Why is capital slow moving?
Liquidity hysteresis and
the dynamics of limited arbitrage

James Dow
Jungsuk Han
Francesco Sangiorgi

No. 2
September 2018

LTI WORKING PAPERS

www.carloalberto.org/lti/working-papers

© 2018 by James Dow, Jungsuk Han and Francesco Sangiorgi.
Any opinions expressed here are those of the authors and not those of LTI.
Why is capital slow moving? Liquidity hysteresis and the dynamics of limited arbitrage

James Dow, Jungsuk Han and Francesco Sangiorgi

July 24, 2018

Abstract

Will arbitrage capital flow into a market experiencing a liquidity shock, mitigating the adverse effect of the shock on price efficiency? Using a stochastic dynamic equilibrium model with privately informed capital-constrained arbitrageurs, we show that arbitrage capital may actually flow out of the illiquid market. When some capital flows out, the remaining capital in the market becomes trapped because it becomes too illiquid for arbitrageurs to want to close out their positions. This mechanism creates endogenous liquidity regimes under which temporary shocks can trigger flight-to-liquidity resulting in “liquidity hysteresis” which is a persistent shift in market liquidity and price informativeness.

Keywords: limits to arbitrage, rational expectations, price efficiency, history dependence, slow-moving capital, regime shift

JEL Classification: G12, G14, D82, D83, D84

*We thank Laurent Bach, Jonathan Berk, Will Diamond, Nicolae Gârleanu, Denis Gromb, Christopher Hennessy, Dasol Kim, Pete Kyle, Anna Pavlova, and Yao Zeng for helpful comments, and also thank seminar participants at Aalto Business School, Collegio Carlo Alberto, Frankfurt School of Finance and Management, INSEAD, London Business School, Seoul National University, Stockholm School of Economics, Toulouse School of Economics, SFS Cavalcade conference, Paul Woolley Centre conference, and Western Finance Association conference.

†London Business School, Regent’s Park, London, United Kingdom, NW14SA, E-mail: jdow@london.edu.

‡Stockholm School of Economics, Drottninggatan 98, Stockholm, Sweden, SE 11160, E-mail: jungsuk.han@hhs.se

§Frankfurt School of Finance and Management, Adickesallee 32-34, 60322, Frankfurt am Main, Germany, E-mail: F.Sangiorgi@fs.de
1 Introduction

Traditional finance theory derives rational prices for assets based on arbitrage. Arbitrage pushes market prices towards fundamental value (the potential divergence from fundamental value could be due to private information, irrationality, or market segmentation).\(^1\) This pricing mechanism may break down when arbitrageurs are capital-constrained, which could arise for various reasons. An extensive literature studies how prices may diverge from fundamental value due to constrained arbitrage capital (e.g., Dow and Gorton (1994), Allen and Gale (1994), Shleifer and Vishny (1997), Gromb and Vayanos (2002), Brunnermeier and Pedersen (2009)). The shortage of arbitrage capital could be temporary, since there may be surplus capital in other markets that could flow to exploit arbitrage opportunities in one market, but this reallocation might happen slowly (e.g., Duffie (2010)). In other words, mispricing may still persist even with plenty of capital around because capital does not flow to the right markets. So endogenizing the rate of flow of arbitrage capital is a priority for research, which we seek to address in this paper. In our analysis, arbitrage capital does not deploy quickly to a market with trading opportunities because arbitrageurs hold positions in other markets which they prefer not to unwind, allowing us to model the endogenous allocation of capital across markets.

As a starting point, we use a canonical framework where prices may be incorrect because they do not reflect private information (e.g., Grossman and Stiglitz (1980), Kyle (1985)). In our model, “arbitrageurs” are traders who have this information. Other agents do not have the information, but can learn from prices. We assume that uninformed capital is plentiful but informed capital is limited.

