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Abstract: Social science researchers are increasingly interested in cognitive aging and its 
relationship to other life events. Most longitudinal datasets have no or limited direct measures 
of cognition. Using the National Social, Health and Aging Project (NSHAP) we show that the 
time it takes to answer questions measuring cognition is highly correlated with measured levels 
and declines in cognition. These measures are also highly correlated with 5 year mortality. Data 
on the time to answer questions is routinely captured as a by-product of computer assisted 
interviewing yet it is rarely used by the social science research community. Our results suggest a 
large amount of useful information is likely contained within most social science surveys that 
has to date gone unused and may be useful for modeling the aging process. 
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1. Introduction 

While neuropsychological testing remains the gold standard for assessing “pathological” 

cognitive changes in the older adult population, the interest in and necessity of measuring 

cognition as part of population-based studies are increasing (Nathan, Wilkinson, Stammers, and 

Low 2001). The Health and Retirement Study (HRS) has contributed longitudinal and cross-

sectional information on cognition since 1992. It initially assessed four cognitive aspects—

memory, abstract reasoning, self-rated cognitive functioning, and “functioning in cognitively 

demanding activities of daily living” (Wallace & Herzog 1995). More recently, HRS has expanded 

cognitive testing to include additional domains such as attention and verbal fluency as part of 

the Telephone Interview for Cognitive Status (TICS). A substudy of HRS, the Aging, 

Demographics, and Memory Study (ADAMS) incorporated a comprehensive neuropsychological 

assessment of a selected group to better differentiate and understand normal cognition from 

cognitive impairment, no dementia, and dementia (Langa et al. 2005). 

Internationally, studies of aging have also begun to incorporate cognitive measures. For 

instance, the English Longitudinal Study of Health and Aging (ELSA), a large study of 

community-dwelling individuals in the United Kingdom, assessed time orientation, immediate 

and delayed verbal recall, prospective memory, verbal fluency, numerical ability, cognitive 

speed, and attention (Llewellyn, Lang, Langa, and Huppert 2008). The Canadian Study of 

Health and Aging (CSHA) incorporated the modified Mini-Mental State Exam (MMSE) (Teng 

and Chui 1987). The Swedish Betula study (Nilsson et al. 2004) and the Berlin Aging Study 

(Baltes and Mayer 1999) include several cognitive neuroscience-based functioning measures 

including episodic, semantic, and priming tasks. 

Until recently U.S. and international studies continued to overlook important 

components of cognitive functioning, namely visuo-construction skills and executive function. A 

major recent advance is the development of a survey based-version of the Montreal Cognitive 
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Assessment (MoCA) that was first incorporated in wave 2 of the National Social, Health and 

Aging Project (NSHAP) and repeated five years later in wave 3 of the survey (Shega, et al. 2014; 

Kotwal et al. 2014). The MoCA includes components that measure visuo-construction skills and 

executive function. Importantly, the original MoCA test validation study (Nasreddine et al. 

2005) has shown it to be a promising tool for detecting mild cognitive impairment (MCI) and 

the early stages of AD. The sensitivity and specificity of the MoCA for detecting AD was 100% 

and 87% respectively. Having two measures in time of the MoCA allows us to study both 

cognitive functioning in the cross-section and changes in cognitive functioning over time. 

 To date, almost all of studies have relied on test-based measures of cognitive assessment 

that use some function of the number of questions answered correctly to form a cognitive 

assessment score (for exception, see Tse et al. (2010) and Lövden et al. (2007)). In an entirely 

separate line of work, psychologists and neuroscientists have used the time it takes to answer 

cognitive challenges, usually referred to as response time (RT), to measure a subject’s level of 

cognition. Specifically psychologists and neuroscientists have developed sequential sampling 

models that formalize how neural circuitry operates as human decision making occurs, for 

example the Drift Diffusion Model (DDM) (Radcliff 1978; Smith 2000). One of the more 

surprising findings from this literature is that an individual’s ability to think in highly complex 

and abstract forms is related to speed in tasks as simple as “press the lighted button.” Simple RT 

tasks appear to have predictive power for performance on much more elaborate tasks 

 Some studies relate parameters such as the variability of RT on neuroscience tasks either 

to changes over time in mean RT on these or related tasks, or explicitly to dementia. Perhaps the 

most related work to ours is Tse et al. (2010). They characterize the RT distribution to three 

computerized tests: the Stroop test, the Simon test, and the switching test; and they investigate 

how the RT distribution differs between young adults, old adults, and people with very mild 

dementia of the Alzheimer Type (DAT) as assessed on the clinical dementia rating (CDR). They 
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show strong evidence that both the error rates are higher and the RT longer for the DAT group. 

They do not ask if RT might predict future changes in the CDR, and they examine individuals 

who, while classified as DAT, are of near-normal functioning. (On the MMSE, the DAT sample 

had a mean MMSE score of 26.5, higher than the traditional cutoff for MCI of 24). Ratcliff et al. 

(2010) analyze three two-choice tasks: numerosity discrimination, recognition memory, and 

lexical decision, and relate the RT distribution on these to age and IQ but not to standard 

measures of cognitive function. Using the 13-year longitudinal Berlin Aging Study, Lövden et al. 

(2007) analyze data from two neuroscience RT tasks and show that variance in RT early in the 

survey predicts increases in RT the next several years. But this study does not relate these 

neuroscience tasks to standard cognitive assessments. In addition, most of these studies have 

relatively small sample sizes; the laboratory studies typically have fewer than 150 subjects and 

the panel surveys typically fewer than 500 respondents, which limits the ability to understand 

covariates associated with cognition or changes in cognition. 

 This paper brings together these two approaches within a large longitudinal population 

survey. As in neuroscience, we are interested in RT measures of cognitive functioning, but our 

goal is to investigate whether useful information is available in RT data that are collected as a 

by-product of normal survey-taking operations. The NSHAP implements a survey version of the 

MoCA, the MoCA-SA, and a host of survey questions within a Computer Assisted Personal 

Interviewing (CAPI) system that records time stamps for each question asked. From these time 

stamps, first we investigate whether there is a relationship between the speed in answering the 

MoCA-SA and the MoCA-SA score itself. Then we investigate whether the speed in answering 

the MoCA-SA is predictive of changes in cognitive capacity as measured by changes in the 

MoCA-SA score over the five years between waves 2 and 3 of the survey. Finally, we investigate 

whether RT is predictive of mortality between waves 2 and 3. Mortality has been closely 

associated with levels and decline of cognition. 
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Our context is quite different from the laboratory environment. In large population-

representative studies, many factors influence RT of survey participants, from item-level 

characteristics such as number of clauses and words in a question; respondent-level 

characteristics such as age and education; mode characteristics such as whether the survey is 

self or interviewer administered; and for interviewer-administered surveys, some interviewer 

characteristics such as age and experience (Couper and Kreuter 2013; Yan and Tourangeau 

2008). We need to account for factors about interviewers. We do this by controlling by including 

interviewer fixed effects. A second challenge is that our cognitive tasks are the byproduct of 

normal interviewing procedures. That is, our tasks were not designed to have RT as a primary 

outcome. Many cognitive tasks in neuroscience are designed to have a forced answer over a 

limited period of time, typically less than two seconds. Often survey questions take longer to 

answer and “don’t know” is often one potential response. Because of these factors, we use 

models in cognitive neuroscience as a guide, but we remain open to processes generating RT on 

surveys that are different from on laboratory-administered tasks. Our primary goal, however, 

remains to capture processes of RT and relate them to traditional measures of cognition and 

cognitive change. 

