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Abstract

We introduce a notion of complete monotone quasiconcave duality and we show that it holds for
important classes of quasiconcave functions.
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1 Introduction

Since the seminal studies of de Finetti [8] and Fenchel [10], Quasiconvex Analysis has been the subject
of very active research.1 Throughout its history, this field has been deeply influenced by Economic
Theory. For example, the original work of de Finetti was motivated by problems in Paretian ordinal
utility and, more recently, research in quasiconvex duality has been partly motivated by the dual
description of preferences and technologies in Microeconomics (see, e.g., Diewert [9]).

This paper is in keeping with this tradition. In fact, our purpose here is to study a notion of
duality that was originally motivated by a problem from Economic Theory. Specifically, in [3] we
introduce a general class of uncertainty averse preferences that generalize the variational preferences
of [18]. Uncertainty averse preferences % are complete, monotone, and convex binary relations defined
on the classic space B0 (Ω,Σ, C) of decision theory, where Ω is a state space, Σ is an event algebra,
and C is a convex set of consequences. Elements f ∈ B0 (Ω,Σ, C) are simple Σ-measurable functions
f : Ω→ C, interpreted as the acts available to a decision maker.2

Under suitable behavioral conditions, [3] shows that a preference % on B0 (S,Σ, X) is uncertainty
averse if and only if there is a lower semicontinuous quasiconvex function G : R×∆ → (−∞,∞] ,
increasing in the first argument, such that the functional I : B0 (Ω,Σ, C)→ R given by

I (u (f)) = min
p∈∆

G

(∫
u (f) dp, p

)
, (1)

represents %, where ∆ is the set of the probabilities on (Ω,Σ) and u : C → R is an affine function
with u (C) = R.

As [3] shows, the quasiconvex function G can be interpreted as the decision maker’s index of
uncertainty aversion. For this decision theoretic interpretation of G to be meaningful, it is crucial
that, given I and u, the quasiconvex G that satisfies (1) be unique. In fact, this is what allows
to behaviorally pin down G from the decision maker’s preferences, and makes comparative statics
meaningful.

Mathematically, the functionals I are monotone and quasiconcave over B0 (Ω,Σ,R), and the re-
lation (1) can be viewed as their dual description. In particular, the uniqueness of G requires the
existence of a one-to-one relation between the functionals I : B0 (Ω,Σ,R) → R and the quasiconvex
functions G : R×∆ → (−∞,∞]. This led us to study in depth monotone quasiconcave functionals
and their dual properties.

Specifically, in this paper we study monotone quasiconcave functionals g : X → [−∞,∞] defined
over normed Riesz spaces with unit.3 We associate to any quasiconcave function g : X → [−∞,∞],
an auxiliary function

Gξ (t) = sup
x∈X
{g (x) : 〈ξ, x〉 ≤ t} ,

where t ∈ R and ξ is an element of the topological dual X∗. Because of the positive 0-homogeneity
of the map (t, ξ) 7→ Gξ (t), it is enough to consider its restriction on R × S∗, where S∗ is the unit
sphere of X∗. When g is monotone, we can actually consider the map (t, ξ) 7→ Gξ (t) on R×∆, where
∆ ⊂ S∗ is the set of the positive functionals with unit norm.

1We refer the reader to Penot [25] for a recent survey. See also Crouzeix [5], [6], and [7], Martinez-Legaz [20] and

[21], and Penot and Volle [24].
2This is the Anscombe and Aumann [2] version of the classic Savage [30] set up. See [11] and [17].
3To be precise we consider the class of M spaces (see Subsection 2.1). These spaces are essentially function spaces

equipped with their supnorm, B0 (Ω,Σ,R) is an example.
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It is well known that under mild assumptions quasiconcave functionals g : X → [−∞,∞] can be
recovered from their dual functions Gξ (t) through the relation

g (x) = inf
ξ∈S∗

Gξ (〈ξ, x〉) . (2)

When g is monotone, the sphere S∗ can be replaced by ∆ (see Theorem 1).4 The duality relation
between g and the map (t, ξ) 7→ Gξ (t) provided by (2) is the mathematical underpinning of the
decision theoretic representation (1).

However, as we already pointed out, a key issue in (1) is the uniqueness of G. This is not ensured by
the duality relation (2), which is indeed an incomplete duality. In fact, given a quasiconcave function
g : X → [−∞,∞] there may be many G : R × S∗ → [−∞,∞] such that g (x) = infξ∈S∗ G (〈ξ, x〉 , ξ).
This “inverse problem,” of fundamental decision theoretic importance, is what characterizes our notion
of duality. Notice that the classic Fenchel conjugation is complete: the Fenchel duality map f 7→ f∗ is
one-to-one on the space of upper semicontinuous concave functions (see, e.g., [29, Theorem 5]). In our
quasiconcave setting the problem turns out to be more difficult. To be more precise, we now introduce
formally our duality notion for the monotone case, which is the one we consider in the paper and the
most relevant for economic applications (see the discussion at the end of the section).

Assume that X is a normed Riesz spaces with unit and denote byMqc (X) the set of all quasicon-
cave monotone functions g : X → [−∞,∞]. Moreover, denote by M (R×∆) the space of functions
G : R×∆→ [−∞,∞] such that:

(A.1) G (·, ξ) is increasing for each ξ ∈ ∆,

(A.2) limt→+∞G (t, ξ) = limt→+∞G (t, ξ′) for all ξ, ξ′ ∈ ∆.

Consider the operator T :Mqc (X)→M (R×∆) given by

(Tg) (t, ξ) = Gξ (t) = sup
x∈X
{g (x) : 〈ξ, x〉 ≤ t} , ∀g ∈Mqc (X) ,

and the operator Q :M (R×∆)→Mqc (X) given by

(QG) (x) = inf
ξ∈∆

G (〈ξ, x〉 , ξ) , ∀G ∈M (R×∆) . (3)

We can now define our notion of (complete) quasiconcave monotone duality.

Definition 1 Two subsets A ⊂ Mqc (X) and B ⊂ M (R×∆) form a (complete monotone) quasi-
concave duality pair, written 〈A,B〉qc, if T is injective on A, T (A) = B, and T−1 = Q on B.

In other words, we have 〈A,B〉qc when for every g ∈ A the only G ∈ B such that

g (x) = inf
ξ∈∆

G (〈ξ, x〉 , ξ) , ∀x ∈ X, (4)

is given by
G (t, ξ) = sup {g (x) : 〈ξ, x〉 ≤ t} , ∀ (t, ξ) ∈ R×∆, (5)

and, conversely, for every G ∈ B there is (a unique) g ∈ A such that (5) holds. Such g is given by (4),
that is, the duality is complete.

4A first formulation of (2) goes back to de Finetti [8]. Since then, it has been extensively studied (see the references

in Section 2.3). As emphasized by [24], there is a close relation between Fenchel conjugation of the Convex Analysis

and (2), in which quasiaffine functions x→ Gξ (〈ξ, x〉) play the role of affine functions.
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The purpose of this paper is to identify significant dual pairs 〈A,B〉qc. This is mainly done in
Section 3. Our main results, Theorems 2, 3, and 6, are based on minimax arguments (in particular,
Theorems 3 and 6 use Sion [31] and Tuy [32]) and show that our complete duality holds, respectively,
for the very important classes of monotone evenly quasiconcave functions, of monotone lower semicon-
tinuous quasiconcave functions, and of monotone uniformly continuous quasiconcave functions. These
results are then specialized in Sections 6 and 7, where Theorems 9 and 10 establish duality results
for monotone and quasiconcave functionals that are, respectively, translation invariant and positively
homogeneous. Together these results show the wide applicability of our notion of duality. They are
summarized in Section 8, which also provides a glossary of our main notation.

It is important to observe that our notion of complete duality is different from the one usually
studied in Microeconomics (see, e.g., [14], [7] and [9]), which associates to a utility function u defined
on a cone K a normalized indirect utility v defined by

v (ξ) = sup
x∈K
{u (x) : 〈ξ, x〉 ≤ 1} , ∀ξ ∈ K∗, (6)

where K∗ is the positive dual cone of K. Here ξ is a (linear) price functional and 1 is normalized
income. The dual relation is given by

u(x) = inf
ξ∈K∗

{v (ξ) : 〈ξ, x〉 ≤ 1} , ∀x ∈ K. (7)

This duality thus associates increasing quasiconcave functions u : K → [−∞,∞] to decreasing
quasiconvex functions v : K∗ → [−∞,∞]. For this duality, Martinez-Legaz [21] established a unique-
ness result through evenly quasiconcave/quasiconvex pairs (u, v), with an additional mild assumption
on the behavior of the functions on the boundaries of K and K∗.

We believe that also our duality is natural for consumer theory purposes. In fact, our indirect
utility function v : R×∆→ [−∞,∞] is given by

v (t, ξ) = sup
x∈X
{u (x) : 〈ξ, x〉 ≤ t} ,

which, relative to (6), allows to better keep track of income effects, captured by changes in t. Though
a thorough investigation of our duality – and of its relations with the duality (7) – is beyond the
scope of this paper, in Section 4 we characterize the set of all possible indirect utility functions
v : R×∆→ [−∞,∞]. In other words, we are able to identify all real valued functions on R×∆ that
may arise from a standard utility maximization problem. Since in Economics it is often convenient to
begin the analysis by specifying a given indirect utility function, this characterization is important as
it shows what are the functions v : R ×∆ → [−∞,∞] that is legitimate to assume to be an indirect
utility function.

We close by observing that our duality theory relies on two important assumptions: the space
X is a normed Riesz space with interior unit, and the quasiconcave functional g : X → [−∞,∞] is
monotone. In particular, monotonicity makes it possible to consider the function Gξ restricted on the
simplex ∆, which in turn is convex when the supnorm is considered. In any case, both assumptions
are satisfied in most economic applications, which are the original motivation of this paper. These
assumptions are also common in Finance: for example, we are using the results of this paper to study
risk measures when the riskless asset is illiquid or the interest rate is stochastic (see [4] for details).
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2 Preliminaries

2.1 Set Up

Throughout the paper, X is a normed vector space and X∗ is its topological dual. Elements of
X∗ are usually denoted by ξ, while 〈ξ, x〉, with x ∈ X, denotes the bilinear pairing. We denote by
S∗ = {ξ ∈ X∗ : ‖ξ‖ = 1} the unit sphere of X∗.

If (X,≥) is an ordered normed space, we denote by X+ its positive cone {x ∈ X : x ≥ 0} and by
X∗+ the set of all positive functionals in X∗. We also set ∆ =

{
ξ ∈ X∗+ : ‖ξ‖ = 1

}
. In the sequel, X∗

and any of its subsets will be always equipped with the weak∗ topology, particularly the simplex ∆.5

We will often assume that X is an M -space with unit. Recall that an M -space is a normed Riesz
space for which ‖x ∨ y‖ = ‖x‖ ∨ ‖y‖ holds for all x, y ∈ X+. It is well known that any normed Riesz
space with order unit e can be turned into an M -space,6 provided e is interior to the positive cone
X+. The supnorm ‖x‖e = inf {λ ∈ R : |x| ≤ λe} generated by e is actually an equivalent M -norm ([1,
ch. 9]).

Throughout the paper all the M -spaces that we consider will have a unit element e. For example,
given an algebra Σ of subsets of a space Ω, the space B0 (Ω,Σ,R) with unit 1Ω and its supnorm
closure are examples of M -spaces that play an important role in decision theory; two other important
classes of M -spaces are the spaces of real-valued continuous functions defined on compact Hausdorff
topological spaces and the L∞ spaces on finite measure spaces.

If X is an M -space, its closed unit ball is [−e, e] = {x ∈ X : −e ≤ x ≤ e}. Hence, ‖ξ‖ = 〈ξ, e〉 for
all ξ ∈ X∗+, and so ∆ =

{
ξ ∈ X∗+ : 〈ξ, e〉 = 1

}
, which is therefore a convex and weak* compact set.

A subset C of X is evenly convex if it is the intersection of a family of open half spaces.7 Evenly
convex sets are convex, and intersections of any family of evenly convex sets are evenly convex. The
next lemma is well known.

Lemma 1 A set C is evenly convex if and only if for each x̄ /∈ C there is ξ̄ ∈ X∗\ {0} such that〈
ξ̄, x̄
〉
<
〈
ξ̄, x
〉

for all x ∈ C.

By standard separation results, both open convex sets and closed convex sets are then evenly
convex.

A function g : X → [−∞,∞] is:

(i) lower semicontinuous if the sets {g ≤ α} are closed for all α ∈ R;

(ii) upper semicontinuous if the sets {g ≥ α} are closed for all α ∈ R;

(iii) positively homogeneous if g (λx) = λg (x) for all λ > 0 and x ∈ X;

(iv) quasiconcave if the sets {g ≥ α} are convex for all α ∈ R;

(v) evenly quasiconcave if the sets {g ≥ α} are evenly convex for all α ∈ R;

(vi) strictly evenly quasiconcave if the sets {g > α} are evenly convex for all α ∈ [−∞,∞).

5See, e.g., [1] and [15] for all notions on ordered vector spaces that will be used.
6A positive element e is a unit if for all x ∈ X there is some α ≥ 0 such that |x| ≤ αe.
7With the convention that such intersection is X if the family is empty. The notion of even convexity and its basic

properties are due to Fenchel [10]. Evenly quasiconvex functions were independently introduced by Martinez-Legaz [20]

and Passy and Prisman [23].
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Quasiconvex notions are similarly defined. In particular, a function that is both quasiconcave
and quasiconvex is called quasiaffine. Moreover, a function g : X → [−∞,∞] is (extended-valued)
continuous if and only if it is both lower and upper semicontinuous; i.e., limx→x0 g (x) = g (x0) ∈
[−∞,∞] for all x0 ∈ X.

Clearly, an evenly quasiconcave function g : X → [−∞,∞] is quasiconcave. Moreover, it is easy
to check that:

(i) g is evenly quasiconcave if it is strictly evenly quasiconcave;

(ii) g is evenly quasiconcave if it is upper semicontinuous and quasiconcave;

(iii) g is strictly evenly quasiconcave if it is lower semicontinuous and quasiconcave.8

Observe that when g is positively homogeneous, then g (0) = λg (0) for all λ > 0, so that either
g (0) = ±∞ or g (0) = 0. In particular, g (0) = 0 if g is real valued.

Suppose X is an ordered space. A function g : X → [−∞,∞] is monotone (or increasing) if x ≥ y
implies g (x) ≥ g (y). If X has an order unit e, then g : X → [−∞,∞] is:

(i) normalized if g (λe) = λ for all λ ∈ R;

(ii) translation invariant if g (x+ λe) = g (x) + λ for all λ ∈ R and x ∈ X.

If g is translation invariant and real valued, then g − g (0) is normalized. Moreover, it is easy to
see ([19]) that a real valued g is translation invariant if and only if g (x+ λe) = g (x) +λ for all λ ≥ 0
and x ∈ X.

Lemma 2 Let X be an M -space. If g : X → [−∞,∞] is a normalized and monotone function, then
it is real valued, with

min
ξ∈∆
〈ξ, x〉 ≤ g (x) ≤ max

ξ∈∆
〈ξ, x〉 , ∀x ∈ X. (8)

In particular, |g (x)| ≤ ‖x‖ for all x ∈ X.

Proof. Let x ∈ X, it can be shown that minξ∈∆ 〈ξ, x〉 = sup {λ : x ≥ λe} and maxξ∈∆ 〈ξ, x〉 =
inf {λ : x ≤ λe}. Hence, since

e sup {λ : x ≥ λe} ≤ x ≤ e inf {λ : x ≤ λe} ,

we have that g (x) ∈ [minξ∈∆ 〈ξ, x〉 ,maxξ∈∆ 〈ξ, x〉]. Therefore,

|g (x)| ≤ max
{

max
ξ∈∆
|〈ξ,−x〉| ,max

ξ∈∆
|〈ξ, x〉|

}
≤ max {‖−x‖ , ‖x‖} = ‖x‖ ,

as desired. �

This lemma fails without monotonicity. For instance, on R2 with the usual unit e = (1, 1), the
function

g (x) =

{
λ if x = λe for some λ ∈ R
−∞ else

is normalized, but clearly neither monotone nor finite.
8In fact, if g is quasiconcave and lower semicontinuous, then all its upper level sets {g > α}α∈R are open convex by

definition. Moreover, {g > −∞} is open, being the union of open sets, and is convex by the quasiconcavity of g.
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Example 1 Mean functionals are a fundamental example of normalized, monotone, and quasicon-
cave functionals. For, given the function space L∞ (µ), where µ is a probability measure on some
measurable space (Ω,Σ), consider the mean functional I : L∞ (µ)→ R defined by

I (f) = φ−1

(∫
Ω

φ (f (ω)) dµ (ω)
)
,

where φ : R→ R is strictly increasing and continuous. Clearly, I is monotone and normalized. If, in
addition, φ is concave, then I is quasiconcave as well. N

2.2 Two Key Auxiliary Functions

Given ξ ∈ X∗, to each function g : X → [−∞,∞] we can associate two auxiliary scalar functions,
defined for all t ∈ R by:

gξ (t) = sup
x∈X
{g (x) : 〈ξ, x〉 = t} and Gξ (t) = sup

x∈X
{g (x) : 〈ξ, x〉 ≤ t} .

These two functions, which will play a key role in what follows, can take values on [−∞,∞]. The
function Gξ is increasing and dominates gξ for each ξ ∈ X∗. In fact, Gξ (t) = supk≤t gξ (k). Moreover:

(i) gλξ (λt) = gξ (t) for all 0 6= λ ∈ R;

(ii) Gλξ (λt) = Gξ (t) for all λ > 0.

Denote by g+
ξ and G+

ξ the lower semicontinuous envelopes of gξ and Gξ, respectively. Clearly,
g+
ξ ≥ gξ and G+

ξ ≥ Gξ. In particular, G+
ξ (t) = inf {Gξ (t′) : t′ > t} since Gξ is increasing.

The next lemmas give some basic properties of the mapping (t, ξ) 7→ Gξ (t).

Lemma 3 For any function g : X → [−∞,∞],

lim
t→+∞

Gξ (t) = sup
ζ∈X∗

sup
t∈R

Gζ (t) = sup
x∈X

g (x) ∈ [−∞,∞] , ∀ξ ∈ X∗. (9)

More generally,

lim
t→+∞

(
inf
ξ∈C

Gξ (t)
)

= sup
x∈X

g (x) , (10)

holds for any nonempty relatively compact set C of X∗.

Proof. By definition, Gζ (t) ≤ supx∈X g (x) for all t ∈ R and all ζ ∈ X∗, so that supζ∈X∗ supt∈R Gζ (t) ≤
supx∈X g (x). Similarly, g (x) ≤ Gξ (〈ξ, x〉) for all x ∈ X and all ξ ∈ X∗.

There exists a sequence {xn}n such that g (xn) ↑ supx∈X g (x). Since t 7→ Gξ (t) is increasing, we
have g (xn) ≤ Gξ (〈ξ, xn〉) ≤ limt→+∞Gξ (t) for all n. Hence,

sup
x∈X

g (x) = lim
n
g (xn) ≤ lim

t→+∞
Gξ (t) ≤ sup

ζ∈X∗
sup
t∈R

Gζ (t) ≤ sup
x∈X

g (x) ,

which proves (9).

As to (10), it is clear that the mapping such that t 7→ infξ∈C Gξ (t) is increasing. Therefore,

lim
t→+∞

(
inf
ξ∈C

Gξ (t)
)

= sup
t∈R

inf
ξ∈C

Gξ (t) ≤ sup
x∈X

g (x) .

6



Suppose, by contradiction that supt∈R infξ∈C Gξ (t) = α < supx∈X g (x) . There is then a point x such
that g (x) > α. Let t = supξ∈C 〈ξ, x〉. As C is relatively compact, t <∞. Hence

α = sup
t∈R

inf
ξ∈C

Gξ (t) ≥ inf
ξ∈C

Gξ
(
t
)
≥ g (x) > α,

that leads to a contradiction. �

A straightforward adaptation of a well known result from Microeconomics shows that the mapping
(t, ξ) 7→ Gξ (t) is quasiconvex over R × X∗. However, more is true. Set R♦

= R\ {0}, say that a
subset C of R × ∆ is ♦-evenly convex if for each

(
t, ξ
)
/∈ C there exists (s, x) ∈ R♦ × X, such that

ts+
〈
ξ, x
〉
< ts+〈ξ, x〉 for all (t, ξ) ∈ C. Similarly, a function defined on R×∆ is ♦-evenly quasiconvex

if all its lower contour sets are ♦-evenly convex.9

Lemma 4 For any function g : X → [−∞,∞], the mapping (t, ξ) 7→ Gξ (t) is quasiconvex over
R×X∗ and ♦-evenly quasiconvex on R×∆.

