have shown that (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) ⇒ (i).

Clearly (iii) implies (v), the proof of (v) implies (vi) is almost identical to the one of (iii) implies
(iv), and obviously, (vi) implies (vii). It only remains to show that (vii) implies (i), which is almost
identical to (iv) ⇒ (i):

(vii) implies (i). Let xn ↗ x0 in X (T ). Monotonicity guarantees g (xn) ↑ c ≤ g (x0). Assume,
per contra, g (x0) > c. By (vii), for each k ∈ T with ke ≤ x0, there is αk ∈ (0, 1) such that
g ((1− αk)x0 + αkke) > c. If ess inf (x0) > inf T , choose k ∈ T such that ess inf (x0) > k > inf T , and
set ε = ess inf (x0)− k > 0. Then x0 − εe ∈ X (T ) and x0 − αkεe ∈ X (T ) too. In fact,

inf T < k = ess inf (x0)− ε = ess inf (x0 − εe) ≤ ess sup (x0 − εe) ≤ ess sup (x0) ∈ T.

Therefore there is n̄ ∈ N such that for all n ≥ n̄

xn ≥ x0 − αkεe = x0 − αkess inf (x0) e+ αkke ≥ x0 − αkx0 + αkke = (1− αk)x0 + αkke

and g (xn) ≥ g ((1− αk)x0 + αkke) > c, which is absurd.
Else if ess inf (x0) = inf T = t. Set k = t, by Lemma 47, there is n̄ = n̄αk ∈ N such that

xn ≥ αkx0 + (1− αk) ke for all n ≥ n̄, and g (xn) ≥ g ((1− αk)x0 + αkke) > c, which is absurd. �

Very similar results hold for upper semicontinuity: just observe that g (x) from X (T ) to R is lower
semicontinuous and monotone if and only if −g (−x) from X (−T ) to R is upper semicontinuous and
monotone.

30Notice that we did not use the hyper-archimedean assumption. Therefore a monotone function g : X (T )→ R is left

continuous if and only if it is lower semicontinuous. (For the “if” part, observe that xn → x in X (T ) and xn ≤ xn+1

for all n ∈ N imply xn ≤ x for all n ∈ N. Monotonicity of g implies g (xn) ↑ c ≤ g (x) and lower semicontinuity delivers

c = limn g (xn) ≥ g (x).
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A.3.2 Uniform Continuity and Lipschitzianity

Proposition 48 For a monotone g : X (T )→ R the following properties are equivalent:

(i) g is uniformly continuous on X (T );

(ii) for every ε > 0 there is δ ∈ (0, supT − inf T ) such that

g (x+ δe) ≤ g (x) + ε (52)

for all x ∈ X (T ) with x+ δe ∈ X (T ).

Notice that if T is bounded and δ > supT − inf T , then (iii) is vacuously satisfied since there is
no x ∈ X (T ) such that x+ δe ∈ X (T ).

Proof. (i) implies (ii). Fix ε > 0 and let δ′ > 0 be such that ‖x− y‖ ≤ δ′ implies |g (x)− g (y)| ≤ ε.
Set δ = 2−1 min {δ′, supT − inf T}. If x, x+ δe ∈ X (T ), then

g (x+ δe)− g (x) ≤ |g (x+ δe)− g (x)| ≤ ε.

(ii) implies (i). Fix ε > 0 and let δ ∈ (0, supT − inf T ) be such that g (x+ δe) ≤ g (x) + ε for all
x ∈ X (T ) such that x+ δe ∈ X (T ). Notice that if x and x− δe belong to X (T ), then (x− δe) and
(x− δe) + δe ∈ X (T ). Thus, g (x) = g ((x− δe) + δe) ≤ g (x− δe) + ε and

g (x− δe) ≥ g (x)− ε.

Let x, y ∈ X (T ) be such that ‖x− y‖ ≤ δ. Then

x− δe ≤ y ≤ x+ δe. (53)

Moreover:

Claim. There exist t, τ ∈ T such that t+ δ ≤ τ and te ≤ x, y ≤ τe.

Proof of the Claim. Set t′ = ess inf (x ∧ y) = ess inf (x) ∧ ess inf (y) ∈ T and τ ′ = ess sup (x ∨ y) =
ess sup (x) ∨ ess sup (y) ∈ T . Clearly t′ ≤ τ ′ and t′e ≤ x, y ≤ τ ′e. If τ ′ − t′ ≥ δ set t = t′ and τ = τ ′.
Otherwise, consider the following cases: (i) if T is unbounded above, set t = t′ and τ = τ ′ + δ; (ii)
if T is unbounded below, set t = t′ − δ and τ = τ ′; (iii) if T is bounded consider two sequences t′n
and τ ′n in T such t′1 = t′, τ ′1 = τ ′, t′n ↓ inf T , τ ′n ↑ supT . For all n ≥ 1, t′ne ≤ x, y ≤ τ ′ne and
τ ′n − t′n → supT − inf T > δ. Hence there is n̄ ∈ N such that τ ′n̄ − t′n̄ > δ; set t = t′n̄ and τ = τ ′n̄. �

Since

t ≤ ess inf ((x− δe) ∨ te) ≤ ess sup ((x− δe) ∨ te) ≤ ess sup (x) ≤ τ,

t ≤ ess inf (x) ≤ ess inf ((x+ δe) ∧ τe) ≤ ess sup ((x+ δe) ∧ τe) ≤ τ,

t ≤ ess inf (x) ≤ ess inf (x ∨ (t+ δ) e) ≤ ess sup (x ∨ (t+ δ) e) = ess sup (x) ∨ (t+ δ) ≤ τ,

t ≤ ess inf (x) ∧ (τ − δ) = ess inf (x ∧ (τ − δ) e) ≤ ess sup (x ∧ (τ − δ) e) ≤ ess sup (x) ≤ τ,

then (x− δe) ∨ te, (x+ δe) ∧ τe, x ∨ (t+ δ) e, x ∧ (τ − δ) e ∈ X (T ), as well as

(x ∨ (t+ δ) e)− δe = (x− δe) ∨ te ∈ X (T ) and (x ∧ (τ − δ) e) + δe = (x+ δe) ∧ τe ∈ X (T ) . (54)
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From (53) we have (x− δe) ∨ te ≤ y ≤ (x+ δe) ∧ τe. By monotonicity, (54), and the choice of δ,

g (x)− ε ≤ g ((x ∨ (t+ δ) e))− ε ≤ g ((x ∨ (t+ δ) e)− δe) = g ((x− δe) ∨ te)

≤ g (y) ≤ g ((x+ δe) ∧ τe) = g ((x ∧ (τ − δ) e) + δe) ≤ g ((x ∧ (τ − δ) e)) + ε

≤ g (x) + ε

and so g (x)− ε ≤ g (y) ≤ g (x) + ε, as desired. �

A similar argument, can be used to prove the following Lipschitz version of Proposition 48

Proposition 49 A monotone g : X (T ) −→ R is `-Lipschitz on X (T ) if and only if g (x+ δe) ≤
g (x) + `δ for all x ∈ X (T ) and all δ > 0 such that x+ δe ∈ X (T ).

Proof.# If g is `-Lipschitz, then g (x+ δe)− g (x) ≤ ` ‖x+ δe− x‖ = `δ for all x ∈ X and all δ > 0
such that x+ δe ∈ X (T ).

Conversely, let x, y ∈ X (T ) with x 6= y, and set t = ess inf (x ∧ y) = ess inf (x)∧ess inf (y) ∈ T and
τ = ess sup (x ∨ y) = ess sup (x) ∨ ess sup (y) ∈ T . From te ≤ x, y ≤ τe it follows x− y ≤ τe− te and
y − x ≤ τe− te. Hence, |x− y| ≤ (τ − t) e and ‖x− y‖ ≤ τ − t. Set δ = ‖x− y‖ > 0 and notice that
t ≤ t + δ ≤ τ and t ≤ τ − δ ≤ τ . Any z ∈ X such that te ≤ z ≤ τe belongs to X (T ). In particular,
since

t ≤ ess inf ((x− δe) ∨ te) ≤ ess sup ((x− δe) ∨ te) ≤ ess sup (x) ≤ τ,

t ≤ ess inf (x) ≤ ess inf ((x+ δe) ∧ τe) ≤ ess sup ((x+ δe) ∧ τe) ≤ τ,

t ≤ ess inf (x) ≤ ess inf (x ∨ (t+ δ) e) ≤ ess sup (x ∨ (t+ δ) e) = ess sup (x) ∨ (t+ δ) ≤ τ,

t ≤ ess inf (x) ∧ (τ − δ) = ess inf (x ∧ (τ − δ) e) ≤ ess sup (x ∧ (τ − δ) e) ≤ ess sup (x) ≤ τ,

then (x− δe) ∨ te, (x+ δe) ∧ τe, x ∨ (t+ δ) e, x ∧ (τ − δ) e ∈ X (T ) and

(x ∨ (t+ δ) e)− δe = (x− δe) ∨ te ∈ X (T ) and (x ∧ (τ − δ) e) + δe = (x+ δe) ∧ τe ∈ X (T ) . (55)

Since ‖x− y‖ ≤ δ, then x− δe ≤ y ≤ x+ δe, and

(x− δe) ∨ te ≤ y ≤ (x+ δe) ∧ τe

by monotonicity, (55), and the observation that g (z + δ′e) ≤ g (z) + `δ′ for all z ∈ X (T ) and all
δ′ > 0 such that z + δ′e ∈ X (T ) also implies g (z − δ′e) ≥ g (z)− `δ′ for all z ∈ X (T ) and all δ′ > 0
such that z − δ′e ∈ X (T ), it follows that:

g (x)− `δ ≤ g ((x ∨ (t+ δ) e))− `δ ≤ g ((x ∨ (t+ δ) e)− δe) = g ((x− δe) ∨ te)

≤ g (y) ≤ g ((x+ δe) ∧ τe) = g ((x ∧ (τ − δ) e) + δe) ≤ g ((x ∧ (τ − δ) e)) + `δ

≤ g (x) + `δ

and g (x)− ` ‖x− y‖ ≤ g (y) ≤ g (x) + ` ‖x− y‖.
Thus |g (x)− g (y)| ≤ ` ‖x− y‖ for all x, y ∈ X (T ) with x 6= y. As wanted. �

A.3.3 Linear Continuity

Lemma 50 If G ∈ G (T ×∆), then

g (x) = inf
ξ∈∆

G (〈ξ, x〉 , ξ) ∀x ∈ X (T ) ,

is finite, (evenly) quasiconcave, monotone, normalized, and G (t, ξ) ≥ Gξ (t) for all (t, ξ) ∈ T ×∆.
Moreover, if X (T ) = B0 (Σ, T ), then g is continuous if and only if G satisfies the following

conditions for every partition A1, ..., An of S in Σ, t0, t1, ..., tn ∈ T , and c ∈ R:
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1. for all ε > 0 such that G

(
n∑
i=1

tip (Ai) , p

)
> c+ ε for all p ∈ ∆, there exist δ > 0 and α ∈ (0, 1)

such that G

(
n∑
i=1

(αti + (1− α) t0) p (Ai) , p

)
> c+ δ for all p ∈ ∆;

2. if there exists p ∈ ∆ such that G

(
n∑
i=1

tip (Ai) , p

)
< c, then there exist q ∈ ∆ and α ∈ (0, 1)

such that G

(
n∑
i=1

(αti + (1− α) t0) q (Ai) , q

)
< c.

Proof. We only assumeG : T×∆→ (−∞,∞] is increasing in the first component and infp∈∆G (t, p) =
t for all t ∈ T .

We first prove monotonicity: if x ≥ y, then 〈ξ, x〉 ≥ 〈ξ, y〉 for all ξ ∈ ∆, and monotonicity of
G (·, ξ) implies that G (〈ξ, x〉 , ξ) ≥ G (〈ξ, y〉 , ξ), and hence g (x) ≥ g (y).

Next we show normalization: for all t ∈ T , g (te) = infξ∈∆G (〈ξ, te〉 , ξ) = infξ∈∆G (t, ξ) = t.
Finiteness follows from monotonicity and normalization, in fact, for all x ∈ X (T ),

ess inf (x) e ≤ x ≤ ess sup (x) e =⇒ ess inf (x) ≤ g (x) ≤ ess sup (x) .

Next we show (even) quasiconcavity: Let α ∈ R. As observed, X (T ) is evenly quasiconvex, thus
the set

L = X (T ) ∩
⋂

(ξ,b)∈∆×R:[ξ>b]⊇{y∈X(T ):g(y)≥a}

[ξ > b]

is evenly quasiconvex and contains {y ∈ X (T ) : g (y) ≥ a}.
Let x̄ /∈ {y ∈ X (T ) : g (y) ≥ a}, then,

• either x̄ /∈ X (T ) and hence x̄ /∈ L;

• or x̄ ∈ X (T ) and a > g (x̄) = infξ∈∆G (〈ξ, x̄〉 , ξ), then there is ξ̄ ∈ ∆ such that G
(〈
ξ̄, x̄
〉
, ξ̄
)
< a,

and (by monotonicity of G in the first component) for all y ∈ X (T ) such that ξ̄ (y) ≤ ξ̄ (x̄)

g (y) ≤ G
(〈
ξ̄, y
〉
, ξ̄
)
≤ G

(〈
ξ̄, x̄
〉
, ξ̄
)
< a

that is
{
y ∈ X (T ) : ξ̄ (y) ≤ ξ̄ (x̄)

}
⊆ {y ∈ X (T ) : g (y) < a} and

{y ∈ X (T ) : g (y) ≥ a} ⊆
{
y ∈ X (T ) : ξ̄ (y) > ξ̄ (x̄)

}
⊆
[
ξ̄ > ξ̄ (x̄)

]
;

thus
(
ξ̄, ξ̄ (x̄)

)
∈ ∆ × R :

[
ξ̄ > ξ̄ (x̄)

]
⊇ {y ∈ X (T ) : g (y) ≥ a} but x̄ /∈

[
ξ̄ > ξ̄ (x̄)

]
, and hence

x̄ /∈ L.

Therefore L is contained {y ∈ X (T ) : g (y) ≥ a}, and the two sets coincide.

Moreover, for all
(
t̄, ξ̄
)
∈ T ×∆, and all y ∈ X (T ) such that

〈
ξ̄, y
〉
≤ t̄, then

g (y) = inf
ξ∈∆

G (〈ξ, y〉 , ξ) ≤ G
(〈
ξ̄, y
〉
, ξ̄
)
≤ G

(
t̄, ξ̄
)
.

Therefore,
Gξ̄ (t̄) = sup

y∈X(T ):〈ξ̄,y〉≤t̄
g (y) ≤ G

(
t̄, ξ̄
)
.

44



Finally, by point (vi) of Proposition 46, g is lower semicontinuous on X (T ) ⇐⇒ for each t0 ∈ T ,

c ∈ R and
n∑
i=1

ti1Ai ∈ X (T ) with infp∈∆G

(〈
p,

n∑
i=1

ti1Ai

〉
, p

)
> c, there exists a number α ∈ (0, 1)

such that infp∈∆G

(〈
p, α

n∑
i=1

ti1Ai + (1− α) t0

〉
, p

)
> c ⇐⇒ for every partition A1, ..., An of S in

Σ, t0, t1, ..., tn ∈ T , and c ∈ R, infp∈∆G

(〈
p,

n∑
i=1

ti1Ai

〉
, p

)
> c implies that there is α ∈ (0, 1)

such that infp∈∆G

(〈
p, α

n∑
i=1

ti1Ai + (1− α) t0

〉
, p

)
> c ⇐⇒ for every partition A1, ..., An of S in

Σ, t0, t1, ..., tn ∈ T , and c ∈ R, if there exists ε > 0 such that G

(
n∑
i=1

tip (Ai) , p

)
> c+ ε for all p ∈ ∆,

then there exist α ∈ (0, 1) and δ > 0 such that G

(
n∑
i=1

(αti + (1− α) t0) p (Ai) , p

)
> c+δ for all p ∈ ∆.