2. Neuroscience Theory of Cognitive Functioning and Response Time 

Psychologists and neuroscientists have, over the last twenty-five years, developed sequential 

sampling models that formalize how neural circuitry operates as human decision making occurs. 

One example is the Drift Diffusion Model (DDM) (Ratcliff 1978; Smith 2000). Figure 1 displays 

a simple model of the DDM found in Wagenmakers et al. 2007. The DDM assumes decisions are 

made by a noisy process that accumulates information over time until a boundary level of 

evidence is reached that one choice is best and a decision is initiated. For example, Figure 1 

describes an experiment in which “words” are flashed on a computer screen; some “words” are 

real while others have had vowels changed so that they are not real English words. The subject is 

asked to decide whether the word is real or not. The theory is that there is a non-decision time 
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that subjects take to understand the task they are trying to solve (for example reading and 

understanding instructions) and then a time it takes to solve the task once the task is 

understood. The rate of accumulation of evidence, known as the drift rate, is faster if the relative 

difficulty of a choice is low. For example, words used frequently are easy to identify and can be 

easily distinguished from manipulated words (e.g, pig vs pyg) while lower frequency words are 

more difficult to identify and distinguish from manipulated words (polygon vs. poligon). The 

drift rate is thought to vary across individuals. For any given drift rate, the model is able to 

describe the relationship between the relative value of choices, the choice made, and the speed 

at which the choice is made. Another task often explored is to display two lines on a computer 

screen and to ask the subject to choose the line that is longer. The model predicts that given the 

subject’s specific processing speed, the greater the difference in the lengths of the lines: (a) the 

more likely the subject will pick the longer line correctly; (b) the faster the subject will pick the 

longer line; and (c) it will take longer when the shorter line is mistakenly chosen than when the 

Figure 1: EZ Drift Diffusion Modell (From Wagenmakers, et al., 2007) 
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longer line is correctly chosen. In addition, the model predicts an interaction between 

processing speed and task difficulty. Specifically, easy tasks can be answered correctly and 

quickly by most subjects while difficult tasks are answered faster and more accurately by 

subjects with higher cognitive capacity. A key insight of this and other neuroscience models is 

that multiple outcomes are determined by the relative difficulty of tasks and by the subject’s own 

processing speed. 

Radcliff (1979) suggests estimating response time distributions using an ex-Gaussian 

function which is achieved by maximizing the following likelihood function across the Q items 

that each with a RT recorded: 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�µ𝑖𝑖,σ𝑖𝑖, τ𝑖𝑖|𝑡𝑡𝑖𝑖1, … , 𝑡𝑡𝑖𝑖𝑖𝑖� = −∑ 𝑙𝑙𝑙𝑙 �1
τ𝑖𝑖
𝑒𝑒𝑒𝑒𝑒𝑒 �µ𝑖𝑖

τ𝑖𝑖
+ σ𝑖𝑖2

2τ𝑖𝑖2
− 𝑡𝑡𝑖𝑖𝑖𝑖

τ𝑖𝑖
�Φ �𝑡𝑡𝑖𝑖𝑖𝑖−µ𝑖𝑖−�σ𝑖𝑖

2 τ𝑖𝑖⁄ �
σ𝑖𝑖

��𝑄𝑄
𝑞𝑞=1   (1) 

If questions differ in their difficulty, we measure each individual’s response time on a specific 

question q as a Z-score, that is 𝑡𝑡𝑖𝑖𝑖𝑖 =  �𝑡𝑡𝑖𝑖𝑖𝑖∗ − µ𝑞𝑞∗ � σ𝑞𝑞∗2�  where 𝑡𝑡𝑖𝑖𝑖𝑖∗  denotes actual response time for 

respondent i on question q and µ𝑞𝑞∗  and σ𝑞𝑞∗   are the mean RT and standard deviation of RT for 

question q. µ𝑖𝑖,σ𝑖𝑖 and τ𝑖𝑖 then characterize respondent i’s RT distribution in terms of time to set 

up decision making and time to respond. Radcliff’s work is motivated by the DDM model of RT 

where two mental processes are co-integrated to lead to the RT of a task. The nondecision time 

is modeled as an exponential process (“ex”) while the Normal (Gaussian) component is seen as 

modeling the time it takes the sensory process to accumulate information on choices and the 

time required to physically respond with a decision, the decision time (hence the term “ex-

Gaussian”). While the theoretical proposition that the RT of cognitive process is the sum of two 

additive processes is difficult to test, there is a great deal of evidence that the ex‐Gaussian 

function provides a very good fit to several empirical RT distributions (Ratcliff & Murdock, 1976; 

Hockley, 1984; Luce, 1986). An interesting characteristic of the ex‐Gaussian function is that its 

parameter values can easily be interpreted. Parameters μ and σ are the mean and standard 
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deviation of the Gaussian component and can readily be interpreted as the central tendency and 

variability of RT for the decision making process. Parameter τ is the mean of the exponential 

component, which corresponds to the right ‘tail’ of the distribution; a larger τ implies a more 

skewed distribution. This has been interpreted as a measure of attention to understanding the 

problem prior to the neural circuitry attempting to solve it.  

Simple mean response time tasks appear to have strong predictive power for 

performance on much more elaborate tasks, leading some theorists to propose that such RT 

measures grossly index the integrity or speed of processing in a way that benefits all tasks. An 

important line of work initiated by Schmiedek et al. (2007) shows that it is not just average RT 

that affects performance on a variety. Other statistics of the RT distribution are predictive of 

task performance and different statistics are predictive of performance that rely on different 

parts of cognition (e.g. processing speed, working memory, etc.). For example, Lövdén et al.. 

(2007) find that trial-to-trial variability in RT is correlated with cognitive decline in old age. 

Schmiedek et al. (2007) suggest that a the “worst performance rule” (related to τ𝑖𝑖), that is an 

individual’s slowest reaction times across trials is predictive of short-term memory capacity, 

reasoning, and psychometric speed while average response time is related to the ability of a 

subject to hold attention. Gu et al. (2013) also finds that the parameter τ𝑖𝑖 of the RT distribution 

estimated on the Conners’ continuous performance test (CCPT), a test used to diagnose ADHD 

was sensitive to whether individuals were from a population with ADHD or were from a 

population of normal subjects. We note that Gu et al. do not investigate whether RT distribution 

parameters are predictive of future diagnosis of ADHD. 

