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1 Introduction

The in�nite horizon model at the core of modern macroeconomics is often motivated as representing

in fact a dynasty, a sequence of �nitely lived individuals linked by altruism. An implication of this

interpretation is that the intra-personal willingness to substitute consumption across periods is the

same as the inter-personal willingness to substitute consumption across generations. More precisely,

as we formalize below, the model implies that the elasticity of intertemporal substitution (EIS) is

identical to the elasticity of intergenerational substitution (EGS). There is, however, no compelling

theoretical or empirical reasons why these two parameters, or margins, need to be identical. To the

best of our knowledge, we are the �rst to formally explore the distinction between the EIS and the

EGS in macroeconomics.

This paper formally de�nes the notion of intergenerational substitution and extends an otherwise

standard dynastic altruistic model to disentangle the EGS from the EIS. The model illustrates

various consequences of isolating the two concepts, and is used to bring empirical discipline to

the calibration of the EGS. The analysis yields three main insights. First, while as summarized

in Guvenen (2006) estimates of the EIS are commonly below one, we �nd a much larger EGS of

around 2.5 or more. In particular, our calibration features an EIS of 0:67 and an EGS of 2:85. In

other words, while the data supports a strong intertemporal consumption smoothing motive, there

seems to be much less consumption smoothing across generations.

Second, the shadow price of a child, or the imputed value of a child, plays a key role in identifying

the EGS in dynamic altruistic models of fertility choice. We discuss various estimates of the imputed

value of a child, mostly calculated as the present value of all the costs of raising a child. This link

between the imputed value of a child and the cost of raising him is a direct implication of the

equalization of the marginal bene�t and the marginal cost of a child from the optimal fertility

condition. As we discuss in Section 4.2, according to the USDA (2012) the typical cost of raising

a child born in 2011 from ages 0 to 17 for a family of two adults and two children is $143,051 for

a low-income family, $198,437 for middle-income, and $328,990 for a high-income family. These

�gures include direct parental expenses made on children through age 17 such as housing, food,

transportation, health care, clothing, child care, and private expenses in education, but abstracts

from time costs. Accounting for the time costs of raising children is not trivial, but the best

available estimates we can construct suggest that they amount to $214,576 for a low-income family,

$297,656 for middle-income, and $493,485 for a high-income family. Therefore, for each of these

income groups, the imputed value of a child can be estimated at $357,627, $496,093 and $822,476

respectively. As we show, a large EGS is needed in order to match this range of imputed values

of a child. The reason is that the option value of having a child is larger the more inelastic is the

willingness to substitute consumption between the parent and the child. We �nd that if the EGS

is lower than one, the inelastic case, then the imputed value of child is much larger, even more

than an order of magnitude larger, than what is suggested by the present value cost computation.

A similar �nding is reported by Murphy and Topel (2006) in a related literature that looks at the

value of statistical life for adults. In their case, implausibly large values are obtained when the EIS
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is lower than one.

The third insight of our analysis is that the high EGS is also supported by the negative fertility-

income relationship documented extensively in the empirical literature. 1 For example, Jones and

Tertilt (2008) estimate an income elasticity of fertility of about �0:38 using US Census data. The
notable feature of their analysis is that they construct a measure of life-time income by using

occupational income and education. Life-time income and fertility are measured for several cross-

sections of �ve-year birth cohorts from 1826-1830 to 1956-1960. They conclude that most of the

observed fertility decline in the US can be explained by the negative fertility-income relationship

estimated for each cross-section, together with the outward shift of the income distribution over

time. The reason why the evidence of a negative fertility-income relationship is supportive of a

high EGS is the following. The EGS controls the degree of diminishing returns to lifetime parental

income. A low EGS means that parents run into sharp diminishing returns in their own income,

and therefore the option value of having a child is larger for richer parents because children provide

a way to avoid the decreasing returns. Thus, parents with low EGS will tend to have more children

as their income increases. The evidence suggests the opposite and therefore it is supportive of an

EGS larger than one.

The dynamic altruistic model of fertility choice we analyze has two key features. First, the utility

representation easily allows to associate a single parameter, �, with the EIS, and a di¤erent one,

�, with the EGS. Although conceptually very di¤erent, the simplicity of our preferences parallels

that of Epstein and Zin (1989), and Weil (1990), providing a useful and general framework for

analyzing intergenerational issues. While � is computed from the marginal rate of substitution

between consumption in two periods within the lifetime of one individual, � is computed from

the marginal rate of substitution between the composite consumption of two generations. In our

framework, composite consumption is a CES aggregator of consumption �ows within the lifetime

of an individual with an elasticity of substitution equal to 1=�. When � = � our framework reduces

back to the standard model with additive separability across time and generations.

Second, in our model children are precluded from borrowing and therefore individuals fully

depend on parental transfers during childhood. Absent constraints, if a child�s future income is

larger than the cost of raising him, as the evidence suggests is the case, parents would have incentives

to have as many children as possible in order to extract rents from them (see Cordoba and Ripoll,

2014). This would imply not only maximum fertility, but also fertility would be independent of

income. Limits on the child�s ability to borrow preclude parents from extracting rents, prevent

maximum fertility, make possible a negative relationship between income and fertility, and imply

strictly positive transfers from parents to children. 2

We calibrate the model to income and fertility data across US states. Cross-state data is

convenient for our calibration for a number of reasons: a negative relationship between income and

1See Jones and Tertilt (2008) and Jones, Schoonbroodt and Tertilt (2011) for a recent survey of the literature.
2Less than maximum fertility is possible in the unconstrained version of the model if children are a net �nancial

costs to parents, as in Becker and Barro (1988). However, the evidence reported in Cordoba and Ripoll (2014),
Section 3, suggests that the present value of income net of child costs is positive. In other words, children are a net
�nancial bene�t to the parents.
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fertility is observed across states; the assumption that the interest rate is identical across states

can be justi�ed; and a simple representative agent model can still be used. We estimate an income

elasticity of fertility of �0:143; signi�cant at the 5% level on a population-weighted regression. This
elasticity is close to the �0:17 estimated by Jones and Tertilt (2008) using individual-level Census
data for the most recent cohorts. The key part of the calibration is to select the appropriate targets

to provide the identi�cation of three key parameters that capture di¤erent aspects of how the utility

of the child enters into the utility of the parent. One of these is �, which governs the EGS. Two

other parameters enter into the weight that the parent gives to their children. One parameter, �;

determines the level of parental altruism while a second parameter, "; determines the degree of

diminishing altruism toward additional children. The model implies that � is the key determinant

of the amount of parental transfers. We thus identify � using USDA evidence on the goods costs

of raising children. Moreover, " captures how the altruistic weight changes with the number of

children. We select a target that brings us the closest we can to its value by mapping available

estimates of the willingness to pay to relieve children�s symptoms from respiratory illnesses, and how

this changes with the number of children in the family. Once identi�cation targets are selected for

� and ", we show that � can be identi�ed by requiring the model to match the average US fertility

rate. The intuition for the connection between fertility and � is that � is the key determinant

of the imputed value of a child and therefore of the incentives to have children. Our benchmark

calibration and a number of robustness checks support a value of EGS = 1=� > 1.

Our analysis suggests that beyond fertility choice, disentangling the EIS from the EGS is im-

portant to analyze a number of other issues in modern macroeconomics. Since the EGS captures

substitution across generations, the study of longer-term issues such as inequality or any policies

that involve intergenerational transfers can be more properly analyzed thinking of the EGS instead

of the EIS. In order to illustrate the broader scope of our framework, we provide a simple overview

of how disentangling the EIS from the EGS could improve our understanding of US inequality. In

Section 5.3 we brie�y discuss an intergenerational version of a Bewley model in which the source

of inequality is uninsurable idiosyncratic risk in earning ability. Individuals di¤er not only in their

earning ability, but also in the amount of transfers they received from their parents. It is assumed

that parents cannot insure their children against their random abilities because transfers are non-

contingent, and transfers to children cannot be negative. A preliminary calibration of this model

shows that our framework is able to produce more wealth inequality than the standard model in

which the EIS and the EGS are not disentangled. The reason is that the standard model, a low

EIS (and low EGS) introduces too much aversion to consumption �uctuations, inducing too much

savings, which tends to decrease wealth inequality. In contrast, if as we show in this paper the

EGS is higher than one, then the prospects of falling into poverty are less painful, or hitting the

zero-transfer constraint is less problematic, and therefore a larger fraction of the population ends

up hitting the constraint, generating more wealth dispersion. Although mostly a preliminary il-

lustration, this analysis provides a glimpse into the potentially large scope of the framework we

propose.