In our analysis, there is an important distinction between the stock and the flow of arbitrage capital. A stock of arbitrage capital does not equate to a capital flow to arbitrage opportunities. For a capital-constrained trader to invest in a new position, he or she must close out some existing positions. Unless the new position is more profitable, the trader will stick to the existing positions in other assets until the prices of those assets revert closer to fundamental value (in line with a common saying among professional traders: “buy when the market is inefficient, sell when the market is efficient”). Reversion to fundamental value can happen either because of public information or because of subsequent trades by other privately informed traders. This means that arbitrage

\(^1\)By arbitrage, we mean a trade which exploits price inefficiencies for profits whether based on public or private information (e.g., Dow and Gorton (1994), Dow and Han (2018)).
capital plays a dual role; the mispricing wedge not only decides the profitability of new investment but also decides the speed at which engaged arbitrage capital is released - thus deciding the availability of arbitrage capital in the future.

The dual role of arbitrage capital has several important implications. First, markets may be inefficient because arbitrage capital is “trapped” and efficiency may change over time as trapped capital is released. Second, there can be “liquidity hysteresis” in the form of a long-lasting shift in efficiency as a response to temporary shocks. Third, a flight-to-liquidity arises when a market suffers liquidity hysteresis. As illiquidity reinforces itself, arbitrage capital flows to more liquid investment opportunities in other markets.

“Liquidity” is a broad concept in financial economics, covering a variety of different effects. In this paper we use “liquid” to describe a market where an arbitrageur does not have to wait long before the arbitrageur’s private information is incorporated in the price, hence can cash in soon at full value. In contrast, in an illiquid market the arbitrageur can either cash in soon at a poor price, or wait to obtain full value. This notion of liquidity effectively coincides with price efficiency: a liquid market is a market where private information is better revealed. Also, this is linked to “funding liquidity” in the sense that price efficiency is higher when arbitrageurs allocate more capital to a market.

To formalize these ideas, we study a dynamic model of arbitrage where informed arbitrageurs freely move between two markets, but are capital-constrained. One market is populated with short maturity assets (henceforth the “liquid market”), and the other market is populated with long maturity assets (the “illiquid market”). Arbitrageurs collect private information on assets, and then trade. We call the short maturity assets “liquid” and the long maturity assets “illiquid” because, to make profits on an asset with a long maturity, an arbitrageur who buys a mispriced asset has to wait either until the cash flows arrive, or the mispricing is corrected. In equilibrium, the two markets should offer the same expected profits – otherwise arbitrageurs will move across to the market with higher profits. This means that the illiquid market should have a higher mispricing wedge than the liquid market (to offset the opportunity cost of the longer maturity of investment). Lower price efficiency in the illiquid market in turn implies that more capital is trapped because arbitrageurs hold their positions for longer, since they choose to hold positions until the information is reflected in the price.

Overall efficiency of the markets is determined by how much arbitrage capital is active as opposed to trapped. In other words, efficiency depends on the pool of active capital
as a state variable. This matters because while the total stock of arbitrage capital may be large, the stock of active capital is smaller. The efficiency of a market may change over time as trapped capital is released from other markets. Furthermore, there is a delayed response in efficiency to changes such as shocks to liquidity trading.

Because active (as opposed to trapped) capital is a state variable of the economy, there is a feedback channel between liquidity and active capital. As more active arbitrage capital flows to the illiquid market, prices become more informative, so those who are trapped in the market become active again more quickly, and this in turn creates a larger capital flow to the illiquid market by increasing the overall size of active capital in the economy. Conversely if arbitrage capital flows to the liquid market, pricing in the illiquid market becomes less efficient, leaving locked-in investment in the illiquid market being trapped for a long time and further reducing available capital.