While the use of RT is common in psychology and neuroscience, economists in the past 

three years have become interested in such data. It is perhaps not a coincidence that to date use 

of RT data has been limited to experimental economics where data collection takes place in a 

laboratory (often on computers) as it does in psychology and neuroscience. For example, 
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Krajbich et al. (2015) show that when subjects in a dictator game are given two divisions of 

tokens between self and other, it take subjects longest to make a choice when they value the two 

choices equally. What is of interest in this work is that because individuals differ in their social 

preferences, which choices are hard to make vary across subjects. For example, pro social 

subjects quickly choose to take 100 tokens for self and give 100 tokens to the other subject 

relative to taking 200 tokens for self and 0 tokens for the other subject. Selfish subjects also find 

this choice easy and quickly choose to take 200 tokens for self and give 0 tokens for the other 

subject. But a pro-social person struggles with (has long RT for) the choice between 80 for self 

and 100 for the other subject vs 100 for self and 80 for the other subject while a selfish person 

quickly chooses the later. A selfish person, on the other hand, has a long RT for the choice 

between 80 for self and 100 for the other subject vs 80 for self and 80 for the other subject; 

since selfish subjects place no weight on tokens to others they are indifferent between these two 

choices 

Kranton et al. (2015) extend this analysis. They have subjects play 26 dictator game 

allocations twice, once where the other subject is a member of the dictator’s political party 

(Democrat or Republican) and once where the 

other subject is a member of the opposing 

party. They randomize the order in which the 

party of the other subject appears. They show  

that some people are selfish regardless of the 

political party of the other subject (“not 

groupy”); but some people are prosocial when 

the other subject is a member of their political party but become selfish when the other subject 

is a member of the opposing party (“groupy”). Like Krajbich et al. (2015) they also find that RT 

is slowest when the difference in valuation between choices is small and becomes faster as the 

differences in valuation grow (Figure 2). In addition, they show (Figure 2) shows that groupy 
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subjects, who must process the social context before making a choice take more time at any 

difference in valuation between choices even though they will end up acting selfishly. That is, 

having to judge the social context takes processing time above the time it takes to calculate the 

differences in valuation and to make a choice. This line of work suggests that RT data may be 

useful for a host of decisions including those of interest to economists. But to our knowledge this 

work has been restricted to the laboratory. 

We use insights neuroscience as general guidance to our work but several caveats are in 

order. First, most cognitive neuroscience tasks are designed to have very fast responses, 

typically no more than 1 to 2 second. Second, most cognitive neuroscience tasks have forced 

binary choices. Finally, neuroscience tasks are designed to measure RT as the primary outcome 

and other processes that interfere with this measurement are carefully controlled in the 

laboratory. Surveys are quite different. The nondecision time can be quite extensive as questions 

can be long. Second, surveys are not designed to measure RT; RT is just recorded as a byproduct 

of collecting survey answers through a CAPI system. Finally, a host of issues and districtions in 

the field effect the speed at which respondents answer questions. 

3. Data and Measurement of Cognition 

 This study uses data from the National Social, Health and Aging Project (NSHAP). 

NSHAP sampled 3,005 individuals in 2005/06 and is nationally representative study of U.S. 

residents ages 57 to 85. Wave 1 included a face-to-face interview (including a brief self-

administered questionnaire), in-home collection of a broad panel of biomeasures, and a leave-

behind questionnaire. Topics covered in the interview and leave-behind included self-reported 

health, physical function and morbidity, social networks, social support, marital history and 

intimate partnerships, sexuality, medication use, and demographic information. A second wave 

was collected in 2010/11 and a third in 2015/16. This study uses the 2,210 sample respondents 

that were surveyed in both wave 2 and 3 of NSHAP.  
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Importantly for our work, beginning in wave 2 NSHAP fielded an adapted version of the 

traditional paper and pencil assessment of the Montreal Cognitive Assessments (MoCA) that 

could be asked and answered on a survey using CAPI technology.  The MoCA is a commonly 

used psychometric screening of cognitive functioning (Nasreddine et al., 2005). It assesses 

several different cognitive domains: attention and concentration, executive functions, memory, 

language, visuoconstructional skills, conceptual thinking, calculations, and orientation. The 

MoCA-SA was designed for administration by non-medical personnel and to reduce respondent 

burden within the context of a large, time-limited national survey, while preserving the MoCA’s 

sensitivity to a range of cognitive abilities. MoCA and MoCA-SA scores are highly correlated and 

scores can be accurately converted between the two scales (Kotwal, 2015).  The specific items 

included are: 1) Orientation: date and month (2 points total); 2) Executive function: 

abstraction—similarity of watch and ruler (1 point), modified Trails-b (1 point); 3) Visuospatial 

skills: clock—contour, numbers, and hands (3 points total); 4) Memory: 5-word delayed recall (5 

points); 5) Attention: forward digits (1 point), backward digits (1 point), subtract 7 s (3 points); 

and 6) Language: naming rhinoceros (1 point), phonemic fluency—words with the letter “F” (1 

point for > 10 words in 60 s), and sentence repetition (1 point). 

This validated, survey-adapted  MoCA-SA, was fielded in the 2010/11 and the 2015/16 

waves of NSHAP using the same CAPI system used for the entire interview. A great advantage of 

a CAPI system is that it records a time stamp when a respondent begins each question and ends 

each question. This allows analysts to know the RT on every survey question, including most 

items on the MoCA. Because of the nature of the MoCA-A, at times RT was collected for a set of 

tasks, such as the three sub-tasks of the clock draw (contour, numbers and hands). In total we 

have 14 separate response times for the 18 tasks. We view the overall MoCA-SA as a cognitive 

challenge, including each individual item, and we measure RT for individuals on it. 
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 It is common for clinicians who use the MoCA for diagnosis to classify patients into three 

groups: Normal Cognition, Mild Cognitive Impairment (MCI) and Dementia. There is debate 

among clinicians as to what cutoff scores on the MoCA should be used to classify individuals 

into each group. Scores between 22 and 26 are typically used to distinguish Normal Cognition 

from MCI and scores between 17 and 20 to distinguish MCI from Dementia (which includes 

diagnoses including Alzheimer's disease (AD), Frontotemporal Dementia (FTD) and Vascular 

Dementia (VaD)). 

It is useful to develop such cutoffs for the survey based MoCA-SA. There are many issues 

in doing this. Besides the uncertainty in cutoffs across studies, these cutoffs were constructed on 

clinical populations; many subjects were tested because cognitive issues had been detected. It is 

not clear that these same cutoffs would apply to a population representative sample. Secondly, 

for any MoCA cutoff we would adopt, this would need to be mapped to MoCA-SA scores. To do 

this, Kotwal, et al. (2015) collect the entire MoCA on a pilot sample of individuals and construct 

the standard MoCA score and the MoCA-SA score. Using this data they run a regression of the 

MoCA score against the MoCA-SA score. This regression suggests a mapping that MoCA = 

1.14*MoCA-SA + 6.83.  In this paper we use cutoffs of 25 to separate Normal Cognition from 

MCI and 19 to separate MCI from Dementia. Mapping this to MoCA-SA scores we classify 

respondent’s in NSHAP as has having Normal Cognitive functioning if they had a MoCA-SA 

score between 16 and 20, as having MCI if they had a MoCA-SA score between 12 and 15 and as 

having Dementia if they had a MoCA-SA score of 11 or lower. 