Proof. Let (t1, ξ1) , (t2, ξ2) ∈ R × X∗. Consider λ ∈ (0, 1) and the point (t′, ξ′), with ξ′ = λξ1 +
(1− λ) ξ2 and t′ = λt1 + (1− λ) t2. We have

{x ∈ X : 〈ξ′, x〉 ≤ t′} ⊂ {x ∈ X : 〈ξ1, x〉 ≤ t1} ∪ {x ∈ X : 〈ξ2, x〉 ≤ t2} ,

which implies Gξ′ (t′) ≤ max {Gξ1 (t1) , Gξ2 (t2)}, and the mapping is quasiconvex.
Set Lα = {(t, ξ) ∈ R×∆ : Gξ (t) ≤ α}, with α ∈ R. If

(
t, ξ
)
∈ R × ∆ and

(
t, ξ
)
/∈ Lα, then

Gξ
(
t
)
> α. This implies that there exists a point x such that

〈
ξ, x
〉
≤ t and g (x) > α. But

Gξ (t) ≤ α for all (t, ξ) ∈ Lα, which implies that 〈ξ, x〉 > t for all (t, ξ) ∈ Lα. This, in turn, implies
that

〈ξ, x〉 − t > 0 ≥
〈
ξ, x
〉
− t, ∀ (t, ξ) ∈ Lα.

�

Clearly, the map t 7→ Gξ (t) is both evenly quasiconvex and evenly quasiconcave since Gξ is
monotone. Namely, t 7→ Gξ (t) is evenly quasiaffine.

Lemma 5 Given g : X → [−∞,∞], if g is lower semicontinuous, then the map (t, ξ) 7→ Gξ (t) is
lower semicontinuous on R× (X∗ \ {0}) .

Proof. Let α ∈ R and
(
t, ξ
)
∈ R ×X∗\ {0} be such that Gξ

(
t
)
> α and

∥∥ξ∥∥ 6= 0. There is x0 ∈ X
such that

〈
ξ, x0

〉
≤ t and g (x0) > α. As∥∥ξ∥∥ = sup

{〈
ξ, x
〉

: ‖x‖ = 1
}
,

there is u ∈ X, with ‖u‖ = 1, such that
〈
ξ, u
〉
≥ 2−1

∥∥ξ∥∥ > 0. The sequence xn = x0 − n−1u → x0.
Hence, there is n̄ ∈ N such that g (xn̄) > α. Moreover,

〈
ξ, xn̄

〉
=
〈
ξ, x0

〉
− n−1

〈
ξ, u
〉
≤ t − δ for

δ = 2−1n̄−1
∥∥ξ̄∥∥ > 0.

The set U =
{
ξ ∈ X∗\ {0} : 〈ξ, xn̄〉 <

〈
ξ̄, xn̄

〉
+ δ/2

}
is open in the topology induced by the weak*

topology, and for all (t, ξ) ∈
(
t− δ/2,∞

)
× U we have

〈ξ, xn̄〉 <
〈
ξ, xn̄

〉
+ δ/2 ≤ t− δ + δ/2 = t− δ/2 < t.

9We require that s is nonzero, which is stronger than requiring that s or x are nonzero, as in Lemma 1. As a

result, ♦-even convexity is slightly more than an extension to products of topological vector spaces of the notion of even

convexity introduced in Subsection 2.1 for normed vector spaces. Clearly, ∅ and R×∆ are ♦-evenly convex. Moreover,

♦-evenly convex sets are evenly convex, and ♦-evenly quasiconvex functions are evenly quasiconvex.
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Hence, Gξ (t) ≥ g (xn̄) > α, and the map (t, ξ) 7→ Gξ (t) is lower semicontinuous. �

Remark. Since the increasing map t 7→ Gξ (t) is lower semicontinuous, it is also left continuous.

Lemma 6 Given any h : X → [−∞,∞], let ϕ : h (X)→ [−∞,∞] be extended-valued continuous and
monotone, and set g = ϕ ◦ h. Then, Gξ (t) = ϕ (Hξ (t)) and gξ (t) = ϕ (hξ (t)) for all (t, ξ) ∈ R×∆.

Proof. It is enough to prove that supx∈C g (x) = ϕ (supx∈C h (x)) for a nonempty subset C of X.
Set H = supx∈C h (x). Since C 6= ∅, there exists a sequence {xn}n in C such that h (xn) ↑ H.
Therefore, H ∈ h (C) ⊂ h (X). Monotonicity of ϕ implies ϕ (H) ≥ supx∈C g (x). Suppose per contra
m = supx∈C g (x) and ϕ (H) > m ≥ g (x) for all x ∈ C. Continuity of ϕ implies

ϕ (H) = lim
n→∞

ϕ (h (xn)) = lim
n→∞

g (xn) ≤ m < ϕ (H) ,

a contradiction. �

The positive cone X+ in an ordered space X is said to be quasi-reproducing if X = X+ −X+.
By the Riesz decomposition, positive cones in normed Riesz spaces are “reproducing,” namely, X =
X+ −X+. For later reference, next we give two elementary properties.

Lemma 7 X+ is quasi-reproducing if and only if for any ξ ∈ X∗+ \ {0} there is z ∈ X+ such that
〈ξ, z〉 > 0.

Proof. Assume X = X+ −X+ and suppose, by contradiction, that 〈ξ, x〉 = 0 for some ξ ∈ X∗+ \ {0}
and all x ∈ X+. It follows that 〈ξ, u〉 = 0 for all u ∈ X+ −X+. Hence, the closed vector space
X+ −X+ would be included into the hyperplane 〈ξ, x〉 = 0, a contradiction with ξ 6= 0.

Conversely, assume that for any ξ ∈ X∗+ \ {0} there is z ∈ X+ such that 〈ξ, z〉 > 0, and suppose,
by contradiction that X+ −X+ 6= X. Then, the closed subspace X+ −X+ would be contained into
an hyperplane. Hence, 〈ξ, u〉 = 0 for all u ∈ X+ −X+ and for some ξ ∈ X∗ \ {0}. In particular, we
would have 〈ξ, x〉 = 0 for all x ∈ X+, which implies ξ ∈ X∗+ \ {0} and leads to a contradiction. �

Lemma 8 If X+ is quasi-reproducing and g : X → [−∞,∞] is monotone, then Gξ = gξ for all
ξ ∈ X∗+ \ {0}.

Proof. By definition, we have gξ (t) ≤ Gξ (t). Suppose, by contradiction that gξ (t) < Gξ (t) for some
ξ ∈ X∗+ \ {0} and t ∈ R. This implies the existence of a point x ∈ X for which gξ (t) < g (x) ≤ Gξ (t)
and 〈ξ, x〉 < t. By Lemma 7, we have 〈ξ, x+ αz〉 = t, for some z ∈ X+ and α > 0. Hence,
g (x) ≤ g (x+ αz) ≤ gξ (t) that leads to a contradiction. �

2.3 A Representation Result

Evenly quasiconcave functions g can be recovered from the scalar functions gξ (t) and Gξ (t). Though
formula (11) is essentially well known, this result is the starting point of our analysis and for this
reason we now present it in detail. An early version of this result for the function gξ can be found
in de Finetti [8, p. 178], in his seminal paper on quasiconcavity (the function gξ (t) is de Finetti’s
“profile” function). Other relevant references are Greenberg and Pierskalla [12] and Crouzeix [6]. A
general formulation can be found in Penot and Volle [24, Theorem 2.6].

Theorem 1 A function g : X → [−∞,∞], where X is a normed space, is evenly quasiconcave if and
only if

g (x) = inf
ξ∈S∗

Gξ (〈ξ, x〉) = inf
ξ∈S∗

gξ (〈ξ, x〉) , ∀x ∈ X. (11)

Moreover:
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(i) If X is ordered, then g is monotone if and only if in (11) we can replace S∗ with ∆.

(ii) g is strictly evenly quasiconcave if and only if the infima in (11) are attained at all x ∈ X.

(iii) g is upper semicontinuous if and only if in (11) we can replace Gξ and gξ with G+
ξ and g+

ξ ,
respectively.

Remark. Unlike formula (11), points (i)-(iii) are novel. In particular, since quasiconcave lower
semicontinuous functions are strictly evenly quasiconcave, point (ii) implies that for them the infima
in (11) are attained at all x ∈ X.

Proof. “Only if.” Suppose g is evenly quasiconcave. The result is trivially true if g ≡ −∞. Assume
g 6≡ −∞. We have

g (x) ≤ gξ (〈ξ, x〉) ≤ Gξ (〈ξ, x〉) , ∀x ∈ X,∀ξ ∈ X∗ \ {0} , (12)

and so
g (x) ≤ inf

ξ∈X∗\{0}
gξ (〈ξ, x〉) ≤ inf

ξ∈X∗\{0}
Gξ (〈ξ, x〉) , ∀x ∈ X. (13)

Pick x̄ ∈ X. If x̄ is a global maximum for g on X, equality holds in (12), and so in (13). Assume
that x̄ ∈ X is not a global maximum. Note that by (13) it suffices to prove the statements only for
the functions Gξ.

Case 1: Suppose g (x̄) ∈ R. Since x̄ is not a global maximum, there is ε > 0 such that {g ≥ g (x̄) + ε} 6=
∅ for all ε ∈ (0, ε]. For all such ε, x̄ /∈ {g ≥ g (x̄) + ε}. Since this upper set is evenly convex, there is ξ̄ ∈
X∗\ {0} such that

〈
ξ̄, x̄
〉
<
〈
ξ̄, x
〉

for all x ∈ {g ≥ g (x̄) + ε}. That is, {g ≥ g (x̄) + ε} ⊂
{
ξ̄ >

〈
ξ̄, x̄
〉}
.

Namely,
{
ξ̄ ≤

〈
ξ̄, x̄
〉}
⊂ {g < g (x̄) + ε}. Thus, Gξ̄

(〈
ξ̄, x̄
〉)
≤ g (x̄) + ε and

g (x̄) ≤ inf
ξ∈X∗\{0}

Gξ (〈ξ, x̄〉) ≤ Gξ̄
(〈
ξ̄, x̄
〉)
≤ g (x̄) + ε

for all ε ∈ (0, ε]. This implies equality in (13).

Case 2: Suppose g (x̄) /∈ R. We can suppose g (x̄) = −∞, because g (x̄) =∞ implies that x̄ is a global
maximum. Since g 6≡ −∞, there is l > 0 large enough so that {g ≥ −l} 6= ∅ for all l ≥ l. For all such
l, x̄ /∈ {g ≥ −l}. Since this set is evenly convex, there is ξ̄ ∈ X∗\ {0} such that

〈
ξ̄, x̄
〉
<
〈
ξ̄, x
〉

for all
x ∈ {g ≥ −l}. That is, {g ≥ −l} ⊂

{
ξ̄ >

〈
ξ̄, x̄
〉}

and
{
ξ̄ ≤

〈
ξ̄, x̄
〉}
⊂ {g < −l}. Thus Gξ̄

(〈
ξ̄, x̄
〉)
≤ −l

and
g (x̄) ≤ inf

ξ∈X∗\{0}
Gξ (〈ξ, x̄〉) ≤ Gξ̄

(〈
ξ̄, x̄
〉)
≤ −l

for all l ≥ l. This implies infξ∈X∗\{0}Gξ (〈ξ, x̄〉) = −∞, and so equality holds in (13).

To complete the proof of (11), observe that, for all ξ ∈ X∗ \ {0},

Gξ (〈ξ, x̄〉) = G‖ξ‖−1ξ

(〈
‖ξ‖−1

ξ, x̄
〉)

and gξ (〈ξ, x̄〉) = g‖ξ‖−1ξ

(〈
‖ξ‖−1

ξ, x̄
〉)

.

“If.” Suppose (11) holds, i.e., g (x) = infξ∈S∗ Gξ (〈ξ, x〉) for all x ∈ X. We prove that the set
{g ≥ α} is evenly convex by using Lemma 1. If {g ≥ α} = X, there is nothing to prove. Otherwise,
let x̄ /∈ {g ≥ α}, i.e., g (x̄) < α. Then, there exists ξ ∈ S∗ for which Gξ

(〈
ξ, x̄
〉)
< α. Let y ∈ {g ≥ α}.

Suppose, by contradiction that
〈
ξ, y
〉
≤
〈
ξ, x̄
〉
. Then, g (y) ≤ Gξ

(〈
ξ, y
〉)
≤ Gξ

(〈
ξ, x̄
〉)

< α, a
contradiction. Therefore,

〈
ξ, x̄
〉
<
〈
ξ, y
〉

for all y ∈ {g ≥ α} and {g ≥ α} is evenly convex.
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(i) Suppose that X is an ordered vector space. If g is monotone, proceed as above, and notice that
the separating ξ̄ is positive. In fact, fix z ∈ X+ and take y ∈ {g ≥ g (x̄) + ε} (resp. y ∈ {g ≥ −l}).
Notice that y + nz ∈ {g ≥ g (x̄) + ε} (resp. y + nz ∈ {g ≥ −l}) for all n ∈ N, and so

〈
ξ̄, x̄
〉
<〈

ξ̄, y
〉

+ n
〈
ξ̄, z
〉
. Then,

〈
ξ̄, z
〉
> n−1

(〈
ξ̄, x̄
〉
−
〈
ξ̄, y
〉)

for all n ∈ N, which implies
〈
ξ̄, z
〉
≥ 0, as

desired.
Conversely, suppose g (x) = infξ∈∆Gξ (〈ξ, x〉) for all x ∈ X. Then x ≥ y implies 〈ξ, x〉 ≥ 〈ξ, y〉

for all ξ ∈ ∆, and so Gξ (〈ξ, x〉) ≥ Gξ (〈ξ, y〉) for all ξ ∈ ∆ by monotonicity of Gξ. Hence, g (x) =
infξ∈∆Gξ (〈ξ, x〉) ≥ infξ∈∆Gξ (〈ξ, y〉) = g (y), as wanted.

(ii) Suppose g is strictly evenly quasiconcave, in light of (12) it is enough to prove that the first
infimum is attained. If x ∈ X is a global maximum, then Gξ (〈ξ, x〉) = g (x) for each ξ ∈ S∗. Hence
the infimum is attained. Assume x ∈ X is not a global maximum. The set {g > g (x)} is nonempty,
evenly convex, and x /∈ {g > g (x)}. Consequently, there is a functional ξ ∈ X∗ \ {0} such that〈
ξ, x
〉
<
〈
ξ, x
〉

for all x ∈ {g > g (x)}. Hence,
{
ξ ≤

〈
ξ, x
〉}
⊂ {g ≤ g (x)}, and so Gξ

(〈
ξ, x
〉)
≤ g (x).

Given the positive 0-homogeneity of the map (t, ξ) 7→ Gξ (t) and its definition, this implies that
G‖ξ‖−1

ξ

(〈∥∥ξ∥∥−1
ξ, x
〉)

= g (x) where
∥∥ξ∥∥−1

ξ ∈ S∗.
Conversely, suppose that the first infimum in (11) is attained. Let α ∈ [−∞,∞) and consider the

strict upper level {g > α}. Let x /∈ {g > α}, i.e., g (x) ≤ α. Since the infimum is attained, there is
some ξ ∈ S∗ such that Gξ

(〈
ξ, x
〉)

= g (x) ≤ α. This implies that
〈
ξ, x
〉
>
〈
ξ, x
〉

if x ∈ {g > α}. By
Lemma 1, we can conclude that the set {g > α} is evenly convex.

(iii) From gξ ≤ Gξ, it follows g+
ξ ≤ G+

ξ . Therefore, it suffices to prove the statement for the
functions G+

ξ .

Let x ∈ X. If x is a global maximum for g on X, then, by (12) and the definition of lower
semicontinuous envelope,

g (x) ≤ Gξ (〈ξ, x〉) ≤ G+
ξ (〈ξ, x〉) ≤ Gξ (〈ξ, x〉+ 1) ≤ g (x) , ∀ξ ∈ S∗,

and g (x) = infξ∈S∗ G+
ξ (〈ξ, x〉).

If x is not a global maximum for g on X, then, g (x) ∈ [−∞,∞) and there exists a sequence
{λn}n ⊂ R such that λn ↓ g (x) and x /∈ {g ≥ λn} 6= ∅ for each n ∈ N. Since {g ≥ λn} are nonempty,
closed, and convex, by a strong separation theorem there is a sequence {ξn}n ⊂ X∗ \ {0} such that
〈ξn, x〉 + εn < 〈ξn, x〉 for all x ∈ {g ≥ λn}, where εn > 0. Hence, {g ≥ λn} ⊂ {ξn > 〈ξn, x〉+ εn} for
all n ∈ N. That is, {ξn ≤ 〈ξn, x〉+ εn} ⊂ {g < λn}. This implies Gξn (〈ξn, x〉+ εn) ≤ λn. Therefore,

g (x) ≤ G‖ξn‖−1ξn

(〈
‖ξn‖−1

ξn, x
〉)
≤ G+

‖ξn‖−1ξn

(〈
‖ξn‖−1

ξn, x
〉)

≤ G‖ξn‖−1ξn

(〈
‖ξn‖−1

ξn, x
〉

+ ‖ξn‖−1
εn

)
≤ λn,

which yields the result. Conversely, if in (11) we can replace Gξ with G+
ξ , we have that g is the lower

envelope of a family of quasiconcave and upper semicontinuous functions on X, i.e. x 7→ G+
ξ (〈ξ, x〉)

for ξ ∈ S∗. Therefore, g is quasiconcave and upper semicontinuous. �

3 Main Duality Results

Theorem 1 associates to an evenly quasiconcave function g on X a quasiconvex function on R × S∗

(or on R×∆) that satisfies (11). This duality is, however, incomplete. In fact, there is no uniqueness:
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to an evenly quasiconcave function g is, in principle, possible to associate multiple functions with the
properties of Gξ (t). As a result, the duality is only one directional: to a function g we can associate
a function like Gξ (t), but not vice versa.

As discussed in the Introduction, the complete duality notion we introduced in Definition 1 ad-
dresses this problem and in this section we identify some important dual pairs 〈A,B〉qc. In particular,
in this section we establish complete quasiconcave monotone duality for three very important classes of
monotone quasiconcave functions: (i) evenly quasiconcave functions (Theorem 2), (ii) lower semicon-
tinuous functions (Theorem 3), and (iii) uniformly continuous functions (Theorem 5). As a by-product
of the lower semicontinuous duality, in Theorem 4 we establish a duality for continuous functions.

We begin by reporting the main properties of the operators T and Q discussed in the Introduction.
Recall that T :Mqc (X)→M (R×∆) is given for all g by

(Tg) (t, ξ) = Gξ (t) , ∀ (t, ξ) ∈ R×∆, (14)

and Q :M (R×∆)→Mqc (X) is given for all G by

(QG) (x) = inf
ξ∈∆

G (〈ξ, x〉 , ξ) , ∀x ∈ X. (15)

It is convenient to consider the natural extension of T to the set [−∞,∞]X of all functions g : X →
[−∞,∞] given by (14). Moreover, we denote by Meqc (X) the set of all g ∈Mqc (X) that are evenly
quasiconcave, and by M♦

qcx (R×∆) the set of all functions G ∈M (R×∆) such that:

(A.3) (t, ξ) 7→ G (t, ξ) is ♦-evenly quasiconvex on R×∆.

Proposition 1 Let X be an ordered normed vector space. T : [−∞,∞]X →M (R×∆) and Q :M (R×∆)→
Mqc (X) be defined as above. Then:

(i) T,Q are well defined, T
(

[−∞,∞]X
)
⊂M♦

qcx (R×∆) and Q (M (R×∆)) ⊂Meqc (X);

(ii) T,Q are monotone;

(iii) QT ≥ I and TQ ≤ I;

(iv) Q is the hypo-epi-inverse of T, i.e.,10

G ≥ Tg ⇐⇒ QG ≥ g, ∀g ∈Mqc (X) ,∀G ∈M (R×∆) ;

(v) QTg = g if and only if g ∈Meqc (X);

(vi) for all g ∈ [−∞,∞]X , QTg is the least monotone and evenly quasiconcave function greater than
g;

(vii) T is injective on Meqc (X) and Q is its left inverse.

Proof. (i) First we show that T is well defined and T
(

[−∞,∞]X
)
⊂ M♦

qcx (R×∆). Let g ∈

[−∞,∞]X . We already observed that Tg : (t, ξ) 7→ Gξ (t) is increasing in the first component, thus
A.1 holds. Lemma 3 guarantees that Tg satisfies A.2. Thus Tg belongs to M (R×∆) and T is well
defined. Lemma 4 guarantees that Tg satisfies A.3, that is Tg ∈M♦

qcx (R×∆).