This feedback channel between active capital and liquidity can lead to multiple regimes in our model in which a threshold of active capital separates domains of attraction for liquidity. A virtuous cycle can lead to high price informativeness, in which arbitrage capital is redeployed at a faster rate (thus giving rise to higher liquidity). On the other hand, a vicious cycle may arise, with uninformative prices and low capital availability. We illustrate our model’s implications for liquidity and capital flow dynamics by studying shock responses to a Markov stationary system where (either good or bad) liquidity shocks randomly hit the illiquid market. With a small adverse shock to the illiquid market, market liquidity recovers on its own thanks to a virtuous cycle of liquidity. As more trapped arbitrageurs become active again, they quickly replenish market liquidity. On the other hand, a large adverse shock can trigger a vicious cycle of illiquidity with flight-to-liquidity where arbitrage capital flows to the liquid market; more and more arbitrageurs choose to invest in the liquid market over time because they expect further deterioration of future liquidity in the illiquid market. This leads to an illiquidity regime where there is a persistent overall lack of liquidity in the market. We call this “liquidity hysteresis” because a shock to the system moves the equilibrium to a different path even after the shock is removed.

We illustrate how the market can move in and out of this illiquidity regime with numerical simulations of the stochastic equilibrium of the model. A sequence of temporary bad shocks to the illiquid market can trigger a flight-to-liquidity resulting in the illiquidity regime, from which the market can recover only after a sequence of shocks in the opposite direction. Thus, the market features persistent (endogenous) liquidity
regimes even when (exogenous) liquidity trading is at its normal level most of the time. These results provide a theoretical explanation of slow-moving capital regarding why capital moves slowly, how fast (or slowly) it moves, and to which directions it moves. They further provide interesting empirical and policy implications.

It is worth stressing that our model does not rely on a “coordination failure” story of multiple equilibria driven by agents’ self-fulfilling beliefs about which equilibrium will arise. It is not the case that agents could simultaneously all change their minds and move to the other regime. The level of liquidity at any point in time is determined by the way arbitrage capital is distributed - specifically, by how much capital is free to invest. The model has a unique equilibrium time path given the state variable.

The paper is organized as follows. In Section 2, we discuss related literature. In Section 3, we describe the basic model. In Section 4, we solve for the equilibrium of the model. In Section 5, we study the model’s implications for liquidity and capital flow dynamics. In Section 6, we discuss empirical and regulatory implications of our model. In Section 7, we conclude.

2 Literature Review

There is an existing literature on asset pricing with imperfect information (using a noisy rational expectation equilibrium setting), and there is also a literature on asset pricing with limits to arbitrage (mostly in a full-information setting, exceptions are noted below). In this paper, we combine limits to arbitrage with a noisy REE model of asset prices.

The literature on noisy REE is traditionally based on a linear framework using the CARA-normal setting.\(^2\) Although the setup delivers mathematical tractability, further extension of the standard framework is limited because the linear structure is difficult to maintain. Thus, it is hard to use this framework to study several important applications.\(^3\) Imposing constraints on how much arbitrageurs can trade, as we do in this paper, makes their demands inherently non-linear but by assuming a suitable tractable framework, we are able to study the dynamics of our model. Since the linear framework of standard

\(^3\)Dow and Rahi (2003) study investment response of firms to stock prices (the feedback effect) by making special assumptions on hedgers’ endowment risk and on the firm’s production function (linking investment to output) to maintain linearity. Some papers are able to use a noisy REE framework without linearity, but this imposes a cost in reduced tractability (e.g., Fulghieri and Lukin (2001), Dow, Goldstein, and Guembel (2017)).
noisy REE is too simple to deliver rich dynamics, predictions of standard noisy REE models under multiple asset (or market) environments mostly concern correlations across fundamentals. In contrast, our model focuses on nonlinear dynamic shock responses by deviating from the standard setup featuring constrained informed traders. In addition, the non-linearity in our paper can be further amplified by history-dependent regime shift with intertemporal dependence of available capital. We make a technical contribution to the literature by characterizing stationary rational expectations equilibrium under capital constraint. This allows us to study slow moving capital and flight-to-liquidity using the dynamics of liquidity responses to temporary liquidity shocks.