Table 1 presents descriptive statistics on our sample. The top half of Table 1 presents the 

demographics of the sample while the bottom half present’s statistics on the MoCA-SA score in 

waves 2 and 3. The average age of our sample in wave 2 is nearly 72, with ages ranging from 62 

to 90. More than half the sample is female and there is a wide dispersion of levels of education 

in the sample.  Turning to the MoCA-SA score, we see the average score in wave 2 was 14.18; but  
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this obscures the fact that the most 

found levels of cognition remain in the 

normal range. 42% of subjects have 

normal cognitive functioning while 36% 

have scores that indicate MCI and 22% 

have scores that indicate dementia. With 

ageing between waves 2 and 3 cognition 

declines and the average MoCA-SA score 

in wave 3 is 13.36. What is notable is that 

the fraction with MCI falls from 36% to 

22% while the fraction with Dementia rises 

from 22% to 30% 

4. Results 

We organize our results around 

three questions: (1) What is the 

relationship between response time on the 

MoCA-SA and performance on the 

cognitive test; (2) Are response times in wave 3 predictive of the level of performance on the 

MoCA-SA in wave 3 conditional on performance in wave 2; and (3) Does response time in wave 

2 predict mortality between wave 2 and 3. 

4.1 Response time and levels of cognition 

Table 2 presents statistics on how long it took respondents to complete the 18 item 

MoCA-SA. On average respondents took 636 seconds (10 minutes 36 seconds to complete the 

MoCA-SA within the survey. There is a great deal of variation on how fast the MoCA-SA is 

completed with times to completion ranging from 1 minute 58 seconds to 60 minutes and one 

second. There is also a clear pattern of response time with respect to tested levels of cognition. 

Table 1: 
 Descriptive Statistics of the NSHAP Sample 

   
VARIABLES: Mean Std. Dev. 

   
Demographics:   
Age 71.6 6.642 
Fraction Female 0.548 0.498 
Education   
   Fraction Less than HS 0.174 0.379 
   Fraction HS Diploma 0.245 0.43 
   Fraction Some College 0.312 0.463 
   Fraction BA or above 0.269 0.443 
   
MoCA SA Score:   
Wave 2   
   MoCA SA 14.18 3.722 
   Fraction Normal 0.42 0.494 
   Fraction with MCI 0.359 0.48 
    Fraction with Dementia 0.22 0.415 
Wave 3   
   MoCA SA 13.36 4.119 
   Fraction Normal 0.355 0.479 
   Fraction with MCI 0.216 0.412 
    Fraction with Dementia 0.297 0.457 
Notes: Tabulation based on 2,210 respondents who 
completed the MoCA-SA in waves 2 & 3 of NSHAP. 
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Subjects who had normal cognition had the fastest response times; they also had the lowest 

variance in 

response times; 

subjects who 

had MCI had 

slower response 

times and times with higher variance; and subjects who had dementia had the longest average 

response times and also the highest variance. While generally slower response times are 

correlated with lower levels of cognition, it is noteworthy that the minimum response time is 

highest for subjects in the normal cognition range and fastest for subjects in the dementia range. 

This is our first clue that in a survey context, response times are measuring a combination of 

processing speed to cognitive challenges and effort that the subject puts forth in meeting those 

challenges as well as other factors.  

 One factor that potentially is important is that NORC does not allocate survey takers to 

respondents randomly. Hard cases are 

typically handled by more experienced 

survey takers who are better able to 

carefully guide a respondent through the 

survey. It is possible that subjects with 

lower levels of cognition may appear as 

more difficult cases and hence survey 

takers who use more care and 

presumably more time may be assigned 

to respondents with lower levels of 

cognition. Column 1 of Table 3 repeats 

the mean levels of response time by level of cognition and reports the standard error while 

Table 2: Descriptive Statistics on Wave 2 Response Time to the MoCa-SA 
 

Category N Mean Std. Dev Min Max 

      
Overall 2,209 636.2 196 118 3,601 
Normal Cognition 928 594.4 154 269 2,126 
MCI 794 644.8 208.6 174 3,601 
Dementia 487 701.9 224.8 118 2,392 

Table 3: Wave 2 Response Time to the MoCa-SA 
with and without Interviewer Fixed Effects 

 

 Col (1) Col (2). 
   
Normal 594.4 595.3 
  (6.3) (5.3) 
MCI 644.8 647.8 
  (6.8) (5.7) 
Dementia 701.9 695.4 
  (8.7) (7.3) 
  
Interviewer Fixed 
Effects No Yes 
Note: T-tests of Dementia vs MCI, Dementia vs. Normal and 

MCI vs. Normal reject equality of means for both 
Col(1) and Col (2) 
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Column 2 removes interviewer fixed effects from the regression. Table 3 shows that interviewer 

fixed effects play a minor role in the differences in average response time across subjects with 

varying levels of cognition. What including interviewer fixed effects does appear to do however 

is to lower the variation of estimates. This suggests that while there are interviewers that are 

systematically faster and slower, their speed is largely uncorrelated with their assignment to 

subjects by levels of cognition. 

Figure 3 displays the relationship between time to answer the MoCA-SA and the score on 

standard deviation units. This is done 

so that the relationship between 

cognition and response time can be 

compared to two sub-components of 

the test – the serial 7s task and the date 

recall task. Figure 3 shows that time to 

complete the MoCA generally falls with 

the measured level of cognition. For example, subjects with scores of 20 complete the MoCA-SA 

about half a standard deviation faster than the sample average time while those with a score of 5 

complete the MoCA-SA about half a standard deviation slower than the average. But Figure 3 

also shows that this monotonic decline does not hold for all components. The monotonic decline 

holds strongly for asking respondents to recall the date (and for other easier tasks). But for the 

serial 7s task the monotonic relationship holds only for respondents that score 10 or above on 

the MoCA-SA. The serial 7s test takes a high degree of numeracy. Subjects that cannot subtract 7 

or have sever memory issues simply give up on the task which produces very fast response 

times. These respondents tend to be those with very low MoCA-SA scores. For very difficult 
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tasks, higher cognition within the low cognition range is associated with longer response times 

simply because higher cognition in this range allows some subjects to attempt the task. 

As we discussed above, neuroscience models relate various moments of the response 

time distribution to levels of cognition. Table 4 presents a regression model of MoCA-SA against 

age, the time to complete the MoCA-SA in standard deviation units and a measure of the 

variability of the time to complete each item on the MoCA-SA. We classify a respondent as 

“steady” if on every item of the MoCA-SA the subject was above or below the average time in a 

consistent fashion. Specifically let 𝑟𝑟𝑘𝑘𝑘𝑘 be the time it takes for subject i to answer item k of the 

MoCA-SA. Let 𝑠𝑠𝑘𝑘𝑘𝑘 = (𝑟𝑟𝑘𝑘𝑘𝑘 − 𝑟𝑟𝑘𝑘) 𝜎𝜎𝑘𝑘⁄  where 𝑟𝑟 𝑘𝑘  is the mean time to complete task k and 𝜎𝜎𝑘𝑘  is the 

standard deviation of time to complete task k. That is 𝑠𝑠𝑘𝑘𝑖𝑖  is the time it takes i to answer item k in 

standard deviation units. The average amount of time in standard deviation units is 

then 𝑠𝑠𝑖𝑖 = ∑ 𝑠𝑠𝑘𝑘𝑘𝑘14
𝑘𝑘=1 14⁄  .