While, again by Proposition 46, g is upper semicontinuous on X (T ) ⇐⇒ for each t0 ∈ T , c ∈ R and
n∑
i=1

ti1Ai ∈ X (T ) with g

(
n∑
i=1

ti1Ai

)
< c, there is α ∈ (0, 1) such that g

(
α

n∑
i=1

ti1Ai + (1− α) t0

)
< c

⇐⇒ for each t0 ∈ T , c ∈ R and
n∑
i=1

ti1Ai ∈ X (T ) with infp∈∆G

(〈
p,

n∑
i=1

ti1Ai

〉
, p

)
< c, there is

α ∈ (0, 1) such that infp∈∆G

(〈
p, α

n∑
i=1

ti1Ai + (1− α) t0

〉
, p

)
< c⇐⇒ for every partition A1, ..., An

of S in Σ, t0, t1, ..., tn ∈ T , and c ∈ R, infp∈∆G

(〈
p,

n∑
i=1

ti1Ai

〉
, p

)
< c implies that there exists a

number α ∈ (0, 1) such that infp∈∆G

(〈
p, α

n∑
i=1

ti1Ai + (1− α) t0

〉
, p

)
< c ⇐⇒ for every partition

A1, ..., An of S in Σ, t0, t1, ..., tn ∈ T , and c ∈ R, if there exists p ∈ ∆ such that G

(
n∑
i=1

tip (Ai) , p

)
< c,

then there exist α ∈ (0, 1) and q ∈ ∆ such that G

(
n∑
i=1

(αti + (1− α) t0) q (Ai) , q

)
< c. �

Lemma 51 If G ∈ H (T ×∆), then

g (x) = inf
ξ∈∆

G (〈ξ, x〉 , ξ) ∀x ∈ X (T ) ,

is continuous and the inf is attained for all x ∈ X (T ).

Proof. The proof is divided into several claims that are used in different parts of the paper.
Let G : T × ∆ → [−∞,∞] be lower semicontinuous. Define Γ : X (T ) × ∆ → [−∞,∞] by

Γ (x, ξ) = G (〈ξ, x〉 , ξ) for all (x, ξ) ∈ X (T )×∆.

Claim 1. Γ is lower semicontinuous on X (T )×∆.

Proof of Claim 1. Consider a net {(xα, ξα)} in X (T )×∆ such that (xα, ξα)→ (x, ξ) ∈ X (T )×∆.
This is equivalent to xα → x and ξα → ξ. It follows that 〈ξα, xα〉 → 〈ξ, x〉. In fact,

|〈ξα, xα〉 − 〈ξ, x〉| ≤ |〈ξα, xα〉 − 〈ξα, x〉|+ |〈ξα, x〉 − 〈ξ, x〉| = |〈ξα, xα − x〉|+ |〈ξα, x〉 − 〈ξ, x〉|

≤ ‖ξα‖ ‖xα − x‖+ |〈ξα, x〉 − 〈ξ, x〉| = ‖xα − x‖+ |〈ξα, x〉 − 〈ξ, x〉| → 0.
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Since G is lower semicontinuous, it then follows that

lim inf
α

Γ (xα, ξα) = lim inf
α

G (〈ξα, xα〉 , ξα) ≥ G (〈ξ, x〉 , ξ) = Γ (x, ξ)

as wanted. �

In particular, Γ (x, ·) : ∆→ [−∞,∞] is lower semicontinuous on ∆ for all x ∈ X (T ), thus

g (x) = inf
ξ∈∆

Γ (x, ξ) = min
ξ∈∆

Γ (x, ξ) = min
ξ∈∆

G (〈ξ, x〉 , ξ) (56)

that is the inf is attained.

Claim 2. g is lower semicontinuous on X (T ).

Proof of Claim 2. Consider a sequence {xn} in X (T ) such that xn → x ∈ X (T ). Then, there
exists a subsequence {xnk} such that lim infn g (xn) = limk g (xnk). Furthermore, by (56), for each
k there exists ξnk ∈ ∆ such that g (xnk) = Γ (xnk , ξnk). Since ∆ is compact, there exists a subnet{
ξnkα

}
such that ξnkα → ξ̄ ∈ ∆. By Claim 1,

lim inf
n

g (xn) = lim
k
g (xnk) = lim

α
g
(
xnkα

)
= lim

α
Γ
(
xnkα , ξnkα

)
≥ Γ

(
x, ξ̄
)
≥ min

ξ∈∆
Γ (x, ξ) = g (x)

as wanted. �

Now assume G ∈ H (T ×∆), since G (·, ξ) is extended-valued continuous on T for each ξ ∈ ∆,
then it is upper semicontinuous on T for each ξ ∈ ∆. Therefore Γ (·, ξ) : X (T ) → [−∞,∞] is upper
semicontinuous on X (T ) for all ξ ∈ ∆,31 finally g (·) = infξ∈∆ Γ (·, ξ) is upper semicontinuous too. �

Lemma 52 If G ∈ E (T ×∆), then

g (x) = inf
ξ∈∆

G (〈ξ, x〉 , ξ) ∀x ∈ X (T ) ,

is uniformly continuous.

Proof. By definition, given ε > 0, there is δ > 0 such that |G (t, ξ)−G (t′, ξ)| ≤ ε for all ξ ∈ ∆ with
dom (G (·, ξ)) = T , and all t, t′ ∈ R with |t− t′| ≤ δ.

Take x, y ∈ X (T ) such that ‖x− y‖ ≤ δ. Since g (x) ∈ R (see Lemma 50), there is ξx ∈ ∆
such that g (x) ≥ G (〈ξx, x〉 , ξx) − ε, and it must be the case that dom (G (·, ξx)) = T . More-
over, since ‖x− y‖ ≤ δ, then |〈ξx, x〉 − 〈ξx, y〉| ≤ ‖ξx‖ ‖x− y‖ ≤ δ. By uniform equicontinuity
|G (〈ξx, x〉 , ξx)−G (〈ξx, y〉 , ξx)| ≤ ε, and so G (〈ξx, y〉 , ξx)−G (〈ξx, x〉 , ξx) ≤ ε thus

g (x) ≥ G (〈ξx, x〉 , ξx)− ε ≥ G (〈ξx, y〉 , ξx)− 2ε ≥ inf
ξ∈∆

G (〈ξ, y〉 , ξ)− 2ε = g (y)− 2ε.

Exchanging the roles of x and y, we get |g (x)− g (y)| ≤ 2ε for all x, y ∈ X (T ) such that ‖x− y‖ ≤ δ,
and so g is uniformly continuous. �

31Let ξ ∈ ∆, if {xn} in X (T ) and xn → x ∈ X (T ), then 〈ξ, xn〉 → 〈ξ, x〉 and lim supnG (〈ξ, xn〉 , ξ) ≤ G (〈ξ, x〉 , ξ).
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A.3.4 Monotone Continuity on Function Spaces

Theorem 53 Let Σ be a σ-algebra, and I : B0 (Σ)→ R be such that

I (ϕ) = inf
p∈∆

G

(∫
ϕdp, p

)
, (57)

where G : R×∆ → (−∞,∞] is jointly lower semicontinuous, grounded,32 and increasing in the first
component. The following conditions are equivalent:

(i) I is monotone continuous (i.e., I (ϕn) ↑ I (ϕ) if ϕn ↑ ϕ);

(ii) if ϕ,ψ ∈ B0 (Σ), k ∈ R, and Σ 3 En ↓ ∅, then I (ψ) > I (ϕ) implies that there exists n ∈ N such
that I

(
k1En + ψ1Ecn

)
> I (ϕ);

(iii) G (·, p) ≡ ∞ for all p /∈ ∆σ;

(iv) there is q ∈ ∆σ such that {p ∈ ∆ : G (t, p) ≤ α} is a weakly compact subset of ∆σ (q) for all
t, α ∈ R.

(v) there is q ∈ ∆σ such that G (·, p) ≡ ∞ for all p /∈ ∆σ (q);

Proof. We will use the following claim.
Claim. Let P be a subset of ∆. The following statements are equivalent:

(a) G (·, p) ≡ ∞ for all p /∈ P ;

(b)
⋃
t,α∈R

{p ∈ ∆ : G (t, p) ≤ α} ⊆ P ;

(c)
∞⋃

m,n=1

{p ∈ ∆ : G (m, p) ≤ n} ⊆ P .

Proof of the Claim. If there exists p̄ /∈ P such that p̄ ∈
⋃
t,α∈R

{p ∈ ∆ : G (t, p) ≤ α}, then G (t̄, p̄) ≤ ᾱ

for some t̄, ᾱ ∈ R and G (·, p̄) 6≡ ∞. That is not (b) implies not (a), and (a) implies (b).
Clearly (b) implies (c).
If there exists p̄ /∈ P such that G (·, p̄) 6≡ ∞, then there is t̄ ∈ R such that G (t̄, p̄) <∞, therefore

there is n̄ ∈ N such that G (t̄, p̄) ≤ n̄ and, by monotonicity of G (·, p̄), for all m̄ ≤ t̄, G (m̄, p̄) ≤ n̄,

thus exists p̄ /∈ P such that p̄ ∈
∞⋃

m,n=1

{p ∈ ∆ : G (m, p) ≤ n}. That is not (a) implies not (c), and (c)

implies (a). �

(i) implies (ii). Suppose first that k ≤ minψ. Set ψn = k1En + ψ1Ecn , then ψn ↑ ψ and
I (ψn) ↑ I (ψ). Therefore there is n0 such that I (ψn0) > I (ϕ). If k > minψ, then k1En + ψ1Ecn ≥
(minψ) 1En + ψ1Ecn , but there is n0 such that I

(
(minψ) 1En0

+ ψ1Ecn0

)
> I (ϕ), by monotonicity

I
(
k1En0

+ ψ1Ecn0

)
≥ I

(
(minψ) 1En0

+ ψ1Ecn0

)
> I (ϕ).

(ii) implies (iii). By the Claim, it is enough to show that {p ∈ ∆ : G (t, p) ≤ α} ⊆ ∆σ for all t and
α in R. Let En ↓ ∅ and r ∈ {p ∈ ∆ : G (t, p) ≤ α}. Set ϕ ≡ α and ψ ≡ β with β > α ∨ 0. For each
k > 0 there is nk ≥ 1 such that α = I (ϕ) < I

(
−k1Enk + β1Ecnk

)
.33 Thus, since

−k1Enk + β1Ecnk ≤ −k1En + β1Ecn , ∀n ≥ nk.

32That is, such that infp∈∆G (t, p) = t for all t ∈ R.
33The first equality descends from the normalization of I that corresponds to the groundedness of G.
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it follows
α < I

(
−k1En + β1Ecn

)
= inf
p∈∆

G
(〈
p,−k1En + β1Ecn

〉
, p
)
, ∀n ≥ nk.

If
〈
r,−k1En + β1Ecn

〉
≤ t for some n ≥ nk, monotonicity of G (·, r) would deliver

inf
p∈∆

G
(〈
p,−k1En + β1Ecn

〉
, p
)
≤ G

(〈
r,−k1En + β1Ecn

〉
, r
)
≤ G (t, r) ≤ α

which is absurd. Conclude that
〈
r,−k1En + β1Ecn

〉
> t for all n ≥ nk hence

−kr (En) + β (1− r (En)) > t, ∀n ≥ nk
−kr (En) + β > t, ∀n ≥ nk

r (En) <
β − t
k

, ∀n ≥ nk

and so limn r (En) ≤ k−1 (β − t) for each k > 0, finally limn r (En) = 0, i.e., r ∈ ∆σ.

(iii) implies (iv). By (iii) and the Claim, {p ∈ ∆ : G (t, p) ≤ α} ⊆ ∆σ for all t, α ∈ R, moreover it
is weak* compact (by lower semicontinuity of G), and so, being included in ∆σ, weakly compact (e.g.,
[20, Prop. 2.13]). Then, for all m,n ∈ N, there is q(n,m) ∈ ∆σ such that p � q(n,m) whenever p ∈ ∆
and G (m, p) ≤ n. Given an enumeration h : N×N→ N of N×N, set q =

∑
(n,m)∈N×N 2−h(n,m)q(n,m).

Then,
∞⋃

m,n=1

{p ∈ ∆ : G (m, p) ≤ n} ⊆ ∆σ (q) .

Let t, α ∈ R, and choose m < t and n ≥ α, then G (t, p) ≤ α and monotonicity of G (·, p) implies

G (m, p) ≤ G (t, p) ≤ α ≤ n

that is {p ∈ ∆ : G (t, p) ≤ α} ⊆ {p ∈ ∆ : G (m, p) ≤ n} ⊆ ∆σ (q).

(iv) implies (v) descends immediately from the claim.

(v) implies (i). Let ϕn ↑ ϕ0. For each n ≥ 0, define γn : ∆→ (−∞,+∞] by

γn (p) = G

(∫
ϕndp, p

)
.

Each γn is weak* lower semicontinuous, and the sequence {γn} is increasing. Moreover, γn pointwise
converges to γ0, i.e., γn ↑ γ0. For, if p ∈ ∆σ (q), then

∫
ϕndp ↑

∫
ϕ0dp by the Levi Monotone

Converge Theorem (notice that ϕ1 is bounded below), and so, since G (·, p) is lower semicontinuous
and increasing on R, limnG

(∫
ϕndp, p

)
= G

(∫
ϕ0dp, p

)
. If p /∈ ∆σ (q), then γn (p) =∞ for all n ∈ N.

We conclude that γn pointwise converges (and so, by [11, Rem. 5.5], Γ-converges) to γ0. By [11,
Thm. 7.4], minp∈∆ γn (p) → minp∈∆ γ0 (p), that is I (ϕn) → I (ϕ0), and monotonicity of I delivers:
I (ϕn) ↑ I (ϕ0). �

B Integrals which are concave functionals

Let φ : R→ R be an increasing and concave function. Motivated by the study of smooth preferences,
we are interested in the concave functionals g : X → R given by

g (x) =
∫

∆

φ (〈ξ, x〉) dµ (ξ) , ∀x ∈ X, (58)

48



where µ is a countably additive Borel probability measure on the simplex ∆, i.e. µ ∈ ∆σ (B (∆)).
To study the functional (58) we need some notation. We denote by ca (B (∆)) the set of all

countably additive elements of ba (B (∆)), ca+ (B (∆)) = ca (B (∆)) ∩ ba+ (B (∆)) is its positive cone.
Finally,

ba (B (∆) , µ) = {ν ∈ ba (B (∆)) : B ∈ B (∆) and µ (B) = 0 implies ν (B) = 0}

is (isometrically isomorphic to, e.g., [49, Ch. IV.9]) the dual of L∞ (µ) = L∞ (∆,B (∆) , µ) and

ca (B (∆) , µ) = ca (B (∆)) ∩ ba (B (∆) , µ)

is (isometrically isomorphic to) L1 (µ) (via the Radon-Nikodym derivative ν 7→ dν/dµ).
Consider the mapping A : X → L∞ (µ) defined by Ax = 〈·, x〉 for all x ∈ X. A is well defined

since 〈·, x〉 is affine and continuous on the compact set ∆, then it belongs to L∞ (µ). A is linear, in
fact, for all x, y ∈ X and α ∈ R,

A (αx+ y) (ξ) = 〈ξ, αx+ y〉 = α 〈ξ, x〉+ 〈ξ, y〉

= α (Ax) (ξ) +Ay (ξ) = (αAx+Ay) (ξ) ∀ξ ∈ ∆,

hence A (αx+ y) = αAx+Ay. A is bounded, in fact,

|Ax (ξ)| = |〈ξ, x〉| ≤ ‖ξ‖ ‖x‖ = ‖x‖ ∀ξ ∈ ∆, x ∈ X,

thus
‖Ax‖L∞(µ) ≤ 1 ‖x‖ ∀x ∈ X,

and ‖|A|‖ ≤ 1. Then A is continuous, and obviously positive.
Its adjoint is A∗ : ba (B (∆) , µ)→ X∗ is defined, for all ν ∈ ba (B (∆) , µ) by A∗ν = νA, that is

〈A∗ν, x〉 = 〈ν,Ax〉 =
∫

∆

Axdν =
∫

∆

〈ξ, x〉 dν (ξ) , ∀x ∈ X. (59)

A∗ is continuous and A∗ν is denoted by
∫

∆
ξdν (ξ) in view of (59).