10On hypo-epi inversion we refer to [24].
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To show that Q is well defined and Q (M (R×∆)) ⊂ Meqc (X), it is sufficient to observe that,
for all G ∈ M (R×∆) and ξ ∈ ∆, the functions G (〈ξ, ·〉 , ξ) is monotone and evenly quasiconcave.
Therefore, the lower envelope QG (·) = infξ∈∆G (〈ξ, ·〉 , ξ) is monotone and evenly quasiconcave too.

(ii) It is easily checked that T and Q are monotone.
(iii) QT ≥ I is equivalent to the fact that infξ∈∆Gξ (〈ξ, x〉) ≥ g (x) for all x ∈ X. Next we prove

the relation TQ ≤ I. Let G ∈ M (R×∆) and let g = QG, that is g (x) = infξ∈∆G (〈ξ, x〉 , ξ) for all
x ∈ X. We want to show Tg ≤ G. By the minimax inequality, for each (t, ξ) ∈ R×∆, we have,

Gξ
(
t
)

= sup
〈ξ,x〉≤t

g (x) = sup
〈ξ,x〉≤t

inf
ξ∈∆

G (〈ξ, x〉 , ξ) ≤ inf
ξ∈∆

sup
〈ξ,x〉≤t

G (〈ξ, x〉 , ξ) = G
(
t, ξ
)
.

The last equality is proved in Lemma 9 below.
(iv) From G ≥ Tg, (ii), and (iii), it follows that QG ≥ QTg ≥ g. Conversely, QG ≥ g, by (ii),

implies TQG ≥ Tg and (iii) delivers G ≥ TQG ≥ Tg.
(v) The equivalence QTg = g if and only if g ∈Meqc (X) is (i) of Theorem 1.
(vi) Recall that QG is monotone and evenly quasiconcave, for all G ∈M (R×∆). Hence, QTg =

Q (Tg) ≥ g is monotone and evenly quasiconcave for all g ∈ [−∞,∞]X . Moreover, if g′ ≥ g is
monotone and evenly quasiconcave, then g′ = QTg′ ≥ QTg, as wanted.

(vii) Point (v) implies that QT = I on Meqc (X), hence T is injective on Meqc (X) and Q is its
left inverse.11 �

The next simple corollary, and especially the equivalence between (i) and (iii), will be very useful
to prove duality results.

Corollary 1 The following statements are equivalent for A ⊂Mqc (X) and B ⊂M (R×∆):

(i) A and B form a complete monotone quasiconcave duality pair;

(ii) A ⊂Meqc (X) and B = T (A);

(iii) A ⊂Meqc (X), T (A) ⊂ B, Q (B) ⊂ A, and TQ = I on B.

Proof. (i) implies (ii). By definition, T is injective on A, T (A) = B, and T−1 = Q on B. Therefore,
QTg = g for all g ∈ A and point (v) of Proposition 1 guarantees that A ⊂Meqc (X).

(ii) implies (iii). We only have to show that Q (B) ⊆ A, TQ = I on B. Since A ⊂ Meqc (X),
point (v) of Proposition 1 guarantees that T is injective on A and Q : T (A)→ A is its inverse. Then
B = T (A) implies Q (B) = QT (A) = I (A) = A. Moreover, for all G ∈ B = T (A), G = T

(
T−1G

)
=

TQG, that is TQ = I on B.
(iii) implies (i). Since A ⊂ Meqc (X), point (v) of Proposition 1 guarantees that T is injective

on A and Q : T (A) → A is its inverse. Then T (A) ⊂ B, Q (B) ⊂ A, TQ = I on B, imply
B = T|AQ|B (B) ⊂ T|A (A) = T (A). Finally, B = T (A) and we already observed that Q is the
inverse of T on T (A). �

By point (ii) of the corollary, it holds 〈Meqc (X) ,T (Meqc (X))〉qc. The set T (Meqc (X)) will be
characterized momentarily in Theorem 2.

11Recall that a left inverse of a function F : L→M is a function F ′ : F (L)→ L such that F ′ ◦ F = IL. A function

admits left inverse if and only if it is injective, and in this case the only left inverse is F−1 : F (L)→ L.
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3.1 Even Quasiconcave Duality

Theorem 2 Let X be an M -space. Then,
〈
Meqc (X) ,M♦

qcx (R×∆)
〉
qc

.

In other words, the map T :Meqc (X)→M♦
qcx (R×∆) given by

(Tg) (t, ξ) = Gξ (t) , ∀ (t, ξ) ∈ R×∆,

is one-to-one and onto. Its inverse T−1 :M♦
qcx (R×∆)→Meqc (X) is(

T−1G
)

(x) = inf
ξ∈∆

G (〈ξ, x〉 , ξ) , ∀x ∈ X.

This is our basic duality result, which establishes a complete duality for the class Meqc (X) of
the evenly quasiconcave functions g : X → [−∞,∞], a key class in Quasiconvex Analysis in view of
Theorem 1.

By point (i) of Proposition 1 and point (iii) of Corollary 1, to prove Theorem 2 it is sufficient
to show that TQ = I on M♦

qcx (R×∆). This is done in Lemma 10, which, in turn builds on the
following:

Lemma 9 Let X be an ordered normed vector space. If G ∈M (R×∆) and
(
t, ξ
)
∈ R×∆, then

G
(
t, ξ
)

= min
ξ∈∆

 sup
x∈{ξ≤t}

G (〈ξ, x〉 , ξ)

 .

Proof. Consider the program

ρ
(
ξ, ξ, t

)
= sup
x∈{ξ≤t}

G (〈ξ, x〉 , ξ) ,

with ξ ∈ ∆. It is sufficient to show that ρ
(
ξ, ξ, t

)
≥ ρ

(
ξ, ξ, t

)
= G

(
t, ξ
)

for all ξ ∈ ∆. For
the second equality just notice that, by monotonicity of G in the first component, ρ

(
ξ, ξ, t

)
=

supx∈{ξ≤t}G
(〈
ξ, x
〉
, ξ
)
≤ G

(
t, ξ
)
. Furthermore, since ξ 6= 0, there exists x̄ ∈ X such that

〈
ξ, x̄
〉

= t

implying that the sup is attained. Consider two cases.

(i) Suppose ξ ∈ span
(
ξ
)
. Then ξ = αξ and 1 = ‖ξ‖ =

∥∥αξ∥∥ = |α|
∥∥ξ∥∥ = |α|. If ξ = ξ, then

ρ
(
ξ, ξ, t

)
= ρ

(
ξ, ξ, t

)
= G

(
t, ξ
)
. Else ξ = −ξ and

ρ
(
ξ, ξ, t

)
= sup
x∈{ξ≤t}

G
(〈
−ξ, x

〉
,−ξ

)
= sup
x∈{−ξ≥−t}

G
(〈
−ξ, x

〉
,−ξ

)
but, since ξ 6= 0, for all t ≥ −t there is xt ∈ X such that

〈
−ξ, xt

〉
= t ≥ −t, thus

sup
x∈{−ξ≥−t}

G
(〈
−ξ, x

〉
,−ξ

)
≥ lim
t→+∞

G
(
t,−ξ

)
= lim
t→+∞

G
(
t, ξ
)
≥ G

(
t, ξ
)
.

(ii) Suppose ξ /∈ span
(
ξ
)
. By the Fundamental Theorem of Duality (see, e.g., [1, Theorem 5.91]),

ker
(
ξ
)

* ker (ξ). That is, there is y ∈ X such that
〈
ξ, y
〉

= 0 and 〈ξ, y〉 6= 0. Choose x ∈ X such that〈
ξ, x
〉

= t, then the straight line x+ αy is thus included into the hyperplane
{
ξ = t

}
. Hence,

ρ
(
ξ, ξ, t

)
≥ lim
t→+∞

G (t, ξ) = lim
t→+∞

G
(
t, ξ
)
≥ G

(
t, ξ
)
.

In sum, ρ
(
ξ, ξ, t

)
≥ G

(
t, ξ
)

for all ξ ∈ ∆ and ρ
(
ξ, ξ, t

)
= G

(
t, ξ
)
. �
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Lemma 10 Let X be an M -space. We have TQG = G for all G ∈M♦
qcx (R×∆). That is, we have

sup
x∈X
{g (x) : 〈ξ, x〉 ≤ t} = G (t, ξ) , ∀ (t, ξ) ∈ R×∆, (16)

where g (x) = infξ∈∆G (〈ξ, x〉 , ξ) for all x ∈ X.

Proof. Fix
(
t, ξ
)
∈ R×∆. By definition, supx∈X

{
g (x) :

〈
ξ, x
〉
≤ t
}

= supx∈{ξ≤t} infξ∈∆G (〈ξ, x〉 , ξ)
and, by Lemma 9, infξ∈∆ supx∈{ξ≤t}G (〈ξ, x〉 , ξ) = G

(
t, ξ
)
. Since it is well known that

sup
x∈{ξ≤t}

inf
ξ∈∆

G (〈ξ, x〉 , ξ) ≤ inf
ξ∈∆

sup
x∈{ξ≤t}

G (〈ξ, x〉 , ξ) = G
(
t, ξ
)
, (17)

it remains to prove the converse inequality. If G
(
t, ξ
)

= inf(t,ξ)∈R×∆G (t, ξ), the equality in (17) is
easily checked. Otherwise, set α = G

(
t, ξ
)
. We have α > −∞. Moreover, for each scalar β < α,

Lβ = {(t, ξ) ∈ R×∆ : G (t, ξ) ≤ β} is ♦-evenly convex and
(
t, ξ
)
6∈ Lβ . If β is large enough, Lβ is

neither empty nor R×∆. Therefore, there is x ∈ X and s 6= 0 such that,

〈ξ, x〉+ st >
〈
ξ, x
〉

+ st, ∀ (t, ξ) ∈ Lβ . (18)

Since G is increasing in the first component, it is easy to see that s < 0.12 Set λ = t −
〈
ξ, x|s|

〉
and

x̂ = x
|s| + λe, then

〈
ξ, x̂
〉

= t and for all (t, ξ) ∈ Lβ

〈ξ, x〉+ st >
〈
ξ, x
〉

+ st =⇒
〈
ξ,
x

|s|
+ λe

〉
− t >

〈
ξ,
x

|s|
+ λe

〉
− t

=⇒ 〈ξ, x̂〉 − t >
〈
ξ, x̂
〉
− t

=⇒ 〈ξ, x̂〉 − t > 0.

Therefore, if 〈ξ, x̂〉 − t ≤ 0, then (t, ξ) 6∈ Lβ .
If for each ξ ∈ ∆ we pick tξ = 〈ξ, x̂〉, then 〈ξ, x̂〉 − tξ = 0. Therefore, (tξ, ξ) = (〈ξ, x̂〉 , ξ) 6∈ Lβ for

each ξ ∈ ∆. This implies G (〈ξ, x̂〉 , ξ) > β for each ξ ∈ ∆. Since x̂ ∈
{
ξ ≤ t

}
, we have that

α ≥ sup
x∈{ξ≤t}

inf
ξ∈∆

G (〈ξ, x〉 , ξ) ≥ inf
ξ∈∆

G (〈ξ, x̂〉 , ξ) ≥ β.

This is true for each β in a left neighborhood of α, thus supx∈{ξ≤t} infξ∈∆G (〈ξ, x〉 , ξ) = α, as desired.
�

3.2 Lower Semicontinuous Duality

Let Mlsc (X) be the set of all g ∈ Mqc (X) that are lower semicontinuous with values in [−∞,∞].
Note that if g ∈Mlsc (X), g is strictly evenly quasiconcave and therefore Mlsc (X) ⊂Meqc (X).

Denote by Lqcx (R×∆) ⊂M (R×∆) the class of functions G : R×∆→ [−∞,∞] such that:

(A.4) (t, ξ) 7→ G (t, ξ) is lower semicontinuous and quasiconvex on R×∆.

Theorem 3 Let X be an M -space. Then, 〈Mlsc (X) ,Lqcx (R×∆)〉qc. In particular, the inf in (3)
is achieved.

12If per contra s > 0, take (t′, ξ′) ∈ Lβ , then by monotonicity (t′ − n, ξ′) ∈ Lβ for all n ∈ N. therefore 〈ξ′, x〉+st′−sn >〈
ξ, x
〉

+ st for all n ∈ N, which is absurd.
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That is, the map T :Mlsc (X)→ Lqcx (R×∆) given by

(Tg) (t, ξ) = Gξ (t) , ∀ (t, ξ) ∈ R×∆,

is one-to-one and onto. Its inverse T−1 : Lqcx (R×∆)→Mlsc (X) is(
T−1G

)
(x) = min

ξ∈∆
G (〈ξ, x〉 , ξ) , ∀x ∈ X.

By Theorem 3, there is a complete duality for the class Mlsc (X) of the quasiconcave and lower
semicontinuous monotone functions g : X → [−∞,∞]. The proof of this result follows from the next
few lemmas. Given G : R×∆→ [−∞,∞], define Γ : X ×∆→ [−∞,∞] by Γ (x, ξ) = G (〈ξ, x〉 , ξ).

It is noteworthy that Theorem 3 has the non obvious implication that Lqcx (R×∆) ⊂M♦
qcx (R×∆),

namely, that quasiconvex and lower semicontinuous functions ofM (R×∆) are necessarily ♦-quasiconvex.

Lemma 11 Suppose that G : R ×∆ → [−∞,∞] is increasing in the first argument, lower semicon-
tinuous and quasiconvex on R×∆. Then,

(i) Γ is lower semicontinuous on X ×∆, quasiconvex on ∆, and quasiaffine on X.

(ii) If G is real valued, given any closed and convex subset Z of X, we have

inf
ξ∈∆

sup
x∈Z

Γ (x, ξ) = sup
x∈Z

inf
ξ∈∆

Γ (x, ξ) . (19)

Proof. (i) Consider a net {(xα, ξα)}α∈A ⊂ X×∆ such that (xα, ξα)→ (x, ξ) in the product topology.
This is equivalent to xα → x and ξα → ξ. It follows that 〈ξα, xα〉 → 〈ξ, x〉. For,

|〈ξα, xα〉 − 〈ξ, x〉| ≤ |〈ξα, xα〉 − 〈ξα, x〉|+ |〈ξα, x〉 − 〈ξ, x〉| = |〈ξα, xα − x〉|+ |〈ξα, x〉 − 〈ξ, x〉|

≤ ‖ξα‖ ‖xα − x‖+ |〈ξα, x〉 − 〈ξ, x〉| = ‖xα − x‖+ |〈ξα, x〉 − 〈ξ, x〉| → 0.

Since G is lower semicontinuous, it then follows that

lim inf
α

Γ (xα, ξα) = lim inf
α
G (〈ξα, xα〉 , ξα) ≥ G (〈ξ, x〉 , ξ) = Γ (x, ξ) ,

and so Γ is lower semicontinuous.

Clearly, Γ is quasiconvex on both ∆ and X, separately. Let us show that Γ is quasiconcave on
X. Fix ξ ∈ ∆. Let x1, x2 ∈ {x ∈ X : Γ (x, ξ) ≥ α} where α ∈ R. Wlog, suppose 〈ξ, x1〉 ≥ 〈ξ, x2〉.
Therefore, 〈ξ, λx1 + (1− λ)x2〉 ≥ 〈ξ, x2〉 for each λ ∈ (0, 1). SinceG is monotone in the first argument,
Γ (λx1 + (1− λ)x2, ξ) ≥ Γ (x2, ξ) ≥ α, as desired. This completes the proof of (i).

(ii) Γ is real valued given that G is real valued. In view of the properties of Γ established in point
(i), the minimax equality (19) follows from the Minimax Theorem of [32, Corollary 2] (see also [16,
Theorem 1.3], and [13, Theorem 3.1]). �

Lemma 12 A function g : X → [−∞,∞] is quasiconcave, monotone, and lower semicontinuous if
and only if there exists a G : R×∆→ [−∞,∞] increasing in the first argument, lower semicontinuous,
and quasiconvex on R×∆, such that

g (x) = min
ξ∈∆

G (〈ξ, x〉 , ξ) , ∀x ∈ X. (20)
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Proof. We first prove necessity. Consider the mapping such that (t, ξ) 7→ Gξ (t) for each (t, ξ) ∈ R×∆.
By definition, it is increasing in the first component. Since g is lower semicontinuous, by Lemma 5
Gξ (t) is lower semicontinuous on R×∆. Moreover, by Lemma 4, it is quasiconvex on R×∆. Finally,
(ii) of Theorem 1 implies that it satisfies (20).

Conversely, suppose that G : R × ∆ → [−∞,∞] is increasing in the first argument and lower
semicontinuous on R × ∆, and that (20) holds. Clearly, g is monotone. Moreover, by Lemma 11,
G (〈ξ, ·〉 , ξ) : X → [−∞,∞] is quasiconcave for each ξ ∈ ∆, and so is g (since it is the infimum of
quasiconcave functions).

It remains to prove lower semicontinuity. First, given (20), we can write

g (x) = min
ξ∈∆

G (〈ξ, x〉 , ξ) = min
ξ∈∆

Γ (x, ξ) , ∀x ∈ X.

Next, consider {xn}n ⊂ X such that xn → x. Then, there exists a subsequence {xnk}k such that
limk g (xnk) = lim infn g (xn). Furthermore, by (20), for each k there exists ξnk ∈ ∆ such that
g (xnk) = Γ (xnk , ξnk).

Since ∆ is compact, there exists a subnet
{
ξnkα

}
α∈A such that ξnkα → ξ̄ ∈ ∆. Given Lemma 11,

we have that Γ is lower semicontinuous on X ×∆. Hence,

lim inf
n
g (xn) = lim

k
g (xnk) = lim

α
g
(
xnkα

)
= lim

α
Γ
(
xnkα , ξnkα

)
≥ Γ

(
x, ξ̄
)
≥ min

ξ∈∆
Γ (x, ξ) = g (x) .

This proves that g is lower semicontinuous. �

Lemma 13 Let X be an M -space. We have TQG = G for all G ∈ Lqcx (R×∆). That is, we have

sup
x∈X
{g (x) : 〈ξ, x〉 ≤ t} = G (t, ξ) , ∀ (t, ξ) ∈ R×∆,

where g (x) = minξ∈∆G (〈ξ, x〉 , ξ) for all x ∈ X.

Proof. Let us first consider the case in which G is real valued; i.e., G : R×∆→ R. Fix
(
t, ξ
)
∈ R×∆.

Define Z =
{
x ∈ X :

〈
ξ, x
〉
≤ t
}

. By (19),

Gξ
(
t
)

= sup
x∈Z

g (x) = sup
x∈Z

inf
ξ∈∆

Γ (x, ξ) = inf
ξ∈∆

sup
x∈Z

Γ (x, ξ) = inf
ξ∈∆

sup
x∈Z

G (〈ξ, x〉 , ξ) . (21)

By Lemma 9, G
(
t, ξ
)

= infξ∈∆ supx∈Z G (〈ξ, x〉 , ξ). Then, by (21), it follows that Gξ (t) = G (t, ξ) for
all (t, ξ) ∈ R×∆. This completes the proof for G real valued. Consider now G : R×∆→ [−∞,∞].
Let ϕ : [−∞,∞] → R be a strictly increasing, extended-valued continuous, and bounded function.13

The function Ĝ = ϕ ◦ G : R × ∆ → R is real valued and belongs to Lqcx (R×∆). Moreover, the
function ĝ = ϕ ◦ g : X → R is such that ĝ (x) = minξ∈∆ Ĝ (〈ξ, x〉 , ξ) for all x ∈ X.

By the first part of the proof, Ĝξ (t) = Ĝ (t, ξ) for all (t, ξ) ∈ R×∆. Hence, by Lemma 6

ϕ (Gξ (t)) = Ĝξ (t) = Ĝ (t, ξ) = ϕ (G (t, ξ)) , ∀ (t, ξ) ∈ R×∆,

and so Gξ (t) = G (t, ξ) for all (t, ξ) ∈ R×∆. �

13E.g.,

ϕ (t) =


−π

2
if t = −∞

arctan t if t ∈ R
π
2

if t =∞
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Proof of Theorem 3. Consider T :Mlsc (X)→M (R×∆). By Lemmas 3, 4, and 5, we have that
T (Mlsc (X)) ⊂ Lqcx (R×∆). Hence, T :Mlsc (X)→ Lqcx (R×∆). By Proposition 1, T is injective
on Mlsc (X) ⊂ Meqc (X). Let G ∈ Lqcx (R×∆). By Lemma 12, QG ∈ Mlsc (X). By Lemma 13,
TQG = G therefore T is surjective. That is, T−1 = Q on Lqcx (R×∆). �

Denote by C (R×∆) ⊂ Lqcx (R×∆) the class of functions G : R×∆→ [−∞,∞] such that:

(A.5) G (·, ξ) is extended-valued continuous on R for each ξ ∈ ∆.14

The next corollary is an interesting consequence of Lemmas 12 and 13.