1 We then determine whether i’s time to answer k was more than 1 

standard deviation from i’s overall mean. That is: 

𝐼𝐼𝑘𝑘𝑘𝑘 = �1 𝑖𝑖𝑖𝑖 − 1 >  (𝑠𝑠𝑘𝑘𝑘𝑘 − 𝑠𝑠𝑖𝑖) 𝑜𝑜𝑜𝑜 (𝑠𝑠𝑘𝑘𝑘𝑘 − 𝑠𝑠𝑖𝑖) > 1  
0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

    (1) 

We then sum over all items k for i and record 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 = �1 𝑖𝑖𝑖𝑖 ∑ 𝐼𝐼𝑘𝑘𝑘𝑘 = 014
𝑘𝑘=1

0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
      (2) 

For example, if subject i completed the MoCA-SA in 12.6 minutes this was ½ a standard 

deviation above the mean time of 10.7 minutes; a subject was coded as “steady” if the subject 

was “about” ½ a standard deviations slower on each item of the MoCA-SA. Equations 1 and 2 

implement the  idea of “about” by scoring someone as steady on a specific item if the subject’s 

time was within 1 standard deviation of the subjects own mean standardized time across all 

items.  

                                                           
1 As explained above, while there are 18 items on the MoCA-SA, response times for some were measured for some 
tasks together, such as the three tasks associated with identifying aspects of a clock. 
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 With these measures we implement the following regression model: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀_𝑆𝑆𝑆𝑆𝑖𝑖 =  𝛼𝛼 + 𝛽𝛽1 ∗ 𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 + 𝛽𝛽2 ∗ 𝑍𝑍𝑖𝑖 + 𝛽𝛽3 ∗ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 + 𝜀𝜀𝑖𝑖  (3) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀_𝑆𝑆𝑆𝑆𝑖𝑖 =  𝛼𝛼 + 𝛽𝛽1 ∗ 𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 + 𝛽𝛽2 ∗ 𝑍𝑍𝑖𝑖 + 𝛽𝛽3 ∗ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 + 𝛿𝛿𝑘𝑘 + 𝜂𝜂𝑖𝑖  (4) 

where 𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 is i’s age deviated from the sample mean age, 𝑍𝑍𝑖𝑖 is i’s Z-score of wave 2 response 

time to the MoCA-SA, and 𝛿𝛿𝑘𝑘 are interviewer fixed effects. Table 4 displays several remarkable 

results from these regression models. Column 1 shows the estimated effect of Age and MoCA-SA 

response time 

measured in standard 

deviation units on the 

MoCA-SA wave 2 

score. Column 1 shows 

the powerful 

correlation of the 

MoCA-SA response 

time on the MoCA-

score. A one standard 

deviation increase in 

the amount of time to 

complete the MoCA-SA, for example increasing the time it takes to complete the MoCA-SA from 

the mean time 10.7 minutes to 14 minutes, is associate with a 0.645 point lower score. When we 

look at this effect relative to the effect of age, we see that a one standard deviation increase in 

the time it takes to complete the MoCA-SA has the same effect on the score as 5 years of age.  

In Column 2 we add our measure of the variability of response time. We see that 

answering the MoCA-SA items in a steady fashion is associated with substantially higher MoCA-

SA scores. In general longer response times may also be associated with more variable response 

Table 4: Effects of Response Time Statistics on Wave 2 MoCa-SA 
Score with and without Interviewer Fixed Effects 

 
  (1) (2) (3) (4) 
VARIABLES MoCA-SA MoCA-SA MoCA-SA MoCA-SA 
          
Age -0.126*** -0.123*** -0.118*** -0.116*** 

 (0.0115) (0.0114) (0.0107) (0.0106) 
MoCA-SA time -0.645*** -0.395*** -0.887*** -0.699*** 

 (0.0764) (0.0816) (0.0814) (0.0870) 
Steady  1.298***  0.920*** 

  (0.163)  (0.158) 
Constant 14.18*** 13.60*** 14.18*** 13.77*** 

 (0.0755) (0.104) (0.0677) (0.0975) 
     

Observations 2,209 2,209 2,209 2,209 
R-squared 0.093 0.118 0.310 0.321 
Interviewer FE NO NO YES YES 
Notes: Age is deviated from the sample mean. MoCA-SA time is measured in 
standard deviation units. 
Standard errors in parentheses    
*** p<0.01, ** p<0.05, * p<0.1    
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times across items and in fact we see that the effect of total response time is mitigated although 

it remains negative and strongly significant.  

As we discussed before, it may be that more experienced interviewers are assigned to 

subjects with lower cognition. If this is the case then controlling for interviewer fixed effects 

could mitigate the effect of total MoCA-SA response time on the MoCA-SA score. Columns 3 and 

4 repeat the models of Columns 1 and 2 but add interviewer fixed effects In fact, including 

interviewer fixed effects raises that effect of MoCA-SA response time on MoCA-SA score 

(Column 3). Interestingly, including interviewer fixed effects mitigates the estimated effect of 

answering MoCA-SA items in a steady fashion on the MoCA-SA score. This suggests that 

interviewers that are given cases where respondents have lower cognitive capacity are both 

faster and steadier in pacing the 

questionnaire than other interviewers. 

One concern is that steady 

subjects likely are subjects that do not 

have extreme response times. Because 

of this, if entering response time 

linearly in the regression is not the 

right functional form, then steady 

might just be picking up non-linearity 

in the relationship between response 

time and cognition. Figure 4 A shows 

that steady individuals have lower 

response time on average; further  

there are response times for not steady 

individuals that lie outside the support 

of steady individuals. Figure 4B 
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displays the response time for steady and not-steady subjects that are within the range of 

response times of steady subjects. At all times within this range, there are also response times 

for not steady subjects.  But it is clear that even within the common support, not steady people 

are disproportionately at the upper end of the response time distribution. To balance the 

response time distribution we reweight the not steady subjects so that their response times will 

be distributed similarly to the steady subjects. The intuition of this is straight forward; looking 

at Figure 4B we see at 750 seconds about 20% of subjects are in the steady group and 80% in the 

not steady group. At 450 seconds about 80% of subjects are in the steady group and 20% are in 

the not steady group. If we were to down weight each of the not steady subjects at 750 seconds 

by 1/4th (20%/80%) and upweight the not steady subjects at 450 seconds by 4 (80%/20%) the 

weighted distribution of the not steady subjects would match the steady subjects.  To implement 

this idea we estimate a propensity score logistic regression model where the dependent variable 

is whether you are steady or not steady and the independent variables are a cubic in response 

time. Having estimated the model we predict the probability of being in the steady group, 𝑝𝑝,  at 

every response time in the common support. We then form a weight, 𝑤𝑤, where 

𝑤𝑤𝑖𝑖 = �
1 𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 = 1

𝑝𝑝𝑖𝑖 (1 − 𝑝𝑝𝑖𝑖)⁄  𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 = 0.    (5) 

Figure 4C shows the weighted 

distribution of response times on the 

common support. The propensity 

score model with a cubic in response 

time matches the distribution of 

response time across steady and not 

steady subjects well.  
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 To check that our earlier regression results are not an artifact of the lack of common support 

between steady and not stead subjects, we re-estimate our models first using only subjects on 

the common support and then second, re-weighting the not steady subjects so that their 

response times match the response time distribution of the steady subjects. Table 5 shows these 

results. In general, focusing on the observations on the common support and reweighting 

observations for balance strengthens the estimated correlation of response time on MoCA-SA 

scores and weakens the correlation of being steady on MoCA-SA scores. For example, comparing 

Column 4 in Table 5 to Column 4 in Table 4 we see the effects of focusing on the common 

support and reweighting within a model with interviewer fixed effects. The correlation of MoCA-

SA time with MoCA-SA score rises in absolute value from -0.699 to -1.382 while the correlation 

of steady falls from 0.920 to 0.369. While some quantitative difference arise when focusing on 

the common support, 

the qualitative result 

that both the average 

and variability of 

response time is 

strongly correlated 

with MoCA-SA score 

remains and results 

remain both 

substantively and 

statistically 

significant. 