Moreover, A∗ is obviously positive, and it preserves the norm between the positive cones ba+ (B (∆))
and X∗+. In fact, if ν ∈ ba+ (B (∆) , µ), then ‖ν‖ba(B(∆),µ) = ν (∆) =

∫
∆

1dν =
∫

∆
〈ξ, e〉 dν (ξ) =

〈A∗ν, e〉 = ‖A∗ν‖X∗ .
For every ξ ∈ X∗+, define

Γ (ξ) = (A∗)−1 (ξ) ∩ ca+ (B (∆) , µ) = {ν ∈ ca+ (B (∆) , µ) : A∗ν = ξ}

=
{
ν ∈ ca+ (B (∆) , µ) :

∫
∆

ζdν (ζ) = ξ

}
.

Γ (ξ) is a (possibly empty) closed and convex (hence weakly closed) subset of ca+ (B (∆) , µ) and
ν (∆) = ξ (e) for all ν ∈ Γ (ξ).34

In particular, if ξ ∈ ∆, then

Γ (ξ) =
{
ν ∈ ∆σ (µ) :

∫
∆

ζdν (ζ) = ξ

}
.

Finally, in this case, for all k > 0, Γ (kξ) = kΓ (ξ), and the same is true for k = 0 if Γ (ξ) 6= ∅, while
Γ (kξ) = {0} 6= kΓ (ξ) = ∅ if k = 0 and Γ (ξ) = ∅. In fact,

34(A∗)−1 (ξ) is closed in ba (B (∆) , µ) since A∗ is continuous, while ca+ (B (∆) , µ) is closed in ca (B (∆) , µ) which is

a complete subspace of ba (B (∆) , µ). Moreover, for all ν ∈ Γ (ξ), ν ≥ 0 and A∗ν = ξ, hence ν (∆) = 〈A∗ν, e〉 = ξ (e).
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• if k > 0, then γ ∈ ca+ (B (∆) , µ) and A∗γ = ξ, implies kγ ∈ ca+ (B (∆) , µ) and A∗kγ = kξ,
that is kΓ (ξ) ⊆ Γ (kξ), conversely, if ν ∈ ca+ (B (∆) , µ) and A∗ν = kξ, then γ = k−1ν ∈
ca+ (B (∆) , µ) and A∗γ = A∗k−1ν = k−1A∗ν = ξ, and ν = kγ, that is Γ (kξ) ⊆ kΓ (ξ);

• if k = 0, then ν ∈ ca+ (B (∆) , µ) and A∗ν = 0 imply ‖ν‖ba(B(∆),µ) = ‖A∗ν‖X∗ = 0 and ν = 0,
that is Γ (kξ) = {0}, while kΓ (ξ) = {0} if Γ (ξ) 6= ∅ and kΓ (ξ) = ∅ if Γ (ξ) = ∅.

Theorem 54 The functional (58) is finite, concave, continuous and monotone on X.
Its conjugate is, for all ξ ∈ X∗,

g∗ (ξ) = sup
{∫

∆

φ∗
(
dν

dµ
(ζ)
)
dµ (ζ) : ν ∈ Γ (ξ)

}
.

with the convention g∗ (ξ) = −∞ if Γ (ξ) = ∅.
Moreover, for all (t, ξ) ∈ R×∆,

Gξ (t) =

{
inf
{

infk≥0

[
tk −

∫
∆
φ∗
(
k dνdµ (ζ)

)
dµ (ζ)

]
: ν ∈ Γ (ξ)

}
if Γ (ξ) 6= ∅,

supk∈R φ (k) if Γ (ξ) = ∅.

Proof. The properties of the functional g may be easily obtained directly but we shall get them from
more general results. Our starting point is the functional

Iφ (u) =
∫

∆

φ (u (ξ)) dµ (ξ)

defined for u ∈ L∞ (µ). This is a normal concave integral, studied by [42] and [43].
By [43, Corollary 2A], Iφ is finite, concave, and continuous; monotonicity immediately descends

from that of φ. Moreover, the conjugate I∗φ : ba (B (∆) , µ)→ [−∞,∞) of Iφ is given by

I∗φ (ν) = Iφ∗ (u∗) =
∫

∆

φ∗ (u∗ (ζ)) dµ (ζ) (60)

if there exists u∗ ∈ L1 (µ) such that

ν (u) =
∫

∆

u (ζ)u∗ (ζ) dµ (ζ) , ∀u ∈ L∞ (µ) ,

while
I∗φ (ν) = −∞

otherwise. By the Radon-Nikodym Theorem, the condition “there exists u∗ ∈ L1 (µ) such that
ν (u) =

∫
∆
u (ζ)u∗ (ζ) dµ (ζ) for all u ∈ L∞ (µ)” amounts to “ν is countably additive” and in this case

u∗ = dν/dµ is unique (as an equivalence class).35 Therefore,

I∗φ (ν) =

{ ∫
∆
φ∗
(
dν
dµ (ζ)

)
dµ (ζ) if ν is countably additive,

−∞ otherwise.
(61)

Consider the bounded linear operator

A : X → L∞ (µ)
x 7→ 〈·, x〉

35In fact, if ν is countably additive, it is enough to set u∗ = dν/dµ to obtain u∗ ∈ L1 (µ) and ν (u) =∫
∆ u (ζ) dν (ζ) =

∫
∆ u (ζ)u∗ (ζ) dµ (ζ) for all u ∈ L∞ (µ). Conversely, if there exists u∗ ∈ L1 (µ) such that

ν (u) =
∫
∆ u (ζ)u∗ (ζ) dµ (ζ) for all u ∈ L∞ (µ), then ν (B) =

∫
B u
∗ (ζ) dµ (ζ) for all B ∈ B (∆), which implies ν

is countably additive and u∗ = dν/dµ.
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that we studied above. Clearly g = Iφ ◦A or, according to standard convex analysis notation g = IφA.
In particular, g is finite, concave, continuous, and monotone.

Since Iφ is finite and continuous on L∞ (µ), [43, Theorem 3] guarantees that g∗ = (IφA)∗ = A∗I∗φ
where A∗ is the adjoint of A, and A∗I∗φ is defined, for all ξ ∈ X∗, by

A∗I∗φ (ξ) = sup
{
I∗φ (ν) : ν ∈ ba (B (∆) , µ) , A∗ν = ξ

}
. (62)

Moreover, the sup is attained if {ν ∈ ba (B (∆) , µ) : A∗ν = ξ} 6= ∅.
But, Iφ is monotone, therefore I∗φ (ν) = −∞ for all ν /∈ ba+ (B (∆) , µ). Then (62) implies

g∗ (ξ) = sup
{
I∗φ (ν) : ν ∈ ba+ (B (∆) , µ) , A∗ν = ξ

}
. (63)

By (61), I∗φ (ν) = −∞ for all ν /∈ ca (B (∆) , µ). Then (63) amounts to

g∗ (ξ) = sup
{
I∗φ (ν) : ν ∈ ca+ (B (∆) , µ) , A∗ν = ξ

}
= sup

{
I∗φ (ν) : ν ∈ Γ (ξ)

}
and (61) again delivers

g∗ (ξ) = A∗I∗φ (ξ) = sup
{∫

∆

φ∗
(
dν

dµ
(ζ)
)
dµ (ζ) : ν ∈ Γ (ξ)

}
.

By Lemma 31, Gξ = gξ for all ξ ∈ ∆. By Corollary 36, for each (t, ξ) ∈ R×∆,

Gξ (t) = inf
k≥0
{kt− g∗ (kξ)} = inf

k≥0

{
tk − sup

{∫
∆

φ∗
(
dν

dµ
(ζ)
)
dµ (ζ) : ν ∈ Γ (kξ)

}}
,

thus, if Γ (ξ) 6= ∅, it follows that

Gξ (t) = inf
k≥0

{
tk − sup

{∫
∆

φ∗
(
d (kγ)
dµ

(ζ)
)
dµ (ζ) : γ ∈ Γ (ξ)

}}
= inf
k≥0

{
tk − sup

{∫
∆

φ∗
(
k
dγ

dµ
(ζ)
)
dµ (ζ) : γ ∈ ∆σ (µ) ,

∫
∆

ζdγ (ζ) = ξ

}}
= inf
k≥0

{
inf

γ∈∆σ(µ):
∫
∆ ζdγ(ζ)=ξ

{
tk −

∫
∆

φ∗
(
k
dγ

dµ
(ζ)
)
dµ (ζ)

}}

= inf
γ∈∆σ(µ):

∫
∆ ζdγ(ζ)=ξ

inf
k≥0

{
tk −

∫
∆

φ∗
(
k
dγ

dµ
(ζ)
)
dµ (ζ)

}
,

else, if Γ (ξ) = ∅,

sup
{∫

∆
φ∗
(
dν
dµ (ζ)

)
dµ (ζ) : ν ∈ Γ (kξ)

}
= sup

{∫
∆
φ∗
(
d(kγ)
dµ (ζ)

)
dµ (ζ) : γ ∈ Γ (ξ)

}
= −∞ if k > 0

sup
{∫

∆
φ∗
(
dν
dµ (ζ)

)
dµ (ζ) : ν ∈ Γ (kξ)

}
= φ∗ (0) = infk∈R {−φ (k)} = − supk∈R φ (k) if k = 0

and

Gξ (t) = inf
k≥0

{
tk − sup

{∫
∆

φ∗
(
dν

dµ
(ζ)
)
dµ (ζ) : ν ∈ Γ (kξ)

}}
= sup

k∈R
φ (k) .

Which concludes the proof. �

B.1 Normalized Smooth Preferences Functionals

In this subsection we assume that φ is strictly increasing (and concave from R to R), and consider the
normalized version

g (x) = φ−1

[∫
∆

φ (〈ξ, x〉) dµ (ξ)
]

(64)
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of (58). First observe that φ (R) is an open half line (−∞, a), with a = supk∈R φ (k). Then φ−1 can
be extended to an extended-valued continuous and monotone function from [−∞,∞] to [−∞,∞] by
setting

φ̂−1 (t) =


∞ if t ≥ a
φ−1 (t) if a > t > −∞
−∞ if t = −∞

, (65)

this extension is simply denoted φ−1. Application of Theorem 54 and Lemma 32 delivers, for all
(t, ξ) ∈ R×∆,

Gξ (t) =

{
φ−1

(
inf
{

infk≥0

[
tk −

∫
∆
φ∗
(
k dνdµ (ζ)

)
dµ (ζ)

]
: ν ∈ Γ (ξ)

})
if Γ (ξ) 6= ∅

φ−1 (supk∈R φ (k)) =∞ if Γ (ξ) = ∅
, i.e.,

Gξ (t) = φ−1

(
inf
{

inf
k≥0

[
tk −

∫
∆

φ∗
(
k
dν

dµ
(ζ)
)
dµ (ζ)

]
: ν ∈ Γ (ξ)

})
(66)

with the usual convention inf ∅ =∞.

Lemma 55 For a twice differentiable φ : R→ R with φ′ > 0 and φ′′ < 0, the following facts are
equivalent:

(i) Jλ (·) = φ
(
φ−1 (·) + λ

)
is concave on φ (R) for all λ ≥ 0;

(ii) −φ′/φ′′ is weakly decreasing.

In this case φ is said to be DARA.

Proof. φ−1 is differentiable too with strictly positive derivative. Setting φ−1 (r) = ψ (r), we get

Jλ (r) = φ [ψ (r) + λ]

ψ′ (r) =
1

φ′ (ψ (r))

and Jλ is twice differentiable with

J ′λ (r) =
φ′ [ψ (r) + λ]
φ′ (ψ (r))

J ′′λ (r) =

φ′′ [ψ (r) + λ]
φ′ (ψ (r))

φ′ (ψ (r))− φ′ [ψ (r) + λ]
φ′′ (ψ (r))
φ′ (ψ (r))

[φ′ (ψ (r))]2

for all r ∈ φ (R) , λ ≥ 0. Therefore (i) is equivalent to

φ′′ (ψ (r) + λ)
φ′ (ψ (r))

φ′ (ψ (r))− φ′ (ψ (r) + λ)
φ′′ (ψ (r))
φ′ (ψ (r))

[φ′ (ψ (r))]2
≤ 0 ∀r ∈ φ (R) , λ ≥ 0⇔

φ′′ (ψ (r) + λ)φ′ (ψ (r))− φ′ (ψ (r) + λ)φ′′ (ψ (r)) ≤ 0 ∀r ∈ φ (R) , λ ≥ 0⇔
φ′′ (ψ (r) + λ)φ′ (ψ (r))

φ′′ (ψ (r))
− φ′ (ψ (r) + λ) ≥ 0 ∀r ∈ φ (R) , λ ≥ 0⇔

φ′ (ψ (r))
φ′′ (ψ (r))

− φ′ (ψ (r) + λ)
φ′′ (ψ (r) + λ)

≤ 0 ∀r ∈ φ (R) , λ ≥ 0⇔

− φ
′ (ψ (r) + λ)

φ′′ (ψ (r) + λ)
≤ − φ

′ (ψ (r))
φ′′ (ψ (r))

∀r ∈ φ (R) , λ ≥ 0

which amounts to (ii) since ψ is onto. �
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Proposition 56 If the scalar functions Jλ (r) = φ
[
φ−1 (r) + λ

]
are concave on φ (R) for all λ ≥ 0,

then (64) is 1-Lipschitz.

Proof. By the Jensen Inequality, we have

Jλ

(∫
∆

φ (〈ξ, x〉) dµ (ξ)
)
≥
∫

∆

Jλ (φ (〈ξ, x〉)) dµ (ξ) (67)

φ

(
φ−1

(∫
∆

φ (〈ξ, x〉) dµ (ξ)
)

+ λ

)
≥
∫

∆

φ (〈ξ, x〉+ λ) dµ (ξ)

φ−1

(∫
∆

φ (〈ξ, x〉) dµ (ξ)
)

+ λ ≥ φ−1

(∫
∆

φ (〈ξ, x+ λe〉) dµ (ξ)
)

g (x) + λ ≥ g (x+ λe)

for all λ ≥ 0. Proposition 49 delivers 1-Lipschitzianity. �

Proposition 57 The functional (64) is translation invariant for all µ ∈ ∆σ (B (∆)) if and only if φ
is CARA.

Proof. We only prove the “only if,” the converse being trivial. If g is translation invariant for all
µ ∈ ∆σ (B (∆)), then

φ−1

(∫
∆

φ (〈ξ, x+ λe〉) dµ (ξ)
)

= φ−1

(∫
∆

φ (〈ξ, x〉) dµ (ξ)
)

+ λ

for all x ∈ X, λ ∈ R, µ ∈ ∆σ (B (∆)). In particular choosing ξ1 6= ξ2 in ∆ and the probability measure
µ = (1/2) δξ1 + (1/2) δξ2 , we have

φ−1

(
φ (〈ξ1, x〉+ λ) + φ (〈ξ2, x〉+ λ)

2

)
= φ−1

(
φ (〈ξ1, x〉) + φ (〈ξ2, x〉)

2

)
+ λ.

The linear map x 7→ (〈ξ1, x〉 , 〈ξ2, x〉) from X into R2 is onto, because ξ1 and ξ2 are linearly indepen-
dent, therefore

φ−1

(
φ (t+ λ) + φ (r + λ)

2

)
= φ−1

(
φ (t) + φ (r)

2

)
+ λ ∀t, r, λ ∈ R. (68)

By [14, p. 28] φ is CARA.
We report his argument for the sake of completeness. Wlog, assume φ (0) = 0. Next observe that

Jλ is affine for all λ ∈ R, in fact it is continuous and, for all t′ = φ (t) , r′ = φ (r) ∈ φ (R), by (68)

Jλ

(
t′ + r′

2

)
= φ

[
φ−1

(
t′ + r′

2

)
+ λ

]
= φ

[
φ−1

(
φ (t) + φ (r)

2

)
+ λ

]
= φ

[
φ−1

(
φ (t+ λ) + φ (r + λ)

2

)]
=
φ (t+ λ) + φ (r + λ)

2

=
φ
(
φ−1 (φ (t)) + λ

)
2

+
φ
(
φ−1 (φ (r)) + λ

)
2

=
φ
(
φ−1 (t′) + λ

)
2

+
φ
(
φ−1 (r′) + λ

)
2

=
1
2
Jλ (t′) +

1
2
Jλ (r′) .