A number of papers assume full information (as opposed to private information), but also study pricing with limited arbitrage. If assets are mispriced because of sentiment or market segmentation, limited arbitrage capital may be insufficient to fully eliminate mispricing, but will impose restrictions on price dislocation. Limited arbitrage capital could be due to cash-in-the-market-pricing (e.g., Allen and Gale (1994)), investors’ fund flow (e.g., Shleifer and Vishny (1997)), leverage constraints (e.g., Gromb and Vayanos (2002)), margin constraints (e.g., Brunnermeier and Pedersen (2009)).

There is evidence supporting the relevance of models of limited arbitrage capital. For example, Mitchell, Pedersen, and Pulvino (2007) show convertible bonds traded at prices well below the arbitrage price (relative to the stock and a straight bond) during an extended period when the convertible bond hedge funds (that normally arbitrage these assets) were short of capital, and multi-strategy hedge funds (that opportunistically redeploy capital to wherever returns are high) were slow to enter the market. Duffie (2010) suggests that institutional impediments such as search frictions, taxes, regulations, and market segmentation can slow down the flow of capital. Some of the evidence points to mispricing based on public information, while some points to private information (for example, Duffie (2010) suggests a suitable extension of the noisy REE model of He and Wang (1995) as a potential explanation for some episodes).

In the noisy REE approach, all agents observe prices and try to infer what the arbitrageurs are doing. In equilibrium, these uninformed agents who learn from price are the marginal buyers. On the other hand, in models without private information, the non-arbitrageurs’s demands are exogenous and the marginal buyers are the arbitrageurs. We focus on how the interaction between informed and uninformed capital determines liquidity in equilibrium. We build on some earlier papers that take a related approach, but this paper differs in that we study capital movement across multiple markets in a
dynamic setup. Dow and Gorton (1994) study a multiperiod model of a single asset market where the cost of carry interacts with short trading horizons of arbitrageurs to break down the chain of arbitrage. Dow and Han (2018) study a static noisy REE model with endogenous adverse selection in asset supply where the presence of informed capital facilitates movement of uninformed capital. This multiplier effect, whereby a small increase in informed capital induces a large increase in liquidity, contrasts with prevailing wisdom that informed traders are harmful to uninformed traders.

In the previous literature, a number of papers focus specifically on limited arbitrage in a dynamic setting. In such models, equilibrium expected returns of new investment are equalized. For example, the mispricing wedge for long duration assets is higher than for short duration assets, as discussed in Shleifer and Vishny (1990). In Kondor (2009), mispricing wedge varies across time because the expected payoff to an arbitrage trade at any point in time is equalized in equilibrium. In a setting with multiple assets, a shock in one market tends to create a spillover effect where shocks are transferred to other markets through the channel of wealth effects (e.g., Kyle and Xiong (2001)) or collateral constraints (e.g., Gromb and Vayanos (2017, Forthcoming)). The literature also studies the adjustment process of capital after the arrival of a shock. Duffie, Gărleanu and Pedersen (2005, 2007) find a gradual process of recovery after a shock to investors’ preference in search-based models.4 In Duffie and Strulovici (2012), the speed of capital flow is governed by the imbalance of capital as well as the level of intermediation competition across markets. In Gromb and Vayanos (Forthcoming), there is a phase with an immediate increase in the spread where arbitrageurs decrease their positions (thus, causing a contagion effect), followed by a recovery phase. Our paper differs from this line of literature because, as previously discussed, we use a private information setting where all investors learn from prices in noisy REE, generating our hysteresis result.

Finally, the literature studying dynamic information regimes such as Fajgelbaum, Schaal, and Taschereau-Dumouchel (2017) and Kurlat (2018) also features multiple information regimes which arise endogenously through intertemporal links between economic activity and information externalities.5 However, their models are driven by feedback

4Gărleanu and Pedersen (2007) further highlight a feedback loop between risk management and liquidity: tighter position limits reduce traders’ position and decrease liquidity, which further reduces traders’ positions and liquidity in steady state.