Corollary 2 Let X be an M -space. Then, C (R×∆) ⊂ T (Mlsc (X)), namely, 〈QC (R×∆) , C (R×∆)〉qc.
In particular,

G (t, ξ) = sup
x∈X
{g (x) : 〈ξ, x〉 ≤ t} = Gξ (t) .

where g : X → [−∞,∞] is the monotone, continuous, and quasiconcave function defined by

g (x) = min
ξ∈∆

G (〈ξ, x〉 , ξ) , ∀x ∈ X.

with G ∈ C (R×∆).

3.2.1 Continuous Duality

The lower semicontinuous duality established in Theorem 3 implies a duality for continuous functions.
This duality is based on the lower envelope G+ of G in its first argument: given a function G : R×∆→
[−∞,∞], the lower envelope G+ : R×∆→ [−∞,∞] in its first argument is given by

G+ (t, ξ) = inf {G (t′, ξ) : t′ > t} , ∀ (t, ξ) ∈ R×∆.

Lemma 14 If G belongs to M (R×∆) and is quasiconvex, then G+ ∈M (R×∆) is quasiconvex on
R×∆ and upper semicontinuous in the first argument.

Proof. The envelope G+ is easily seen to be monotone and upper semicontinuous in the first com-
ponent. It is quasiconvex on R×∆. Consider two points (t1, ξ1) , (t2, ξ2) ∈ R×∆ and λ ∈ (0, 1), and
define (tλ, ξλ) = λ (t1, ξ1) + (1− λ) (t2, ξ2). Then, since G is quasiconvex, for each n ≥ 1,

G

(
tλ +

1
n
, ξλ

)
≤ max

{
G

(
t1 +

1
n
, ξ1

)
, G

(
t2 +

1
n
, ξ2

)}
.

Since G is monotone, we then have G+ (tλ, ξλ) ≤ max {G+ (t1, ξ1) , G+ (t2, ξ2)}, and so G+ is quasi-
convex. Moreover, for fixed ξ ∈ ∆, we have

G (t, ξ) ≤ G+ (t, ξ) ≤ G (t+ ε, ξ) , ∀t ∈ R,∀ε ∈ (0,∞) .

Then, G being increasing in its first component,

lim
t→∞

G (t, ξ) = lim
t→∞

G+ (t, ξ) , ∀ξ ∈ ∆. (22)

Since G ∈M (R×∆), (22) implies limt→∞G+ (t, ξ′) = limt→∞G+ (t, ξ) for all ξ, ξ′ ∈ ∆. We conclude
that G+ ∈M (R×∆). �

14That is, limt→t0 G (t, ξ) = G (t0, ξ) ∈ (−∞,∞] for all ξ ∈ Γ.
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By Lemma 14, the lower envelopes G+ belong to the domain of Q, and so we can write QG+. Using
this observation, denote by CO (R×∆) ⊂ Lqcx (R×∆) the class of functions G : R×∆→ [−∞,∞]
such that QG+ = QG.

Moreover, let Mc (X) ⊂ Mlsc (X) be the set of all continuous g : X → [−∞,∞] that belong to
Mqc (X). We can now state the announced duality.

Theorem 4 Let X be an M -space. Then, 〈Mc (X) , CO (R×∆)〉qc. In particular, the inf in (3) is
achieved.

The proof of this theorem is based on the following lemma.

Lemma 15 A function g : X → [−∞,∞] is quasiconcave, monotone, and continuous if and only if
there exists G ∈ CO (R×∆) such that

g (x) = min
ξ∈∆

G (〈ξ, x〉 , ξ) , ∀x ∈ X. (23)

Proof. We first prove necessity. By Theorem 3, since g ∈Mc (X) ⊂Mlsc (X), the mapping (t, ξ) 7→
Gξ (t) belongs to Lqcx (R×∆). By Theorem 1-(iii) and Proposition 14, we have that QG+ = QG.
Conversely, suppose that G ∈ Lqcx (R×∆). Then, by Theorem 3 and (23), QG = g ∈Mlsc (X).

It remains to prove upper semicontinuity. First, given (23) and G ∈ CO (R×∆), we can write

g (x) = inf
ξ∈∆

G+ (〈ξ, x〉 , ξ) , ∀x ∈ X.

Since, for each ξ ∈ ∆, the function x 7→ G+ (〈ξ, x〉 , ξ) is upper semicontinuous, being a composition
of an upper semicontinuous function with a continuous one, so is the function g. �

Proof of Theorem 4. Consider T :Mc (X) → CO (R×∆). By Lemma 15, T is well defined. By
Theorem 3 and Lemma 15, T is bijective and T−1 = Q. �

We close with a characterization of the class of functions C (R×∆).

Proposition 2 C (R×∆) ⊂ CO (R×∆). Moreover, G ∈ C (R×∆) if and only if G ∈ CO (R×∆)
and G+ ∈M♦

qcx (R×∆); in this case G = G+.

Proof. Suppose that G ∈ C (R×∆). By definition, G ∈ Lqcx (R×∆) and G (·, ξ) for each ξ ∈ ∆ is
extended-valued continuous and monotone. Therefore, G+ = G and this prove the first part of the
statement.

Suppose that G ∈ CO (R×∆) and G+ ∈ M♦
qcx (R×∆). Since G ∈ Lqcx (R×∆) then, by

Theorem 2, G ∈ M♦
qcx (R×∆). Given that G+ ∈ M♦

qcx (R×∆) and that QG+ = QG, by Theorem
2 G+ = G. Therefore, G (·, ξ) = G+ (·, ξ) for each ξ ∈ ∆, implying that G (·, ξ) is extended-valued
continuous for each ξ ∈ ∆. �

We illustrate these results with an example.

Example 2 Let X be an M -space and ϕ : R → R an increasing function such that for some t0 ∈ R
the function ϕ is convex on (−∞, t0), limt→t−0

ϕ (t) = ∞, and ϕ (t) = ∞ for all t ≥ t0. Consider two
convex and lower semicontinuous mappings c1, c2 : ∆→ (−∞,∞]. Set

G (t, ξ) = ϕ (t+ c1 (ξ)) + c2 (ξ) , ∀ (t, ξ) ∈ R×∆.
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It is easy to see that the conditions of Corollary 2 are satisfied. The function G (t, ξ) is actually
lower semicontinuous and convex, and satisfies A.5. Hence, G ∈ C (R×∆). The quasiconcave, and
monotone function

g (x) = inf
ξ∈∆

(ϕ (〈ξ, x〉+ c1 (ξ)) + c2 (ξ)) = inf
ξ∈∆
{ϕ (〈ξ, x〉+ c1 (ξ)) + c2 (ξ) : 〈ξ, x〉+ c1 (ξ) < t0}

is such that Gξ (t) = G (t, ξ). Observe that g is in general not concave. Moreover, we have G = G+.
Consequently G ∈ CO (R×∆), and g is continuous by Theorem 4. N

3.3 Uniform Continuous Duality

We turn now to real valued and uniformly continuous quasiconcave functions g : X → R. We show
that a neat complete duality holds for them as well. We begin by showing what form Theorem 1 takes
for uniformly continuous functionals. Here, domGξ = {t ∈ R : Gξ (t) <∞}.

Theorem 5 A function g : X → R is uniformly continuous and quasiconcave if and only if

g (x) = min
ξ∈S∗

gξ (〈ξ, y〉) = min
ξ∈S∗

Gξ (〈ξ, x〉) , ∀x ∈ X, (24)

where domGξ ∈ {∅,R} for all ξ ∈ S∗, and {Gξ}ξ∈S∗:domGξ=R is a nonempty family of real valued
uniformly equicontinuous functions.15

If, in addition, X is ordered, then g is monotone if and only if in (24) we can replace S∗ with ∆.

Proof. Suppose g is real valued, quasiconcave, and uniformly continuous. By (ii) of Theorem 1, we
have the representation (24). As g is uniformly continuous, for all ε > 0, there is some δ > 0 such
that ‖x− x′‖ ≤ δ =⇒ |g (x)− g (x′)| ≤ ε. In particular, if u ∈ X and ‖u‖ = 1, then

g (x+ δu) ≤ g (x) + ε and g (x− δu) ≥ g (x)− ε, (25)

hold for all x ∈ X and ‖u‖ = 1. Fix now ξ ∈ S∗. As

‖ξ‖ = sup
‖x‖=1

〈ξ, x〉 = 1,

there exists an element u ∈ X, with ‖u‖ = 1 and 〈ξ, u〉 ≥ 1/2.
Given an ε > 0, let δ be such that (25) is satisfied. Let t ∈ domGξ and t′ ∈ R with |t− t′| ≤ δ/2.

Consider two cases:

Case 1: t′ ≤ t. Then,

Gξ (t)− ε = sup {g (x)− ε : 〈ξ, x〉 ≤ t} ≤ sup {g (x− δu) : 〈ξ, x〉 ≤ t}

= sup {g (x) : 〈ξ, x+ δu〉 ≤ t} = sup {g (x) : 〈ξ, x〉 ≤ t− δ 〈ξ, u〉}

= Gξ (t− δ 〈ξ, u〉) ≤ Gξ (t− δ/2) ≤ Gξ (t′) ≤ Gξ (t) .

Therefore, |Gξ (t)−Gξ (t′)| ≤ ε, under our assumption.

Case 2: t′ ≥ t. Then,

Gξ (t) ≤ Gξ (t′) ≤ Gξ (t+ δ/2) ≤ Gξ (t+ δ 〈ξ, u〉)

= sup {g (x) : 〈ξ, x〉 ≤ t+ δ 〈ξ, u〉} = sup {g (x) : 〈ξ, x− δu〉 ≤ t}

= sup {g (x+ δu) : 〈ξ, x〉 ≤ t} ≤ ε+ sup {g (x) : 〈ξ, x〉 ≤ t} = ε+Gξ (t) ,

15That is, for every ε > 0 there is δ > 0 such that |t− t′| ≤ δ implies
∣∣Gξ (t)−Gξ (t′)

∣∣ ≤ ε, for all t, t′ ∈ R and all

ξ ∈ S∗ such that dom
(
Gξ
)

= R.
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and once again we get |Gξ (t)−Gξ (t′)| ≤ ε.

In sum, we established that:

• Fix ε > 0 and ‖ξ‖ = 1 with domGξ 6= ∅. If t ∈ domGξ, then [t− δ/2, t+ δ/2] ⊂ domGξ; that is,
domGξ = R. Notice that, for a generic x ∈ X, we have that G (〈ξx, x〉 , ξx) = g (x) ∈ R for some
ξx ∈ S∗. Hence, domGξx = R.

• Since g is real valued, by definition, Gξ > −∞ for all ξ ∈ S∗.

• For all ε > 0 there is δ > 0 such that |Gξ (t)−Gξ (t′)| ≤ ε for all ‖ξ‖ = 1 with domGξ = R and
all t, t′ ∈ R with |t− t′| ≤ δ/2.

As to the converse, assume that (24) holds and {Gξ}ξ∈S∗:domGξ=R is a real valued, nonempty family
of equicontinuous functions. By definition, given ε > 0, there is δ > 0 such that |Gξ (t)−Gξ (t′)| ≤ ε
for all ξ ∈ S∗ with domGξ = R and all t, t′ ∈ R with |t− t′| ≤ δ.

Take x, y ∈ X such that ‖x− y‖ ≤ δ. There is ξx ∈ S∗ such that g (x) = Gξx (〈ξx, x〉). Since
{Gξ}ξ∈S∗:domGξ=R is a nonempty family of real valued functions, this implies that g (x) ∈ R, then
domGξx = R. Moreover, if ‖x− y‖ ≤ δ, then |〈ξx, x〉 − 〈ξx, y〉| ≤ ‖ξx‖ ‖x− y‖ ≤ δ. By uniform
equicontinuity |Gξx (〈ξx, x〉)−Gξx (〈ξx, y〉)| ≤ ε, and so

g (x) = min
ξ∈S∗

Gξ (〈ξ, x〉) = Gξx (〈ξx, x〉) ≥ Gξx (〈ξx, y〉)− ε

≥ min
ξ∈S∗

Gξ (〈ξ, y〉)− ε = g (y)− ε.

Exchanging the two points x and y, we get |g (x)− g (y)| ≤ ε, and so g is uniformly continuous. �

Set domG (·, ξ) = {t ∈ R : G (t, ξ) <∞}. Denote by E (R×∆) ⊂ Lqcx (R×∆) the set of functions
G : R×∆→ (−∞,∞] that have the following additional properties:

(A.6) domG (·, ξ) ∈ {∅,R} for all ξ ∈ ∆, and there exists at least one ξ such that domG
(
·, ξ
)

= R.

(A.7) G (·, ξ) are uniformly equicontinuous on R for all ξ ∈ ∆ such that domG (·, ξ) = R.16

Finally, let Muc (X) ⊂ Mc (X) be the set of all functions g : X → R that are monotone, quasi-
concave, and uniformly continuous.

Theorem 6 Let X be an M -space. Then, 〈Muc (X) , E (R×∆)〉qc. In particular, the inf in (3) is
achieved.

By Theorem 6, we thus have a complete duality also for the important class Muc (X) of the
quasiconcave and uniformly continuous monotone functions g : X → R.

Observe how the additional continuity property that characterizes the functions g in Muc (X)
among those in Mlsc (X) is reflected in the duality by the additional continuity property that the
functions G have in E (R×∆) among those in Lqcx (R×∆). The duality 〈Muc (X) , E (R×∆)〉qc can
thus be viewed as a “continuous” specification of the duality 〈Mlsc (X) ,Lqcx (R×∆)〉qc.

The proof of Theorem 6 is based on the following lemma.
16That is, for every ε > 0 there is δ > 0 such that |t− t′| ≤ δ implies |G (t, ξ)−G (t′, ξ)| ≤ ε, for all t, t′ ∈ R and all

ξ ∈ ∆ such that domG (·, ξ) = R.
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Lemma 16 A function g : X → [−∞,∞] is real valued, quasiconcave, monotone, and uniformly
continuous if and only if there exists a G : R×∆→ (−∞,∞] in E (R×∆) such that

g (x) = min
ξ∈∆

G (〈ξ, x〉 , ξ) , ∀x ∈ X. (26)

Proof. We first prove necessity. By the proof of Lemma 12, the mapping (t, ξ) 7→ Gξ (t) belongs to
Lqcx (R×∆) and satisfies (26). Since g is real valued, such mapping takes values on (−∞,∞] and,
by Theorem 5, the mapping satisfies A.6 and A.7.

Conversely, for sufficiency, suppose that G : R×∆→ (−∞,∞] is in E (R×∆) and that (26) holds.
Since G satisfies (26) and A.6, for each x ∈ X there exists ξx ∈ ∆ such that

∞ > G
(〈
ξ, x
〉
, ξ
)
≥ g (x) = G (〈ξx, x〉 , ξx) > −∞.

This implies that g is real valued. Clearly, g is monotone. Moreover, by Lemma 11, G (〈ξ, ·〉 , ξ) : X →
(−∞,∞] is quasiconcave for each ξ ∈ ∆, and so is g being the infimum of quasiconcave functions.

It remains to prove uniform continuity. By definition, given ε > 0, there is δ > 0 such that
|G (t, ξ)−G (t′, ξ)| ≤ ε for all ξ ∈ ∆ with domG (·, ξ) = R and all t, t′ ∈ R with |t− t′| ≤ δ.

Take x, y ∈ X such that ‖x− y‖ ≤ δ. There is ξx ∈ ∆ such that g (x) = G (〈ξx, x〉 , ξx). Since
g (x) ∈ R, then domG (·, ξx) = R. Moreover, if ‖x− y‖ ≤ δ, then |〈ξx, x〉 − 〈ξx, y〉| ≤ ‖ξx‖ ‖x− y‖ ≤ δ.
By uniform equicontinuity, |G (ξx, 〈ξx, x〉)−G (ξx, 〈ξx, y〉)| ≤ ε, and so

g (x) = min
ξ∈∆

G (〈ξ, x〉 , ξ) = G (〈ξx, x〉 , ξx) ≥ G (〈ξx, y〉 , ξx)− ε

≥ min
ξ∈∆

G (〈ξ, y〉 , ξ)− ε = g (y)− ε.

Exchanging the two points x and y, we get |g (x)− g (y)| ≤ ε, and so g is uniformly continuous. �

Proof of Theorem 6. Consider T :Muc (X)→M (R×∆). By Lemmas 3, 4, and 5 and by Theorem
5, we have that T (Muc (X)) ⊂ E (R×∆). Hence, T : Muc (X) → E (R×∆). By Proposition
1, T is injective on Muc (X) ⊂ Meqc (X). Let G ∈ E (R×∆) ⊂ Lqcx (R×∆). By Lemma 16,
QG ∈ Muc (X) ⊂ Mlsc (X). By Lemma 13, TQG = G therefore T is surjective. That is, T−1 = Q
on E (R×∆). �

4 Characterization of Indirect Utilities

The results on even quasiconcave duality provide a characterization of indirect utilities for preferences
defined on M -spaces. In fact, interpret [−∞,∞]X as the set of all utility functions (thus allowing for
non-monotone utility functions), and ∆ as the set of all normalized prices. Under this interpretation,
T
(

[−∞,∞]X
)

is the set of all indirect utilities.

Lemma 17 Let X be an M -space. Given any g : X → [−∞,∞], there exists a unique h ∈Meqc (X)
such that

sup
x∈X
{g (x) : 〈ξ, x〉 ≤ t} = sup

x∈X
{h (x) : 〈ξ, x〉 ≤ t} , ∀ (t, ξ) ∈ R×∆.

Specifically, h is the least monotone evenly quasiconcave function greater than g, and

arg max
x∈X
{g (x) : 〈ξ, x〉 ≤ t} ⊆ arg max

x∈X
{h (x) : 〈ξ, x〉 ≤ t} ∀ (t, ξ) ∈ R×∆.
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Proof. By point Proposition 1-(i), T
(

[−∞,∞]X
)
⊂M♦

qcx (R×∆). By Theorem 2,

M♦
qcx (R×∆) = T (Meqc (X)) ⊂ T

(
[−∞,∞]X

)
.

Thus, T (Meqc (X)) = T
(

[−∞,∞]X
)

.
As T is injective over Meqc (X), for any function g there a unique function h ∈ Meqc (X) such

that Tg = Th. This implies QTg = QTh = h. By (iii) of Proposition 1, h ≥ g. On the other hand, if
h1 ≥ g, with h ∈Meqc (X), we have h1 = QTh1 ≥ QTg = h. Let x ∈ arg maxx∈X {g (x) : 〈ξ, x〉 ≤ t}.
As 〈ξ, x〉 ≤ t, we have

sup
x∈X
{h (x) : 〈ξ, x〉 ≤ t} ≥ h (x) ≥ g (x) = sup

x∈X
{g (x) : 〈ξ, x〉 ≤ t} .

Hence, h (x) = supx∈X {h (x) : 〈ξ, x〉 ≤ t}, as desired. �

This lemma shows that in the standard utility maximization problems of Microeconomics, it is
without loss of generality (in terms of optimal values) to consider functions inMeqc (X), that is, evenly
quasiconcave and monotone utility functions. Therefore, the set of all possible indirect utility functions
is given by T (Meqc (X)) =M♦

qcx (R×∆). In other words, all functions in M♦
qcx (R×∆), and only

them, can be viewed as arising from a maximization problem. As observed in the Introduction, this
is important in applications. A slightly stronger result is actually true:

Theorem 7 Let X be an M -space. Then,

T
(

[−∞,∞]X
)

= T (Meqc (X)) =M♦
qbx (R×∆) , (27)

and Q|M♦
qcx(R×∆) = max T−1.

Proof. By the proof of Lemma 17, we have that T (Meqc (X)) = T
(

[−∞,∞]X
)

. By Theorem 2, it

follows that M♦
qcx (R×∆) = T (Meqc (X)). Thus, (27) holds.