Moreover, Jλ (0) = φ
(
φ−1 (0) + λ

)
= φ (λ) for all λ ∈ R. It follows that there exists k : R→ R such

that
Jλ (w) = k (λ)w + φ (λ) ∀w ∈ φ (R) , λ ∈ R.
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Again by (68), for all t, r, λ ∈ R,

φ (t+ λ) + φ (r + λ)
2

= φ

(
φ−1

(
φ (t) + φ (r)

2

)
+ λ

)
= Jλ

(
φ (t) + φ (r)

2

)
= k (λ)

φ (t) + φ (r)
2

+φ (λ)

(69)
thus, for r = 0, φ (t+ λ) + φ (λ) = k (λ)φ (t) + 2φ (λ), or

φ (t+ λ) = k (λ)φ (t) + φ (λ)

and exchanging the roles of t and λ

φ (λ+ t) = k (t)φ (λ) + φ (t) (70)

hence
k (λ)φ (t) + φ (λ) = k (t)φ (λ) + φ (t) (71)

thus if t, λ 6= 0
k (λ)− 1
φ (λ)

=
k (t)− 1
φ (t)

= C

that is there exists a constant C such that

k (t) = Cφ (t) + 1 (72)

for all t 6= 0, but also if t = 0, (71) delivers k (0) = 1, and (72) holds.
Finally, plugging (72) in (70),

φ (λ+ t) = φ (λ) + φ (t) + Cφ (λ)φ (t) ∀t, λ ∈ R.

If C = 0, φ is linear; else

(Cφ (t) + 1) (Cφ (λ) + 1) = Cφ (t)Cφ (λ) + Cφ (λ) + Cφ (t) + 1

= C (φ (λ) + φ (t) + Cφ (λ)φ (t)) + 1

= Cφ (t+ λ) + 1.

Thus Cφ (t) + 1 is exponential. �

B.1.1 Relative Entropy

Here we further study the CARA case.

Proposition 58 The functional g : X → R given by

g (x) = −1
θ

log
∫

∆

e−θ〈ξ,x〉dµ (ξ) ,

with θ > 0, is translation invariant and, for every (t, ξ) ∈ R×∆,

g∗ (ξ) = −1
θ

inf {R (ν ‖ µ) : ν ∈ Γ (ξ)} , (73)

Gξ (t) = t+
1
θ

inf {R (ν ‖ µ) : ν ∈ Γ (ξ)} .

Proof. We first consider the case θ = 1. In view of Theorem 54, let φ (t) = −e−t and consider the
functional

g̃ (x) =
∫

∆

φ (〈ξ, x〉) dµ (ξ) =
∫

∆

−e−〈ξ,x〉dµ (ξ) .
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Clearly φ is concave and increasing. Next we evaluate φ∗ (t). Set ψ (t) = et,

ψ∗ (r) =


r log r − r if r > 0
0 if r = 0
∞ if r < 0

.

Since φ (t) = −ψ (−t), then

φ∗ (r) = −ψ∗ (r) =


r − r log r if r > 0
0 if r = 0
−∞ if r < 0

.

Claim. For all ν ∈ ∆σ (µ) and t ∈ R

inf
k≥0

[
tk −

∫
∆

φ∗
(
k
dν

dµ
(ζ)
)
dµ (ζ)

]
= −e−te−R(ν‖µ).

Proof of the Claim. First,

inf
k≥0

[
tk −

∫
∆

φ∗
(
k
dν

dµ
(ζ)
)
dµ (ζ)

]
= inf
k≥0

[
tk −

∫
∆

(
k
dν

dµ
(ζ)− k dν

dµ
(ζ) log k

dν

dµ
(ζ)
)
dµ (ζ)

]
.

If R (ν ‖ µ) <∞, then, for all k ≥ 0,∫
∆

(
k
dν

dµ
(ζ)− k dν

dµ
(ζ) log k

dν

dµ
(ζ)
)
dµ (ζ) =

∫
∆

(
k
dν

dµ
(ζ)− k dν

dµ
(ζ) log k − k dν

dµ
(ζ) log

dν

dµ
(ζ)
)
dµ (ζ)

=
∫

∆

(k − k log k)
dν

dµ
(ζ)− k dν

dµ
(ζ) log

dν

dµ
(ζ) dµ (ζ)

= k − k log k − kR (ν ‖ µ)

= k − k log k − k log eR(ν‖µ)

= k − k log keR(ν‖µ)

=
1

eR(ν‖µ)

(
eR(ν‖µ)k − eR(ν‖µ)k log eR(ν‖µ)k

)
=

1
eR(ν‖µ)

φ∗
(
eR(ν‖µ)k

)
,

and

inf
k≥0

[
tk −

∫
∆

φ∗
(
k
dν

dµ
(ζ)
)
dµ (ζ)

]
= inf
k≥0

[
tk − 1

eR(γ‖µ)
φ∗
(
eR(γ‖µ)k

)]
=

1
eR(γ‖µ)

inf
k≥0

[
t
(
eR(γ‖µ)k

)
− φ∗

(
eR(γ‖µ)k

)]
=

1
eR(γ‖µ)

inf
r≥0

[tr − φ∗ (r)] =
1

eR(γ‖µ)
inf
r∈R

[tr − φ∗ (r)]

=
1

eR(γ‖µ)
φ∗∗ (t) =

1
eR(γ‖µ)

φ (t) = −e−te−R(ν‖µ).

Else if R (ν ‖ µ) =∞∫
∆

(
k
dν

dµ
(ζ)− k dν

dµ
(ζ) log k

dν

dµ
(ζ)
)
dµ (ζ) =

∫
∆

(k − k log k)
dν

dµ
(ζ)− k dν

dµ
(ζ) log

dν

dµ
(ζ) dµ (ζ)

is 0 if k = 0 and −∞ otherwise. Then

inf
k≥0

[
tk −

∫
∆

φ∗
(
k
dν

dµ
(ζ)
)
dµ (ζ)

]
= 0 = −e−te−R(ν‖µ).
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As wanted. �

As a consequence, in view of Theorem 54, for all (t, ξ) ∈ R×∆,

G̃ξ (t) =

{
inf
{
−e−te−R(ν‖µ) : ν ∈ Γ (ξ)

}
if Γ (ξ) 6= ∅

supk∈R−e−k if Γ (ξ) = ∅

=

{
−e−t sup

{
e−R(ν‖µ) : ν ∈ Γ (ξ)

}
if Γ (ξ) 6= ∅

0 if Γ (ξ) = ∅
.

Moreover, g (x) = − log
∫

∆
e−〈ξ,x〉µ (dξ) = − log (−g̃ (x)), but r 7→ − log (−r) is monotone and

extended-valued continuous from [−∞, 0] to [−∞,∞]. Therefore, if Γ (ξ) is not empty,

Gξ (t) = − log
(
e−t sup

{
e−R(ν‖µ) : ν ∈ Γ (ξ)

})
= − log e−t − log

(
sup

{
e−R(ν‖µ) : ν ∈ Γ (ξ)

})
= t− sup

{
log e−R(ν‖µ) : ν ∈ Γ (ξ)

}
= t− sup {−R (ν ‖ µ) : ν ∈ Γ (ξ)}

= t+ inf {R (ν ‖ µ) : ν ∈ Γ (ξ)}

while, if Γ (ξ) is empty, then

Gξ (t) = − log (0) =∞ = t+ inf {R (ν ‖ µ) : ν ∈ Γ (ξ)} .

Monotonicity, translation invariance, concavity, and finiteness of g are easily shown. The conju-
gate of g can then be calculated by (iii) of Corollary 37, thus for all ξ ∈ ∆, g∗ (ξ) = −gξ (0) =
− inf {R (ν ‖ µ) : ν ∈ Γ (ξ)}.

Finally, if θ 6= 1, write θg to emphasize the dependence on θ with 1g = g. Clearly, θg (x) =
θ−1g (θx), therefore

(θg)∗ =
1
θ
g∗

and θGξ can be calculated by (iii) of Corollary 37. �

C A Family of Statistical Distance Functions

Throughout this section we adopt the convention 0 · ∞ = 0/0 = 0. We consider a strictly increasing
concave function φ : R→ R (with supR φ = a) and a countably additive probability measure µ on a
measurable space endowed with a σ-algebra B that contains at least two singletons (e.g. the σ-algebra
B (∆) considered in the previous section, provided ∆ contains at least two elements). We extend φ

by continuity to [−∞,∞], by setting φ (−∞) = −∞ and φ (∞) = a and we extend φ−1 (again by
continuity) as in (65). It is important to notice that such functions are extended valued continuous
and monotone.

We extend It (· ‖ µ), as defined by (19), to ∆ (B, µ) by setting It (γ ‖ µ) = ∞ if γ /∈ ∆σ (B, µ).
Before proving the basic properties of It (· ‖ µ), it is worth noticing few facts. The function

g (f) =
∫
φ (f) dµ, ∀f ∈ L∞ (µ) ,
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is (finite) concave, continuous, and monotone, see ([43, Corollary 2A]). It is well known that (L∞ (µ) , ‖·‖∞ ,≥)
is a normed Riesz space with order unit, ‖·‖∞ is its supnorm, and its topological dual is ba (B, µ). In
particular, see again ([43, Corollary 2A]), for all γ ∈ ∆ (B, µ) and all k ≥ 0,

g∗ (kγ) =

{ ∫
φ∗
(
k dγdµ

)
dµ if k = 0 or γ ∈ ∆σ (B, µ),

−∞ otherwise.

By Lemma 31 and Corollary 36, for all (t, γ) ∈ R×∆ (B, µ),

Gγ (t) = gγ (t) = inf
k∈R+

{kt− g∗ (kγ)} =

{
infk≥0

{
kt−

∫
φ∗
(
k dγdµ

)
dµ
}

if γ ∈ ∆σ (B, µ),

supR φ otherwise.

By Lemmas 28 and 29 the mapping (t, γ) 7→ Gγ (t) is quasiconvex and lower semicontinuous (when R
is endowed with the usual topology and ∆ (B, µ) is endowed with the weak* topology). From

It (γ ‖ µ) = φ−1 (Gγ (t))− t, ∀ (t, γ) ∈ R×∆ (B, µ) , (74)

we obtain some important properties of It (· ‖ µ).

Proof of Proposition 11. Indeed we show that for all t ∈ R,

(i) It (µ ‖ µ) = 0;

(ii) It (γ ‖ µ) ≥ 0 for each γ ∈ ∆ (B, µ);

(iii) It (· ‖ µ) is quasiconvex, weak* lower semicontinuous on ∆ (B, µ), and {γ ∈ ∆ (B, µ) : It (γ ‖ µ) ≤ c}
is a weakly compact subset of ∆σ (B, µ) for all c ∈ R.

Monotonicity of φ guarantees that dom φ∗ ⊆ R+.

(i) By the Fenchel-Moreau Theorem,

It (µ ‖ µ) = φ−1

(
inf
k≥0

[
kt−

∫
φ∗
(
k
dµ

dµ

)
dµ

])
− t = φ−1

(
inf
k≥0

[kt− φ∗ (k)]
)
− t = φ−1 (φ (t))− t = 0.

(ii) The inequality is trivial if γ /∈ ∆σ (B, µ). Else, by the Jensen inequality, for all k ≥ 0,∫
φ∗
(
k
dγ

dµ

)
dµ ≤ φ∗

(∫
k
dγ

dµ
dµ

)
= φ∗ (k) =

∫
φ∗
(
k
dµ

dµ

)
dµ.

Hence, It (γ ‖ µ) = φ−1
(

infk≥0

[
kt−

∫
φ∗
(
k dγdµ

)
dµ
])
− t ≥ φ−1

(
infk≥0

[
kt−

∫
φ∗
(
k dµdµ

)
dµ
])
− t =

It (µ ‖ µ) = 0.
(iii) Let c ∈ R and set,

C = {ν ∈ ∆ (B, µ) : It (ν ‖ µ) ≤ c} .

Next we show C = {ν ∈ ∆ (B, µ) : Gν (t) ≤ φ (c+ t)}.
⊆) Let γ ∈ C, then positivity of It (· ‖ µ) guarantees that

t ≤ φ−1 (Gγ (t)) ≤ c+ t,

and Gγ (t) ∈ φ (R), therefore
φ (t) ≤ Gγ (t) ≤ φ (c+ t) .

⊇) Let γ be such that Gγ (t) ≤ φ (c+ t), monotonicity of φ−1 delivers φ−1 (Gγ (t)) ≤ c+ t, that is
It (γ ‖ µ) ≤ c.
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By Lemmas 28 and 29 the mapping (t, γ) 7→ Gγ (t) is quasiconvex and lower-semicontinuous.
Therefore {ν ∈ ∆ (B, µ) : Gν (t) ≤ φ (c+ t)}, that is C, is convex and weak* compact. The observation
that C consists of countably additive measures delivers weak compactness (e.g., [20, Prop. 2.13]). �

Proof of Proposition 13. We first prove that (i) implies (ii). Let µ ∈ ∆σ (B) and t ∈ R. The
inequality holds by definition if I2

t (γ ‖ µ) =∞. Assume I2
t (γ ‖ µ) = c <∞, then

φ2 (t) ≤ G2
γ (t) ≤ φ2 (c+ t) . (75)

Since φ1 is more concave than φ2, then, for each f ∈ L∞ (µ), by Jensen’s inequality,∫
φ1 (f) dµ ≤ h

(∫
φ2 (f) dµ

)
,

hence,

G1
γ (t) = sup∫

fdγ≤t

∫
φ1 (f) dµ ≤ sup∫

fdγ≤t

h

(∫
φ2 (f) dµ

)
≤ h

(
G2
γ (t)

)
.

Where the last inequality descends from (75) and monotonicity of h. Moreover, notice that G2
γ (t) ∈

φ2 (R), therefore h
(
G2
γ (t)

)
∈ φ1 (R), and so does G1

γ (t). Finally,

I1
t (γ ‖ µ) + t = (φ1)−1 (

G1
γ (t)

)
≤ (φ1)−1 (

h
(
G2
γ (t)

))
= (φ2)−1 (

G2
γ (t)

)
= I2

t (γ ‖ µ) + t.

Conversely, let µ ∈ ∆σ (B). The function h = φ1 ◦ (φ2)−1 : φ2 (R) → R is strictly increasing and
φ1 = h ◦ φ2. Then, for any f ∈ L∞ (µ),

h

(∫
φ2 (f) dµ

)
= h

(
min

γ∈∆(B,µ)
G2
γ

(∫
fdγ

))
=
(
φ1 ◦ (φ2)−1

)(
G2
γ̄

(∫
fdγ̄

))
, (76)

where γ ∈ ∆σ (B, µ) and G2
γ̄

(∫
fdγ̄

)
∈ φ2 (R). Set t̄ =

∫
fdγ̄.

This implies that φ−1
2

(
G2
γ̄ (t̄)

)
∈ R and by (74)

φ−1
2 (Gγ̄ (t̄)) = I2

t̄ (γ̄ ‖ µ) + t̄.

This and (ii) yield 0 ≤ I1
t̄ (γ̄ ‖ µ) ≤ I2

t̄ (γ̄ ‖ µ) <∞. By (76), we conclude that

h

(∫
φ2 (f) dµ

)
= φ1

(
I2
t̄ (γ̄ ‖ µ) + t̄

)
≥ φ1

(
I1
t̄ (γ̄ ‖ µ) + t̄

)
.