4.2 Response time and changes in levels of cognition 

So far we have established that the total time and the variability in time across items of 

the MoCA-SA are strongly related to the level of cognition. This is consistent with findings in the 

Table 5: Effects of Response Time Statistics on Wave 2 MoCa-SA, 
Respondents on the Steady Subject Support 

 
 Unweighted Propensity Weighted 
  (1) (2) (3) (4) 
VARIABLES MoCA-SA MoCA-SA MoCA-SA MoCA-SA 
          
Age -0.116*** -0.104*** -0.153*** -0.130*** 

 (0.0118) (0.0110) (0.0117) (0.0110) 
MoCA-SA time -0.621*** -1.373*** -0.506*** -1.382*** 

 (0.134) (0.149) (0.154) (0.171) 
Steady 1.046*** 0.563*** 0.884*** 0.369** 

 (0.165) (0.161) (0.148) (0.146) 
Constant 13.76*** 13.86*** 13.95*** 13.84*** 

 (0.106) (0.0985) (0.124) (0.117) 
 

    

Observations 2,033 2,033 2,033 2,033 
R-squared 0.101 0.321 0.105 0.331 
Interviewer FE NO YES NO YES 
Notes: Age is deviated from the sample mean. MoCA-SA time is measured in 
standard deviation units. 
Standard errors in parentheses    
*** p<0.01, ** p<0.05, * p<0.1    
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neuroscience literature that it takes subjects less time to give correct than incorrect answers and 

that arriving at an answer is faster the lower the noise to signal. We now turn to a question that 

has been largely ignored in the neuroscience literature but is of great interest to the aging 

research community – can response times be used as a predictor or cognitive decline. 

We start with a simple exercise. We break the sample up into 3 groups. Group 1 had no 

measured decline in MoCA-SA score in the five years between wave 2 and wave 3; group 2 had a 

mild decline of 1 to 2 points; and 

group 3 had a large decline of 3 or 

more points. We then calculate what 

the response time was on the wave 2 

MoCA-SA for subjects in each 

group. Table 6 displays the average 

response times and the standard 

error for each average. What is clear 

is that subjects that experienced 

large declines in cognition between waves 2 and 3 took longer to answer the MoCA-SA in wave 

2; that is long response times in wave 2 are a precursor to cognitive decline between waves 2 and 

3. While the results are somewhat weaker when including interviewer fixed effects this general 

pattern holds.  

 In order to judge how important wave 2 response times are relative to other factors such 

as age we run the following regressions: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀_𝑆𝑆𝑆𝑆_𝑊𝑊3𝑖𝑖 =  𝛼𝛼 + 𝜃𝜃 ∗ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀_𝑆𝑆𝑆𝑆_𝑊𝑊2𝑖𝑖 + 𝛽𝛽1 ∗ 𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 + 𝛽𝛽2 ∗ 𝑍𝑍𝑖𝑖 + 𝛽𝛽3 ∗ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 + 𝜀𝜀𝑖𝑖 (5) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀_𝑆𝑆𝑆𝑆_𝑊𝑊3𝑖𝑖 =  𝛼𝛼 + 𝜃𝜃 ∗ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀_𝑆𝑆𝑆𝑆_𝑊𝑊2𝑖𝑖 + 𝛽𝛽1 ∗ 𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 + 𝛽𝛽2 ∗ 𝑍𝑍𝑖𝑖 + 𝛽𝛽3 ∗ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 + 𝛿𝛿𝑘𝑘 + 𝜂𝜂𝑖𝑖 (6) 

That is we ask how important is the standardized wave 2 response time in predicting wave 3 

MoCA-SA controlling for wave 2 MoCA-SA.  These results are displayed in Table 7. Column 1 

includes only the standardized wave 2 response time and Column 2 adds our variable “steady.” 

Table 6: Wave 2 Response Time to the MoCa-SA, by 
the Decline in MoCA-SA Score between Waves 2 and 

3, with and without Interviewer Fixed Effects 
VARIABLES N Col (1) Col (2) 

    
None 1,026 612.2 624.5 

   (5.6)   (4.6)  
Mild (1 to 2) 631 642 633.1 

   (7.3)   (6.4)  
Large (3 or More) 552 674.2 661.6 

   (9.7)   (8.3)  
Note: All average times in column 1 are statistically significantly 
different; In column 2, average time for subjects with a large 
decline is statistically different than those with a mild or no 
decline; subjects with no and mild decline are not statistically 
different, 
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What is clear is that wave 2 response time is highly correlated with the MoCA-SA score in wave 3 

conditional on the MoCA-SA score in wave 2. 

 

The estimated impact of a 1 standard deviation increase in wave 2 response time is to 

lower wave 3 MoCA-SA score by over 0.4 points. This is equivalent to aging by more than 4 

years or nearly doubling the cognitive aging process across the 5 years between waves. Column 2 

shows that conditional on how long it took to answer the wave 2 MoCA-SA, being steadier across 

items was associated with a 0.32 point higher MoCA-SA in wave 3. Therefore, both the time it 

took to complete and the variability across items in the MoCA-SA in wave 2 are strongly 

predictive of the rate of cognitive decline between waves 2 and 3.  

 Column (3) estimates the correlation between our two statistics on wave 2 response time 

by the level of cognitive function in wave 2. We see that longer response times are especially 

 

Table 7: Wave 3 MoCA-SA as a function of Response Time to the MoCa-SA in Wave 2, with and without Interviewer 
Fixed Effects 

VARIABLES Col (1) Col (2) Col (3) Col (4) Col (5) Col (6) 

       
Age -0.0927*** -0.0929*** -0.0947*** -0.0960*** -0.0959*** -0.0978*** 

 (0.00889) (0.00887) (0.00889) (0.00913) (0.00912) (0.00914) 
MoCA-SA time -0.453*** -0.396***  -0.400*** -0.350***  

 (0.0584) (0.0625)  (0.0694) (0.0738)  
Steady  0.317**   0.263**  

  (0.126)   (0.133)  
MoCA-SA time *(Normal==1)   -0.171   -0.127 

   (0.122)   (0.132) 
MoCA-SA time *(MCI==1)   -0.435***   -0.388*** 

   (0.0936)   (0.1000) 
MoCA-SA time *(Dementia==1)   -0.515***   -0.481*** 

   (0.107)   (0.119) 
Steady *(Normal==1)   0.181   0.184 

   (0.176)   (0.183) 
Steady *(MCI==1)   0.549***   0.470*** 

   (0.170)   (0.177) 
Steady *(Dementia==1)   0.326   0.129 

   (0.268)   (0.278) 

       
Observations 2,209 2,209 2,209 2,209 2,209 2,209 
R-squared 0.581 0.582 0.584 0.612 0.612 0.614 
Interviewer FE NO NO NO YES YES YES 
Notes: Regressions control for MoCA-SA in wave 2 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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correlated with cognitive decline when subjects have less than normal cognitive functioning in 

wave 2. It also appears that not being steady in answering the MoCA-SA in wave 2 is an 

especially important signal of looming cognitive decline for subjects displaying mild cognitive 

impairment in wave 2. 