The remainder of the paper is organized as follows. Section 2 uses a simple two-period model to
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illustrate the di¢ culty of standard models to match the imputed value of a child and to motivate

the importance of disentangling the EIS from the EGS. The section also introduces the formal

de�nitions of these two distinct concepts. In Section 3 we solve the full version of our dynamic

altruistic model of fertility choice. The details of the calibration are presented in Section 4. Section

5 discusses potential extensions of our model, as well as other applications of our framework to

modern macroeconomics. Section 6 concludes.

2 The value of a child and the EGS

The purpose of this section is twofold. It �rst uses a simple two-period model to derive an expression

for the shadow price of a child, or the imputed value of a child, and illustrates the limitations of

a formulation that does not disentangle the EIS from the EGS. The key issue is that the imputed

value of a child is implausibly high for standard values of the EIS below one. The second part of

this section extends the basic set up to multiple periods, de�nes the EGS concept as a separate

concept from the EIS, and shows that the imputed value of a child is linked to the EGS rather than

the EIS.

2.1 The value of a child in a two-period model

Consider the problem of an altruistic individual who is deciding between having a child or not. Let

U(c) � 0 be the utility associated to consumption �ow c. The lifetime utility of an individual with
no children and lifetime income y is V0 = U(y). The lifetime utility of an individual with one child

is:

V1 = max
c1�0;c2�0

U(c1) + �U(c2) subject to c1 + pc2 + �y = y + py; (1)

where c1 and c2 are the consumption of the parent and child respectively, � � 0 is the degree of

altruism, �y is the cost of raising the child where � 2 (0; 1), and p is the price of a bond. The budget
constraint incorporates the present-value lifetime income of the child, py. Equation (1) describes

the parent as a social planner who attaches weights 1 and � to himself and his child respectively.

If the parent is altruistic toward the child, it must be case that

U(y) + �U(c2) � U(y) whenever c2 � 0:

This condition says that if parental consumption is the same whether the child is born or not,

then the parent must be better o¤ having the child. This condition is equivalent to the condition

U(c) � 0:
Assume a CRRA utility function U(c) = 1

1�� c
1��+C where � � 0. Constant C > 0 guarantees

positive utility when � > 1. In this case consumption needs to be further restricted to be larger

than ! := ((� � 1)C)
1

1�� . The interpretation of ! is important: it corresponds to the imputed

consumption level in the unborn state. This parameter has practical implications because altruistic
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parents will never drive their child�s consumption below !. 3 It is convenient to rewrite U(c) as

U(c) = u(c)� u(!) where u(c) = 1
1�� c

1��, the standard CRRA representation.

The optimal allocation when a child is born satis�es c2 = c1 (�=p)
1=� and c1

�
1 + p (�=p)1=�

�
=

(1� �)y + py. To further simplify suppose p = � so that

c1 = c2 =
(1� �+ �)
1 + �

y

and V1 = U(c1) (1 + �). The child is born when V1 > V0; or

1

1� � (1� �+ �)
1�� (1 + �)� >

1

1� �

 
1 + �

�
!

y

�1��!

To better understand this condition, suppose �rst that ! = 0 and � 2 (0; 1). In this case the
condition becomes (1� �+ �)1�� (1 + �)� > 1. This restriction holds if � is su¢ ciently low and/or
� are su¢ ciently large. Crucially, the condition is always satis�ed if � is su¢ ciently close to one,

for � > 0 and � > 0. The key insight of this result is that if altruistic parents are su¢ ciently averse

to consumption dispersion, they would always have the child regardless of the cost. The reason is

that a high � implies strong diminishing returns to income, and having the child provides a way to

scape the diminishing returns. This result is even stronger when � > 1 and ! ! 0:

A way to understand why parents prefer high fertility when � is large is to compute the shadow

price of a child, or the value of a child for short. This value can be de�ned as

V C =
�U(c2)

u0(c1)
; (2)

where the numerator is the utility the parent derives from the child�s utility, and the denominator

transforms this utility in consumption units.4 The equation above can be rewritten as:

V C =
�

� � 1

��c1
!

���1
� 1
�
� c1 (3)

Consider �rst the case ! = 0 and � 2 (0; 1). In that case V C = �
1�� � c1 so that the shadow price of

a child increases proportionally with parental consumption. More importantly, the value of a child

goes to in�nite as � approaches one, a result that also holds true when � > 1 and ! ! 0: This

3Although imputing a level of consumption in the "unborn state" is unfamiliar to many, it arises naturally in
altruistic models with endogenous population because of the need of a full description of the consumption space.
Welfare in the unborn state is analogous to welfare in a dead state arising in models of longevity. See, for example,
Rosen (1988), Becker, Philipson and Soares (2005), Murphy and Topel (2006), Hall and Jones (2007), Jones and
Klenow (2011). In those models ! is the imputed consumption in the dead state and individuals with consumption
below ! would prefer to be dead. The welfare of the unborn also arises in normative models of endogenous population,
as in Golosov, Jones and Tertilt (2007).

4This expression will naturally appear in our benchmark model below from the �rst-order condition with respect
to the number of children.
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result shows one key problematic implication of models with a low curvature of the utility function,

as this leads to implausibly large values for a child�s life and therefore implausibly high fertility

rates. This result can be avoid by properly selecting ! to match any desired value of a child, for

any �: This is in essence the procedure utilized by Murphy and Topel (2006) to match the value of

statistical life for adults. This trade-o¤ between the value of � and the value of ! is illustrated in

Table 1.

Table 1 presents alternative estimates of the value of child computed from equation (3). As we

obtain below in our fully calibrated model, the value of � is set to 0:545, and the value of � to 0:308.

Lifetime income for a parent y is computed using an annual income of $23,946, which corresponds to

half of the median household income in the US.5 It is assumed the working lifespan is 40 years and

the interest rate is 2%. As Table 1 shows, with ! ' 0 the value of a child is very large for any � > 1.
For instance, for � = 1:25, a value common in quantitative macroeconomics, the value of a child is

around $76 million dollars. In contrast, if � = 0:40, the value of a child is $485,000. A similar value

of $465,000 could be obtained with a � = 1:25 but increasing the annualized ! to $5,000. However,

since the per capita poverty line is roughly $23,000 for a family of four, this parameterization of

! would imply that no children with consumption below the poverty line would be born. This is

problematic because the evidence suggests that on the contrary, poorer families tend to have more

children. Table 1 parallels Table 2 in Murphy and Topel (2006). Theirs illustrates how the value

of life varies as a function of the imputed consumption in the dead state and the EIS. Similar to

the message in Table 1, in their exercise the value of life is increasing in � and decreasing in !.

As we discuss more extensively below, when fertility is endogenous the value of a child will

be necessarily linked with the marginal cost of raising a child. The total cost of raising a child

born in 2011 is around $357,627 for a low-income family and $496,093 for a middle-income family

(details in the calibration section). What these �gures suggests, together with the observation that

poor children are in fact born, is that the value of � consistent with the value of a chid is at odds

with the value of � > 1 commonly used in quantitative macro. We show next that a model that

disentangles the EIS from the EGS is able to reconcile the low EIS in the aggregate data (� > 1)

with the value of a child in models with endogenous fertility choice. The key is that the EGS is the

one determining the value of a child.

2.2 Generalized preferences

In this section we formulate a framework that allows to de�ne and distinguish the EIS from the

EGS. For this purpose we extend the model of the previous section to include a life-cycle of length

T and multiple children. In this case it is convenient to de�ne the lifetime consumption of an

5Below we calibrate our full model using information on the cost of raising children for a typical US family with
two parents and two children. We adjust the data so that in the calibrated model one parent will raise one child on
average.
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individual as a composite consumption C that takes the form

C =

"
TX
t=0

�tc1��t

# 1
1��

; � > 0; � 2 (0; 1) : (4)

Absent children, C is the only source of utility for an individual. The function de�ning composite

consumption is a CES aggregator with elasticity of substitution 1=� and weights �t. As we show

below, 1=� is the standard EIS. Notice that C � 0 for all �.
The lifetime utility of an individual, V , is described by the preferences

V � 1

1� �C
1�� +

Z n

0
'(i)V 0i di; � 2 (0; 1); (5)

where n is the number of children, V 0i is the utility of child i and '(i) � 0 is the weight that

the parent attaches to child i. Positive weights means that the parent acts as a social planner at

the family level where the implicit weight of the parent is 1. The key new parameter is � which

determines the willingness to substitute composite consumption across generations. As we show

below, 1=� is the elasticity of intergenerational substitution, EGS. Restriction � 2 (0; 1) is required
for V � 0 and V 0i � 0, as otherwise adding a positive mass of children would be detrimental to

parental utility.6 The utility described in the previous two-period example is a particular case of

(5) which can be obtained by setting � = �. In this case V = 1
1��

PT
t=0 �

tc1��t +
R n
0 'iV

0
i di which

is the standard additively-separable formulation with a single elasticity.