Since I1
t̄ (γ̄ ‖ µ) = φ−1

1

(
G1
γ̄ (t̄)

)
− t̄ is finite, then G1

γ̄ (t̄) ∈ φ1 (R) and

φ1

(
I1
t̄ (γ̄ ‖ µ) + t̄

)
= φ1

(
φ−1

1

(
G1
γ̄ (t̄)

)
− t̄+ t̄

)
= G1

γ̄ (t̄)

= G1
γ̄

(∫
fdγ̄

)
≥ min
γ∈∆(B,µ)

G1
γ

(∫
fdγ

)
=
∫
φ1 (f) dµ =

∫
h (φ2 (f)) dµ.

Finally, h
(∫
φ2 (f) dµ

)
≥
∫
h (φ2 (f)) dµ for all µ ∈ ∆σ (B) and all f ∈ L∞ (µ). Since B contains two

singletons, this implies that h is concave. �

Corollary 59 Let φ1, φ2 : R → R two strictly increasing and concave functions, then the following
conditions are equivalent:

(i) φ1 is a positive affine transformation of φ2 (i.e. φ1 ≈ φ2);

(ii) I1
t (γ ‖ µ) = I2

t (γ ‖ µ) for all t ∈ R, µ ∈ ∆σ (B), and γ ∈ ∆ (B, µ).
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C.1 Order Orlicz Functions

Lemma 60 If φ is order Orlicz, then limt→∞ φ′ (t) = 0 and limt→−∞ φ′ (t) =∞.

Next proposition regroups the properties of functions that satisfy these tail conditions.

Proposition 61 Let φ : R→ R be strictly increasing, strictly concave, differentiable, with φ (0) = 0,
φ′ (0) = 1, limt→∞ φ′ (t) = 0, limt→−∞ φ′ (t) =∞, and set ψ = (φ′)−1.

• limt→∞ φ (t) /t = 0 and limt→−∞ φ (t) /t =∞.

• ψ : (0,∞) → (−∞,∞) is continuous and strictly decreasing with limt→0+ ψ (t) = ∞ and
limt→∞ ψ (t) = −∞.

• φ∗ is strictly concave on (0,∞) and

φ∗ (t) =


mink∈R (kt− φ (k)) = tψ (t)− φ (ψ (t)) if t > 0,
− supk∈R φ (k) if t = 0,
−∞ if t < 0;

moreover, it is differentiable on (0,∞) and (φ∗)′ = ψ.

Finally, arg maxφ∗ = {1}, maxφ∗ = 0 and φ∗ is strictly increasing on (0, 1) and strictly decreasing
on (1,∞).

The proofs are long but standard exercises in Convex Analysis (see, e.g., [41]), that we leave to the
reader. We extend ψ from [0,∞] to [−∞,∞] by continuity, that is we set ψ (0) =∞ and ψ (∞) = −∞.
This delivers

φ∗ (0) = − sup
k∈R

φ (k) = −φ (∞) = −φ (ψ (0)) = 0ψ (0)− φ (ψ (0)) .

That is φ∗ (t) = tψ (t)− φ (ψ (t)) for all t ≥ 0 and −∞ otherwise.
Next proposition shows the effects that the constraints on the elasticity of φ in the definition of

order Orlicz impose on its conjugate φ∗. This is a variation on classical results in the theory of Orlicz
spaces (see, e.g., [31]).

Proposition 62 Let φ : R→ R be strictly increasing, strictly concave, differentiable, with φ (0) = 0,
φ′ (0) = 1, limt→∞ φ′ (t) = 0, limt→−∞ φ′ (t) =∞, and set ρ = −φ∗.

The following statements are equivalent:

i) There exists T1 > 1 > ε1 > 0 and h ∈ R++ such that ρ (k/2) ≤ hρ (k) for each k ∈ (0, ε1) and
ρ (2k) ≤ hρ (k) for each k ∈ (T1,∞).

ii) There exists T2 > 1 > ε2 > 0 such that for each l ∈ (1,∞) there exists h (l) ∈ R++ such that for
each k ∈ (T2,∞)

ρ (lk) ≤ h (l) ρ (k)

and for each l ∈ (0, 1) there exists h (l) ∈ R++ such that for each k ∈ (0, ε2)

ρ (lk) ≤ h (l) ρ (k) .

iii) There exists T3 > 1 > ε3 > 0 and α ∈ (1,∞) such that for each k ∈ (0, ε3) ∪ (T3,∞),∣∣∣∣kρ′ (k)
ρ (k)

∣∣∣∣ ≤ α. (77)
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iv) There exists T4 > 0 > t4 and α ∈ (1,∞) such that for each t ∈ (T4,∞)

tφ′ (t)
φ (t)

≤ α

(α+ 1)
,

and for each t ∈ (−∞, t4)
tφ′ (t)
φ (t)

≥ α

(α− 1)
.

That is, φ is order Orlicz.

Proof. i)⇒ii). If l ∈ (1,∞) then there exists n ∈ N such that 2n ≥ l. Pick k > T1. It follows that
2nk ≥ lk ≥ k > T1 and ρ (lk) ≤ ρ (2nk). Therefore, since k ∈ (T1,∞), 2mk ∈ (T1,∞) for each m ∈ N
and we can apply the inequality of i), obtaining ρ (lk) ≤ ρ (2nk) ≤ hρ

(
2n−1k

)
≤ hnρ (k). Similarly, if

l ∈ (0, 1) then there exists n ∈ N such that 2−n ≤ l. Pick k < ε1. It follows that 2−nk ≤ lk ≤ k < ε1

and ρ (lk) ≤ ρ (2−nk). Therefore, since k ∈ (0, ε1), 2−mk ∈ (0, ε1) for each m ∈ N and we can apply
the inequality of i), obtaining ρ (lk) ≤ ρ (2−nk) ≤ hρ

(
2−n+1k

)
≤ hnρ (k). If we define ε2 = ε1 and

T2 = T1 the statement is proved.
ii)⇒iii). Pick l = 2 then for k ∈ (T2,∞), we have ρ (2k) ≤ h (2) ρ (k). Since T2 > 1, ρ(2k)

ρ(k) > 1
hence h (2) > 1. This implies that for k ∈ (T2,∞),

kρ′ (k) =

2k∫
k

ρ′ (k) ds ≤
2k∫
k

ρ′ (s) ds = ρ (2k)− ρ (k) ≤ ρ (2k) ≤ h (2) ρ (k) .

We can conclude that for k ∈ (T3,∞), where T3 = T2, |kρ′ (k) /ρ (k)| ≤ h (2).
Now, pick l = 1/2, then for k ∈ (0, ε2), we have ρ (k/2) ≤ h (1/2) ρ (k) that in turn implies that

for k ∈ (0, ε2),

k

2
ρ′ (k) =

k∫
k
2

ρ′ (k) ds ≥
k∫
k
2

ρ′ (s) ds = ρ (k)− ρ
(
k

2

)
≥ −ρ

(
k

2

)
≥ −h

(
1
2

)
ρ (k) .

This implies that for each k ∈ (0, ε3), where ε3 = ε2, −kρ′ (k) /ρ (k) = |kρ′ (k) /ρ (k)| ≤ 2h (1/2) .
If we define α = max {2h (1/2) , h (2)} then α ∈ (1,∞) and we finally obtain that∣∣∣∣kρ′ (k)

ρ (k)

∣∣∣∣ ≤ α ∀k ∈ (0, ε3) ∪ (T3,∞) .

iii)⇒iv). By Proposition 61, recall that, for each k ∈ (0,∞), ρ (k) = −kψ (k) + φ (ψ (k)) and
ρ′ (k) = −ψ (k), where ψ = (φ′)−1. By (77), it follows that for each k ∈ (T3,∞), kψ (k) (α− 1) ≤
αφ (ψ (k)).

Set t4 = ψ (T3), since ψ ((0,∞)) = R, ψ is strictly decreasing and continuous, and ψ (1) =
(φ∗)′ (1) = 0, then t4 < 0 and for each t ∈ (−∞, t4) there exists k ∈ (T3,∞) such that t = ψ (k) =
(φ′)−1 (k), therefore

tφ′ (t) (α− 1) = ψ (k) k (α− 1) ≤ αφ (ψ (k)) = αφ (t) .

Since t < 0 and α > 1, this implies tφ′ (t) /φ (t) ≥ α/ (α− 1) for each t ∈ (−∞, t4).
Similarly, by (77), for k ∈ (0, ε3), kψ (k) ≤ α [−kψ (k) + φ (ψ (k))], which implies that for k ∈

(0, ε3), kψ (k) (α+ 1) ≤ αφ (ψ (k)).
Set T4 = ψ (ε3), then T4 > 0 and for each t ∈ (T4,∞) there exists k ∈ (0, ε3) such that t = ψ (k) =

(φ′)−1 (k), therefore

tφ′ (t) (α+ 1) = ψ (k) k (α+ 1) ≤ αφ (ψ (k)) = αφ (t) .
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Since t > 0 and α > 1, this implies tφ′ (t) /φ (t) ≤ α/ (α+ 1) for each t ∈ (T4,∞).
iv)⇒i) Let ε1 = φ′ (T4). Since φ′ : (−∞,∞) → (0,∞) is onto, strictly decreasing, φ′ (0) = 1

and ψ = (φ′)−1, then ε1 ∈ (0, 1) and for all k ∈ (0, ε1) there exists t ∈ (T4,∞) such that k =
φ′ (t). Therefore t = ψ (k) and tφ′ (t) (α+ 1) ≤ αφ (t) implies kψ (k) (α+ 1) ≤ αφ (ψ (k)), that is
−kρ′ (k) /ρ (k) ≤ α. Similarly, T1 = φ′ (t4) belongs to (1,∞) and kρ′ (k) /ρ (k) ≤ α for all k ∈ (T1,∞).

Thus, for each k ∈ (T1,∞),

log
ρ (2k)
ρ (k)

=

2k∫
k

ρ′ (s)
ρ (s)

ds ≤ α
2k∫
k

1
s
ds = α log 2,

which implies for each k ∈ (T1,∞), ρ (2k) ≤ 2αρ (k). Similarly, if k ∈ (0, ε1),

log
ρ (k)
ρ
(
k
2

) =

k∫
k
2

ρ′ (s)
ρ (s)

ds ≥ −α
k∫
k
2

1
s
ds = −α log 2.

This implies that ρ (k) ≥ 2−αρ (k/2) for each k ∈ (0, ε1), hence the statement. �

Remark 63 Notice that if i) holds, for each l ∈ (0,∞) there exists h1 (l) > 0 such that ρ (lk) ≤
h1 (l) ρ (k) for each k ∈

(
T1 ∨ l−1,∞

)
. Indeed, pick l ∈ (0,∞), then there exists an n̄ ∈ N such that

2n̄ ≥ l. Since k ∈
(
T1 ∨ l−1,∞

)
then 2nk ∈

(
T1 ∨ l−1,∞

)
for each n ∈ N and

ρ (lk) ≤ ρ
(
2n̄k

)
≤ hn̄ρ (k) .

Similarly, for each l ∈ (0,∞) there exists h2 (l) > 0 such that ρ (lk) ≤ h2 (l) ρ (k) for each k ∈(
0, ε1 ∧ l−1

)
. Indeed, pick l ∈ (0,∞), then there exists an n̄ ∈ N such that 1/2n̄ ≤ l. Since k ∈(

0, ε1 ∧ l−1
)

then k/2n ∈
(
0, ε1 ∧ l−1

)
for each n ∈ N and

ρ (lk) ≤ ρ
(
2−n̄k

)
≤ hn̄ρ (k) .

Let γ ∈ ∆σ (B, µ), for all t ∈ R, define Ft : [0,∞)→ [−∞,∞] by k 7→ kt−
∫
φ∗
(
k dγdµ

)
dµ.

Proposition 64 Let φ be order Orlicz, if γ ∈ ∆σ (B, µ) then int domFt ∈ {∅,R++}.

Proof. If int domFt = ∅ there is nothing to prove. Else there exists k ∈ R++ such that k ∈ int domFt,
and so

∫
ρ
(
k dγdµ

)
dµ < ∞. Fix l ∈ (0,∞), define f = k dγdµ and call A =

{
ω : f (ω) > T1 ∨ 1

l

}
,

B =
{
ω : f (ω) ∈

(
0, ε1 ∧ 1

l

)}
, C = {ω : f (ω) = 0} and D = (A ∪B ∪ C)c. Then, it follows that

Ft (lk) = lkt−
∫
φ∗ (lf) dµ = lkt+

∫
ρ (lf) dµ = lkt+

∫
A

ρ (lf) dµ+
∫
B

ρ (lf) dµ+
∫
C

ρ (lf) dµ+
∫
D

ρ (lf) dµ

≤ lkt+ h1 (l)
∫
A

ρ (f) dµ+ h2 (l)
∫
B

ρ (f) dµ+
∫
C

ρ (f) dµ+ (ρ (lε1 ∧ 1) ∨ ρ (lT1 ∨ 1))µ (D) <∞

�

Indeed Proposition 64 shows that for an order Orlicz φ and γ ∈ ∆σ (B, µ), φ∗ (r (dγ/dµ)) ∈ L1 (µ)
for some r > 0 if and only if φ∗ (r (dγ/dµ)) ∈ L1 (µ) for all r > 0.

Lemma 65 Let φ be order Orlicz. If γ ∈ ∆σ (B, µ) and φ∗ (dγ/dµ) ∈ L1 (µ), then ψ (k (dγ/dµ)) ∈
L1 (γ) for each k > 0.
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Proof. Notice that for each h1, h2, t > 0 we have that

ψ ((h1 + h2) t) t ≤ φ∗ ((h1 + h2) t)− φ∗ (h1t)
h2

≤ ψ (h1t) t. (78)

Let k > 0. DefineA =
{
ω : k dγdµ (ω) = 0

}
, B =

{
ω : k dγdµ (ω) ∈ (1,∞)

}
and C =

{
ω : k dγdµ (ω) ∈ (0, 1]

}
.

Set h1 = k and take any h2 ∈ (0,∞). Then for each ω ∈ B, since ψ
(
k dγdµ (ω)

)
≤ 0 and dγ

dµ (ω) > 0,
by (78), we have that

φ∗
(

(k + h2) dγdµ (ω)
)
− φ∗

(
k dγdµ (ω)

)
h2

≤ ψ
(
k
dγ

dµ
(ω)
)
dγ

dµ
(ω) ≤ 0 (79)

that is

0 ≤ 1B

∣∣∣∣ψ(k dγdµ
)∣∣∣∣ dγdµ ≤ φ∗

(
k dγdµ

)
− φ∗

(
(k + h2) dγdµ

)
h2

1B

By Proposition 64, φ∗ (r (dγ/dµ)) ∈ L1 (µ) for each r > 0, therefore,
∫
B

∣∣∣ψ (k dγdµ)∣∣∣ dγ <∞.

Consider again (78), but set h1 = h2 = k
2 . If ω ∈ C, it follows that,

0 ≤ ψ
(
k
dγ

dµ
(ω)
)
dγ

dµ
(ω) ≤

φ∗
(
k dγdµ (ω)

)
− φ∗

(
k
2
dγ
dµ (ω)

)
k/2

that is

0 ≤ 1C

∣∣∣∣ψ(k dγdµ
)∣∣∣∣ dγdµ ≤ φ∗

(
k dγdµ

)
− φ∗

(
k
2
dγ
dµ

)
k/2

1C

By Proposition 64, φ∗ (r (dγ/dµ)) ∈ L1 (µ) for each r > 0, therefore,
∫
C

∣∣∣ψ (k dγdµ)∣∣∣ dγ <∞.

Finally γ (A) = 0, therefore,
∫
A

∣∣∣ψ (k dγdµ)∣∣∣ dγ <∞. Conclude that∫ ∣∣∣∣ψ(k dγdµ
)∣∣∣∣ dγ =

∫
A

∣∣∣∣ψ(k dγdµ
)∣∣∣∣ dγ +

∫
B

∣∣∣∣ψ(k dγdµ
)∣∣∣∣ dγ +

∫
C

∣∣∣∣ψ(k dγdµ
)∣∣∣∣ dγ <∞

and ψ (k (dγ/dµ)) ∈ L1 (γ). �

Proof of Proposition 15. By Proposition 61, ψ : (0,∞)→ (−∞,∞) is strictly decreasing and onto.
Let t ∈ R and γ ∈ ∆σ (B, µ) be such that It (γ ‖ µ) < ∞. It follows that φ∗

(
k dγdµ

)
∈ L1 (µ) for

some k > 0 and that

inf
k≥0

[
kt−

∫
φ∗
(
k
dγ

dµ

)
dµ

]
= inf
k>0

[
kt−

∫
φ∗
(
k
dγ

dµ

)
dµ

]
.