It remains to prove that Q (G) = max T−1 (G) for each G ∈ M♦
qcx (R×∆). Notice that for each

indirect utility G and each utility h that induces G (i.e., such that Th = G), Proposition 1-(iii) implies
QG = QTh ≥ h, while Theorem 2 guarantees T (QG) = G. That is, QG ∈ T−1 (G) and it is the
greatest utility that induces G. �

Though we leave for future research a thorough study ofM♦
qcx (R×∆) as a set of indirect utilities,

Lemma 17 and Theorem 7 show that our notion of complete duality is relevant for this important
topic in Microeconomics.

5 Concavity and Fenchel Duality

In this section we consider our duality results for concave functions g : X → [−∞,∞). Besides its
intrinsic interest, this allows us to investigate the relationships between our duality and the classic
Fenchel conjugation g∗ (ξ) = infx∈X {〈ξ, x〉 − g (x)}. In this section, for each function g : X →
[−∞,∞) we set domg = {x ∈ X : g (x) > −∞} and domgξ = {t ∈ R : gξ (t) > −∞}.

5.1 Preliminary Lemmas

The results of this section rest on the following two lemmas. The first one is true under no assumptions
on the functions.
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Lemma 18 Given any g : X → [−∞,∞), we have

(gξ)
∗ (λ) = g∗ (λξ) , ∀ξ ∈ X∗, ∀λ ∈ R. (28)

Proof. First observe that the linear map x 7→ 〈ξ, x〉 from X to R has full rank if ξ 6= 0. Therefore,

inf
x∈X

ϕ (x) = inf
t∈R

inf
〈ξ,x〉=t

ϕ (x) (29)

for any function ϕ : X → [−∞,∞] and any 0 6= ξ ∈ X∗. Hence, for all ξ 6= 0 and for all λ ∈ R,

g∗ (λξ) = inf
x∈X
{λ 〈ξ, x〉 − g (x)} = inf

t∈R
inf
〈ξ,x〉=t

{λ 〈ξ, x〉 − g (x)} = inf
t∈R

inf
〈ξ,x〉=t

{λt− g (x)}

= inf
t∈R

{
λt− sup

〈ξ,x〉=t
g (x)

}
= inf
t∈R
{λt− gξ (t)} = (gξ)

∗ (λ) .

If ξ = 0 we have that g∗ (λξ) = g∗ (0) = − supx∈X g (x) for all λ ∈ R. By definition of gξ, we have
that g0 (t) = −∞ for each t ∈ R\ {0} while g0 (0) = supx∈X g (x). Hence, for all λ ∈ R,

(g0)∗ (λ) = inf
t∈R
{λt− g0 (t)} = −g0 (0) = − sup

x∈X
g (x) = g∗ (λξ) .

Therefore, (28) holds for all ξ ∈ X∗ and for all λ ∈ R. �

The case with λ = 1 of Lemma 18 is especially interesting and is reported in the next corollary,
for later reference.

Corollary 3 Let g : X → [−∞,∞), we have

g∗ (ξ) = inf
t∈R
{t− gξ (t)} , ∀ξ ∈ X∗, (30)

and, when g is monotone and X+ is quasi-reproducing,

g∗ (ξ) = inf
t∈R
{t−Gξ (t)} , ∀ξ ∈ X∗+. (31)

In the concave case we have the following relation between Gξ and the Fenchel conjugate g∗.

Lemma 19 Let g : X → R be concave. Then,

Gξ (t) = min
λ≥0

[λt− g∗ (λξ)] , ∀t ∈ R,∀ξ ∈ X∗ \ {0} .

Proof. Fix (t, ξ) ∈ R×X∗\ {0}. We can write Gξ (t) = supx∈X [g (x)− δξ (x)], where δξ is the convex
indicator function:

δξ (x) =

{
0 if 〈ξ, x〉 ≤ t,
∞ if 〈ξ, x〉 > t.

By the Fenchel-Rockafellar Duality Theorem ([27]),

sup
x∈X

[g (x)− k (x)] = min
ξ∈X∗

[k∗ (ξ)− g∗ (ξ)] ,

when g : X → [−∞,∞) is a proper concave function, k : X → (−∞,∞] is a proper convex function,
k is finite and continuous at some point of dom g, and k∗ is the (convex) Fenchel conjugate of k. If
we set k (x) = δξ (x) for each x ∈ X, being g real valued, we have that the assumptions hold for the
fixed ξ and t. It remains to calculate k∗ (ξ) . We have k∗

(
ξ
)

= supx∈X
[〈
ξ, x
〉

: 〈ξ, x〉 ≤ t
]
. It is easy

to check that

k∗
(
ξ
)

=

{
λt if ξ = λξ, λ ≥ 0,
∞ else.

Therefore, Gξ (t) = supx∈X [g (x)− δξ (x)] = minλ≥0 [λt− g∗ (λξ)]. �
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5.2 Characterizations of Concavity

We now give some characterizations of concavity that follow from Theorem 1. The equivalence of (i)
and (ii) was actually the motivation of de Finetti’s early version of Theorem 1. Indeed, the fact that
concavity of g implies concavity of both functions gξ and Gξ is well known. We report here the proof
for completeness.

Proposition 3 Given an evenly quasiconcave function g : X → [−∞,∞), consider the following
properties:

(i) g is concave;

(ii) gξ is concave for each ξ ∈ S∗;

(iii) Gξ is concave for each ξ ∈ S∗;

(iv) g+
ξ (t) = infλ∈R {λt− g∗ (λξ)} for each t ∈ {gξ > −∞} and ξ ∈ S∗.

Then,
(i)⇐⇒ (ii)⇐⇒ (iii) =⇒ (iv)

Moreover, all properties are equivalent provided g is upper semicontinuous.

Proof. First we will prove that (i), (ii) and (iii) are equivalent.
(i) implies (ii) and (iii). Pick ξ ∈ S∗, then for all t, r ∈ R and λ ∈ (0, 1),

gξ (λt+ (1− λ) r) = sup
x∈X
{g (x) : 〈ξ, x〉 = λt+ (1− λ) r}

≥ sup
y,z∈X

{g (λy + (1− λ) z) : 〈ξ, y〉 = t, 〈ξ, z〉 = r}

≥ sup
y,z∈X

{λg (y) + (1− λ) g (z) : 〈ξ, y〉 = t, 〈ξ, z〉 = r}

= λ sup
y∈X
{g (y) : 〈ξ, y〉 = t}+ (1− λ) sup

z∈X
{g (z) : 〈ξ, z〉 = r}

= λgξ (t) + (1− λ) gξ (r) .

The proof for Gξ follows just as easily.

(ii) or (iii) imply (i). By hypothesis, it follows that for each ξ ∈ S∗ the function such that
x 7→ gξ (〈ξ, x〉 , ξ) or such that x 7→ Gξ (〈ξ, x〉 , ξ) is concave, being the composite of an affine function
with a concave function. By Theorem 1, it follows that the lower envelope g is concave as well.

(ii) implies (iv). By Lemma 18, (gξ)
∗ (λ) = g∗ (λξ). Hence, as gξ is concave,

cl (gξ) (t) = (gξ)
∗∗ (t) = inf

λ∈R
{λt− g∗ (λξ)} .

Where cl (gξ) is the “closure” of gξ. We have that cl (gξ) (t) = g+
ξ (t) for all t ∈ R if gξ < ∞ and

domgξ 6= ∅ or if t ∈ domgξ. Otherwise, cl (gξ) =∞ (see [28, pag 307] and [29]).
We have thus the desired implication (ii) =⇒ (iv), as well as the first part of the statement.

(iv) implies (i). Suppose g is upper semicontinuous. We always have (gξ)
∗∗ ≥ g+

ξ and (gξ)
∗∗ is

concave for all ξ ∈ S∗. By Theorem 1, it follows that

g (x) = inf
ξ∈S∗

gξ (〈ξ, x〉) = inf
ξ∈S∗

g+
ξ (〈ξ, x〉) ≤ inf

ξ∈S∗
(gξ)

∗∗ (〈ξ, x〉)
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for all x ∈ X. Suppose x ∈ domg. From g (x) > −∞ it follows gξ (〈ξ, x〉) > −∞ for all ξ ∈ S∗. Hence,
〈ξ, x〉 ∈ domgξ for all ξ ∈ S∗. Consequently, g+

ξ (〈ξ, x〉) = (gξ)
∗∗ (〈ξ, x〉) for all ξ ∈ S∗ and

g (x) = inf
ξ∈S∗

(gξ)
∗∗ (〈ξ, x〉) (32)

for all x ∈ domg. (32) implies that g is concave on domg, since it is the lower envelope of concave
functions on a convex set. It follows that g is concave on X. �

For real valued functions, Proposition 3 takes the following form.

Corollary 4 Given an evenly quasiconcave function g : X → R, the following are equivalent facts:

(i) g is concave;

(ii) gξ is concave for each ξ ∈ S∗;

(iii) Gξ is concave for each ξ ∈ S∗;

(iv) gξ (t) = infλ∈R {λt− g∗ (λξ)} for each (t, ξ) ∈ R× S∗.

In particular, domgξ = R and either gξ <∞ or gξ =∞.

Proof. From Proposition 3 we have that (i), (ii) and (iii) are equivalent.
(i) implies (iv). Suppose g is concave. Since g is real valued, by definition, gξ (t) > −∞ for all

(t, ξ) ∈ R×S∗. Therefore, it follows that dom gξ = R. Then, by concavity of gξ, it follows that gξ <∞
or gξ =∞. In both cases, gξ is an upper semicontinuous function, for all ξ ∈ S∗. Hence, gξ = g+

ξ for
all ξ ∈ S∗. By Proposition 3, we have that

gξ (t) = inf
λ∈R
{λt− g∗ (λξ)} , ∀t ∈ R.

(iv) implies (i). If gξ (t) = infλ∈R {λt− g∗ (λξ)} for each (t, ξ) ∈ R× S∗, then gξ is concave for all
ξ ∈ S∗. It follows that (ii) is satisfied and g is concave. �

Similarly, if X an ordered space, for monotone functions Proposition 3 takes the following form.

Corollary 5 Given an evenly quasiconcave and monotone function g : X → [−∞,∞), consider the
following properties:

(i) g is concave;

(ii) gξ is concave for each ξ ∈ ∆;

(iii) Gξ is concave for each ξ ∈ ∆;

(iv) If X is quasi-reproducing, g+
ξ (t) = infλ∈R+ {λt− g∗ (λξ)} for each t ∈ {gξ > −∞} and ξ ∈ ∆.

Then,
(i)⇐⇒ (ii)⇐⇒ (iii) =⇒ (iv)

and all properties are equivalent provided g is upper semicontinuous and X is quasi-reproducing.
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Proof. (i), (ii) and (iii) are equivalent. The proof is similar to the one of Proposition 3.
(i) implies (iv). If g = −∞ then gξ = −∞ for all ξ ∈ ∆ and there is nothing to prove.

Otherwise, there exists x̄ ∈ X such that g (x̄) > −∞. By Proposition 3, we have that g+
ξ (t) =

infλ∈R {λt− g∗ (λξ)} for each t ∈ {gξ > −∞}. Pick ξ 6∈ X∗+ then there exists an element z̄ ∈ X+ such
that 〈ξ, z̄〉 < 0. Since g is monotone we have that,

g∗ (ξ) = inf
x∈X
{〈ξ, x〉 − g (x)} ≤ inf

λ∈R+
{〈ξ, x̄+ λz̄〉 − g (x̄+ λz̄)} ≤ inf

λ∈R+
{〈ξ, x̄+ λz̄〉 − g (x̄)} = −∞.

(33)
If ξ ∈ ∆ for each λ < 0 we have that λξ 6∈ X∗+, since X is quasi-reproducing, then,

g+
ξ (t) = inf

λ∈R
{λt− g∗ (λξ)} = inf

λ∈R+
{λt− g∗ (λξ)} .

(iv) implies (i). Suppose g is upper semicontinuous then the proof is basically the same of Propo-
sition 3. �

The case in which g is real valued and monotone is particularly simple and interesting.

Proposition 4 An evenly quasiconcave and monotone function g : X → R is concave if and only if

gξ (t) = inf
λ∈R+

{λt− g∗ (λξ)} , ∀ (t, ξ) ∈ R×
(
X∗\ −X∗+

)
. (34)

In this case, we have:

(i) Gξ (t) = gξ (t) for all t ∈ R and all ξ ∈ X∗\ −X∗+,

(ii) Gξ (t) = supx∈X g (x) for all t ∈ R and all ξ /∈ X∗+,

(iii) (Gξ)
∗ (λ) = g∗ (λξ) for all ξ ∈ X∗\ −X∗+,

(iv) gξ (t) = Gξ (t) ∧G−ξ (−t) for all t ∈ R and ξ ∈ X∗\ {0}.

Proof. We first prove (i). Pick t ∈ R and ξ 6∈ −X∗+. By Lemma 19, Gξ (t) = minλ≥0 [λt− g∗ (λξ)].
Since g is monotone, by (33), g∗ (ξ) = −∞ for all ξ /∈ X∗+. If ξ /∈ −X∗+, then λξ 6∈ X∗+ for all
λ ∈ (−∞, 0) and g∗ (λξ) = −∞. It follows that

Gξ (t) = min
λ∈R
{λt− g∗ (λξ)} . (35)

By Corollary 4 and 0-homogeneity of the mapping (t, ξ) 7→ gξ (t), gξ (t) = infλ∈R {λt− g∗ (λξ)} for all
(t, ξ) ∈ R× (X∗\ {0}), and so gξ (t) = Gξ (t) for all t ∈ R and ξ 6∈ −X∗+.

Having established (i), suppose now that g is concave. Then, by (i) and Lemma 19

gξ (t) = Gξ (t) = min
λ≥0
{λt− g∗ (λξ)} , ∀ (t, ξ) ∈ R×

(
X∗\ −X∗+

)
.

Vice versa, if gξ satisfies (34), then gξ is concave for all ξ ∈ ∆, and so g is concave as well

(ii) If ξ /∈ X∗+, by (33), g∗ (λξ) = −∞ for all λ > 0. Therefore, by Lemma 19, it follows that

Gξ (t) = min
λ≥0
{λt− g∗ (λξ)} = −g∗ (0) = sup

x∈X
g (x) .

(iii) If ξ ∈ X∗\ − X∗+ denote by ϕξ the linear mapping λ 7→ λξ from R into X∗. We have

g∗ (λξ) = g∗ϕξ (λ) =
(
ϕ∗ξg

)∗
(ξ), where ϕ∗ξ : X → R is the transpose map. In view of (35), we can

write Gξ =
(
ϕ∗ξg

)∗∗
. Hence, (Gξ)

∗ =
(
ϕ∗ξg

)∗∗∗
=
(
ϕ∗ξg

)∗
= g∗ϕξ. That is, (Gξ)

∗ (λ) = g∗ (λξ).
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(iv) Lemma 19, Corollary 4, and 0-homogeneity of the mapping (t, ξ) 7→ gξ (t) imply

gξ (t) = inf
λ∈R
{λt− g∗ (λξ)} = inf

λ≥0
{λt− g∗ (λξ)} ∧ inf

λ≤0
{λt− g∗ (λξ)} = Gξ (t) ∧G−ξ (−t) ,

as desired. �

We close this section by establishing a few further properties of real valued concave functions. The
first property shows that even quasiconcavity is not a novel notion for real valued concave functions.
Property (iii) below is well known, but it is here reported in order to show its close connection with
Theorem 1.

Proposition 5 Given a concave function g : X → R, then,

(i) g is evenly quasiconcave if and only if is upper semicontinuous;

(ii) g is strictly evenly quasiconcave if and only if is upper semicontinuous and superdifferentiable
at every point;

(iii) g is continuous and everywhere superdifferentiable if and only if is lower semicontinuous;

(iv) if X is a Banach space, g is evenly quasiconcave if and only if is continuous.

Proof. (i) If g is upper semicontinuous then each upper contour set of g is closed hence evenly convex,
implying that g is evenly quasiconcave. Vice versa, if g is evenly quasiconcave, as g is real-valued and
concave, by Corollary 4, we have that

gξ (t) = inf
λ∈R
{λt− g∗ (λξ)} , ∀ (t, ξ) ∈ R× S∗.

It then follows that any function gξ is upper semicontinuous for all ξ ∈ S∗ and so is the function
such that x 7→ gξ (〈ξ, x〉 , ξ) for all ξ ∈ S∗. Since g is evenly quasiconcave, Theorem 1 implies that
g (x) = infξ∈S∗ gξ (〈ξ, x〉) for all x ∈ X. It follows that g is upper semicontinuous, being the lower
envelope of upper semicontinuous functions.

(ii) If g is strictly evenly quasiconcave, by Theorem 1-(ii),

g (x) = min
ξ∈S∗

gξ (〈ξ, x〉) , ∀x ∈ X.

Fix x̄ ∈ X. It follows that there exists ξx̄ ∈ S∗ such that gξx̄ (〈ξx̄, x̄〉) = g (x̄) ∈ R. Since g is
concave, by Corollary 4, gξx̄ is concave and real valued on R. Therefore, gξx̄ is continuous and
superdifferentiable. Hence, there exists l ∈ R such that for each s ∈ R

gξx̄ (s) ≤ gξx̄ (〈ξx̄, x̄〉) + l (s− 〈ξx̄, x̄〉) .

Therefore, if y ∈ X it follows that,

g (y) ≤ gξx̄ (〈ξx̄, y〉) ≤ gξx̄ (〈ξx̄, x̄〉) + 〈lξx̄, y − x̄〉 .

This, in turn, means lξx̄ ∈ ∂g (x̄).
Conversely, suppose g is upper semicontinuous and superdifferentiable at every point in X. Then,

g is evenly quasiconcave and, by Theorem 1, g (x) = infξ∈S∗ Gξ (〈ξ, x〉). Fix x ∈ X and let ξ ∈ ∂g (x).
This implies that

g (x) ≤ g (x) +
〈
ξ, x− x

〉
.
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Hence, if
〈
ξ, x
〉
≤
〈
ξ, x
〉

then g (x) ≤ g (x). Consequently, if ξ = 0 then x is a global maximizer and it

easily follows that g (x) = minξ∈S∗ Gξ (〈ξ, x〉). Otherwise, g (x) = G‖ξ‖−1
ξ

(〈∥∥ξ∥∥−1
ξ, x
〉)

, and again

we obtain that g (x) = minξ∈S∗ Gξ (〈ξ, x〉). It follows that g (x) = minξ∈S∗ Gξ (〈ξ, x〉) for all x ∈ X,
Theorem 1-(ii) implies that g is strictly evenly quasiconcave.

(iii) If g is lower semicontinuous, then each strict upper contour set is open, and so evenly convex.
It turns out that g is strictly evenly quasiconcave. By (ii), g is upper semicontinuous and superdiffer-
entiable. This yields the desired result. Vice versa, if g is continuous and superdifferentiable at each
point, g is clearly lower semicontinuous.

(iv) If g is continuous, by (i), it follows that g is evenly quasiconcave. Conversely, by (i), if
g is evenly quasiconcave then it is upper semicontinuous. As well known, real-valued and upper
semicontinuous concave functions are continuous, provided X is complete (see [26, Proposition 3.3]).
�

5.3 Duality

We now establish duality results, our main object of interest, for the concave case. We need some
notation. Given a normed ordered vector space X, let Mconc (X) ⊂ Mqc (X) be the collection of
all functions g : X → R that are monotone, upper semicontinuous, and concave. Moreover, given
G : R×∆→ (−∞,∞] define the functional γ : X∗ → [−∞,∞) as

γ (ξ) =


G∗
(
‖ξ‖ , ξ

‖ξ‖

)
if ξ ∈ X∗+ \ {0} ,

lim sup‖ζ‖→0
ζ 6=0

γ (ζ) if ξ = 0,

−∞ if ξ /∈ X∗+,

(36)

where G∗ (·, ξ) is the Fenchel conjugate of G (·, ξ).
Finally, let Co (R×∆) ⊂M (R×∆) be the collection of all functions G : R×∆→ (−∞,∞] that

satisfy the following two properties:

(C.1) G (·, ξ) is concave and closed for all ξ ∈ ∆.

(C.2) γ : X∗ → [−∞,∞) is proper, upper semicontinuous, cofinite, and concave.17

Theorem 8 Let X be a normed ordered vector space. Then, 〈Mconc (X) ,Co (R×∆)〉qc. In partic-
ular, the inf in (3) is achieved.

Proof. We first prove that the mapping T is well defined. Fix g ∈ Mconc (X). Since g is real
valued the mapping such that (t, ξ) 7→ Gξ (t), takes values strictly greater than −∞. By Proposition
1, Tg ∈ M (R×∆). By Corollary 4, we have that Gξ satisfies (C.1) for each ξ ∈ ∆. Consider the
Fenchel conjugate g∗ of g. If ξ ∈ X∗+ \ {0}, by Proposition 4,

g∗ (ξ) = g∗
(
‖ξ‖ ξ

‖ξ‖

)
= G∗ξ

‖ξ‖
(‖ξ‖) .