We consider mostly the symmetric case V 0
i
= V 0 for all i as is common in the literature.

Symmetric treatment can arise as a way to avoid con�ict among siblings. Furthermore, suppose

'(i) = � (1� ") i�" which describes a particular type of discounting towards children: hyperbolic
discounting. 7 In this case

R n
0 '(i)di = �n

1�". Since parental weights are non-negative, function

�n1�" must be positive and increasing which implies restrictions � > 0 and 1 > " > 0: Symmetry

and hyperbolic discounting simpli�es (5) to

V =
1

1� �C
1�� + �n1�"V 0: (6)

This formulation is a generalized version of Becker and Barro (1988) that allows for � 6= �: An

alternative and convenient way to describe the same preferences is obtained by recursively substi-

tuting V 0 out of the equation. Under the boundedness condition limt!1�tN
1�"
t C1��t =(1� �) = 0,

it follows that

V =
1X
s=0

�sN1�"
s

C1��s

1� � ; (7)

where n0 = 1 and Ns =
Qs�1
v=0 nv. Notice that the summation in this equation is across generations,

6Section 5.2 extends the model to allow any � > 0:
7 In Cordoba and Ripoll (2011) we discuss other types of discounting such as exponential discounting.
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while the summation de�ning Cs in equation (4) is across ages, or over the life cycle. We now

formally show that 1=� and 1=� are the EIS and the EGS respectively.

The marginal rate of substitution between consumption at age s and consumption at age v

for an individual is de�ned as MRS (cv; cs) � @V=@cv
@V=@cs

= @C=@cv
@C=@cs

. The corresponding EIS between

consumptions at period s and period v is then de�ned as

EIS (cv; cs) =
d ln(cs=cv)

d lnMRS(cv; cs)
: (8)

The typical EIS in the literature refers to two adjacent periods, say s and s+1, but for the isoelastic

preferences (6), the EIS is independent of s and v, as long as s 6= v: To see this, notice that

MRS (cv; cs) =
@C=@cv
@C=@cs

=
C��C��vc��v
C��C��sc��s

= �v�s(cs=cv)
�

and therefore EIS = EIS (cv; cs) = 1=�:

The EGS can be de�ned similarly to the EIS but it relates to the willingness to substitute

consumption across di¤erent generations rather than across di¤erent ages. The marginal rate of

substitution between composite consumption of generations s and v from the point of view of the

initial parent is given by MRS (Cv; Cs) =
@V=@Cv
@V=@Cs

: The corresponding EGS can be de�ned as

EGS (Cv; Cs) =
d ln(Cs=Cv)

d lnMRS(Cv; Cs)
: (9)

According to this de�nition, the EGS measures the willingness of the parent to substitute composite

consumption across generations s and v, s 6= v: Similarly to the EIS, the EGS could be in principle
de�ned only for adjacent generations but, as Proposition 2 below shows, EGS = 1=� for any s 6= v
when preferences are described by (7). An alternative de�nition of the EGS that does not involve

composite consumption but speci�c consumptions for parents and children is

]EGS
�
cv; c

0
s

�
=

@ ln(c0s=cv)

@ ln(MRS (cv; c0s))
; (10)

where cv is parental consumption at age v and c0s is children consumption at age s. The partial

derivative refers to a change in the c0s=cv ratio holding the other consumption ratios constant. It

turns out that ]EGS (cv; c0s) = ]EGS = EGS = 1=� for any v and s0:

Proposition 2 - Isoelastic substitution. Suppose the lifetime utility of an individual is de-
scribed by (6·). Then EIS (cv; cs) = EIS = 1=� and EGS (Cv; Cs) = ]EGS (cv; c0s) = EGS =
1=�.
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Proof. The �rst part of the proposition was derived above. Next, using (7)

MRS (Cv; Cs) =
@V=@Cv
@V=@Cs

=
�vN1�"

v C��v

�sN1�"
s C��s

;

and therefore

EGS (Cv; Cs) =
d ln(Cs=Cv)

d lnMRS(Cv; Cs)
= 1=�:

Moreover,

MRS
�
cv; c

0
s

�
=
@V=@cv
@V=@c0s

=
C��C��vc��v

�n1�" (C 0)�� (C 0)� �s (c0s)
�� :

Since C is constant returns to scale, it can be written as C = cv bCv where bCv is homogeneous
of degree zero. As a result,

MRS
�
cv; c

0
s

�
=

c��v bC��v c�v
bC�v �vc��v

�n1�" (c0s)
��
� bC 0s��� (c0s)� � bC 0s�� �s (c0s)�� =

bC���v �v

�n1�"
� bC 0s���� �s

�
cv
c0s

���
:

Consider a change in cv=c0s holding all other consumption ratios constant. In that case

]EGS
�
cv; c

0
s

�
=

@ ln(c0s=cv)

@ ln(MRS (cv; c0s))
= 1=�:

While estimates of the value of � are available in the literature, much less is known about the

value of both " and �. Quantitative macro models typically use values of � > 1 implying a low EIS

in aggregate data. For instance, Hall and Jones (2007) use � = 2 and Murphy and Topel (2006)

set � = 1:25. Parameter " has not been directly estimated, but some models of parental altruism

have calibrated it. For example, Birchenal and Soares (2009) calibrate values of " in the range of

0:4 to 0:6, while Doepke (2004) calibrates " = 0:5. Our new parameter � has never been estimated.

Models in the tradition of Becker and Barro (1988) generally assume that � = � < 1, so they do

not have a conceptual distinction between the EIS and the EGS, and for technical reasons, they

assume a value lower than one. Among this class of models, Doepke (2004) is perhaps the only one

that calibrates � = � and obtains a value of 0:5. Di¤erent from this literature, we need a strategy

to calibrate � as a di¤erent parameter from �. As suggested in the previous section, the value of a

child provides a way to identify the EGS.

We now link the value of � with the value of a child, which in a model with continuous n can

be de�ned as a marginal rate of substitution between consumption and children. Speci�cally,

V C =
@V=@n

@V=@cy

where cy is the consumption of the parent in period y, when the child is born. Using (6), the value
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of a child is given by

V C =
1

1� �
(1� ")�n�"
1� �n1�"

C1��

�c��y
: (11)

This equation shows that it is � rather than �, the parameter directly determining the value of a

child. In other words, it is the EGS, not the EIS, what can be most directly identi�ed from the

value of the child. This stands in contrast with the role of � in determining the value of a child

in equation (3). Equation (11) makes clear that when the EIS and the EGS are disentangled, it

is now possible to have � > 1 as in quantitative macro models while at the same calibrating � to

match the value of a child, as we show next.

3 The Model

In this section we fully specify an endogenous fertility model suitable for calibration. The model

incorporates the preferences introduced in the previous section and allows for life-cycle and inter-

generational savings. Generations are connected through parental transfers to children. We impose

constraints to these intergenerational transfers by assuming children cannot borrow to cover their

own expenditures during childhood, so they fully depend on parental resources during that period.

As we extensively discuss in Cordoba and Ripoll (2014), these constraints are particularly impor-

tant to model the link between fertility and parental income. More speci�cally, absent constraints

to intergenerational transfers, if the child�s future income is larger than the cost of raising him, even

altruistic parents would have incentives to extract rents from the child. This unconstrained parent

would borrow against the child�s future income to cover the costs of raising him. By assuming

that the child cannot borrow to cover his childhood expenses, we are precluding the parent from

extracting any rents.