 We now return to the issue raised earlier that some subjects that were not steady have 

response times that are outside the support of subjects that were steady. To investigate this we 

re-estimate equations 5 and 6 only on observations on the common support. We focus only on 

the model presented in Column 2 of Table 7 and the interviewer fixed effect equivalent in 

Column 5. The first two Columns of Table 8 present the results when only observations on the 

common support 

are used in the 

analysis. Columns 3 

and 4 also apply the 

balancing weights. 

In general, the 

effect of MoCA-SA 

time is more 

strongly correlated 

with changes in 

MoCA-SA scores 

when we restrict 

our analysis to the common support. Now a one standard deviation in response time on the 

MoCA-SA has an equivalent effect on the wave 3 MoCA-SA as 10 years of aging.  The evidence 

that not being steady is a precursor to cognitive decline is weaker in magnitude and in statistical 

significance.  

4.3 Response time, health and mortality 

Table 8: Effects of Response Time Statistics on Wave 3 MoCa-SA, 
Respondents on the Steady Subject Support 

 
 Unweighted Propensity Weighted 
  (1) (2) (3) (4) 
VARIABLES MoCA-SA MoCA-SA MoCA-SA MoCA-SA 
      
Age -0.0932*** -0.0960*** -0.0906*** -0.0929*** 

 (0.00931) (0.00961) (0.00944) (0.00969) 
MoCA-SA time -0.702*** -0.782*** -0.854*** -0.938*** 

 (0.104) (0.130) (0.120) (0.148) 
Steady 0.218* 0.119 0.277** 0.141 

 (0.128) (0.138) (0.116) (0.124) 
 

    

Observations 2,033 2,033 2,033 2,033 
R-squared 0.568 0.600 0.556 0.601 
Interviewer FE NO YES NO YES 
Notes: Age is deviated from the sample mean. MoCA-SA time is measured in standard 
deviation units. 
Standard errors in parentheses    
*** p<0.01, ** p<0.05, * p<0.1    
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A natural question is whether response time on cognitive tests can be used to model 

behavioral outcomes that are thought to be related to cognition.. Several studies suggest that 

cognitive impairment is a marker of physical decline and mortality, especially when dementia is 

present (Nguyen et al. (2003). Sacks (2009). There is some evidence that cognitive impairment 

is correlated with many dimensions of frailty in older adults including weight-loss, weakness, 

self-reported exhaustion, slow walking speed, and low physical activity level. While cognitive 

impairment may operate through frailty, Cano et al (2012) reports that cognitive impairment 

appears to have an independent effect on raising mortality risk. To the degree that our response 

time measures provide additional information on a respondent’s cognitive ability and on its 

decline, it is of interest to know if these might provide independent markers of increased 

mortality risk.  

In wave 3, NSHAP attempted to resurvey wave 2 respondents. When they were unable to 

resurvey individuals they asked a proxy respondent some questions including whether the 

original respondent was dead or alive and if alive whether they were in too poor health to 

participate in the survey. These three categories comprised the vast majority of cases. Of the 

wave 2 respondents, NSHAP successfully resurveyed 76%, 19% had died and about 5% had 

health conditions that prevented the respondent from participating in the survey. 

We model these three outcomes with a multinomial logit model. Specifically, let we 

estimate 

𝑙𝑙𝑙𝑙𝑙𝑙(𝜋𝜋2𝑖𝑖 𝜋𝜋1𝑖𝑖⁄ ) = 𝛼𝛼2 + 𝜃𝜃2 ∗ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀_𝑆𝑆𝑆𝑆_𝑊𝑊2𝑖𝑖 + 𝛽𝛽21 ∗ 𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 + 𝛽𝛽22 ∗ 𝑍𝑍𝑖𝑖 + 𝛽𝛽223 ∗ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 + 𝜖𝜖𝑖𝑖 

𝑙𝑙𝑙𝑙𝑙𝑙(𝜋𝜋3𝑖𝑖 𝜋𝜋1𝑖𝑖⁄ ) = 𝛼𝛼3 + 𝜃𝜃3 ∗ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀_𝑆𝑆𝑆𝑆_𝑊𝑊2𝑖𝑖 + 𝛽𝛽31 ∗ 𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 + 𝛽𝛽32 ∗ 𝑍𝑍𝑖𝑖 + 𝛽𝛽233 ∗ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 + 𝜖𝜖𝑖𝑖 

where 𝜋𝜋𝑘𝑘𝑖𝑖 is the probability of being in status 𝑘𝑘 ∈ {1,2,3} ≡ {𝐴𝐴𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻ℎ}. Table 9 

presents the base rates (Column 1) as well as the marginal effect for each variable of interest 

(Columns 2-5). First it is clear that the wave 2 level of cognition is highly correlated with the risk 

of death between waves. From a base rate of 18.9% a one standard deviation increase in the 

MoCA-SA score in wave 2 lowers the risk of death by 5.25 percentage points or by 28%. This is 
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equivalent of more than 4 years of age. It also appears that wave 2 response time has an 

independent effect on mortality risk; a one standard deviation reduction in response time lowers 

the probability of death by 2.82 percentage points or by about 15%. Higher MoCA-SA scores and 

faster response times also lower the risk of being found in too poor health to take the wave 3 

survey.  

 The results on whether the variance of response time effect mortality are weaker. For the 

models without interviewer fixed effects being steady lowers the probability of being alive at the 

10% and the point estimates suggest it raises the probability of being dead or in poor health but 

these results are not statistically significant. Including interviewer fixed effects suggests that 

being steady raises the probability of death.  

 To investigate whether these results are sensitive to the lack of support in response 

times between steady and not steady subjects, we re-estimate our models for subjects on the 

Table 9: Mortality and Poor Health as a function of Wave 2 MoCA-SA score and Response Time, with 
and without Interviewer Fixed Effects 

  (1) (2) (3) (4) (5)   

VARIABLES Base Rate 
MoCA-SA (Z-

score) Age 
Response Time 

(Z-score) Steady FE 
             

Panel A: Without Interviewer Fixed Effects 
Alive 0.760*** 0.0758*** -0.0155*** -0.0282*** -0.0209* NO 

 (0.00484) (0.00477) (0.000609) (0.00523) (0.0110)  
Dead 0.189*** -0.0525*** 0.0129*** 0.0195*** 0.0171 NO 

 (0.00460) (0.00460) (0.000607) (0.00483) (0.0105)  
Poor Health 0.0504*** -0.0233*** 0.00267*** 0.00871*** 0.00379 NO 

 (0.00270) (0.00279) (0.000371) (0.00245) (0.00630)  
              

Panel B: With Interviewer Fixed Effects 
             
Alive 0.760*** 0.0896*** -0.0147*** -0.0267*** -0.0167 YES 

 (0.00467) (0.00522) (0.000617) (0.00624) (0.0112)  
Dead 0.189*** -0.0601*** 0.0122*** 0.0186*** 0.0242** YES 

 (0.00446) (0.00506) (0.000611) (0.00587) (0.0108)  
Poor Health 0.0504*** -0.0295*** 0.00251*** 0.00812*** -0.00753 YES 

 (0.00259) (0.00300) (0.000379) (0.00291) (0.00641)  
       
Observations 6,270 6,270 6,270 6,270 6,270   
Standard errors in parentheses     
*** p<0.01, ** p<0.05, * p<0.1     
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common support, reweighting subjects so that the distribution of response times are balanced. 