If ξ /∈ X∗+, g∗ (ξ) = −∞ since g is monotone. Therefore, g∗ (ξ) = γ (ξ), for each ξ ∈ X∗\ {0} and
g∗ (0) = γ (0) = lim sup‖ζ‖→0

ζ 6=0

γ (ζ). Since g is real valued and belongs to Mconc (X) and g∗ is upper

17The function γ is cofinite if, for all x ∈ X, there exists α ∈ R such that γ (ξ) ≤ 〈ξ, x〉 +α for all ξ. This implies

that, if domγ 6= ∅, its Fenchel conjugate is real valued.
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semicontinuous and concave, it turns out that γ is proper, cofinite, upper semicontinuous, and concave.
Condition (C.2) is thus satisfied, and we conclude that Tg ∈ Co (R×∆). We can then conclude that
the mapping T is well defined.

Since Mconc (X) ⊂Meqc (X), by Proposition 1, T is injective.
Finally, we show that T is onto. Pick G ∈ Co (R×∆), we will show that there is g ∈ Mconc (X)

so that Tg = G (t, ξ). Fix G ∈ Co (R×∆) and let γ : X∗ → [−∞,∞) be the associated functional
(36). Consider g : X → [−∞,∞] such that g = γ∗. By C.2, g is real valued, monotone, upper
semicontinuous, and concave. If ξ ∈ ∆, since g∗ = γ and by Lemma 19, C.2 and C.1, we have that

Gξ (t) = inf
λ≥0
{λt− g∗ (λξ)} = inf

λ≥0
{λt− γ (λξ)} = inf

λ≥0
{λt−G∗ (λ, ξ)} = cl G (t, ξ) = G (t, ξ) .

We can conclude that T is well defined and bijective. By Proposition 1, Q is the left inverse of T over
Meqc (X), therefore it is the inverse of T on Mconc (X). �

Remarks. (i) Theorem 8 holds even if X is not an M -space. (ii) In general, the space Co (R×∆)
is not included into C (R×∆). For, though C.1 implies that all functions belonging to Co (R×∆)
satisfy (A.1), (A.2), and (A.5), condition (A.4) may fail since G might not be lower semicontinuous.
However, if the space X is complete, then the functions inMconc (X) are continuous, and so Lemma 5
implies that the mapping such that (t, ξ) 7→ Gξ (t) is lower semicontinuous. As a result, Co (R×∆) ⊂
C (R×∆) provided X is a Banach ordered space. (iii) Let X be an M -space and letMcoco (X) be the
space of monotone, real valued continuous and concave functions, and let Lconc (R×∆) be the space
of functions G : R × ∆ → (−∞,∞] such that G ∈ Lqcx (R×∆), G (·, ξ) is concave for each ξ ∈ ∆
and G (·, ξ) <∞ for some ξ ∈ ∆. It is immediate to see that Lconc (R×∆) is a subset of C (R×∆).
Moreover, it is easy to see that Theorem 3 implies 〈Mcoco (X) ,Lconc (R×∆)〉qc.

6 Translation Invariance

In this section we establish a duality result for real valued, monotone, quasiconcave, and translation
invariant functions. Without loss of generality, throughout the section we consider translation invari-
ant functions g that are normalized, that is, given the translation invariance, such that g (0) = 0.18

Throughout this section X will be considered to be an M -space.

6.1 Basic Properties

We begin with a few useful properties.

Lemma 20 Let g : X → R be monotone and evenly quasiconcave. Then, g is normalized if and only
if infξ∈∆Gξ (t) = t for all t ∈ R.

Proof. By Theorem 1, g (x) = infξ∈∆Gξ (〈ξ, x〉) for all x ∈ X. If g is normalized then,

t = g (te) = inf
ξ∈∆

Gξ (〈ξ, te〉) = inf
ξ∈∆

Gξ (t) , ∀t ∈ R.

Conversely, if infξ∈∆Gξ (t) = t for all t ∈ R, then

g (te) = inf
ξ∈∆

Gξ (〈ξ, te〉) = inf
ξ∈∆

Gξ (t) = t, ∀t ∈ R.

�
18Indeed, notice that for any given function g : X → R, g is monotone, quasiconcave, and translation invariant if and

only if g − g (0) shares the same properties. Moreover, g − g (0) is normalized.
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Lemma 21 A quasiconcave and translation invariant function g : X → [−∞,∞) is concave. More-
over, g is real valued and Lipschitz continuous if it is monotone.

Conversely, a monotone, evenly quasiconcave, concave, and normalized function g : X → [−∞,∞)
is translation invariant.

Proof. Fix x1, x2 ∈ X. If g (x1) ∧ g (x2) = −∞, then for each λ ∈ (0, 1)

g (λx1 + (1− λ)x2) ≥ −∞ = λg (x1) + (1− λ) g (x2) .

If g (x1)∧ g (x2) > −∞, there is η ∈ R such that g (x1) = η+ g (x2) = g (x2 + ηe). By quasiconcavity
and translation invariance,

g (λx1 + (1− λ)x2) + (1− λ) η = g (λx1 + (1− λ) (x2 + ηe)) ≥ g (x1) .

This in turn implies
g (λx1 + (1− λ)x2) ≥ g (x1)− (1− λ) η.

On the other hand, η = g (x1)− g (x2). Inserting this value, we get

g (λx1 + (1− λ)x2) ≥ λg (x1) + (1− λ) g (x2) .

Suppose g is also monotone. By Lemma 2 it is real-valued. Then, if x1, x2 ∈ X we have that
x1 ≤ x2 +‖x1 − x2‖ e, and so, by monotonicity and translation invariance, g (x1) ≤ g (x2)+‖x1 − x2‖.
By exchanging the role of x1 and x2 the statement follows.

If g is evenly quasiconcave and concave, by Corollary 5, Gξ is concave for all ξ ∈ ∆. Since g is
monotone and normalized, by Lemma 2, g is real valued. It follows that Gξ > −∞ for all ξ ∈ ∆.
Moreover, since g is normalized, Gξ (t) ≥ t for all t and all ξ ∈ ∆. IfGξ (t) =∞ for some t, by concavity
of Gξ it follows that Gξ =∞. If Gξ (t) <∞ for all t, then, define ρ : R→ R by ρ (t) = Gξ (t)− t. The
function ρ is real valued, nonnegative, and concave. This implies that it is constant (see, e.g., [28,
Corollary 8.6.2]). Hence, Gξ (t) = t+ c (ξ) for all (t, ξ) ∈ R×∆ where c : ∆→ [0,∞] is quasiconvex.
Since g is monotone and evenly quasiconcave, by Theorem 1,

g (x+ λe) = inf
ξ∈∆

[〈ξ, x+ λe〉+ c (ξ)] = λ+ inf
ξ∈∆

[〈ξ, x〉+ c (ξ)] = λ+ g (x) , ∀λ ∈ R,∀x ∈ X,

as desired. �

Corollary 6 A quasiconcave, monotone, and normalized function g : X → R is concave if and only
if is translation invariant.

Proof. Suppose g : X → R is concave. Since X is an M -space and g is monotone and normalized, by
Lemma 2, g is continuous at 0. Hence, g is continuous on X ([1, Theorem 5.43]), and so, by Lemma
21, is translation invariant. The converse follows from Lemma 21. �

Example 3 Consider the mean functional

I (f) = φ−1

(∫
Ω

φ (f (ω)) dµ (ω)
)

of Example 1. By Corollary 6, I is concave if and only if is translation invariant. It can be shown that
this is a strong condition that forces φ to be either φ (t) = at+ b, with a > 0, or φ (t) = −ae−bt + c,
with a, b > 0 (see [3]). N
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6.2 Duality

Let Mtr (X) ⊂ Mqc (X) be the collection of quasiconcave, monotone, normalized, and translation
invariant functions g : X → R. By Lemma 21, Mtr (X) ⊂Mconc (X) ∩Muc (X).

Let Eas (R×∆) be the collection of functions G : R×∆→ (−∞,∞] that are additively separable,
that is, such that

G (t, ξ) = t+ c (ξ) ,

where c : ∆→ [0,∞] is lower semicontinuous, convex, and minξ∈∆ c (ξ) = 0.

The next result shows thatMtr (X) is in duality with the additively separable functions Eas (R×∆).

Theorem 9 Let X be an M -space. Then, 〈Mtr (X) , Eas (R×∆)〉qc. In particular, the inf in (3) is
achieved.

An immediate consequence of this theorem is that a function g : X → R belongs to Mtr (X) if
and only if

g (x) = min
ξ∈∆
{〈ξ, x〉+ c (ξ)} ,

where c : ∆→ [0,∞] is lower semicontinuous, convex, and minξ∈∆ c (ξ) = 0.

The proof of Theorem 9 will be based on couple of lemmas.

Lemma 22 A function G : R×∆→ (−∞,∞] belongs to Eas (R×∆) only if it belongs to E (R×∆)
and G (·, ξ) is translation invariant for each ξ ∈ ∆.

Proof. Define ∆̃ = {ξ ∈ ∆ : c (ξ) <∞}.
(i) G satisfies A.1. G (t, ξ) = t + c (ξ) for all t ∈ R and for all ξ ∈ ∆. If ξ ∈ ∆̃ then G (t1, ξ) ≥

G (t2, ξ) if and only if t1 ≥ t2. If ξ ∈ ∆\∆̃, G (·, ξ) is constant.

(ii) G satisfies A.2. For each ξ ∈ ∆̃,

lim
t→+∞

G (t, ξ) = lim
t→+∞

[t+ c (ξ)] =∞,

while G (·, ξ) =∞ for each ξ ∈ ∆\∆̃.

(iii) G satisfies A.4. By definition, c : ∆ → [0,∞] is lower semicontinuous and convex, and the
mapping such that (t , ξ) 7→ t is affine and continuous. Therefore, it follows that G, being the sum of
these two functions, is convex and lower semicontinuous.

(iv) G satisfies A.6. If ξ ∈ ∆̃, then for all t in R, we have that G (t , ξ) = t+ c (ξ) is a real number,
therefore domG (·, ξ) = R. Conversely, if ξ ∈ ∆\∆̃ then G (·, ξ) = ∞ implying that domG (·, ξ) = ∅.
Furthermore, since minξ∈∆ c (ξ) = 0, if follows that domG (·, ξ) = R for some ξ ∈ ∆̃.

(v) G satisfies A.7. By (iv), domG (·, ξ) = R if and only if ξ ∈ ∆̃. We want to show that for each
ε > 0 there is δ > 0 such that |t− t′| ≤ δ implies |G (t, ξ)−G (t′, ξ)| ≤ ε for all t, t′ ∈ R and all ξ ∈ ∆̃.
But for any fixed ε > 0 it is enough to pick δ = ε. Indeed, |G (t, ξ)−G (t′, ξ)| = |t− t′| ≤ ε for all
t, t′ ∈ R and all ξ ∈ ∆̃.

By (i)-(v), we conclude that G ∈ E (R×∆).

It remains to prove that G (·, ξ) is translation invariant for each ξ ∈ ∆. Fix ξ ∈ ∆ and consider
any t, λ ∈ R. We have that G (t+ λ · 1, ξ) = t+ λ · 1 + c (ξ) = t+ c (ξ) + λ = G (t, ξ) + λ. �
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Lemma 23 A function g : X → [−∞,∞] is real valued, quasiconcave, monotone, translation invari-
ant if and only if there exists a G ∈ Eas (R×∆) such that

g (x) = min
ξ∈∆

G (〈ξ, x〉 , ξ) , ∀x ∈ X. (37)

Proof. “Only if.” Define as G the mapping such that (t, ξ) 7→ Gξ (t). By Lemma 21, if g is real
valued, monotone, quasiconcave and translation invariant then it is uniformly continuous. Since g is
quasiconcave, by Theorem 6 G ∈ E (R×∆). Then, by translation invariance of g, we have that for
each t , λ ∈ R and for each ξ ∈ ∆,

Gξ (t) + λ = sup {g (x) + λ : 〈ξ, x〉 ≤ t} = sup {g (x+ λe) : 〈ξ, x〉 ≤ t}

= sup {g (x) : 〈ξ, x〉 ≤ t+ λ} = Gξ (t+ λ) .

Hence, Gξ (λ) = λ+Gξ (0). Define c : ∆→ [−∞,∞] by c (ξ) = Gξ (0). Then, Gξ (t) = t+ c (ξ) for all
ξ ∈ ∆ and all t ∈ R. Since G ∈ E (R×∆), it follows that c is lower semicontinuous and quasiconvex.
As g is normalized, by Lemma 20, c (ξ) = Gξ (0) ≥ 0 for all ξ ∈ ∆ and 0 = infξ∈∆Gξ (0) =
minξ∈∆ c (ξ).

It remains to prove the convexity of c. Fix ξ1 and ξ2 in ∆ and consider λ ∈ (0, 1). If c (ξ1)∨c (ξ2) =
∞, then

c (λξ1 + (1− λ) ξ2) ≤ ∞ = λc (ξ1) + (1− λ) c (ξ2) .

If c (ξ1)∨c (ξ2) <∞, there exist t1, t2 ∈ R such that c (ξ1)−c (ξ2) = t2−t1, i.e., c (ξ1)+t1 = c (ξ2)+t2.
As (t, ξ) 7→ Gξ (t) = t+ c (ξ) is quasiconvex. Then,

λt1 + (1− λ) t2 + c (λξ1 + (1− λ) ξ2) ≤ max {c (ξ1) + t1, c (ξ2) + t2} = c (ξ2) + t2.

Hence,

c (λξ1 + (1− λ) ξ2) ≤ c (ξ2) + t2 − λt1 − (1− λ) t2 = c (ξ2) + λ (t2 − t1)

= c (ξ2) + λ (c (ξ1)− c (ξ2)) = λc (ξ1) + (1− λ) c (ξ2) ,

and so c is convex.

“If.” If G ∈ Eas (R×∆), then G ∈ E (R×∆) by Lemma 22. By Lemma 16, it follows that g,
defined as in (37), is real valued, monotone, and quasiconcave. By Lemma 22, G (·, ξ) is translation
invariant for all ξ ∈ ∆. It follows that for each x ∈ X and each λ ∈ R,

g (x+ λe) = min
ξ∈∆

G (〈ξ, x+ λe〉 , ξ) = min
ξ∈∆

G (〈ξ, x〉+ λ, ξ) = min
ξ∈∆

G (〈ξ, x〉 , ξ) + λ = g (x) + λ.

Hence, g is translation invariant. �

Proof of Theorem 9. Consider T : Mtr (X) → M (R×∆). By the proof of Lemma 23, we have
that T (Mtr (X)) ⊂ Eas (R×∆) ⊂ E (R×∆). Hence, T : Mtr (X) → Eas (R×∆). By Proposition
1, T is injective on Mtr (X) ⊂ Meqc (X). Let G ∈ Eas (R×∆) ⊂ Lqcx (R×∆). By Lemma 23,
QG ∈Mtr (X). By Lemma 13, TQG = G therefore T is surjective. That is, T−1 = Q on Eas (R×∆).
�

Remarks. (i) From Theorem 9 and the proof of Lemma 23, it is immediate to see that Lemma 22 turns
out to be an “if and only if” statement. (ii) Given that a function g : X → R is monotone, quasiconcave
and translation invariant if and only if g−g (0) is normalized, Theorem 9 and Lemma 6 provide a more

32



generic dual pair. If we call Mgtr (X) the set of real valued, monotone, quasiconcave and translation
invariant functions and we call Egas (R×∆) the collection of functions G : R × ∆ → (−∞,∞] that
are such that

G (t, ξ) = t+ c (ξ) ,

where c : ∆ → (−∞,∞] is lower semicontinuous, convex, and minξ∈∆ c (ξ) ∈ R, we have that
〈Mgtr (X) , Egas (R×∆)〉qc. It is then clear that the condition minξ∈∆ c (ξ) = 0 is equivalent to
impose the normalization of g. (iii) Observe that, if we define dom (g∗) = {ξ ∈ X∗ : g∗ (ξ) > −∞}, in
view of Lemma 21 and Theorem 9, Fenchel conjugation g 7→ g∗ establishes a one-to-one correspon-
dence betweenMtr (X) and the set C∗ of upper semicontinuous concave functions g∗ : X∗ → [−∞,∞)
with domain included in ∆ and with maxξ∈∆ g∗ (ξ) = 0. Call such mapping F, it is easy to see that F
is well defined. Define then as π the function from Eas (R×∆) to C∗ such that π (G) = −c where c is
extended to X∗, by putting c = −∞ outside ∆. π is clearly well defined and bijective19. By Theorem
9, the following diagram

Mtr (X)
T ↓ ↘ F

Eas (R×∆) π→ C∗

commutes, where T is bijective. This proves that the traditional Fenchel conjugation g 7→ g∗ estab-
lishes a one-to-one correspondence between Mtr (X) and C∗.

7 Positive Homogeneity

Quasiconcave functions on an M -space X that are positively homogeneous is the last class of functions
that we consider.20 Denote by Mpo (X) ⊂ Mqc (X) the collection of non-degenerate21 functions g :
X → (−∞,∞] that are quasiconcave, monotone, lower semicontinuous, and positively homogeneous.

Similarly, denote by Mupo (X) ⊂ Mqc (X) the collection of non-degenerate functions g : X → R
that are quasiconcave, monotone, uniformly continuous, and positively homogeneous. By definition,
Mpo (X) ⊂Mlsc (X) and Mupo (X) ⊂Muc (X).

Let Lms (R×∆) be the collection of functions G : R × ∆ → (−∞,∞] that are multiplicatively
separable, that is, such that

G (t, ξ) =


t

c1(ξ) if t ≥ 0 and ξ ∈ ∆̃
t

c2(ξ) if t ≤ 0 and ξ ∈ ∆̃

∞ if ξ ∈ ∆ \ ∆̃

(38)

where ∆̃ is a closed and convex subset of ∆, and

(i) c1 : ∆̃→ [0,∞) is concave and upper semicontinuous;

(ii) c2 : ∆̃→ (0,∞] is convex and lower semicontinuous.

19For each g∗ in C∗ denote (g∗)|∆ its restriction to ∆. It follows that π−1 : C∗ → Eas (R×∆) is such that given

g∗ ∈ C∗, π−1 (g∗) = G where

G (t, ξ) = t− (g∗)|∆ (ξ) , ∀ (t, ξ) ∈ R×∆.

20In this section we assume that 0/0 = 0 · ∞ = 0.
21That is, g (x) 6= 0 for at least some x ∈ X+. If g : X → (−∞,∞] is monotone and positively homogeneous and X

admits a order unit e, it is immediate to see that g is non-degenerate if and only if g (e) > 0.
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Let Ems (R×∆) ⊂ Lms (R×∆) be the collection of functions G : R×∆→ (−∞,∞] that belong
to Ems (R×∆) and with c1 : ∆̃ → [0,∞) such that infξ∈∆̃ c1 (ξ) > 0, where ∆̃ is assumed to be
nonempty.

We have Lms (R×∆) ⊂ Lqcx (R×∆) and Ems (R×∆) ⊂ E (R×∆). That is, Lms (R×∆) and
Ems (R×∆) are, respectively, the multiplicatively separable functions in Lqcx (R×∆) and E (R×∆).

Theorem 10 Let X be an M -space. Then, 〈Mpo (X) ,Lms (R×∆)〉qc. In particular, the inf in (3)
is achieved.

In Theorem 9 we showed that Mtr (X) is in duality with the additively separable functions in
E (R×∆). Here, Theorem 10 shows that Mpo (X) is, instead, in duality with Lms (R×∆), the
multiplicatively separable functions in Lqcx (R×∆). The next corollary completes the picture by
showing that Mupo (X) is in duality with Ems (R×∆), the multiplicatively separable functions in
E (R×∆).

Corollary 7 Let X be an M -space. Then, 〈Mupo (X) , Ems (R×∆)〉qc. In particular, the inf in (3)
is achieved.

The proof of Theorem 10 is based on few lemmas.

Lemma 24 Let (ai)i∈I , (bi)i∈I ⊂ R+. The family of functions

fi (t) =

{
ait if t ≥ 0
bit if t ≤ 0

is uniformly equicontinuous if and only if supi∈I ai, supi∈I bi <∞.