Consider an economy in which individuals live for three periods: one as a child, one as a young

adult and one as an old adult. Young adults work and raise children, while children and old adults

only consume. Let b be the total lifetime transfers from a parent to each of his children. The

individuals�problem for t � 0 is:

V (b) = max
cc;cy ;co;n;b0

1

1� �C (cc; cy; co)
1�� + �n1�"V (b0); (12)

subject to

Rb+ w � Rcc + cy + co=R+ n
�
b0 + �w

�
; (13)

b � cc;

n � n � 0;

where cc; cy; and co are the consumptions as child, young adult and old adult respectively, R is the

gross interest rate, w is wage income, and � is the time cost of raising a child. The �rst constraint
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is the present value budget constraint of an individual: transfers from his parent plus labor income

must cover consumption expenses plus the cost of raising children. The cost of a child is the time

cost of the parent, �; plus the amount of transfers per child, b0: The second constraint is the credit

constraint: children cannot borrow and solely rely on parental transfers b to consume cc until they

become young adults and can work:

Composite consumption, C, is given by

C (cc; cy; co) =
�
c1��c + �c1��y + �2c1��o

� 1
1�� + C;

where C > 0, non-market consumption, is a constant that allow for non-homothetic preferences.

As discussed in Cordoba and Ripoll (2014), a form of non-homotheticity as well as constraints to

intergenerational transfers allow deterministic dynastic altruistic models to replicate the observed

negative relationship between fertility and income.

Some additional parametric assumptions are required. Similar to Becker and Barro (1988), the

condition � > " is required to avoid zero children to be the optimal solution. In addition, and just

for analytical simplicity, we assume �R = 1 so that, as shown below, cy = co and adults have a

simple �at consumption when young and old. Our results are robust to alternative assumptions

that give rise to a more realistic consumption pro�le over the life cycle. Finally, the following

restriction ensures that childhood credit constraints bind in a steady state situation.

Assumption 2. � > �:

To understand why this assumption guarantees a binding credit constraint, notice that in steady

state the present value of the child�s future income is �w = w=R, while �w is the time cost of raising

a child. Then Assumption 2 states that children are a net �nancial gain. In such a situation, and

absent any constraints to intergenerational transfers, parents would have the incentive to have as

many children as possible in order to extract rents from them. 8 However, if children cannot

borrow and fully depend on parental resources during childhood, the parents� ability to extract

rents is restricted. As a result, in steady state the childhood credit constraint binds and the parent

transfers the child just enough to cover consumption, i.e., b = b0 = cc. In addition, the incentives

to have as many children as possible disappear and the number of children is below the maximum,

as we show below. 9

8 In Cordoba and Ripoll (2014) we show these results using a standard model with � = �:
9 In contrast with Assumption 2, it is useful to recall that one of the implications of the Becker and Barro (1988)

model is that children are a net �nancial cost in the sense that the present value of the cost of raising a child is higher
than the value of his future income. This is the case in that model because otherwise, if children were a net �nancial
bene�t, then parents would have the maximum possible number of them to maximize their rents. Underlying this
implication in Becker and Barro (1988) is the fact that there are no constraints to intergenerational transfers, so
parents could e¤ectively borrow against children�s future income. As we discuss in Cordoba and Ripoll (2014), if
children are in fact a net �nancial bene�t, but we do not see parents having the maximum number of children, then it
must be that somehow parents cannot extract rents from their children. In fact, there are legal, moral or enforcement
reasons why parents cannot do so. This motivates the introduction of our childhood credit constraint.
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3.1 Optimal consumption and transfers

Let � and � be the Lagrange multipliers on the budget constraint and the credit constraint respec-

tively. Optimal solutions are such that b0 > 0 whenever n > 0: Otherwise children�s consumption

would be zero. Since C (cc; cy; co) satis�es Inada conditions, zero consumption would not be optimal.

The �rst order conditions with respect to cc, cy, co, and b0 are:

C�� (C � C)� c��c = R� + �; (14)

C�� (C � C)� �c��y = �; (15)

C�� (C � C)� �2c��o = �=R and (16)

� = �n�"Vb(b
0): (17)

Furthermore, the envelope condition reads

Vb(b) = �R+ �: (18)

Equations (14), (15), (16), and the assumption �R = 1 imply that

cy = co � cc: (19)

The last inequality is strict when the credit constraint is binding. Moreover, equations (17) and

(18) can be written as

� � R�n�"�0: (20)

If the expression above holds with equality, then it becomes an intergenerational version of the

standard Euler equation, with � being the marginal utility of a young adult�s consumption, and

�n�" an endogenous discount factor, or average degree of altruism, which depends on the number

of children.

In what follows we focus on a steady state situation. In this case (20) simpli�es to 1 � R�n�".
If children could borrow then this expression would hold with equality and the steady state number

of children would be n� = (R�)1=". Fertility in the unconstrained case is thus a function of the

interest rate but independent of any income or level variable such as wages or C. This case would be

inconsistent with the documented evidence of a negative relationship between fertility and income

(see Jones and Tertilt, 2008). Alternatively, when the credit constraint binds, cc = b; the strict

inequality 1 > R�n�" holds. This implies that steady state fertility in the constrained case is larger

than in the unconstrained case. More precisely, combining (15), (17), (18), and (14), it follows that

C�� (C � C)� �c��y = �n�"
�
C 0��

�
C 0 � C

��
c0��c

�
:
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In steady state this equation simpli�es to

cy = G(n)
1=�cc; (21)

where G(n) � n"=R� � 1: This expression is convenient because G(n) equals 1 when credit

constraints are not binding implying cc = cy(= co). In contrast, when the constraint binds the

magnitude of G(n) > 1 measures the "tightness" of the constraint or the extent to which con-

sumption during childhood falls below that of the adult period, i.e., cc < cy: Furthermore, G(n) is

increasing in the number of children, implying that the larger the number of children, the tighter

the credit constraint due to the fact that the average degree of altruism per child decreases with

n. Thus, the constrained allocation captures a quality-quantity trade-o¤ between the number of

children and the resources parents spend on them during childhood. From now on we concentrate

on the constrained allocation.

Given n, steady state solutions for consumptions and transfers can be obtained using (19), (21),

(13) and the transfer constraint b = cc as

cy = co = c(n) �
G(n)1=�w (1� �n)
n+G(n)1=� (1 + �)

; (22)

b = cc = cc(n) �
1� �n

n+G(n)1=� (1 + �)
w; (23a)

b+ �w =
1 +G(n)1=�� (1 + �)

n+G(n)1=� (1 + �)
w: (24)

According to these expressions, net transfers to a child b decrease with the number of children

for two reasons: additional children lower the net income of parents as they reduce parental labor

supply; and more children increase the discount per-child due to the decreasing degree of altruism.

Furthermore, the total cost of a child, b+�w; decreases with the number of children because parents

reduce transfers per-child while the time cost per-child remains constant. Adult consumption, on

the other hand may be decreasing or increasing in the number of children. A su¢ cient condition

for adult consumption c(n) to be decreasing in the number of children is � > "; which turns out

to be the empirically relevant case because, as we argue in di¤erent parts of this paper � > � and

� > " are needed for an interior solution for fertility.

Given solutions for consumptions, steady state C and V can be written as

C(n) =
�
G(n)1�1=� + � + �2

� 1
1��

c(n) + C and V (n) =
1

1� �
C(n)1��

1� �n1�" : (25)

Provided � > "; the utility the parent derives from own consumption, C(n); is also decreasing in n.
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3.2 Optimal fertility

We now turn to the fertility choice. The optimality condition for fertility in an interior solution is

w�+ b0 = '(n)
V (b0)

�
; (26)

where '(n) = (1� ")�n�": The left-hand side of this expression is the marginal cost of a child,
which includes the value of parental time cost plus all transfers. The right hand side is the marginal

bene�t of the n-th child. The term V (b0) =� is the welfare of the child measured in parental

consumption units, while '(n) is the weight that parents give to the n child. It is convenient to

de�ne the marginal bene�t as V C(n) � (1� ")�n�" V (b
0)
� which, as we show next, corresponds to

the concept of the value of a child discussed in Section 2. Using (25), in steady state V C(n) can

be written as

V C(n) =
1

1� �
(1� ")�n�"
1� �n1�"

C

(C � C)��c(n)��

which exactly maps into equation (11) when C = 0. As in Section 2, this equation highlights the

role of � in determining the value of a child. Using (15) the expression simpli�es to

V C(n) =
1� "
1� �

G(n)1�1=� + � + �2

G(n)� n=R
c(n)

1� C=C(n) : (27)

This expression is a generalized version of (2) that includes adjustments for a life- cycle component,

an in�nite horizon for the dynasty, multiple children and diminishing altruism. A simple way recover

(2) for the case ! = 0 , is to let n = � = 1 and " = C = 0: In this case

V C(1) =
�

1� �
�1=��1 + 2

1� � c(n)

which is almost identical to (2) except that here � is the relevant parameter, not �; term
�
�1=��1 + 2

�
re�ects the e¤ect of the binding transfer constraint; and the division by (1��) re�ects the in�nite
horizon of the dynasty. Equation (27) makes clear the connection between the value of a child and

the EGS.