By Proposition 64 and Lemma 65, we can define Γ : (0,∞) → R by Γ (k) =
∫
ψ
(
k dγdµ

)
dγ. In order

to show that k (γ) ∈ (0,∞) is well defined and unique, we will prove that Γ is strictly decreasing and
onto. Let k, h ∈ (0,∞) such that k > h, then k dγdµ > h dγdµ γ-a.s. and, since ψ is strictly decreasing,

we have ψ
(
h dγdµ

)
> ψ

(
k dγdµ

)
γ-a.s.. By Lemma 65, ψ

(
h dγdµ

)
, ψ
(
k dγdµ

)
∈ L1 (γ) and it follows that

Γ (h) > Γ (k). Hence, Γ is strictly decreasing.
By the Monotone Convergence Theorem, it follows that

Γ (1)− Γ (n) =
∫ [

ψ

(
dγ

dµ

)
− ψ

(
n
dγ

dµ

)]
dγ →∞ as n→∞,

and that

Γ
(

1
n

)
− Γ (1) =

∫ [
ψ

(
1
n

dγ

dµ

)
− ψ

(
dγ

dµ

)]
dγ →∞ as n→∞.
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Monotonicity of Γ implies that

lim
k→∞

Γ (k) = −∞ and lim
k→0+

Γ (k) =∞. (80)

By the Dominated Convergence Theorem, for each k0 ∈ (0,∞),

0 ≤ Γ
(
k0 −

1
n

)
− Γ (k0) =

∫ [
ψ

((
k0 −

1
n

)
dγ

dµ

)
− ψ

(
k0
dγ

dµ

)]
dγ → 0 as n→∞,

and

0 ≤ Γ (k0)− Γ
(
k0 +

1
n

)
=
∫ [

ψ

(
k0
dγ

dµ

)
− ψ

((
k0 +

1
n

)
dγ

dµ

)]
dγ → 0 as n→∞.

Monotonicity of Γ implies that

lim
k→k−0

Γ (k) = Γ (k0) = lim
k→k+

0

Γ (k) . (81)

From (81), we derive the continuity of Γ that matched with (80) implies that Γ is surjective. Therefore,
for each t ∈ R there exists k∗ ∈ (0,∞) such that Γ (k∗) = t. Since Γ is strictly decreasing, such k∗ is
unique. This proves that k (γ) exists and it is unique.

Ft (k) = kt −
∫
φ∗
(
k dγdµ

)
dµ for k ∈ (0,∞) is (finite) convex and differentiable. Convexity is

obvious. Next we show differentiability. Let h, k ∈ (0,∞), then for each ω 6∈ N =
{
ω : dγdµ (ω) = 0

}
,

ψ

(
(k + h)

dγ

dµ
(ω)
)
dγ

dµ
(ω) ≤

φ∗
(

(k + h) dγdµ (ω)
)
− φ∗

(
k dγdµ (ω)

)
h

≤ ψ
(
k
dγ

dµ
(ω)
)
dγ

dµ
(ω) , (82)

by (78). Moreover, ∫
N

φ∗
(

(k + h) dγdµ
)
− φ∗

(
k dγdµ

)
h

dµ = 0. (83)

This is obvious if µ (N) = 0 or if φ∗ (0) is finite; else
∫
φ∗
(
k dγdµ

)
dµ =

∫
N
φ∗
(
k dγdµ

)
dµ+

∫
Nc
φ∗
(
k dγdµ

)
dµ

= −∞, which is absurd. From (82) and (83), we obtain

Γ (k + h) ≤
∫ φ∗

(
(k + h) dγdµ

)
− φ∗

(
k dγdµ

)
h

dµ ≤ Γ (k) , ∀h, k ∈ (0,∞) ,

which, together with continuity of Γ, delivers F ′t (r) = t− Γ (r) for all r ∈ (0,∞).

Finally, F ′t (k) = 0 if and only if
∫
ψ
(
k dγdµ

)
dγ = t, that is k = k (γ) and

inf
k≥0

Ft (k) = inf
k>0

Ft (k) = Ft (k (γ)) .

By Proposition 61, we have that φ∗ (k) = kψ (k)− (φ ◦ ψ) (k) for all k ≥ 0, and so

It (γ ‖ µ) = φ−1 (Ft (k (γ)))− t = φ−1

(
k (γ) t−

∫
φ∗
(
k (γ)

dγ

dµ

)
dµ

)
− t

= φ−1

(
k (γ) t−

∫ (
k (γ)

dγ

dµ
ψ

(
k (γ)

dγ

dµ

)
− (φ ◦ ψ)

(
k (γ)

dγ

dµ

))
dµ

)
− t

= φ−1

(
k (γ) t−

∫
k (γ)

dγ

dµ
ψ

(
k (γ)

dγ

dµ

)
dµ+

∫
(φ ◦ ψ)

(
k (γ)

dγ

dµ

)
dµ

)
− t

= φ−1

(
k (γ) t− k (γ)

∫
ψ

(
k (γ)

dγ

dµ

)
dγ +

∫
(φ ◦ ψ)

(
k (γ)

dγ

dµ

)
dµ

)
− t

= φ−1

(∫
(φ ◦ ψ)

(
k (γ)

dγ

dµ

)
dµ

)
− t,

as desired. �
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D Proofs

Proof of Lemma 1. It is a direct consequence of Lemma 51. �

Lemma 66 If % satisfies A.1 and A.5. Then, % satisfies A.3 if and only if f, g, h ∈ F , f % h, g % h,
and α ∈ (0, 1) imply αf + (1− α) g % h.

Proof. We prove the “only if” part, the converse being trivial. Suppose A.3 holds. Since % satisfies
A.1, to prove the result it is enough to show that f � g implies αf + (1− α) g % g for all α ∈ (0, 1).
Suppose, per contra, that there exist f � g and α ∈ (0, 1) such that αf + (1− α) g ≺ g. Then
α ∈ {α ∈ [0, 1] : g % αf + (1− α) g} 6= ∅. By A.5, this set is compact. We can therefore set β =
max ({α ∈ [0, 1] : g % αf + (1− α) g}) and fβ = βf + (1− β) g.

Claim. fβ ∼ g.

Proof of the Claim. We have β ∈ {α ∈ [0, 1] : g % αf + (1− α) g} and β < 1. In fact, if β = 1 then
g % f , a contradiction. Now suppose fβ � g, that is, g � fβ . The set {α ∈ [0, 1] : g � αf + (1− α) g}
is open since it is the complement of the closed set {α ∈ [0, 1] : αf + (1− α) g % g}. Hence, there
is an open neighborhood V in [0, 1] containing β and contained in {α ∈ [0, 1] : g � αf + (1− α) g}.
Since β < 1, we can then pick a point β′ > β in V so that g � β′f + (1− β′) g, which contradicts the
maximality of β. We conclude that fβ ∼ g and this completes the proof of the Claim. �

By the Claim, we can apply A.3 to fβ and g. Hence, λfβ + (1− λ) g % g for all λ ∈ (0, 1), and
0 < ᾱ < β implies β−1α ∈ (0, 1). Thus

g -
α

β
(βf + (1− β) g) +

(
1− α

β

)
g = αf +

α

β
g − αg + g − α

β
g = αf + (1− α) g ≺ g

a contradiction. We conclude that αf + (1− α) g % g for all α ∈ (0, 1), as desired. �

Lemma 67 A binary relation % on F satisfies Axiom A.1-A.5 if and only if there exists a nonconstant
affine function u : X → R and a function I : B0 (Σ, u (X))→ R normalized, monotone, quasiconcave,
and continuous such that

f % g ⇐⇒ I (u (f)) ≥ I (u (g)) . (84)

Moreover, u is cardinally unique, and, given u, there is a unique normalized I : B0 (Σ, u (X)) → R
that satisfies (84).

Proof. We only prove the sufficiency of the axioms, the converse being routine. The existence of a
nonconstant affine u and a normalized and monotone I satisfying (84) can be derived using the same
technique of [34, Lemma 28], where for the existence of u we use axiom A.4 in place of the stronger
Weak Certainty Independence axiom of [34]. In particular, B0 (Σ, u (X)) = {u (f) : f ∈ F}.

By Lemma 66, % is a convex preference, and so I is quasiconcave. Continuity follows from A.5
and Proposition 46.

Finally, cardinal uniqueness of u is a standard result (u is affine and represents % on X). Suppose
that, given u, the normalized functionals I1 and I2 satisfy (84). For all ϕ = u (f) ∈ B0 (Σ, u (X)),
let xf ∈ X be such that f ∼ xf , then I1 (ϕ) = I1 (u (f)) = I1 (u (xf )) = u (xf ) = I2 (u (xf )) =
I2 (u (f)) = I2 (ϕ), so I1 = I2. �
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Lemma 68 Let %, I, and u be like in Lemma 67. The following facts are equivalent:

(i) % satisfies A.7.

(ii) For every z, z′ ∈ X, with z′ ≺ z, there are y′ ≺ y such that, for all f, g ∈ F

1
2
f (s) +

1
2
y′ ∼ 1

2
g (s) +

1
2
y ∀s ∈ S =⇒ 1

2
xf +

1
2
z′ -

1
2
xg +

1
2
z. (85)

(iii) I is uniformly continuous.

Proof. Clearly (i) ⇒ (ii). Next we show that (ii) ⇒ (iii). Let ε > 0 and choose z, z′ ∈ X such that
u (z) − u (z′) ≤ ε and 0 < u (z) − u (z′) < supu (X) − inf u (X). Let y, y′ ∈ X be such that (85) is
satisfied and set δ = u (y)− u (y′).

Notice that δ ∈ (0, supu (X)− inf u (X)). Clearly δ > 0, moreover, taking f = y and g = y′ we
have

1
2
f (s) +

1
2
y′ =

1
2
y +

1
2
y′ ∼ 1

2
y′ +

1
2
y =

1
2
g (s) +

1
2
y ∀s ∈ S

hence 1
2y + 1

2z
′ = 1

2xf + 1
2z
′ - 1

2xg + 1
2z = 1

2y
′ + 1

2z, Then 1
2u (y) + 1

2u (z′) ≤ 1
2u (y′) + 1

2u (z) and
δ = u (y)− u (y′) ≤ u (z)− u (z′) < supu (X)− inf u (X).

Let ϕ ∈ B0 (Σ, u (X)) be such that ϕ+ δ ∈ B0 (Σ, u (X)), and g, f ∈ F be such that ϕ = u (g) and
ϕ+ δ = u (f). Then

u (f (s)) = ϕ (s) + δ = u (g (s)) + u (y)− u (y′)

for all s ∈ S,

u

(
1
2
f (s) +

1
2
y′
)

=
1
2
u (f (s)) +

1
2
u (y′) =

1
2
u (g (s)) +

1
2
u (y)− 1

2
u (y′) +

1
2
u (y′) = u

(
1
2
g (s) +

1
2
y

)
and hence

1
2
xf +

1
2
z′ -

1
2
xg +

1
2
z

that is
1
2
u (xf ) +

1
2
u (z′) ≤ 1

2
u (xg) +

1
2
u (z)

and I (ϕ+ δ) = I (u (f)) = u (xf ) ≤ u (xg) + (u (z)− u (z′)) ≤ I (u (g)) + ε = I (ϕ) + ε. Hence, by
Proposition 48, I is uniformly continuous.

We conclude by showing that (iii) ⇒ (i). Assume I is uniformly continuous. For all z, z′ ∈ X,
with z′ ≺ z, choose δ > 0 such that |I (ϕ)− I (ψ)| ≤ u (z) − u (z′) for all ϕ,ψ ∈ B0 (Σ, u (X))
such that ‖ϕ− ψ‖ ≤ δ. Take y′ ≺ y such that u (y) − u (y′) < δ. Then for all f, g ∈ F such that
1
2f (s) + 1

2y
′ - 1

2g (s) + 1
2y for all s ∈ S, it must be the case that

u (f (s)) ≤ u (g (s)) + u (y)− u (y′) ∀s ∈ S. (86)

Set ϕ = u (f), ψ = u (g), τ = u (y), t = u (y′), δ′ = τ − t ∈ (0, δ), ε = u (z) − u (z′), k =
max {maxϕ,maxψ, τ} ∈ u (X). Notice that:

• ϕ ≤ (ψ + δ′) ∧ k. This follows from (86) and the definition of k.

• (ψ + δ′) ∧ k ∈ B0 (Σ, u (X)). In fact, ϕ ≤ (ψ + δ′) ∧ k ≤ k.

• (ψ + δ′)∧k = (ψ ∧ (k − δ′))+δ′ and ψ∧(k − δ′) ∈ B0 (Σ, u (X)). In fact, k ≥ k−δ′ = k−τ+t ≥
τ − τ + t = t.
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Therefore
I (u (f)) = I (ϕ) ≤ I ((ψ + δ′) ∧ k) = I ((ψ ∧ (k − δ′)) + δ′)

but clearly ‖((ψ ∧ (k − δ′)) + δ′)− (ψ ∧ (k − δ′))‖ = δ′ ≤ δ and uniform continuity guarantees

I ((ψ ∧ (k − δ′)) + δ′) ≤ I (ψ ∧ (k − δ′)) + ε ≤ I (ψ) + ε = I (u (g)) + u (z)− u (z′) ,

hence I (u (f)) ≤ I (u (g)) + u (z) − u (z′) and u (xf ) − u (xg) ≤ u (z) − u (z′) which amounts to
1
2xf + 1

2z
′ - 1

2xg + 1
2z, as wanted. �

Lemma 69 Let % be a binary relation on X represented by an affine function u : X → R. u (X) = R
if and only if % satisfies A.6.

Proof.* Assume u (X) = R, we want to show that there are x � y in X such that, for each α ∈ (0, 1),
there exist z, z′ ∈ X such that αz+(1− α) y � x � y � αz′+(1− α)x. Let x ∈ u−1 (1), y ∈ u−1 (−1),

and for all α ∈ (0, 1) choose z = z (α) ∈ u−1

(
3
α

)
and z′ = z′ (α) ∈ u−1

(
− 3
α

)
, to obtain

u (αz + (1− α) y) = αu (z) + (1− α)u (y) = 3− 1 + α ≥ 2

u (x) = 1

u (y) = −1

u (αz′ + (1− α)x) = αu (z′) + (1− α)u (x) = −3 + (1− α) ≤ −2.

Conversely, assume there are x � y in X such that, for each α ∈ (0, 1), there exist z, z′ ∈ X such that
αz + (1− α) y � x � y � αz′ + (1− α)x. Wlog, assume u (x) = 1 and u (y) = −1. For all n ∈ N
there exist zn, z′n ∈ X such that

1
n
zn +

(
1− 1

n

)
y � x � y � 1

n
z′n +

(
1− 1

n

)
x, i.e.

1
n
u (zn)− 1 +

1
n
> 1 > −1 >

1
n
u (z′n) + 1− 1

n

then u (zn) > 2n − 1 and 1 − 2n > u (z′n) for all n ∈ N. Thus u (X) cannot be bounded above or
bounded below, and therefore it coincides with R. �

Proof of Theorem 3. Suppose (i) holds, i.e., % satisfies axioms A.1-A.5. By Lemma 67, there exists
a nonconstant affine function u : X → R and a function I : B0 (Σ, u (X))→ R normalized, monotone,
quasiconcave, and continuous such that

f % g ⇐⇒ I (u (f)) ≥ I (u (g)) .