Proof. First observe that a family of monotone functions is uniformly equicontinuous if and only if
for every ε > 0 there is δ > 0 such that

fi (t+ δ) ≤ fi (t) + ε (39)

for all t ∈ R and i ∈ I.22

In our special case for all i ∈ I, t ∈ R, and δ > 0,

fi (t+ δ)− fi (t) =


aiδ if t ≥ 0
ait+ aiδ − bit if − δ < t < 0
biδ if t+ δ ≤ 0 (i.e. t ≤ −δ)

(ait < 0 if − δ < t < 0) ≤


aiδ if t ≥ 0
aiδ − bit if − δ < t < 0
biδ if t ≤ −δ

(biδ ≥ −bit ≥ 0 if − δ < t < 0) ≤


aiδ if t ≥ 0
aiδ + biδ if − δ < t < 0
biδ if t ≤ −δ

≤ (ai + bi) δ ≤
(

sup
i∈I

ai + sup
i∈I

bi + 1
)
δ.

22If for every ε > 0 there is δ > 0 such that |t′ − t′′| ≤ δ implies |fi (t′)− fi (t′′)| ≤ ε, for all t′, t′′ ∈ R and all

i ∈ I, then fi (t+ δ) − fi (t) = |fi (t+ δ)− fi (t)| ≤ ε for all t ∈ R and all i ∈ I. Conversely, if condition (39) holds,

consider t′, t′′ ∈ R with |t′ − t′′| ≤ δ, wlog t′ ≥ t′′, then t′ ≤ t′′ + δ, fi (t′′ + δ) ≤ fi (t′′) + ε, and monotonicity, delivers

fi (t′) ≤ fi (t′′ + δ) ≤ fi (t′′) + ε, whence |fi (t′)− fi (t′′)| = fi (t′)− fi (t′′) ≤ ε for all i ∈ I.
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Therefore, if supi∈I ai, supi∈I bi <∞, for all ε > 0 it suffices to take

δ <
ε

(supi∈I ai + supi∈I bi + 1)

to obtain

fi (t+ δ)− fi (t) ≤
(

sup
i∈I

ai + sup
i∈I

bi + 1
)
δ ≤ ε

for all i ∈ I, t ∈ R, which implies uniform equicontinuity.
If supi∈I ai =∞, then fi (0 + δ)−fi (0) = aiδ for all δ > 0, and so supi∈I (fi (0 + δ)− fi (0)) =∞,

which contradicts condition (39). If supi∈I bi =∞, then for all δ > 0 take tδ < −δ

fi (tδ + δ)− fi (tδ) = biδ.

Then, supi∈I (fi (tδ + δ)− fi (tδ)) =∞, which contradicts condition (39). �

Lemma 25 Let C be a convex subset of a vector space and f1, f2 : C → R be quasiconvex functions.
If f1 ≥ 0, f2 ≤ 0, and f1f2 = 0, then f1 + f2 is quasiconvex.

Proof. Let f = f1 + f2. Set C− = {x ∈ C : f2 (x) < 0}. The set C− is convex, and we can assume
C− 6= ∅ (otherwise, f1 + f2 = f1 is quasiconvex). As f1 and f2 are quasiconvex, we have

f1 (λx1 + (1− λ)x2) ≤ f1 (x1) ∨ f1 (x2) and f2 (λx1 + (1− λ)x2) ≤ f2 (x1) ∨ f2 (x2)

and so f (λx1 + (1− λ)x2) ≤ f1 (x1) ∨ f1 (x2) + f2 (x1) ∨ f2 (x2) for all x1, x2 ∈ C and all λ ∈ [0, 1].
We want to show that f (λx1 + (1− λ)x2) ≤ f (x1) ∨ f (x2). Consider the following cases:

Case (a): x1, x2 ∈ C−. The convexity of C− implies λx1 + (1− λ)x2 ∈ C−, and over C− we have
f1 = 0, then f|C− = f2 delivers the result.

Case (b): x1 ∈ C− and x2 /∈ C−. We have f1 (x1) = 0, f2 (x1) < 0, f2 (x2) = 0, and f1 (x2) ≥ 0.
Therefore,

f (λx1 + (1− λ)x2) ≤ f1 (x1) ∨ f1 (x2) + f2 (x1) ∨ f2 (x2) = f1 (x2)

and f (x1) ∨ f (x2) = (0 + f2 (x1)) ∨ (f1 (x2) + 0) = f1 (x2), as wanted.

Case (c): x1, x2 /∈ C−. We have f2 (x1) = f2 (x2) = 0, f1 (x1) ≥ 0, f1 (x2) ≥ 0. Hence,

f (λx1 + (1− λ)x2) ≤ f1 (x1) ∨ f1 (x2) + f2 (x1) ∨ f2 (x2) = f1 (x1) ∨ f1 (x2) = f (x1) ∨ f (x2)

which concludes the proof. �

The proof of Theorem 10 relies on the following two lemmas. Here, given a subset K ⊂ X∗, its
positive polar cone is K⊕ = {x ∈ X : 〈ξ, x〉 ≥ 0 for all ξ ∈ K}.

Lemma 26 A function G : R×∆→ (−∞,∞] belongs to Lms (R×∆) only if it belongs to Lqcx (R×∆)
and G (·, ξ) is positively homogeneous and such that G (1, ξ) 6= 0 for each ξ ∈ ∆. Moreover, G ∈
Ems (R×∆) only if G ∈ E (R×∆) and G (·, ξ) is positively homogeneous and such that G (1, ξ) 6= 0
for each ξ ∈ ∆.
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Proof. (i) G satisfies A.1. Since c1 (ξ) , c2 (ξ) ≥ 0 for each ξ ∈ ∆̃, we have that G (·, ξ) is nondecreasing
for each ξ ∈ ∆̃, while G (·, ξ) is constant for each ξ ∈ ∆\∆̃.

(ii) G satisfies A.2. Since c1 (ξ) ≥ 0 for each ξ ∈ ∆̃,

lim
t→+∞

G (t, ξ) = lim
t→+∞

t

c1 (ξ)
=∞,

while G (·, ξ) =∞ for each ξ ∈ ∆\∆̃.

Therefore, (i) and (ii) imply that G ∈M (R×∆). Notice that

G (t, ξ) =
t+

c1 (ξ)
− t−

c2 (ξ)
, ∀ (t, ξ) ∈ R× ∆̃. (40)

(iii) G satisfies A.4. We first prove lower semicontinuity of G, and then its quasiconvexity. Since
∆̃ is closed, the set R × ∆̃ is closed in R ×∆. Since G (t, ξ) = ∞ outside R × ∆̃, it suffices to check
that G is lower semicontinuous on R × ∆̃, where G is given by (40). It is convenient to study first
separately the two functions (t, ξ) 7→ t+/c1 (ξ) and (t, ξ) 7→ t−/c2 (ξ).

Consider a pair (t, ξ) ∈ R× ∆̃. If c1 (ξ) = 0 and t+ > 0, then t+/c1 (ξ) > α and t+ − αc1 (ξ) > α

for each α ≥ 0. Otherwise, if c1 (ξ) = 0 and t+ = 0 or c1 (ξ) > 0 and t+ ≥ 0, then t+/c1 (ξ) ≤ α if
and only if t+ − αc1 (ξ) ≤ 0. Therefore, for each α ≥ 0, we have{

(t, ξ) ∈ R× ∆̃ :
t+

c1 (ξ)
≤ α

}
=
{

(t, ξ) ∈ R× ∆̃ : t+ − αc1 (ξ) ≤ 0
}
.

The latter set is closed and convex since the functions (t, ξ) 7→ t+ and (t, ξ) 7→ −αc1 (ξ) are convex
and lower semicontinuous. For α < 0, the set

{
(t, ξ) ∈ R× ∆̃ : t+

c1(ξ) ≤ α
}

is empty. We thus obtain

that (ξ, t) 7→ t+/c1 (ξ) is lower semicontinuous and quasiconvex. Likewise, if α > 0 we have:{
(t, ξ) ∈ R× ∆̃ :

t−

c2 (ξ)
≥ α

}
=
{

(t, ξ) ∈ R× ∆̃ : αc2 (ξ)− t− ≤ 0
}

=
{

(t, ξ) ∈ (−∞, 0)× ∆̃ : αc2 (ξ) + t ≤ 0
}
∪
{

(t, ξ) ∈ R+ × ∆̃ : αc2 (ξ) ≤ 0
}

=
{

(t, ξ) ∈ (−∞, 0)× ∆̃ : αc2 (ξ) + t ≤ 0
}
∪ ∅

=
{

(t, ξ) ∈ (−∞, 0)× ∆̃ : αc2 (ξ) + t ≤ 0
}
∪
{

(t, ξ) ∈ R+ × ∆̃ : αc2 (ξ) + t ≤ 0
}

=
{

(t, ξ) ∈ R× ∆̃ : αc2 (ξ) + t ≤ 0
}
.

The latter set is closed and convex since the functions (t, ξ) 7→ t and (t, ξ) 7→ αc2 (ξ) are convex and
lower semicontinuous. For α ≤ 0,

{
(t, ξ) ∈ R× ∆̃ : t−

c2(ξ) ≥ α
}

= R × ∆̃. Therefore, (t, ξ) 7→ t−

c2(ξ) is

upper semicontinuous and quasiconcave. It follows that G restricted to R×∆̃ is lower semicontinuous,
being G the sum of two lower semicontinuous functions on R× ∆̃.

We now prove quasiconvexity ofG. Define as C the domain of the mapping (t, ξ) 7→ t+/c1 (ξ). Since
such mapping is quasiconvex, C is convex. Given (38) and (40), we have that domG = C and therefore
it is sufficient to prove that G is quasiconvex on C. Define as f1 the mapping (t, ξ) 7→ t+/c1 (ξ) and
f2 the mapping (t, ξ) 7→ −t−/c2 (ξ). By Lemma 25 and (40), it follows that G is quasiconvex on C.

(iv) For each ξ ∈ ∆ it is clear by (38) that G (·, ξ) is positive homogeneous; while G (1, ξ) =∞ or
G (1, ξ) = 1/c1 (ξ) > 0 since c1 (ξ) ∈ [0,∞) for each ξ ∈ ∆̃.

(i), (ii), (iii), and (iv) prove the first part of the statement.
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For the second part of the statement, by the previous part of the proof, if G ∈ Ems (R×∆) we can
conclude that G ∈ Lqcx (R×∆) and that G (·, ξ) is positively homogeneous and such that G (1, ξ) 6= 0
for each ξ ∈ ∆.

By assumption c1 (ξ) , c2 (ξ) > 0 for each ξ ∈ ∆̃, therefore we have that G (·, ξ) = ∞ or G (·, ξ) is
such that

G (t, ξ) =

{
t

c1(ξ) if t ≥ 0
t

c2(ξ) if t ≤ 0
,

where 1/c1 (ξ) , 1/c2 (ξ) ∈ [0,∞). This implies that domG (·, ξ) ∈ {∅,R}. Since ∆̃ is nonempty, there
exists ξ such that 1/c1

(
ξ
)
, 1/c2

(
ξ
)
∈ [0,∞). Hence, domG

(
·, ξ
)

= R and we can conclude that G
satisfies A.6.

Finally, since c2 : ∆̃→ (0,∞] is lower semicontinuous and ∆̃ ⊂ ∆ is nonempty and closed we have
that minξ∈∆̃ c2 (ξ) > 0. This, with the assumption that infξ∈∆̃ c1 (ξ) > 0 and Lemma 24, implies that
the nonempty family of functions {G (·, ξ)}ξ∈∆:domG(·,ξ)=R is a family of uniformly equicontinuous
functions, showing that G satisfies A.7. �

Lemma 27 A function g : X → [−∞,∞] is non-degenerate, with g > −∞, quasiconcave, monotone,
positively homogeneous, and lower semicontinuous if and only if there exists a G ∈ Lms (R×∆) such
that

g (x) = min
ξ∈∆

G (〈ξ, x〉 , ξ) , ∀x ∈ X. (41)

Moreover, g is real valued and uniformly continuous if and only if G ∈ Ems (R×∆).

Proof. “Only if.” Define as G the mapping such that (t, ξ) 7→ Gξ (t). Since g > −∞, G takes values
in (−∞,∞]. Since g ∈ Mlsc (X), by Theorem 3, G ∈ Lqcx (R×∆) and satisfies (41). Then, observe
that G (·, ξ) is positively homogeneous for each ξ ∈ ∆. In fact, for all t ∈ R and λ > 0

Gξ (λt) = sup {g (x) : 〈ξ, x〉 ≤ λt} = sup {g (λy) : 〈ξ, y〉 ≤ t} = sup {λg (y) : 〈ξ, y〉 ≤ t} = λGξ (t) .

Since G : R ×∆ → (−∞,∞] is such that t 7→ G (t, ξ) is positively homogeneous, we have that if
G
(
t, ξ
)

= ∞ for some t > 0, then G (t, ξ) = ∞ for each t > 0. Likewise, if G
(
t, ξ
)
< ∞ for some

t > 0, then G (t, ξ) <∞ for each t > 0. Similarly, if G
(
t, ξ
)

=∞ for some t < 0, then G (t, ξ) =∞ for
each t < 0 and, since G (·, ξ) is nondecreasing, G (·, ξ) =∞. Likewise, if G

(
t, ξ
)
<∞ for some t < 0,

then G (t, ξ) < ∞ for each t < 0. In this case, for each t < 0 we have that G (t, ξ) = −tG (−1, ξ).
Since G (·, ξ) is nondecreasing in t, then G (t, ξ) ≤ 0 for each t < 0. Furthermore, since G (·, ξ) is
nondecreasing and lower semicontinuous in t,

0 = lim
t→0−

G (t, ξ) = lim
t→0−

inf G (t, ξ) ≥ G (0, ξ) .

Monotonicity of G (·, ξ) implies the other inequality, granting 0 = G (0, ξ). By the previous discussion,
we can conclude that domG (·, ξ) ∈ {∅, (−∞, 0] ,R}.

Define ∆̃ = {ξ ∈ ∆ : domG (·, ξ) ∈ {(−∞, 0] ,R}}. If ∆̃ is empty, (38) is trivially satisfied and
G = ∞ belongs to Lms (R×∆). Otherwise, define ρ1 : ∆̃ → [0,∞] such that ρ1 (ξ) = Gξ (1) and
ρ2 : ∆̃→ [0,∞) such that ρ2 (ξ) = −Gξ (−1). It follows that

G (t, ξ) =

{
ρ1 (ξ) t if t ≥ 0
ρ2 (ξ) t if t ≤ 0

(42)
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for ξ ∈ ∆̃. At the same time, we have that G (t, ξ) = ∞ if ξ ∈ ∆ \ ∆̃. Note that ρ1 (ξ) ∈ (0,∞],
otherwise G

(
t, ξ
)

= 0 for some ξ ∈ ∆̃ and for each t ≥ 0. Since G satisfies (41), we would have that
for each x ∈ X+ there would exist ξx ∈ ∆ such that −∞ < g (x) = G (〈ξx, x〉 , ξx) ≤ G

(〈
ξ, x
〉
, ξ
)

= 0.
Therefore, ξx ∈ ∆̃. Since 〈ξx, x〉 ≥ 0, we could then conclude that for each x ∈ X+

0 = G (0, ξx) ≤ G (〈ξx, x〉 , ξx) = g (x) ≤ G
(〈
ξ, x
〉
, ξ
)

= 0.

Thus g would be degenerate, a contradiction. Furthermore, notice that if x 6∈ ∆̃⊕, then g (x) ≤ 0 . If
x /∈ ∆̃⊕ then

〈
ξ, x
〉
< 0 for some ξ ∈ ∆̃, by (41) and (42), it follows that

g (x) = min
ξ∈∆

G (〈ξ, x〉 , ξ) ≤ G
(〈
ξ, x
〉
, ξ
)
≤ G

(
0, ξ
)

= 0.

This last observation allows us to conclude that Gξ (1) = sup
{
g (x) : 〈ξ, x〉 ≤ 1 and x ∈ ∆̃⊕

}
for

each ξ ∈ X∗+\ {0}. Clearly, Gξ (1) ≥ sup
{
g (x) : 〈ξ, x〉 ≤ 1 and x ∈ ∆̃⊕

}
. Vice versa, consider a

sequence {xn}n such that 〈ξ, xn〉 ≤ 1 for each n ∈ N and g (xn) ↑ Gξ (1). By contradiction, assume

that Gξ (1) > sup
{
g (x) : 〈ξ, x〉 ≤ 1 and x ∈ ∆̃⊕

}
, then {xn}n is eventually in the complement of

∆̃⊕. It follows that for n large enough g (xn) ≤ 0 and hence, Gξ (1) ≤ 0. But ‖ξ‖−1
e ∈ ∆̃⊕ and〈

ξ, ‖ξ‖−1
e
〉

= 1, since
〈
ξ̃, ‖ξ‖−1

e
〉

= ‖ξ‖−1
〈
ξ̃, e
〉

= ‖ξ‖−1
> 0 for each ξ̃ ∈ ∆̃. Hence, given that g

is non-degenerate

Gξ (1) ≥ sup
{
g (x) : 〈ξ, x〉 ≤ 1 and x ∈ ∆̃⊕

}
≥ g

(
‖ξ‖−1

e
)

= ‖ξ‖−1
g (e) > 0,

a contradiction.

Step 1. ∆̃ is convex and closed. Clearly, ∆̃ = {ξ ∈ ∆ : G (−1, ξ) ≤ 0}. Since G ∈ Lqcx (R×∆), it
follows that ∆̃ is convex and closed.

Step 2. The function c1 : ∆̃→ [0,∞) such that c1 (ξ) = 1/ρ1 (ξ) is a concave function over ∆̃. Recall
that ρ1 (ξ) > 0. Let ξ1, ξ2 ∈ ∆̃ and λ ∈ (0, 1). If ρ1 (ξ1) = ∞ or ρ2 (ξ2) = ∞, wlog suppose that
ρ1 (ξ1) =∞ then for each λ ∈ (0, 1)

ρ1 (ξ2) = Gξ2 (1) = sup
{
g (x) : 〈ξ2, x〉 ≤ 1 and x ∈ ∆̃⊕

}
≥ sup

{
g (x) :

〈
λ

1− λ
ξ1 + ξ2, x

〉
≤ 1 and x ∈ ∆̃⊕

}
= G λ

1−λ ξ1+ξ2
(1)

= Gλξ1+(1−λ)ξ2 (1− λ) = (1− λ)Gλξ1+(1−λ)ξ2 (1) = (1− λ) ρ1 (λξ1 + (1− λ) ξ2) .

This implies that

1
ρ1 (λξ1 + (1− λ) ξ2)

≥ (1− λ)
1

ρ1 (ξ2)
≥ 0 + (1− λ)

1
ρ1 (ξ2)

= λ
1

ρ1 (ξ1)
+ (1− λ)

1
ρ1 (ξ2)

Otherwise ρ1 (ξ1) , ρ1 (ξ2) ∈ (0,∞). In this case, choose k1, k2 > 0 such that k1ρ1 (ξ1) = k2ρ1 (ξ2).
As Gξ (t) is quasiconvex,

Gλξ1+(1−λ)ξ2 (λk1 + (1− λ) k2) ≤ max {Gξ1 (k1) , Gξ2 (k2)} . (43)

In view of (42), (43) becomes

(λk1 + (1− λ) k2) ρ1 (λξ1 + (1− λ) ξ2) ≤ max {k1ρ1 (ξ1) , k2ρ (ξ2)} = k1ρ (ξ1) ,

38



since k2\ (k1ρ1 (ξ1)) = 1\ρ1 (ξ2), we have that

1
ρ1 (λξ1 + (1− λ) ξ2)

≥ λk1 + (1− λ) k2

k1ρ1 (ξ1)
= λ

1
ρ1 (ξ1)

+ (1− λ)
1

ρ1 (ξ2)
.

This shows that c1 (ξ) = 1\ρ1 (ξ) is concave. Consequently, in (42) we can write ρ1 (ξ) t = t/c1 (ξ),
where c1 is concave on ∆̃.

Step 3. The region A =
{
ξ ∈ ∆̃ : ρ2 (ξ) > 0

}
is convex. In fact, for all ξ ∈ ∆̃, ρ2 (ξ) = −Gξ (−1) and

thus
A =

{
ξ ∈ ∆̃ : Gξ (−1) < 0

}
is convex by quasiconvexity of Gξ (t).