Using (24), (22) and (27), the solution for steady state fertility is characterized by

w�+ b

c(n)
=
V C(n)

c(n)
;

or
1 +G(n)1=�� (1 + �)

1� �n =
1� "
1� �

G(n) +G(n)1=�� (1 + �)

G(n)� n=R
1

1� C=C(n) ;

which equates the marginal cost and marginal bene�t of a child, both as proportion of parental

consumption. In order for the credit constraint to bind, it must be the case the marginal bene�t
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is larger than the marginal cost at n = n�. Notice that G(n�) = 1 and therefore the following

parameter restriction is required (assuming C = 0):

1 + � (1 + �)

1 + � (1 + �)

1� � (R�)1="

1� � (R�)1="
<
1� "
1� �

Since � > "; then this condition is satis�ed when � < �; which explains the need for Assumption

2. This turns out to be the case in the calibration.

4 Calibration and results

In this section we calibrate the model and provide a way to identify the EGS as a parameter distinct

from the EIS.

4.1 Fertility data

We use data from a cross-section of US states to calibrate the model. This data is optimal for

our purpose for several reasons. First, in contrast with cross-sectional international data in which

countries are at di¤erent stages of the demographic transition, US states have all completed this

transition. This feature maps better into our steady-state analysis. Second, cross-state data is

better for our purpose than individual-level data because relative income across states is roughly

constant, while individual income in any given year does not represent lifetime income. In this

respect, the cross-state fertility-income relationship is closer to the one captured in the model.

Third, despite the relative convergence in both income and fertility across US states, there is still

some cross-sectional variation. Last, the assumption that the interest rate is identical can be better

justi�ed across US states than across countries.

Table 2 reports descriptive statistics for the total fertility rate in 2010 and median household

income across US states, as well as their values for a subsample. The total fertility rate is from the

2012 National Vital Statistical Report, and it corresponds to the number of births 1,000 women

age 15-44 would have in their lifetime if they experienced the births currently occurring at each

age. Median household income is from the Statistical Abstract of the US (Census Bureau, 2012).

We use the average median household income 2004-2006 to exclude the recent recession. Average

total fertility in the sample is 1.944 children with a standard deviation of 0.175, while average

median household income is $47,892 with a standard deviation of $7,178. As the table shows,

relatively poorer states like Arkansas, Oklahoma and Texas have higher than average total fertility.

In contrast, states with higher-than-average income such as Massachusetts, New York and Rhode

Island have below-average fertility. Utah is one of the exceptions, with high income and high

fertility. Although an outlier, Utah is a relatively small state in terms of population.

Figure 1 plots the total fertility rate versus median household income. The size of the bubbles

represents 2010 population weights from the Statistical Abstract of the US. Taking into account
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population weights, Figure 1 suggests a slightly negative relationship between fertility and income.

Base on this data we estimate an income elasticity of fertility of �0:143 (signi�cant at the 5%
level on a population-weighted regression). This elasticity is close to the one estimated by Jones

and Tertilt (2008) using individual-level Census data for the most recent cohorts. For instance, for

the 1951-1955 cohort, whose average fertility was 2.05 children ever born and average occupational

income was $49,378, they estimate an income elasticity of fertility of �0:17. We will use our

estimated elasticity as one of the calibration targets next section.

4.2 The costs of raising children

The costs of raising children are fundamental for the calibration of our model. Our calibration

requires data on both the goods costs and the time costs of raising children. Recall that in our

model b = cc e¤ectively corresponds to the present value of the goods costs of raising a child, while

�w is the present value of the time costs. We use data from the USDA (2012) to compute the goods

cost of raising a child. According to the USDA (2012), the typical cost of raising a child born in

2011 from age 0 to 17 for a family of four in the lowest income group is $169,080, while for a family

in the middle-income group is $234,900 and for a high-income family is $389,670 in 2011 dollars.

These �gures include direct parental expenses made on children through age 17 such as housing,

food, transportation, health care, clothing, child care, and private expenses in education. Costs

are projected using an in�ation rate of 2.55%. Assuming a discount rate of 2%, the corresponding

present values of these sums are $143,051 for low income, $198,437 for middle income, and $328,990

for the high income group.

Table 3 presents these goods costs for a "representative family" in each income group. Using

the family income brackets from USDA (2012), we select a 2011 income of $43,625 for the represen-

tative low-income family; $81,140 for middle income, and $126,435 for a high-income family. The

low-income family �gure is computed as the average of the following two values: $27,840, which cor-

responds to the income of a family in which both parents make the federal minimum wage in 2011;

and $59,410, which is the upper bound of low-income families from the USDA (2012) classi�cation.

The middle-income family number is simply the mid-point of the USDA (2012) interval of $59,410

to $102,280. Last, the high-income "representative" family is computed as the average between

$102,280 and $150,000, where the latter corresponds to the 90th percentile of the family income

distribution in 2011 according to the US Census Bureau. For each of the representative families

we also compute a lifetime household income assuming a 40-year working life span and a 2% real

interest rate. Comparing Table 2 and Table 3, notice that the values of median household income

by states fall in between the low and middle-income family groups under the USDA classi�cation.

As a result, we will use the information of these two groups to calibrate the goods costs of raising

children.

As we discuss in Cordoba and Ripoll (2014), accounting for the time costs of raising children is

not trivial. Available estimates are based on time use survey data, but the di¢ culty of measuring

time costs is that in many instances parents multitask, taking care of children as a secondary
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activity while performing other primary activities. Using the 2003-2006 American Time Use Survey,

Guryan, Hurst and Kearney (2008) �nd that while mothers spend around 14 hours per week in

child care, fathers spend around 7 hours. These measures only include the time parents spend

primarily on basic care of children, education, recreation and any travel related to these. They

refer to overall averages for families with at least one child under the age of 18. However, if the

total time parents spend in the presence of their children is measured (both primary and secondary

time), then mothers spend 45 hours per week and fathers spend 30 hours. The extent to which

both primary and secondary time should be included in the cost of raising children is a matter of

debate in the literature.

In a related study, Folbre (2008) uses the 1997 Child Development Supplement of the Panel Sur-

vey of Income Dynamics to conclude that the average amount of both passive and active parental-

care hours per child (not including sleep) is 41.3 per week for a two-parent household with two

children ages 0 to 11. Passive care corresponds to the time the child is awake but not engaged in

activity with an adult, while active parental care measures the time the child is engaged in activity

with at least a parent. In addition to reporting hours spent in child care, Folbre (2008) discusses

two alternative ways of computing the monetary value of these hours: one uses a child-care worker�s

wage and the other the median wage. When the former method is used in combination with the

USDA (2012) goods cost of raising children, the time cost of raising children is on average around

60% of the total costs (see Table 7.3, p. 135), a lower-end estimated. Since the median wage is

around the double of a child-care worker�s wage, then using the former time valuation the time

cost of raising children increases to 75% of the total costs. This evidence suggests the time costs of

raising children are high: they are between 1.5 and 3 times the goods costs or direct expenditures

in children.

In order to compute the time costs for each of the representative families in Table 3 we use the

more conservative estimate in which they are about 60% of the total cost of raising a child. This

more conservative estimate holds either when the 21 hours per week of primary care in Guryan,

Hurst and Kearney (2008) are valued at the median wage, or when the 41.3 hours per week in

Folbre (2008) are valued at a child-care worker�s wage. As can be seen in Table 3, the present value

of the time costs of raising a child is $214,576 for a low-income family, $297,656 for a middle-income

family, and $493,485 for a high-income family. Table 3 also presents the total costs of raising a

child: $357,627 for a low-income family, $496,093 for a middle-income family, and $822,476 for a

high-income family.