By Corollary 35, I (ϕ) = infp∈∆Gp (〈p, ϕ〉) for all ϕ ∈ B0 (Σ, u (X)), i.e.,

I (u (f)) = inf
p∈∆

Gp

(∫
u (f) dp

)
∀f ∈ F ,

where Gp (t) = sup {I (ϕ) : ϕ ∈ B0 (Σ, u (X)) and 〈p, ϕ〉 ≤ t} for all (t, p) ∈ u (X)×∆.36

Lemma 28 implies that the map (t, p) 7→ Gp (t) is quasiconvex on u (X) × ∆. Monotonicity of
Gp (·) is obvious. Moreover, for all t ∈ u (X),

t = I (t) = inf
p∈∆

Gp (〈p, t〉) = inf
p∈∆

Gp (t) .

36Indeed Gp (t) is defined for all (t, p) ∈ R×∆, but notice that 〈p, ϕ〉 ∈ u (X) for all ϕ ∈ B0 (Σ, u (X)).

66



Therefore, G? : u (X)×∆→ (−∞,∞] defined by G? (t, p) = Gp (t) is well defined (the above equation
rules out the value −∞), belongs to G (u (X)×∆), is linearly continuous because of continuity of I,
and (7) holds. This proves (ii).

Conversely, suppose (ii) holds. Since G ∈ G (u (X)×∆), then, by Lemma 50,

I (ϕ) = inf
p∈∆

G (〈p, ϕ〉 , p) ∀ϕ ∈ B0 (Σ, u (X)) , (87)

is finite, (evenly) quasiconcave, monotone, normalized. Linear continuity of G implies continuity of I,
and (7) amounts to

f % g ⇐⇒ I (u (f)) ≥ I (u (g)) . (88)

Lemma 67 guarantees that % satisfies A.1-A.5, i.e., (i) holds.

Assume (i), or (ii), holds and v : X → R is nonconstant affine, H ∈ G (v (X)×∆), for all f and g

in F ,

f % g ⇐⇒ inf
p∈∆

H

(∫
v (f) dp, p

)
≥ inf
p∈∆

H

(∫
v (g) dp, p

)
. (89)

Notice that we are not requiring that H be linearly continuous. Define

J (ϕ) = inf
p∈∆

H (〈p, ϕ〉 , p) ∀ϕ ∈ B0 (Σ, v (X)) . (90)

Since H ∈ G (v (X)×∆), then, by Lemma 50, J is finite, (evenly) quasiconcave, monotone, normal-
ized,

H (t, p) ≥ sup {J (ϕ) : ϕ ∈ B0 (Σ, v (X)) and 〈p, ϕ〉 ≤ t} ∀ (t, p) ∈ v (X)×∆, (91)

and (89) amounts to
f % g ⇐⇒ J (v (f)) ≥ J (v (g)) . (92)

Since J is normalized, by (92), v represents % on X, then it is cardinally equivalent to u. Assume
v = u, then (88), (92), and Lemma 67 guarantee that J = I (in particular H is linearly continuous
too). By (91), for all (t, p) ∈ u (X)×∆,

H (t, p) ≥ sup {I (ϕ) : ϕ ∈ B0 (Σ, u (X)) and 〈p, ϕ〉 ≤ t} = Gp (t) .

Since I is finite, normalized, monotone, quasiconcave, and continuous, we can proceed verbatim like
in the proof that (i) implies (ii) (starting from “By Corollary 35...”) to show that G? : u (X)×∆ →
(−∞,∞] defined by G? (t, p) = Gp (t) is well defined, belongs to G (u (X)×∆), is linearly continuous,
and

f % g ⇐⇒ inf
p∈∆

G?
(∫

u (f) dp, p
)
≥ inf
p∈∆

G?
(∫

u (g) dp, p
)
. (93)

Thus (u,G?) represents % in the sense of (ii) and G? is the minimal element of G (u (X)×∆) with
this property. Moreover, for all (t, p) ∈ u (X)×∆,

sup
f∈F

{
u (xf ) :

∫
u (f) dp ≤ t

}
= sup
f∈F

{
I (u (f)) :

∫
u (f) dp ≤ t

}
= sup {I (ϕ) : ϕ ∈ B0 (Σ, u (X)) and 〈p, ϕ〉 ≤ t}

= Gp (t) = G? (t, p) .

Finally, it is easy to check that % has no worst consequence if and only if inf u (X) 6∈ u (X). In
this case, B0 (Σ, u (X)) is lower open. By Lemma 29, the map (t, p) 7→ Gp (t) is lower semicontinuous
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on u (X)×∆, thus p 7→ Gp (〈p, ϕ〉) is lower semicontinuous on ∆, and the infima in (93) are attained.
�

Proof of Proposition 4. Let (u,G) be an uncertainty averse representation of a preference %.
If
(
ū, Ḡ

)
is another uncertainty averse representation of %, then by standard uniqueness results,

there exist α > 0 and β ∈ R such that ū = αu+ β. By (8), for all (t, p) ∈ ū (X)×∆,

Ḡ (t, p) = sup
f∈F

{
ū (xf ) :

∫
ū (f) dp ≤ t

}
= sup
f∈F

{
αu (xf ) + β : α

∫
u (f) dp+ β ≤ t

}
= α sup

f∈F

{
u (xf ) :

∫
u (f) dp ≤ t− β

α

}
+ β = αG

(
t− β
α

, p

)
+ β,

as desired.
Conversely, if there exist α > 0 and β ∈ R such that ū = αu+β and Ḡ (t, p) = αG

(
α−1 (t− β) , p

)
+

β for all (t, p) ∈ ū (X)×∆, then ū : X → R is affine nonconstant, Ḡ : ū (X)×∆→ (−∞,∞] belongs
to G (ū (X)×∆), is linearly continuous, and, for all f and g in F ,

f % g ⇐⇒ inf
p∈∆

G

(∫
u (f) dp, p

)
≥ inf
p∈∆

G

(∫
u (g) dp, p

)
⇐⇒ inf

p∈∆
G

(∫
ū (f)− β

α
dp, p

)
≥ inf
p∈∆

G

(∫
ū (g)− β

α
dp, p

)
⇐⇒ inf

p∈∆
G

(∫
ū (f) dp− β

α
, p

)
≥ inf
p∈∆

G

(∫
ū (g) dp− β

α
, p

)
⇐⇒ inf

p∈∆

[
αG

(∫
ū (f) dp− β

α
, p

)
+ β

]
≥ inf
p∈∆

[
αG

(∫
ū (g) dp− β

α
, p

)
+ β

]
⇐⇒ inf

p∈∆
Ḡ

(∫
ū (f) dp, p

)
≥ inf
p∈∆

Ḡ

(∫
ū (g) dp, p

)
,

and

Ḡ (t, p) = αG

(
t− β
α

, p

)
+ β

= α sup
f∈F

{
u (xf ) :

∫
u (f) dp ≤ t− β

α

}
+ β

= sup
f∈F

{
αu (xf ) + β : α

∫
u (f) dp+ β ≤ t

}
= sup
f∈F

{
ū (xf ) :

∫
ū (f) dp ≤ t

}
for all (t, p) ∈ ū (X)×∆. �

Proof of Proposition 5. Let% be uncertainty averse and satisfy axioms A.4-A.6. Assume u : X → R
is affine, G ∈ G (u (X)×∆) is lower semicontinuous, and, for all f and g in F , (7) holds. Then, by
A.6, u (X) = R (see Lemma 69). Set

I (ϕ) = inf
p∈∆

G (〈p, ϕ〉 , p) ∀ϕ ∈ B0 (Σ) .

Since G ∈ G (R×∆), then, by Lemma 50, I is finite, (evenly) quasiconcave, monotone, normalized,
and (7) amounts to

f % g ⇐⇒ I (u (f)) ≥ I (u (g)) .
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for all f and g in F . Since G ∈ G (R×∆) is lower semicontinuous, then it satisfies the assumptions
of Lemma 39, and

G (t, p) = sup
ϕ∈B0(Σ):〈p,ϕ〉≤t

I (ϕ) = sup
f∈F :〈p,u(f)〉≤t

I (u (f)) ∀ (t, p) ∈ R×∆.

But, since I is normalized and I (u (·)) represents %, then I (u (f)) = u (xf ) for all f ∈ F (notice that
the existence of xf is guaranteed by A.1, A.2, and A.5), therefore

G (t, p) = sup
f∈F :〈p,u(f)〉≤t

I (u (f)) = sup
f∈F

{
u (xf ) :

∫
u (f) dp ≤ t

}
∀ (t, p) ∈ R×∆.

This proves that that (8) holds, and G = G?. �

Proof of Theorem 9. Suppose % satisfies axioms A.1-A.6. By Lemma 67, there exists a nonconstant
affine function u : X → R and a function I : B0 (Σ, u (X))→ R normalized, monotone, quasiconcave,
and continuous such that

f % g ⇐⇒ I (u (f)) ≥ I (u (g)) .

Moreover, by Lemma 69, u (X) = R. Then B0 (Σ, u (X)) = B0 (Σ). Set

Gp (t) = sup {I (ϕ) : ϕ ∈ B0 (Σ) and 〈p, ϕ〉 ≤ t} ∀ (t, p) ∈ R×∆.

Theorem 33 guarantees that I (ϕ) = minp∈∆Gp (〈p, ϕ〉) for all ϕ ∈ B0 (Σ). In particular,

I (u (f)) = min
p∈∆

Gp

(∫
u (f) dp

)
∀f ∈ F ,

and (13) holds. Lemmas 28 and 29 guarantee that the map (t, p) 7→ Gp (t) is quasiconvex and lower
semicontinuous on R×∆. Monotonicity of Gp (·) is obvious. Moreover, for all t ∈ R,

t = I (t) = min
p∈∆

Gp (〈p, t〉) = min
p∈∆

Gp (t) .

Therefore, G? : R×∆ → (−∞,∞] defined by G? (t, p) = Gp (t) is well defined, lower semicontinuous,
and it belongs to G (R×∆). Since I is continuous, G? is linearly continuous. By Proposition 5, (u,G?)
is an uncertainty averse representation of %.

If % also satisfies axiom A.7, that is (i) holds, by Lemma 68, I is uniformly continuous. Then, by
Theorem 38, dom (Gp) ∈ {∅,R} for all p ∈ ∆, and {Gp}p∈∆:dom(Gp)=R are uniformly equicontinuous,
implying G ∈ E (R×∆) and hence (ii).

Conversely, suppose G ∈ G (R×∆) is lower semicontinuous and linearly continuous and u is affine
and onto. Since G ∈ G (R×∆), then, by Lemma 50,

I (ϕ) = inf
p∈∆

G (〈p, ϕ〉 , p) ∀ϕ ∈ B0 (Σ) , (94)

is finite, (evenly) quasiconcave, monotone, normalized, and (13) amounts to

f % g ⇐⇒ I (u (f)) ≥ I (u (g)) . (95)

Since G is linearly continuous, I is continuous, thus, by Lemma 67, % satisfies A.1-A.5. Since u is
affine, u (X) = R, and u represents % on X, then Lemma 69 guarantees that % satisfies A.6. By
Proposition 5, (u,G) is an uncertainty averse representation of %.

If G ∈ E (R×∆), that is (ii) holds, then G satisfies the previous properties. Hence, % satisfies
A.1-A.6. Further, by Lemma 52, G ∈ E (R×∆) implies that I is uniformly continuous, thus, by
Lemma 68, % satisfies A.7 too. This proves (i).
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From this point until the end of the proof we (only) assume % satisfies axioms A.1-A.6 and denote:
by (u,G) an uncertainty averse representation, and by I the functional defined in (94).

By Theorem 3, u is cardinally unique, by definition of uncertainty averse representation, for all
(t, p) ∈ R×∆,

G (t, p) = sup
f∈F

{
u (xf ) :

∫
u (f) dp ≤ t

}
= sup
f∈F

{
I (u (f)) :

∫
u (f) dp ≤ t

}
= sup {I (ϕ) : ϕ ∈ B0 (Σ) and 〈p, ϕ〉 ≤ t} = sup {I (ϕ) : ϕ ∈ B0 (Σ) and 〈p, ϕ〉 = t}

= sup
f∈F

{
I (u (f)) :

∫
u (f) dp = t

}
= sup
f∈F

{
u (xf ) :

∫
u (f) dp = t

}
,

where the equality in the second line descends from Lemma 31. This proves that, given u, G is unique
and that (14) holds.

Finally, assume Σ is a σ-algebra. If % satisfies axiom A.8, assume ϕ,ψ ∈ B0 (Σ), k ∈ R, Σ 3 En ↓ ∅,
and I (ψ) > I (ϕ). Choose f, g ∈ F and x ∈ X such that ϕ = u (g), ψ = u (f), and k = u (x), then
f � g and there exists n ∈ N such that xEnf � g, that is

I
(
k1En + ψ1Ecn

)
= I

(
u (x) 1En + u (f) 1Ecn

)
= I (u (xEnf)) > I (u (g)) = I (ϕ) .

By Theorem 53, there is q ∈ ∆σ such that G (·, p) ≡ ∞ for all p /∈ ∆σ (q), thus the minima in (13)
are attained in ∆σ (q). Conversely, if there is q ∈ ∆σ such that G (·, p) ≡ ∞ for all p /∈ ∆σ (q),
by Theorem 53, for all ϕ,ψ ∈ B0 (Σ), k ∈ R, Σ 3 En ↓ ∅, I (ψ) > I (ϕ) implies that there exists
n ∈ N such that I

(
k1En + ψ1Ecn

)
> I (ϕ). Let f � g in F , x ∈ X, and Σ 3 En ↓ ∅, then

ϕ = u (g) , ψ = u (f) ∈ B0 (Σ), k = u (x) ∈ R, and I (ψ) = I (u (f)) > I (u (g)) = I (ϕ). Then there
exists n ∈ N such that I

(
k1En + ψ1Ecn

)
> I (ϕ), but

I
(
k1En + ψ1Ecn

)
= I

(
u (x) 1En + u (f) 1Ecn

)
= I (u (xEnf))

and I (ϕ) = I (u (g)), thus I (u (xEnf)) > I (u (g)) and xEnf � g. In conclusion, A.8 holds. �

Proof of Proposition 6. By standard results ([21, Corollary B.3]), (i) implies that u1 ≈ u2. Wlog,
u1 = u2 = u. By (10), for all f ∈ F and x ∈ X, f ∼1 x implies f %2 x, and so x2

f ∼2 f %2 x
1
f (where

f ∼i xif ∈ X, for i = 1, 2). Hence, u
(
x2
f

)
≥ u

(
x1
f

)
for all f ∈ F . By (8), for all (t, p) ∈ u (X)×∆,

G1 (t, p) = sup
f∈F

{
u
(
x1
f

)
:
∫
u (f) dp ≤ t

}
≤ sup
f∈F

{
u
(
x2
f

)
:
∫
u (f) dp ≤ t

}
= G2 (t, p) ,

and so G1 ≤ G2.
Conversely, assume wlog u1 = u2 = u. Then, for all f ∈ F and x ∈ X,

f %1 x =⇒ inf
p∈∆

G1

(∫
u (f) dp, p

)
≥ inf
p∈∆

G1

(∫
u (x) dp, p

)
= u (x) ,

but G1 ≤ G2 implies

inf
p∈∆

G2

(∫
u (f) dp, p

)
≥ inf
p∈∆

G1

(∫
u (f) dp, p

)
≥ u (x) = inf

p∈∆
G2

(∫
u (x) dp, p

)
,

which delivers f %2 x. �

Proof of Proposition 10. If (u, c) is a variational representation of %, it is routine to check that
(u,G) is a representation in the sense of (7). Moreover, since u (X) = R, then Proposition 5 guarantees
that (u,G) is an uncertainty averse representation.
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Conversely, if (u,G) is an uncertainty averse representation of %, and there exist γ : R → R and
c : ∆→ [0,∞] with infp∈∆ c (p) = 0, such that

G (t, p) = γ (t) + c (p) ∀ (t, p) ∈ R×∆,

then for all t ∈ R
t = inf

p∈∆
[γ (t) + c (p)] = γ (t) + inf

p∈∆
c (p) = γ (t) .