These results are presented in Table 10. The effects of the MoCA-SA score remain unaffected 

and the effects of response time are larger. The effects of being steady on mortality risk now 

appear to be statistically insignificant. 

Table 10: Mortality and Poor Health as a function of Wave 2 MoCA-SA score and Response Time, 
Observations on the Common Support Propensity Score Weighte,  with and without Interviewer Fixed 

Effects 
  (1) (2) (3) (4) (5)   

VARIABLES Base Rate 
MoCA-SA (Z-

score) Age 
Response Time 

(Z-score) Steady FE 
             

Panel A: Without Interviewer Fixed Effects 
Alive 0.793*** 0.0693*** -0.0144*** -0.0338*** -0.00933 NO 

 (0.00507) (0.00474) (0.000641) (0.00930) (0.00973)  
Dead 0.168*** -0.0518*** 0.0125*** 0.0203** 0.00417 NO 

 (0.00479) (0.00450) (0.000628) (0.00872) (0.00921)  
Poor Health 0.0387*** -0.0175*** 0.00196*** 0.0135*** 0.00517 NO 

 (0.00262) (0.00254) (0.000349) (0.00455) (0.00508)  
              

Panel B: With Interviewer Fixed Effects 
             
Alive 0.793*** 0.0805*** -0.0139*** -0.0420*** -0.00517 YES 

 (0.00485) (0.00524) (0.000654) (0.0112) (0.0101)  
Dead 0.168*** -0.0568*** 0.0120*** 0.0251** 0.00650 YES 

 (0.00463) (0.00500) (0.000640) (0.0105) (0.00965)  
Poor Health 0.0387*** -0.0237*** 0.00184*** 0.0169*** -0.00133 YES 

 (0.00247) (0.00279) (0.000367) (0.00561) (0.00519)  
       
Observations 5,850 5,850 5,850 5,850 5,850   
Standard errors in parentheses     
*** p<0.01, ** p<0.05, * p<0.1     

 

5. Conclusion 

This paper examines whether response time data collected from CATI and CAPI systems is 

informative for modeling cognition, cognitive decline and outcomes related to cognition and 

cognitive decline. We use a unique opportunity as the NSHAP survey implemented a 

standardized cognitive assessment on a CAPI system. We investigate the total response time as 

well as a measure of item to item variability on the MoCA-SA fielded in wave 2 of the NSHAP. 

We find that the total response time is strongly related to measured cognitive level in wave 2, to 
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the change in cognitive level between waves 2 and 3 and to mortality between waves. The 

variability in response times appears to be related to the level of cognition in wave 2 and in some 

specifications is related to the change in cognition between waves 2 and 3. The evidence that the 

variability in response times is related to mortality is weak. 

This paper shows the usefulness of collecting item by item response times and using these to 

better understand respondent’s capacity and behavior. The results have implications both for 

social scientists and clinicians. For clinicians, it is clear that useful information is being gathered 

when cognitive tests are administered that is not being used as only how well a patient did on 

the MoCA, or other cognitive tests, are used for diagnosis. But it is clear that how fast a patient 

got any score, and perhaps how variable the item-to-item responses were may be important for 

understanding cognitive aging. This suggests that combining information on response times and 

scores may help to better advice patients. Van der Linden (2007) offers a “Hierarchical 

framework for modeling speed and accuracy” simultaneously using Bayesian methods for 

estimation which seems a fruitful avenue to pursue for cognitive testing. We note that using 

both speed and accuracy to assess performance is common in the educational testing literature 

(see Lee and Chen (2011) for a review).  

The implications for social scientists are also clear. Most survey collection organizations are 

quite familiar with surveys being a cognitive challenge. We have only looked at the amount of 

time and the variability across questions on a cognitive test to show in a survey context that 

response times can be useful for measuring cognition. But surveys are full of challenges 

including memory recall, numeracy and pattern recognition. It may be that response times to 

more traditional questions are also informative of cognitive ability. This would be exceptionally 

useful to know as Computer Assisted Telephone Interview (CATI) and CAPI systems have been 

capturing item by item response times since their use became widespread in the 1980s. This 

leaves open the exciting possibility of being able to use changes in response times to questions 
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over time to index changing cognition of subjects. We note that it is rare that cognitive 

assessments are conducted in standard social science surveys, yet alone conducted in a repeated 

fashion. Therefore the potential to use response times collected as a by-product of normal 

survey operating procedures has the potential to give social scientists large representative 

samples with a repeated index of cognition. This could help enormously in increasing our 

understanding of how cognitive aging varies across the population. 

Finally, this paper has just scratched the surface on the use of survey based response times. 

Just as neuroscientists gave us guidance on how these can be related to cognition, 

neuroscientists routinely use response times to measure other aspects of behavior. These 

included understanding valuation of choices, understanding deception and understanding non-

cognitive skills such as effort. These are all areas that are of central importance to the social 

sciences. 
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Table 7: Wave 3 MoCA-SA as a function of Response Time to the MoCa-SA in Wave 2, with and without Interviewer 
Fixed Effects 

VARIABLES Col (1) Col (2) Col (3) Col (4) Col (5) Col (6) 

       
Age -0.0927*** -0.0929*** -0.0947*** -0.0960*** -0.0959*** -0.0978*** 

 (0.00889) (0.00887) (0.00889) (0.00913) (0.00912) (0.00914) 
MoCA-SA time -0.453*** -0.396***  -0.400*** -0.350***  

 (0.0584) (0.0625)  (0.0694) (0.0738)  
Steady  0.317**   0.263**  

  (0.126)   (0.133)  
MoCA-SA time *(Normal==1)   -0.171   -0.127 

   (0.122)   (0.132) 
MoCA-SA time *(MCI==1)   -0.435***   -0.388*** 

   (0.0936)   (0.1000) 
MoCA-SA time *(Dementia==1)   -0.515***   -0.481*** 

   (0.107)   (0.119) 
Steady *(Normal==1)   0.181   0.184 

   (0.176)   (0.183) 
Steady *(MCI==1)   0.549***   0.470*** 

   (0.170)   (0.177) 
Steady *(Dementia==1)   0.326   0.129 

   (0.268)   (0.278) 

       
Observations 2,209 2,209 2,209 2,209 2,209 2,209 
R-squared 0.581 0.582 0.584 0.612 0.612 0.614 
Interviewer FE NO NO NO YES YES YES 
Notes: Regressions control for MoCA-SA in wave 2 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 