It is important to notice that the total costs of raising a child in Table 3 map into the value

of a child. As discussed before, optimal fertility is decided comparing the marginal cost and the

marginal bene�t of a child. Since the values in Table 3 correspond to the total marginal cost of a

child, they also correspond to the value of a child, or the marginal bene�t. As the median household

income across US states in Table 2 ranges from $35,261 to $64,169, our calibrated model should be

consistent with a value of child ranging between $357,627 and $496,093, which correspond to the

total cost of raising a child for low and middle-income families in Table 3.

There is a parallel literature that estimates the "statistical" value of a child. Birchenal and
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Soares (2009) survey this literature and report a range of estimates between $1.3 and $4 million.

These estimates are taken from studies that consider purchases of safer cars, car seats and bicycle

helmets to reduce the risk of death of a child. The upper bound of $4 million is an order of

magnitude higher than the range of the value of a child we will use in our calibration, between

$357,627 and $496,093. Our model does not include mortality risk, so it cannot be calibrated to

the "statistical" value of a child. However, as Birchenal and Soares (2009) point out, the statistical

value of a child can be rationalized if the utility of the parent is modi�ed to include an emotional

loss associated to the death of a child. Absent this emotional loss, the value of a child must equal

the marginal cost of raising a child in an interior solution.

A useful way of presenting the information in Table 3 for calibration purposes is to compute

the costs of raising a child as a fraction of the lifetime household family income. These �gures are

presented in Table 4. As the table indicates, for the average two-parent two-child family in the low

and middle-income groups in the US, the goods costs of raising each child correspond to 10.3% of

the lifetime household income, while time costs are 15.4% and total costs are 25.6%. As we now

turn to discuss, these �gures will be key in our calibration.

A remark regarding parental transfers in our model is in order. Our model implies that when

transfer constraints bind, no bequests or other inter-vivos transfers to adult children are given.

All the transfers the parent gives to the child are spent during the childhood period (b = cc). As

we discuss in Cordoba and Ripoll (2014), although inter-vivos transfers and voluntary bequests

do occur in the United States, a relatively small fraction of adults receive them, and they occur

in small amounts. For instance, using the 1988 special supplement on transfers between relatives

from the PSID, Altonji, Hayasi and Kotliko¤ (1997) document than only 23% of adult children (on

average 31 years old) receive transfers from parents (on average 59 years old). These are overall

small transfers: the mean is $3,442, and the median is $951 in 2011 dollars. A similar pattern

has been documented for bequests. Using the 1993-1995 Asset and Health Dynamics among the

Oldest Old (AHEAD) data, Hurd and Smith (2001) document that most bequests are of little of

no value: single descendants at the bottom 30% receive $2,952, and the average single descendant

receives $14,760 in 2011 dollars. Given the highly skewed wealth distribution in the United States,

the occurrence of signi�cant bequests concerns only of a small fraction of the population.

4.3 Calibrated parameters

Some parameters in the model are set exogenously. We set the length of each of the three periods

of life to 25 years: a child consumes with the resources transferred by his parent from ages 0 to 25;

young adults have children at age 25 and work until age 50, while old adults consume and retire

from age 50 to 75. The annual interest rate is set to 2% which implies a discount factor � of 0:61

per 25-year period. Finally, we set � = 1:5, a value commonly used in quantitative macro models.

This value implies that EIS = 0:67 < 1, a low rate of intertemporal substitution.

The remaining �ve parameters [�; �; "; �; C] are calibrated to �ve targets. Although the model is

non-linear and these parameters are jointly calibrated, each parameter can be more directly related
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to one of the targets. Table 5 presents the results of our calibration exercise. First, parameter �

corresponds to the present value of the time costs of raising a child, �w, as a fraction of parental

lifetime income w. We calibrate � to match this share in the data, which according to Table 4

corresponds to an average of 15.4% for a typical family with two parents and two children in the

low and middle-income USDA (2012) groups. Since in our model there is a single parent, and the

average fertility in the sample is two children per household, then the average single parent will be

raising one child and � = 0:308.

Second, parameter �, which corresponds to the level parameter in the utility weight the parent

gives to the children, has a �rst-order e¤ect on the ratio b=w. This corresponds to the transfers the

parent gives to each child relative to parental lifetime income. To see this, using equation (23a)

write
b

w
=

1� �n
n+ ��1=��1=�n"=� (1 + �)

:

Given the exogenous values of R, � and �, as well as the calibrated value of �, and given that

as we discuss below the average n will be calibrated to a target of n = 0:972, then the equation

above determines � for a given b=w target. According to Table 4, the average b=w for low and

middle-income families is 10.3%. We obtain a calibrated value � = 0:545:

Parameter " determines the degree of diminishing altruism. To the best of our knowledge this

parameter has not been directly estimated in the literature. Estimating this parameter requires to

know how the parental valuation of children�s utility falls as the number of children increases. The

best way to back out the value of " we could �nd is from an study by Dickie and Messman (2004).

This paper directly uses stated-preference data on parental willingness to pay to relieve symptoms

in children�s acute respiratory illnesses. More importantly, the distinct feature of this study is that

is the only one that estimates how parental willingness to pay changes with the number of children

in the family. In addition to strongly supporting parental altruism toward their children, the paper

estimates an elasticity of the parental willingness to pay with respect to the number of children in

the family of �0:288 (see Table 5, p. 1159).
In order to map this elasticity into our model, and to the extent that health expenditures

in treating acute illnesses increases the survival probability of the child, we compute the implied

willingness to pay WTP for an increase ��c in survival. It turns out that in this case the WTP
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is directly linked to the value of a child and given by 10

WTP (n) = V C(n) ���c:

Since we are only interested in the elasticity of WTP (n) with respect to n, the magnitude of term

��c does not play a role in the value of this elasticity. Using the expression above together with

equation (27) we obtain

"WTP (n) =
@WTP

@n

n

WTP
=
(1� ")� 1 + �n1�"

1� �n1�" :

Given the calibrated �, and a calibration target of average n = 0:972, then the equation above

determines ". As Table 5 indicates, we obtain " = 0:676. This value of " is comparable to the

corresponding parameter calibrated in Birchenal and Soares (2009). They obtain a value of 0:605

for their lower-bound estimate of the statistical value of a child (see their Table 2, p. 292).

Fourth comes our most important parameter, �. Although � is calibrated jointly with the rest

of the parameters, its value is mainly identi�ed from the value of a child. In particular, we choose

� so that the model delivers an average fertility of around one child per parent, more precisely

n = 0:972, which corresponds to half of the average fertility across US states on Table 2. Using the

optimality condition for fertility in equation (26) together with the expressions for the value of a

child in (27), and adult consumption (22), we can write

w�+ b

w
=
V C(n)

w
=
1� "
1� �

G(n)1�1=� + � + �2

G(n)� n=R
G(n)1=� (1� �n)
n+G(n)1=� (1 + �)

1

1� C=C(n) ;

where the left-hand side represents the total cost of raising a child as a share of parental lifetime

income, and the right-hand side is the value of a child also as a fraction of parental lifetime income.

For C = 0, and given the calibration targets described for �; �; and "; the equation above identi�es

� for a target of n = 0:972. Parameter C is still to be determined, but as long as C=C(n) is small,

10To derive the WTP (n) formula we write the utility of the parent as

V (b) = max
1

1� �U (cc; cy; co)
1�� + �(�cn)

1�"V (b0);

where �c is the survival probability of the child. This implies that the willigness to pay to increase survival by ��c
is given by

WTP (n) =
@V=@�c
@V=@cy

��c
n
:

Because �c and n enter symetrically in the altruistic weight function, it turns out that

WTP (n) =
@V=@�c
@V=@cy

��c
n

=
@V=@n

@V=@cy

��c
�c

= V C(n) ���c:

Since in our model �c = 1, evaluating the expression above at �c = 1 delivers

WTP (n) = V C(n) ���c:
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� will be of �rst-order importance in determining the value of a child, and through this channel,

the fertility level. We obtain a calibrated value of � = 0:35.