Hence, γ is the identity. Moreover, if pα → p in ∆, then (0, pα) → (0, p) in R × ∆ and lower
semicontinuity of G delivers

lim inf
α

c (pα) = lim inf
α

G (0, pα) ≥ G (0, p) = c (p) ,

thus c is lower semicontinuous.
Finally the quasiconvexity of G implies that c is convex. In fact, let p1 and p2 in dom (c) and

α ∈ (0, 1). Pick t2, t1 ∈ R so that c (p1) − c (p2) = t2 − t1, namely, t1 + c (p1) = t2 + c (p2). As
G : (t, p)→ t+ c (p) is quasiconvex, then

αt1 + (1− α) t2 + c (αp1 + (1− α) p2) ≤ max {t1 + c (p1) , t2 + c (p2)} = t2 + c (p2) ,

hence,

c (αp1 + (1− α) p2) ≤ c (p2) + t2 − αt1 − (1− α) t2 = c (p2) + t2 − αt1 − t2 + αt2

= c (p2) + α (t2 − t1) = c (p2) + α (c (p1)− c (p2))

= αc (p1) + (1− α) c (p2) ,

as wanted. �

Proof of Theorem 16. Assume (18) holds, i.e.

f % g ⇐⇒
∫

∆

φ

(∫
S

u (f (s)) dp (s)
)
dµ (p) ≥

∫
∆

φ

(∫
S

u (g (s)) dp (s)
)
dµ (p)

for all f, g ∈ F . Set

J (ϕ) =
∫

∆

φ (〈p, ϕ〉) dµ (p) ∈ φ (R) ∀ϕ ∈ B0 (Σ) . (96)

By Theorem 54, J is finite, concave, continuous and monotone on X. Therefore the functional

I = φ−1 ◦ J (97)

is well defined, quasiconcave, continuous, monotone, and normalized. Moreover, by (18)

f % g ⇐⇒ I (u (f)) ≥ I (u (g)) .

Thus % satisfies axioms Axiom A.1-A.5 and its uncertainty averse representation (u,G) corresponding
to u satisfies, for all (t, p) ∈ R×∆,

G (t, p) = sup
f∈F

{
u (xf ) :

∫
u (f) dp ≤ t

}
= sup
f∈F :〈p,u(f)〉≤t

I (u (f)) = sup
ϕ∈B0(Σ):〈p,ϕ〉≤t

I (ϕ)

by (66)

sup
ϕ∈B0(Σ):〈p,ϕ〉≤t

I (ϕ) = φ−1

(
inf
{

inf
k≥0

[
tk −

∫
∆

φ∗
(
k
dν

dµ
(q)
)
dµ (q)

]
: ν ∈ Γ (p)

})
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and

Γ (p) =
{
ν ∈ ∆σ (B (∆) , µ) : p =

∫
∆

qdν (q)
}

;

by definition of It (· ‖ µ),

φ−1

(
inf
{

inf
k≥0

[
tk −

∫
∆

φ∗
(
k
dν

dµ
(q)
)
dµ (q)

]
: ν ∈ Γ (p)

})
= inf
ν∈Γ(p)

φ−1

(
inf
k≥0

[
tk −

∫
∆

φ∗
(
k
dν

dµ
(q)
)
dµ (q)

])
= inf
ν∈Γ(p)

{It (ν ‖ µ) + t}

= t+ inf
ν∈Γ(p)

It (ν ‖ µ) ,

and the infimum is attained since Γ (p) is weakly closed and It (· ‖ µ) has weakly compact sublevel
sets. That is

G (t, p) = t+ min
ν∈Γ(p)

It (ν ‖ µ)

for all (t, p) ∈ R×∆.
Conversely, assume (u,G) is an uncertainty averse representation of %, where

G (t, p) = t+ min
ν∈Γ(p)

It (ν ‖ µ) (98)

for all (t, p) ∈ R × ∆, with Γ (p) =
{
ν ∈ ∆σ (B (∆) , µ) : p =

∫
∆
qdν (q)

}
, under the convention

G (·, p) ≡ ∞ when Γ (p) = ∅. Then, for all (t, p) ∈ R×∆,

G (t, p) = φ−1

(
inf

ν∈Γ(p)

{
inf
k≥0

[
kt−

∫
∆

φ∗
(
k
dν

dµ

)
dµ

]})
,

and defining J and I like in (96) and (97), it descends from (66) that

G (t, p) = sup
ϕ∈B0(Σ):〈p,ϕ〉≤t

I (ϕ) ∀ (t, p) ∈ R×∆.

Since I is finite, quasiconcave, continuous, monotone, and normalized, by Theorem 33,

I (ϕ) = inf
p∈∆

G (〈p, ϕ〉 , p) = min
p∈∆

G (〈p, ϕ〉 , p) ∀ϕ ∈ B0 (Σ) . (99)

Since (u,G) is an uncertainty averse representation of %, then, for all f and g in F ,

f % g ⇐⇒ inf
p∈∆

G

(∫
u (f) dp, p

)
≥ inf
p∈∆

G

(∫
u (g) dp, p

)
⇐⇒ min

p∈∆
G

(∫
u (f) dp, p

)
≥ min

p∈∆
G

(∫
u (g) dp, p

)
⇐⇒ I (u (f)) ≥ I (u (g))

⇐⇒ φ (I (u (f))) ≥ φ (I (u (g)))

⇐⇒
∫

∆

φ

(∫
S

u (f (s)) dp (s)
)
dµ (p) ≥

∫
∆

φ

(∫
S

u (g (s)) dp (s)
)
dµ (p) ,

as wanted. Finally notice that (98) and (99) imply (23). �

Proof of Corollary 17. Set φ (t) = −e−θt, then φ−1 (t) = −θ−1 log (−t), and for all ϕ ∈ B0 (Σ)

φ−1

(∫
∆

φ (〈p, ϕ〉) dµ (p)
)

= −1
θ

log
∫

∆

e−θ〈p,ϕ〉dµ (p) ;
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call this functional I (ϕ).
Let (t, p) ∈ R×∆. By (66)

sup
ϕ∈B0(Σ):〈p,ϕ〉≤t

I (ϕ) = φ−1

(
inf
{

inf
k≥0

[
tk −

∫
∆

φ∗
(
k
dν

dµ

)
dµ

]
: ν ∈ Γ (p)

})
,

by Proposition 58,

sup
ϕ∈B0(Σ):〈p,ϕ〉≤t

I (ϕ) = t+
1
θ

inf {R (ν ‖ µ) : ν ∈ Γ (p)} .

Theorem 16 delivers the equivalence between (i) and (ii), while Proposition 10 that between (ii) and
(iii).37 �

Proof of Theorem 18. By Proposition 57, the functional

I (ϕ) = φ−1

(∫
∆

φ (〈p, ϕ〉) dµ (p)
)

∀ϕ ∈ B0 (Σ) ,

is translation invariant for all µ ∈ ∆σ (B (∆)) if and only if φ is CARA.
Next we show that for each given µ ∈ ∆σ (B (∆)). (u, φ, µ) represents a variational preference if

and only if I is translation invariant.
Assume (u, φ, µ) represents a variational preference with variational representation (v, c). As ob-

served in the proof of Theorem 16, I is well defined, quasiconcave, continuous, monotone, normalized,
and

f % g ⇐⇒ I (u (f)) ≥ I (u (g)) .

But, by definition of variational representation, the functional

Ī (ϕ) = min
p∈∆

(〈p, ϕ〉+ c (p)) ∀ϕ ∈ B0 (Σ) ,

(which is concave, continuous, monotone, normalized, and translation invariant) is such that

f % g ⇐⇒ Ī (v (f)) ≥ Ī (v (g)) .

But then, there are α > 0 and β ∈ R such that u = αv+ β, and (u, αc) is a variational representation
of %. Then the functional

Ĩ (ϕ) = min
p∈∆

(〈p, ϕ〉+ αc (p)) ∀ϕ ∈ B0 (Σ) ,

(which is concave, continuous, monotone, normalized, and translation invariant) is such that

f % g ⇐⇒ Ĩ (u (f)) ≥ Ĩ (u (g)) .

By Lemma 67, I = Ĩ and I is translation invariant.
Conversely, if I is translation invariant, consider the preference % represented by (u, φ, µ). I is

well defined, quasiconcave, continuous, monotone, normalized, and

f % g ⇐⇒
∫

∆

φ

(∫
S

u (f) dp
)
dµ (p) ≥

∫
∆

φ

(∫
S

u (g) dp
)
dµ (p)⇐⇒ I (u (f)) ≥ I (u (g)) .

It is easy to check that % satisfies axiom A.9 (on top of Axiom A.1-A.6), thus it is a variational
preference. �

37Notice that µ ∈ Γ
(∫

∆ qdµ (q)
)
, hence infp∈∆

(
θ−1 inf {R (γ ‖ µ) : γ ∈ Γ (p)}

)
= 0.
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Proof of Theorem 21. By Theorem 3, G is lower semicontinuous. Set

I (ϕ) = min
p∈∆

G

(∫
ϕdp, p

)
∀ϕ ∈ B0 (Σ) .

Since (u,G) is a representation, I : B0 (Σ)→ R is normalized and f % g ⇐⇒ I (u (f)) ≥ I (u (g)). By
Lemmas 67 and 68, I : B0 (Σ)→ R is normalized, monotone, quasiconcave, and uniformly continuous.
Moreover, for all (t, p) ∈ R×∆,

G (t, p) = sup
f∈F

{
u (xf ) :

∫
u (f) dp ≤ t

}
= sup
f∈F :〈p,u(f)〉≤t

I (u (f)) = sup
ϕ∈B0(Σ):〈p,ϕ〉≤t

I (ϕ) . (100)

(i) implies (ii). For all f ∈ F and α ∈ (0, 1), A.10 implies that

f ∼ xf =⇒ αf + (1− α)x∗ ∼ αxf + (1− α)x∗ (101)

thus,38 for all φ = u (f) ∈ B0 (Σ)

I (αφ) = I (αu (f) + (1− α)u (x∗)) = I (u (αf + (1− α)x∗))

= I (u (αxf + (1− α)x∗)) = u (αxf + (1− α)x∗)

= αu (xf ) + (1− α)u (x∗) = αu (xf ) = αI (u (f)) = αI (φ) .

If α > 1 we then have I (φ) = I
(
α−1αφ

)
= α−1I (αφ), and we conclude that I : B0 (Σ) → R is

positively homogeneous. By Theorem 41, this implies (ii).
(ii) implies (iii). Let (t, p) ∈ R×∆, by (ii)

G (t, p) =


t

c1(p) if t ≥ 0 and p ∈ C
t

c2(p) if t < 0 and p ∈ C
∞ if p ∈ ∆ \ C

=


t

c1(p) = |t| 1
c1(p) if t ≥ 0 and p ∈ C

∞ = t×∞ = |t| ×∞ if t ≥ 0 and p ∈ ∆ \ C
t

c2(p) = (−t)×
(
− 1
c2(p)

)
= |t| ×

(
− 1
c2(p)

)
if t < 0 and p ∈ C

∞ = −t×∞ = |t| ×∞ if t < 0 and p ∈ ∆ \ C

.

It suffices to set γ (t) = |t| for all t ∈ R,

d1 (p) =

{
1

c1(p) if p ∈ C
∞ if p ∈ ∆ \ C

and d2 (p) =

{
− 1
c2(p) if p ∈ C
∞ if p ∈ ∆ \ C

,

to obtain (iii).
(iii) implies (i). If t > 0, then γ (t) > 0 and, since G ∈ G (R×∆), t = infp∈∆G (t, p) =

infp∈∆ γ (t) d1 (p) = γ (t) infp∈∆ d1 (p). Thus infp∈∆ d1 (p) = a ∈ (0,∞), and γ (t) = a−1t. Anal-
ogously, if t < 0, then γ (t) > 0, and t = infp∈∆G (t, p) = infp∈∆ γ (t) d2 (p) = γ (t) infp∈∆ d2 (p),
hence infp∈∆ d2 (p) = −b, with b ∈ (0,∞), and γ (t) = −b−1t. Thus, for all (t, p) ∈ R×∆,

G (t, p) =

{
γ (t) d1 (p) if t ≥ 0 and p ∈ ∆
γ (t) d2 (p) if t < 0 and p ∈ ∆

=

{
td1(p)

a if t ≥ 0 and p ∈ ∆
td2(p)
−b if t < 0 and p ∈ ∆

,

and G (αt, p) = αG (t, p) for all (t, p) ∈ R × ∆ and α > 0. In turn, this implies I is positively
homogeneous. Together with u (x∗) = 0, this allows to show that % satisfies axiom A.10. �

38Notice that condition (101) is weaker than A.10, and it is sufficient to drive the result.
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Proof of Corollary 22. (i) implies (ii). Immediately descends from Theorem 21.
(ii) implies (i). Let, for all (t, p) ∈ R×∆,

G (t, p) =


t

c1(p) if t ≥ 0 and p ∈ C
t

c2(p) if t < 0 and p ∈ C
∞ if p ∈ ∆ \ C

and
I (ϕ) = inf

p∈∆
G (〈p, ϕ〉 , p) ∀ϕ ∈ B0 (Σ) .

By Lemma 44, I is finite, monotone, upper semicontinuous, positively homogeneous, quasiconcave

I (ϕ) = min
p∈C

(
〈p, ϕ〉+

c1 (p)
− 〈p, ϕ〉

−

c2 (p)

)
= min

p∈∆
G (〈p, ϕ〉 , p) ∀ϕ ∈ B0 (Σ) , (102)

and
sup

ψ∈B0(Σ):〈p,ψ〉≤t
I (ψ) = G (t, p) ∀ (t, p) ∈ R×∆. (103)

Moreover, by (103) and Theorem 41, I is monotone, quasiconcave, uniformly continuous, positively
homogeneous, and normalized. While, by (28) and (102), for all f and g in F ,

f % g ⇐⇒ I (u (f)) ≥ I (u (g)) .

By Lemmas 67, 68, and 69, % satisfies axioms A.4-A.7, and it is easy to show that positive homogeneity
guarantees that also A.10 holds.

In this case, by (103) and Theorem 38, (u,G) is a representation of % in the sense of Theorem 9.
If Σ is a σ-algebra, then % satisfies axiom A.8 if and only if there is q ∈ ∆σ such that G (·, p) ≡ ∞
for all p /∈ ∆σ (q), that is if and only if there is q ∈ ∆σ such that C ⊆ ∆σ (q).

Finally, if v : X → R is affine and onto, with v (x∗) = 0, D is a nonempty, closed, and convex subset
of ∆, and d1, d2 : D → [0,∞] are functions such that the first concave and upper semicontinuous,
with 0 < infp∈D d1 (p) ≤ maxp∈D d1 (p) = 1, the second convex and lower semicontinuous, with
minp∈D d2 (p) = 1, and for all f and g in F ,

f % g ⇐⇒ min
p∈D

((∫
v (f) dp

)+
d1 (p)

−
(∫
v (f) dp

)−
d2 (p)

)
≥ min

p∈D

((∫
v (g) dp

)+
d1 (p)

−
(∫
v (g) dp

)−
d2 (p)

)
.

Then u and v represent % on X, therefore there is α > 0 such that v = αu. Thus

f % g ⇐⇒ min
p∈D

((∫
u (f) dp

)+
d1 (p)

−
(∫
u (f) dp

)−
d2 (p)

)
≥ min

p∈D

((∫
u (g) dp

)+
d1 (p)

−
(∫
u (g) dp

)−
d2 (p)

)
. (104)

Set

J (ϕ) = min
p∈D

(
〈p, ϕ〉+

d1 (p)
− 〈p, ϕ〉

−

d2 (p)

)
∀ϕ ∈ B0 (Σ) .

It can be shown, as we did in the proof that (ii) implies (i), that J is monotone, quasiconcave,
uniformly continuous, positively homogeneous, and normalized, moreover, by (104), for all f and g in
F ,

f % g ⇐⇒ J (u (f)) ≥ J (u (g)) .

By Lemma 67, I = J and, by Lemma 44, (C, c1, c2) = (D, d1, d2). �
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