Step 4. The function c2 : A → (0,∞) defined by c2 (ξ) = 1/ρ2 (ξ) is convex on the set A defined
above. Let ξ1, ξ2 ∈ A ⊂ ∆̃ and λ ∈ (0, 1). Pick k1, k2 < 0 such that k1ρ2 (ξ1) = k2ρ2 (ξ2). From the
quasiconvexity of Gξ (t) we have (43). Hence, in view of (42)

(λk1 + (1− λ) k2) ρ2 (λξ1 + (1− λ) ξ2) ≤ max {k1ρ2 (ξ1) , k2ρ2 (ξ2)} = k1ρ2 (ξ1) ,

which implies

1
ρ2 (λξ1 + (1− λ) ξ2)

≤ λk1 + (1− λ) k2

k1ρ2 (ξ1)
= λ

1
ρ2 (ξ1)

+ (1− λ)
1

ρ2 (ξ2)
,

and c2 (ξ) = 1/ρ2 (ξ) is convex and finite on A. Clearly ρ2 (ξ) = 1/c2 (ξ) on A. Setting c2 (ξ) =∞ for
ξ ∈ ∆̃ \A, convexity of c2 : ∆̃→ (0,∞] is maintained and ρ2 (ξ) = 1/c2 (ξ) for all ξ ∈ ∆̃.

Hence, G has the representation (38) with ∆̃ convex and closed, c1 : ∆̃ → [0,∞) concave, and
c2 : ∆̃→ (0,∞] convex.

Step 5. c1 is upper semicontinuous on ∆̃. The function ξ 7→ Gξ (1) is lower semicontinuous on ∆.
For any α > 0, then

{
ξ ∈ ∆ : Gξ (1) ≤ α−1

}
is closed in ∆. That is, the sets

{
ξ ∈ ∆̃ : c1 (ξ) ≥ α

}
={

ξ ∈ ∆ : Gξ (1) ≤ α−1
}
∩ ∆̃ are closed in ∆̃. Finally, for any α ≤ 0,

{
ξ ∈ ∆̃ : c1 (ξ) ≥ α

}
= ∆̃.

Therefore, c1 is upper semicontinuous.

Step 6. c2 : ∆̃ → (0,∞] is lower semicontinuous. The map ξ 7→ Gξ (−1) is lower semicontinuous.
For any α > 0,

{
ξ ∈ ∆ : Gξ (−1) ≤ −α−1

}
is closed. Consequently, the sets

{
ξ ∈ ∆̃ : c2 (ξ) ≤ α

}
={

ξ ∈ ∆ : Gξ (−1) ≤ −α−1
}
∩ ∆̃ are closed. If α ≤ 0 then

{
ξ ∈ ∆̃ : c2 (ξ) ≤ α

}
= ∅. Therefore, c2 is

lower semicontinuous.

“If.” If G ∈ Lms (R×∆) then, by Lemma 26, G ∈ Lqcx (R×∆). By Lemma 12, it follows
that g, defined as in (41), is monotone, quasiconcave, and lower semicontinuous. Since G (R×∆) ⊂
(−∞,∞], we have that g > −∞. By Lemma 26, we have that G (·, ξ) is positively homogeneous and
nondecreasing for each ξ ∈ ∆ and furthermore G (1, ξ) 6= 0 for each ξ ∈ ∆. It follows that G (1, ξ) > 0
for each ξ ∈ ∆. This implies that g is non-degenerate. Indeed,

g (e) = min
ξ∈∆

G (〈ξ, e〉 , ξ) = min
ξ∈∆

G (1, ξ) > 0.

Finally, g is positively homogeneous, since for each x ∈ X and for each λ > 0 we have that

g (λx) = min
ξ∈∆

G (〈ξ, λx〉 , ξ) = min
ξ∈∆

G (λ 〈ξ, x〉 , ξ) = λmin
ξ∈∆

G (〈ξ, x〉 , ξ) = λg (x) .
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Finally, given g ∈Mupo (X) define as G the mapping (t, ξ) 7→ Gξ (t). By the previous part of the
proofG ∈ Lms (R×∆) and by Theorem 5, ∆̃ is nonempty and it is equal to the set {ξ ∈ ∆ : dom (G (·, ξ)) = R}.
By Theorem 5, the nonempty family of functions {G (·, ξ)}ξ∈∆:domG(·,ξ)=R is a family of uniformly
equicontinuous functions. Each function in such family is such that

G (t, ξ) =

{
t

c1(ξ) if t ≥ 0
t

c2(ξ) if t ≤ 0
,

where c1 (ξ) , c2 (ξ) ∈ (0,∞) and ξ ∈ ∆̃. By Lemma 24, it follows that supξ∈∆̃
1

c1(ξ) , supξ∈∆̃
1

c2(ξ) <∞.
This implies that infξ∈∆̃ c1 (ξ) > 0, proving that G ∈ Ems (R×∆).

Vice versa, if G ∈ Ems (R×∆) then G ∈ Lms (R×∆) and we have from the previous part of the
proof that g, defined as in (41), is non-degenerate, g > −∞, monotone, quasiconcave, and positively
homogeneous. By Lemma 26, G ∈ E (R×∆) and, by Lemma 16, it follows that g is uniformly
continuous and real valued. �

Proof of Theorem 10. Consider T : Mpo (X) → M (R×∆). By the proof of Lemma 27, we
have that T (Mpo (X)) ⊂ Lms (R×∆) ⊂ Lqcx (R×∆). Hence, T : Mpo (X) → Lms (R×∆). By
Proposition 1, T is injective on Mpo (X) ⊂ Meqc (X). Let G ∈ Lms (R×∆) ⊂ Lqcx (R×∆). By
Lemma 27, QG ∈ Mpo (X) ⊂ Mlsc (X). By Lemma 13, TQG = G therefore T is surjective. That
is, T−1 = Q on Lms (R×∆). �

Proof of Corollary 7. Clearly,Mupo (X) =Muc (X)∩Mpo (X) ⊆Meqc (X), since T :Meqc (X)→
Msqc (R×∆) is bijective, then by Theorems 6 and 10,

T (Mupo (X)) = T (Muc (X)) ∩T (Mpo (X)) = E (R×∆) ∩ Lms (R×∆) .

Finally, E (R×∆) ∩ Lms (R×∆) = Ems (R×∆) follows from Lemmas 24 and 26. �

Remark. In light of Theorem 10 and of the proof of Lemma 27, it is immediate to see how Lemma
26 turns out to be an “if and only if” statement.

7.1 Representation

The next result, based on Theorem 10, is a representation theorem for positively homogeneous func-
tions in terms of a pair (c1, c2) of functions, with c1 concave and c2 convex.

Proposition 6 Let g : X → [−∞,∞]. A function g belongs to Mpo (X) if and only if

g (x) = min
ξ∈∆̃

(
〈ξ, x〉+

c1 (ξ)
− 〈ξ, x〉

−

c2 (ξ)

)
, (44)

with c1 : ∆̃ → [0,∞) upper semicontinuous and concave, and c2 : ∆̃ → (0,∞] lower semicontinuous
and convex, ∆̃ ⊂ ∆ convex and closed. Moreover,

(i) g is non negative and concave on ∆̃⊕ =
{
x ∈ X : 〈ξ, x〉 ≥ 0 for all ξ ∈ ∆̃

}
;

(ii) if g : X → R, g is concave if and only if c2 ≤ c1. In this case, g is uniformly continuous;

(iii) if Γ̃ is a closed and convex subset of ∆, d1 : Γ̃ → [0,∞) is concave and upper semicontinuous,
d2 : Γ̃→ (0,∞] is convex and lower semicontinuous, and

g (x) = min
ξ∈Γ̃

(
〈ξ, x〉+

d1 (ξ)
− 〈ξ, x〉

−

d2 (ξ)

)
, ∀x ∈ X, (45)

then
(

Γ̃, d1, d2

)
=
(

∆̃, c1, c2
)

;
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(iv) g is real valued and uniformly continuous if and only if ∆̃ is nonempty and infξ∈∆̃ c1 (ξ) > 0;

(v) g is normalized if and only if maxξ∈∆̃ c1 (ξ) = minξ∈∆̃ c2 (ξ) = 1.

Proof. Necessity easily follows from Lemma 27 and (40). Sufficiency follows easily from Lemma 27,
once we notice that the function G : R×∆→ (−∞,∞] such that

G (t, ξ) =


t+

c1(ξ) −
t−

c2(ξ) if (t, ξ) ∈ R× ∆̃

∞ if (t, ξ) ∈ R×
(

∆ \ ∆̃
) =


t

c1(ξ) if t ≥ 0 and ξ ∈ ∆̃
t

c2(ξ) if t ≤ 0 and ξ ∈ ∆̃

∞ if ξ ∈ ∆ \ ∆̃

, (46)

is such that g (x) = minξ∈∆G (〈ξ, x〉 , ξ) and such that G ∈ Lms (R×∆), by definition.

(i) If ∆̃ is empty then ∆̃⊕ = X and g =∞. It follows that the statement is trivially true. If ∆̃ is
nonempty then 〈ξ, x〉 ≥ 0 for each x ∈ ∆̃⊕ and for each ξ ∈ ∆̃. Given (44), it follows that

g (x) = min
ξ∈∆̃

(
〈ξ, x〉+

c1 (ξ)
− 〈ξ, x〉

−

c2 (ξ)

)
= min

ξ∈∆̃

(
1

c1 (ξ)
〈ξ, x〉

)
which clearly implies that g is concave and non-negative on the closed convex cone ∆̃⊕.

(ii) By Corollary 5, g is concave if and only if Gξ is concave for each ξ ∈ ∆. This is automatically
true, if ξ ∈ ∆ \ ∆̃, while if ξ ∈ ∆̃ this amounts to say that the function

G (t, ξ) =

{
t

c1(ξ) if t ≥ 0
t

c2(ξ) if t ≤ 0

is concave, or equivalently

0 ≤ 1
c1 (ξ)

≤ 1
c2 (ξ)

.

Since 0 < c2 (ξ) < ∞, this is equivalent to c1 (ξ) ≥ c2 (ξ). Since g : X → R then ∆̃ is nonempty and
therefore, it follows that infξ∈∆̃ c1 (ξ) ≥ minξ∈∆̃ c2 (ξ) > 0. This implies that G defined as in (46)
satisfies (44) and belongs to G ∈ Ems (R×∆), implying the statement.

(iii) Suppose Γ̃ is closed, and convex subset of ∆, d1 : Γ̃ → [0,∞) is concave and upper semicon-
tinuous, d2 : Γ̃→ (0,∞] is convex and lower semicontinuous, and

g (x) = min
ξ∈Γ̃

(
〈ξ, x〉+

d1 (ξ)
− 〈ξ, x〉

−

d2 (ξ)

)
, ∀x ∈ X.

Set G as in (46) and define H : R×∆→ (−∞,∞] to be such that,

H (t, ξ) =


t

d1(ξ) if t ≥ 0 and ξ ∈ Γ̃
t

d2(ξ) if t ≤ 0 and ξ ∈ Γ̃

∞ if ξ ∈ ∆ \ Γ̃

=


t+

d1(ξ) −
t−

d2(ξ) if (t, ξ) ∈ R× Γ̃

∞ if (t, ξ) ∈ R×
(

∆ \ Γ̃
) .

It is easy to see that G,H ∈ Lms (R×∆). By assumption, we have that QG = g = QH, by Theorem
10, it follows that G = H, and hence the statement.

(iv) Necessity follows easily from Lemma 27 and (40). Sufficiency follows easily from Lemma 27,
once we notice that the function G : R×∆→ (−∞,∞] such that

G (t, ξ) =


t+

c1(ξ) −
t−

c2(ξ) if (t, ξ) ∈ R× ∆̃

∞ if (t, ξ) ∈ R×
(

∆ \ ∆̃
) =


t

c1(ξ) if t ≥ 0 and ξ ∈ ∆̃
t

c2(ξ) if t ≤ 0 and ξ ∈ ∆̃

∞ if ξ ∈ ∆ \ ∆̃

,
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is such that g (x) = minξ∈∆G (〈ξ, x〉 , ξ) and such that G ∈ Ems (R×∆), by definition.

(v) Finally, by Lemma 20, g is normalized if and only if, for each t ∈ R,

t = g (te) = inf
ξ∈∆

Gξ (t) =

{
infξ∈∆̃

t
c1(ξ) if t ≥ 0

infξ∈∆̃
t

c2(ξ) if t ≤ 0
=

{
t infξ∈∆̃

1
c1(ξ) if t ≥ 0

t supξ∈∆̃
1

c2(ξ) if t ≤ 0
,

which is equivalent to maxξ∈∆̃ c1 (ξ) = minξ∈∆̃ c2 (ξ) = 1 thanks to the semicontinuity properties of
c1 and c2. �

In Proposition 6 we saw that lower semicontinuous, positively homogeneous, and quasiconcave
functions are concave on the cone ∆̃⊕ on which they are non-negative. In fact, this is a quite general
property enjoyed by these functions. A first result of this type was stated by [22] and then reformulated
(still in a finite dimensional setting) by [6, Proposition 2], with a simpler proof. Next we give a general
result.

Proposition 7 Let g : X → [−∞,∞) be an evenly quasiconcave and positively homogeneous function.
Then:

(i) g is concave on the cone {g > 0},

(ii) g is concave on any evenly convex cone K ⊂ {g ≤ 0} .

Proof. (i) Suppose that {g > 0} 6= ∅, otherwise the claim is trivial. Clearly the set {g > 0} is a
convex cone. Therefore, {g > 0} is a closed convex cone. Consider the new function

g̃(x) =

{
g (x) if x ∈ {g > 0}
−∞ else

.

It is evenly quasiconcave and positively homogeneous. The functions G̃ξ are clearly positively homo-
geneous and monotone. Consequently they are concave on (−∞, 0) and on [0,∞). Let c < 0 and
ξ ∈ S∗. Consider the half-space 〈ξ, x〉 ≤ 0. If {〈ξ, x〉 ≤ c} ∩ {g > 0} = ∅, then G̃ξ (c) = −∞. As
G̃ξ (t) is positively homogeneous, it follows that G̃ξ (t) = −∞ for all t < 0. Hence, G̃ξ (t) is concave
on R. Assume that {〈ξ, x〉 ≤ c} ∩ {g > 0} 6= ∅. By perturbing c, we have {〈ξ, x〉 ≤ c̃} ∩ {g > 0} 6= ∅
for some 0 > c̃ > c. Hence, G̃ξ (c̃) > 0. If G̃ξ (c̃) <∞, the function G̃ξ (t) would be strictly decreasing
on (−∞, 0), a contradiction. Therefore G̃ξ (c̃) =∞ =⇒ G̃ξ =∞. We conclude that in any case G̃ξ (t)
are concave and, by Proposition 3, g̃(x) is concave.

(ii) Like (i), define

g̃(x) =

{
g (x) if x ∈ K
−∞ else

.

Even in this case, g̃ is evenly quasiconcave and positively homogeneous and the functions G̃ξ are
positively homogeneous and monotone. Here, G̃ξ (t) ≤ 0 for all t and ξ. If −∞ < G̃ξ (c) < 0 for some
c > 0, G̃ξ would be decreasing on (0,∞). Hence, either G̃ξ (c) = 0 or G̃ξ (c) = −∞. In both cases we
deduce that the functions G̃ξ are concave. �

8 Glossary and Concluding Remarks

8.1 Glossary of Notation

Throughout the paper we considered several functions spaces, which for convenience we now list. Here
X is an M -space and ∆ =

{
ξ ∈ X∗+ : ‖ξ‖ = 1

}
.
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(i) Mqc (X) is the set of all quasiconcave monotone functions g : X → [−∞,∞].

(ii) Meqc (X) ⊆Mqc (X) is the collection of functions in Mqc (X) that are evenly quasiconcave.

(iii) Mlsc (X) ⊂Meqc (X) is the collection of functions in Meqc (X) that are lower semicontinuous.

(iv) Mc (X) ⊂Mlsc (X) is the collection of functions in Mlsc (X) that are extended-valued contin-
uous (i.e., both lower and upper semicontinuous).

(v) Muc (X) ⊂ Mc (X) is the subset of Mc (X) of the real valued functions g : X → R that are
uniformly continuous.

(vi) Mconc (X) ⊂Mqc (X) is the subset ofMqc (X) of the real valued functions g : X → R that are
upper semicontinuous and concave.

(vii) Mtr (X) ⊂ Mconc (X) ∩Muc (X) is the the collection of quasiconcave, monotone, normalized,
and translation invariant functions g : X → R.

(viii) Mpo (X) ⊂Mlsc (X) is the subset ofMlsc (X) of the nondegenerate functions g : X → (−∞,∞]
that are positively homogeneous.

(ix) Mupo (X) ⊂Muc (X) is the subset ofMuc (X) of the real valued functions g : X → R that are
positively homogeneous.

The “dual” functions spaces consist of functions G : R×∆→ [−∞,∞]. In particular:

(i) M (R×∆) is the space of the functions G : R×∆→ [−∞,∞] such that: (i) G (·, ξ) is increasing
for each ξ ∈ ∆; (ii) limt→+∞G (t, ξ) = limt→+∞G (t, ξ′) for all ξ, ξ′ ∈ ∆.

(ii) M♦
qcx (R×∆) ⊆ M (R×∆) is the subset of M (R×∆) of the functions such that (t, ξ) 7→

G (t, ξ) is ♦-evenly quasiconvex on R×∆.

(iii) Lqcx (R×∆) ⊂M (R×∆) is the subset ofM (R×∆) of the functions such that (t, ξ) 7→ G (t, ξ)
is lower semicontinuous and quasiconvex on R×∆ (it follows that Lqcx (R×∆) ⊆M♦

qcx).

(iv) C (R×∆) ⊂ Lqcx (R×∆) the subset of Lqcx (R×∆) of the functions such that G (·, ξ) is
extended-valued continuous on R for each ξ ∈ ∆.

(v) CO (R×∆) ⊂ Lqcx (R×∆) the subset of Lqcx (R×∆) of the functions G such that QG+ = QG
(G+ is the right-continuous regularization of G, with respect to the first variable).

(vi) E (R×∆) ⊂ C (R×∆) is the subset of C (R×∆) of the functions G : R ×∆ → (−∞,∞] that
have the following additional properties: (i) domG (·, ξ) ∈ {∅,R} for all ξ ∈ ∆, and there exists
at least one ξ such that domG

(
·, ξ
)

= R; (ii) G (·, ξ) are uniformly equicontinuous on R for all
ξ ∈ ∆ such that domG (·, ξ) = R.

(vii) Co (R×∆) ⊂M (R×∆) is the collection of all functions G : R×∆→ (−∞,∞] inM (R×∆)
such that: (i) G (·, ξ) is concave and closed for all ξ ∈ ∆; (ii) γ : X∗ → [−∞,∞) is proper, upper
semicontinuous, cofinite, and concave (γ is defined in (36)).

(viii) Eas (R×∆) ⊂ E (R×∆) is the collection of functions G : R × ∆ → (−∞,∞] in E (R×∆)
that are additively separable, i.e., such that G (t, ξ) = t + c (ξ), where c : ∆ → [0,∞] is lower
semicontinuous, convex, and minξ∈∆ c (ξ) = 0.
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(ix) Lms (R×∆) ⊂ Lqcx (R×∆) is the collection of functions G : R×∆→ (−∞,∞] in Lqcx (R×∆)
that are multiplicatively separable.

(x) Ems (R×∆) ⊂ E (R×∆) is the collection of functions G : R×∆→ (−∞,∞] in E (R×∆) that
are multiplicatively separable.

8.2 Concluding Remarks

In the paper we have introduced a notion of quasiconcave monotone duality, Definition 1), and then
identified eight monotone duality pairs:

(i)
〈
Meqc (X) ,M♦

qcx (R×∆)
〉
qc

, in Theorem 2

(ii) 〈Mlsc (X) ,Lqcx (R×∆)〉qc, in Theorem 3;

(iii) 〈Mc (X) , CO (R×∆)〉qc, in Theorem 4;

(iv) 〈Muc (X) , E (R×∆)〉qc, in Theorem 6;

(v) 〈Mconc (X) ,Co (R×∆)〉qc, in Theorem 8;

(vi) 〈Mtr (X) , Eas (R×∆)〉qc, in Theorem 9;

(vii) 〈Mpo (X) ,Lms (R×∆)〉qc, in Theorem 10;

(viii) 〈Mupo (X) , Ems (R×∆)〉qc, in Corollary 7.

Among them, (i) is the most basic dual pair. The dual pairs (ii)-(iv) are specifications of the
basic dual pair (i) with richer and richer continuity properties. Since Mtr (X) ⊂ Muc (X) and
Mupo (X) ⊂ Muc (X), the pairs (vi)-(viii) are further specifications of the basic duality (i). In
particular, Mtr (X) and Mpo (X) are in duality with, respectively, the additively separable and the
multiplicatively separable functions in E (R×∆) or in Lqcx (R×∆).

Finally, the interest of (v) lies mostly in the connections with Fenchel duality that arise during its
derivation.
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