Last is parameter C, non-market consumption. We calibrate this parameter in order to match

the income elasticity of fertility in our sample, which we computed to be �0:143 as described before.
If C = 0 then fertility would not be related to income in our model. To see that write the optimality

condition of fertility in (26) as

w�+ b =
1� "
1� �

G(n)1�1=� + � + �2

G(n)� n=R
c(n)

1� C=C(n) :

Since from (24) and (22) it follows that both the total cost of raising a child w� + b and adult

consumption c(n) are proportional to w, if C = 0, then both the marginal cost and the marginal

bene�t of a child are proportional to lifetime income and fertility choices would be independent

of w. Only when C > 0 we have a link between fertility and income. In fact, this relationship is

negative because when w increases the marginal bene�t increases less than the marginal cost due to

the presence of C=C(n). Calibrating C in order to target an income elasticity of fertility of �0:143
results in a maximum C=C(n) of 5.73% across US states, a small value. 11

4.4 Robustness

We check the robustness of our calibration, especially the obtained value of � = 0:35, by performing

two alternative exercises. We present these on Table 6. First, under alternative # 1, we select

di¤erent target values for the goods and time costs of raising children. Going back to Table 4,

rather than using the average between low and middle-income family groups we use the statistics

for the low-income family group under the USDA (2012) classi�cation. After all, the upper bound

of household income for the low-income USDA group is $59,410, and only four states in our sample

have median household income above this level. Under this alternative calibration the target for

the goods cost of raising a child as a share of household lifetime income would be 11.8%. The

corresponding target for the time costs would be 17.6%. The rests of the target values remain the

same as in Table 5. As Table 6 indicates, under this alternative calibration # 1 we obtain � = 0:41.

The reason is that the new targets imply a larger value of a child, which require a larger value of

�, or a lower EGS. Under alternative # 2 in Table 6, we set C = 0 so that fertility is independent

of income. In this case we obtain � = 0:359, a value close to our benchmark calibration. This is

consistent with the fact that in our benchmark calibration C=C is small. Overall, our alternative

calibrations support � < 1, namely an EGS lower than one.

11Although the income elasticity of fertilty we estimate is statistically signi�cant, its absolute value is small. Since
in the calibrated model US states only di¤er in household income, this small elasticity implies that the model cannot
be expected to explain all the fertility dispersion in the data. However, the important thing to notice here is that
this does not a¤ect the main point of this calibration exercise, which is to illustrate how our main parameter � can
be identi�ed from the value of a child that matches average fertility.
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4.5 Discussion

Our calibrated model has implications for cross-state variations in the value of a child. Table 7

illustrates this point. Under our benchmark calibration, the average value of a child across US

states is $373,663. The maximum value of a child in the sample is $509,572 and the minimum is

$268,251. One should bear in mind that our calibration is based on median household income by

state, which given US inequality maps into the low and middle-income family groups under the

USDA classi�cation. Although Table 7 also illustrates the dispersion on the value of a child across

US states, notice that the value of a child as a share of lifetime household income is similar across

states, around 27.9% on average. According to Table 4, this number in the data is about 25.6%.

More in general, our model could rationalize the higher economic value of child for higher-income

families. For instance, Table 3 shows how for a representative household with annual income of

$126,435, the value of child is estimated to $822,476. Given that the costs of raising children are

proportional to family income in the data, and that in the model there is a link between the total

cost of raising children and the value of a child, our model could also replicate this higher value.

The most important �nding of this calibration exercise is that the EIS is very di¤erent from the

EGS. While � = 1:5 is a standard value in quantitative macro models, we obtain a calibrated value

of � = 0:35 < �. Our calibration suggest that individuals have a low intertemporal substitution,

but a higher intergenerational substitution, a novel result. One of the central conclusions of this

paper is that while the EIS mostly in�uences shorter-term economic decisions within the life span

of an individual, the EGS mostly in�uences longer-term economic choices, those who a¤ect more

than one generation.

The EGS is conceptually and quantitatively di¤erent from a long-term EIS. For example, Bie-

derman and Goenner (2008) allow the degree of intergenerational substitution to vary over the life

cycle, so that short-term and long-term EISs emerge. They �nd that the EIS seems to be smaller

and below one for longer time horizons. Conceptually, however, the long-term EIS still refers to

an intertemporal willingness to substitute consumption across time for the same individual, and

therefore it is di¤erent from the EGS, which refers to di¤erent individuals.

What would happen in our model if � = � = 0:35? It turns out that our model could still

be calibrated to match the same set targets, whether � = 1:5 or � = 0:35. However, such a

calibration poses a number of important problems. The �rst one is that � = 0:35 con�icts with

extensive evidence based on aggregate consumption data, which supports an EIS lower than one.

As discussed in Guvenen (2006), the largest EIS that has been either estimated econometrically or

calibrated in the context of a model is at most one. In fact, when it comes to aggregate consumption

data, the EIS is lower than one because it re�ects the preferences of poorer individuals, those who

do not participate in �nancial markets.

Second, a value of � < 1 runs into problems when we consider the models at the intersection

of macroeconomics and demographics. For instance, a number of macro papers examining life

expectancy and health �nd that � > 1 is necessary for the model to be consistent with facts. First,

Hall and Jones (2007) analyze the raising share of income devoted to health spending in the US

economy and show that the restriction � > 1 is required to explain why longevity is a superior
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good. In their paper, a low EIS implies a strongly diminishing marginal utility of income, while

the marginal bene�t of life extensions remains bounded. This feature of preferences explains why

richer individuals want to spend an increasing fraction of their income in health in order to prolong

their life span. Second, Jones and Schoonbroodt (2010) �nd that a low EIS, of about one third,

is required to explain the fall of overall birth rates in response to falling infant mortality rates

during the US demographic transition. In sum, the available literature suggests that models at the

intersection between macroeconomics and demographics favor � > 1; or a low EIS.

Our model does not consider mortality risk. However, if we introduced it, a calibration with

� = � < 1 would have the issue that it would not be consistent with the available evidence on the

value of statistical life (VSL). Speci�cally, it can be shown that parameter � plays a crucial role

in determining the VSL, and that the VSL is increasing in �. If � = � = 0:35 the VSL would be

much lower than the typical range of $4.5 to $9 million reported by Viscusi and Aldy (2003) for

the US. In fact, the VSL implied by such calibration would be about $1.5 million. In contrast, our

calibration with � = 1:5 and � = 0:35 is consistent a VSL of $4.5 million. 12 In sum, our model

with � > 1 and � < 1 is better suited to describe demographic facts related to both fertility and

mortality in the context of quantitative macro models.

5 Extensions

The main purpose of this section is to illustrate the scope of our framework beyond altruistic

models of fertility choice. We provide a few extensions in order to illustrate other contexts in

which disentangling the EGS from the EIS is useful. In particular, we suggest how to extend our

framework to include infant mortality risk, to allow for � > 1, and to analyze long-term inequality

in a model with idiosyncratic risk.

5.1 EGS and the coe¢ cient of risk aversion

Those familiar with the Epstein-Zin-Weil (EZW) preferences from Epstein and Zin (1989) and Weil

(1990), may �nd a resemblance between these and our formulation, and may wonder whether our

framework reduces to a relabeling of EZW preferences. Although non-separability is a feature of

both EZW and our preferences, they are conceptually quite di¤erent. EZW preferences disentan-

gle aversion to risk from aversion to deterministic consumption �uctuations. In the absence of

risk, the EZW formulation collapses into the standard formulation. This is not the case with our

preferences. The framework we presented above does not model risk. Our preferences disentangle

aversion to two types of deterministic �uctuations in consumption: (i) temporal variations; and (ii)

intergenerational variation.

In order to illustrate the relationship between EZW and our preferences, we now introduce

child mortality risk into our model, and combine EZW with our approach to disentangle three

parameters: the EIS, the EGS and the coe¢ cient of relative risk aversion (CRRA). Infant mortality

12Details of the calibrated version of our model with mortality risk are available upon request.
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is a potentially important determinant of fertility choices. 13 In order to introduce risk, it is

convenient to utilize the following monotonic transformation of our preferences to recover the EZW

preferences. De�ning W = [(1� �)V ]
1

1�� , equation (5) can be rewritten as

W =

�
C1�� +

Z n

0
'(i)W 1��

i di

� 1
1��

: (28)

Notice that while V can be negative, W is non-negative so that zero is a lower bound, a property

that we use shortly. Consider now the possibility that the lifetime utility of the child is a random

variable, fW: Let ��fW� denote the certainty equivalent operator. In particular, Epstein and Zin
(1989) as well as Weil (1990) consider a particular CRRA operator �(fW ) = hEfW 1��

i1=(1��)
where

� � 0 is the coe¢ cient of relative risk aversion. For example, � = 0 means that parents are neutral
to risks associated to their children�s welfare. Following EZW, when certainty equivalent �

�fWi

�
is what the parent perceives as the utility of his child, preferences can be described by

W =

�
C1�� +

Z n

0
'(i)�

�fWi

�1��
di

� 1
1��

; (29)

Suppose now infant mortality is the only risk. In particular, let � be the survival probability

of a newborn. In that case, �(fWi) =
h
�W 01��

i + (1� �)D
i1=(1��)

where D is the utility in case

of death, or perhaps better, the perceived utility. To simplify, suppose D = 0 which means that

being alive is always better than not, W 0
i � D = 0. Furthermore, if the death of a child is not so

painful as to eliminate all enjoyment of having children, then the additional assumption � 2 (0; 1)
is required. In other words, if � > 1 so that parents are signi�cantly risk averse, then �

�fWi

�
would

be zero whenever D = 0. Finally, assuming symmetric treatment of children, W 0
i = W

0, parental

welfare simpli�es to

W =
h
C1�� + �n1�"�(1��)=(1��)W 01��

i1=(1��)
:

In order to relate the expression above to our earlier formulation in (6), it is convenient to rewrite

preferences in terms of V rather than W to obtain

V =
1

1� �

 
TX
t=0

�tc1��t

! 1��
1��

+ �n1�"�(1��)=(1��)V 0: (30)

These preferences are an extension of our framework that disentangles three di¤erent concepts: the

EIS = 1=�; EGS = 1=� and the CRRA = �. The expected utility model is the special case � = �,

while if � = � = � would imply additive separability across time, generations, and states. Finally,

if 1� " = 1��
1�� then parents only care about the number of surviving children, �n; which provides

13See, among others, Doepke (2005) and Jones and Schoonbroodt (2010).
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microfoundations to the simplifying assumption made in the literature. 14

5.2 EGS less than one

Our benchmark formulation assumes � 2 (0; 1), and the calibration shows this assumption is not
binding. We now show that it is simple to relax this assumption. Consider the preferences in (28).

As mentioned above, they are a monotonic transformation of our benchmark preferences and are

strictly non-negative for any �; not just for � 2 (0; 1): In spite of W being positive, it is still true

that parental welfare is decreasing in the number of children, n, when � > 1: Therefore, in that

case the optimal number of children would be zero. This result, however, is due to the implicit

assumption that the welfare of the unborn individual is zero (see Cordoba and Ripoll, 2011). The

following generalized version of (28) makes this point clear. Suppose there is a number of potential

children, np. Let Wi be the welfare of an individual if born, and Di if unborn. Di is what parents

perceive, or impute, is the welfare of the unborn. This is analogous, but not the same, to the

perceived utility in case of dead. As in the previous example, D could be normalized to zero so

that altruistic parents perceive potential children are better o¤ being born than unborn.15 In this

case parental preferences are

W =

�
C1�� +

Z n

0
'(i)W 1��

i di+

Z np

n
'(i)D1��i di

� 1
1��

: (31)

Equation (28) is a special case of (31) that requires D = 0. Notice that if � > 1 and D = 0

then W = 0: In this case, the small degree of substitutability between utilities means that if one

individual receives zero utility then parents utility is also zero. To make an analogy with the theory

of the �rm, if W is production and the inputs are the utilities of individuals, then � > 1 means that

all inputs are essential. To avoid this implication when assuming D = 0 requires the restriction

� 2 (0; 1) as in the benchmark. But if D > 0 then parental utility increases with the number of

children, for any � > 0; as long as W � D: Allowing for D = 0 and calibrating the model with

preferences (31) would still require a low D and � 2 (0; 1) ; as otherwise the model would not be
able to match the value of a child as discussed in Section 2.1.

5.3 EGS in Bewley models

The EGS is a potentially important determinant of long run inequality. To illustrate this point,

consider an intergenerational version of a Bewley model extended to disentangle the EGS from the

EIS. The source of inequality is uninsurable idiosyncratic risk in earning ability.

The economy is populated by a continuum of individuals of mass one who di¤er in their earning

abilities, !; and the amount of transfers they received from their parents, b. All individuals work

from ages s to S and have one child at age F: For a given amount of transfers to his child, b0, the

14See, for instance, Jones and Schoonbroodt (2010).
15One way, although not the only way, to rationalize abortion by altruistic parents would occur when D > W .
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individual allocates lifetime consumption by solving the problem

C = max
ct

"
TX
t=0

�tc1��t

# 1
1��

subject to
TX
t=0

ct
Rt
= b+

SX
t=s

!

Rt
� b0

RF
:

Assuming R = 1=�, the optimal solution is

ct = c0 =
1� �

1� �T+1

�
b+ !

1� �S�s+1

1� � � �F b0
�
for t = 0; ::; T;

and

C =

�
1� �T+1

1� �

� �
��1

�
b+ !

1� �S�s+1

1� � � �F b0
�
: (32)

The ability of the child, !0; is random and drawn from the distribution !0 � F (!0j!): Optimal
transfers, b0; solve the problem:

V (b;!) = max
b0�0

C1��

1� � + �E
�
V (b0;!0)j!

�
subject to (32).

Let b0 = g(b; !) be the optimal transfer rule and p0(b; !) the initial distribution of transfers and

abilities. The evolution of the transfers-ability distribution, pt+1(b0; !0); can be calculated as:

pt+1(b
0; !0) =

X
!

X
fb:b0=g(b;!)g

pt(b; !)F (!
0j!):

Let p(b; !) be the associated invariant distribution, and p(b) =
P
! p(b

0; !0) the distribution of

lifetime transfers.

The model just described is an intergenerational Bewley model. Two constraints are important.

One is that parents cannot insure their children against their random abilities because transfers

are non-contingent. Second, transfers cannot be negative. We now calibrate two versions of the

model to investigate the implications of disentangling the EGS from EIS. The �rst version uses

the benchmark parameters of our calibration [�; �; �; �] = [0:61; 0:545; 0:35; 1:5] : For abilities, we

assume they follow an AR(1) process ln!0 = � ln! + �; � � N(0; �2!) with � = 0:5 and �! = 1:05:
The �rst parameter is the persistence of hours documented by Mulligan (1997) while the second

parameter replicates a Gini coe¢ cient of earnings of around 0.6, as reported by Diaz-Gimenez,

Glover and Rios-Rull (2011). The AR(1) process is then discretized using Tauchen�s method to

create F (!0j!): Figure 2 shows the Lorenz curve of earnings and transfers, b, for this benchmark
calibration.

A second version sets � = � = 1:5 which is the standard assumption used, for example, by

Castaneda, Diaz-Gimenez and Rios-Rull (2003). In order to keep the two calibrated versions com-

parable, we adjust � to 0:323 so that average transfers are the same in both models. Figure 2 also
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shows the Lorenz curve of transfers for the alternative calibration. Clearly, the benchmark model,

the one that di¤erentiates between the EGS and the EIS, is able to produce more concentration and

dispersion of wealth. The reason is that the standard model with low EGS and low EIS introduces

too much aversion to consumption �uctuations, inducing too much savings, which tends to elim-

inate inequality. A higher EGS makes the prospect of falling into poverty less painful, or hitting

the zero bequest constraint less problematic, and therefore a larger fraction of the population ends

up hitting the constraint.

6 Concluding comments

The EIS has always played an important role in most macroeconomic models, determining both

decisions within the lifetime of an individual, as well as across generations. This key role is in

part due to the artifact that existing models assume the EIS and EGS to be identical. Once these

concepts are disentangled, some of roles previously played by the EIS now belong to the EGS.

For instance, we have shown how the EGS is a key determinant of the long-term fertility rate and

long-run inequality. There are also instances in which the EGS is likely to play an important role

in the short term. For instance, at the business cycles frequency, the EGS determines how a shock

to the family budget, say an unemployment shock or winning the lottery, a¤ects expenditures in

children and, in particular, investments in their education and human capital formation.

Our paper is the �rst to formally model a distinction between intertemporal and intergenera-

tional substitution. The utility representation we propose easily allows to associate a single para-

meter with the EIS, and a di¤erent one with the EGS. The simplicity of our preferences provides

a useful and general framework for analyzing intergenerational issues. We expect this framework

to introduce a new perspective, and to be useful in analyzing a number of interesting and relevant

questions in economics.
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