5Fajgelbaum, Schaal, and Taschereau-Dumouchel (2017) show that self-reinforcing force between low production activities and high macroeconomic uncertainty can create persistent recessions (or vice versa for booms). On the other hand, Kurlat (2018) show that self-reinforcing force between low trading activities and increased lemons problem can create a persistent lack of trades (or vice versa for a persistent facilitation of trades). In a regime with low investment/trading activity, little data is
channels purely based on how the lack of data on economic activity affects the beliefs of short-lived agents. By contrast, our model features long-lived agents and investment opportunities in financial markets so that we can connect the intertemporal feedback mechanism with limits to arbitrage through the channel of capital availability.

3 Setup

3.1 Financial Assets

We consider an infinite horizon discrete time economy with a continuum of long-lived agents. All agents have risk neutral preferences with a discount factor of β. There exists a risk-free asset in the economy whose return is equal to $r_f = \frac{1}{\beta} - 1$.

There is a continuum of financial securities, each of which is a claim to a single random liquidation value. There are two classes of securities that differ in their maturity: (i) “liquid assets” which are short-lived, and (ii) “illiquid assets” which are long-lived. At this point in the paper, calling the assets “liquid” and “illiquid” is just convenient terminology, since liquidity is an equilibrium property of an asset and we have not yet characterized the equilibrium. We will show later that this terminology is justified.

Illiquid assets are traded in market I, and liquid assets are traded in market L. It is important to note that they are not segmented markets because capital can freely move between the two markets without any friction. An asset in market L has a one period maturity; it pays its liquidation value in the period after issuance. On the other hand, an asset in market I has a random maturity; if it has not liquidated in a previous period, it pays its liquidation value with probability $q > 0$ in each period. At maturity, any asset i in market $h \in \{I, L\}$ pays v_i which is either good ($v_i = V^G_h$) or bad ($v_i = V^B_h$) with equal probability where $V^G_h > V^B_h$ for all $h \in \{I, L\}$.

We further assume that the generated and this discourages investment (Fajgelbaum, Schaal, and Tascereau-Dumouchel (2017)) or trading (Kurlat (2018)). In a regime with high investment/trading activity, more data is generated and this enables investment/trading. For simplicity, we assume that one of the class of assets pays every period (liquid assets). It would be possible, but considerably more complex, to analyze the case with a payoff probability less than one for all assets.

7The assumption that payoffs are high or low with equal probabilities simplifies the analysis by making profits from long and short positions symmetric.
present value of assets in both markets are identical. Asset payoffs are independent across assets and time.

As discussed later, asset prices either reveal their fundamental value completely, or not at all. The assets are called “fully-revealed” if prices reflect true fundamental value, and “unrevealed” if not. Payoffs can become known if the liquidation value is fully revealed by the trading process and asset prices. For simplicity, we assume that the mass of unrevealed assets is fixed to one unit in each market at any point of time. That is, new assets are issued to replace those which either realized payoffs, or become fully-revealed.

3.2 Participants

There is a unit mass of capital-constrained “arbitrageurs” who trade to generate speculative profits. We denote \mathcal{A} to be the set of arbitrageurs, and index each arbitrageur by $a \in \mathcal{A}$. Each arbitrageur can produce private information about the payoff of one asset in each period. All arbitrageurs who investigate an asset can perfectly predict its liquidation value. For tractability, we assume a simple form of capital constraint under which at any point in time, each arbitrageur can hold only one risky position of at most one unit (long or short) of unrevealed assets. We denote $x_i^a \in \{-1, 1\}$ to be the market order of arbitrageur a for asset i.

There is a continuum of competitive risk-neutral market makers who set prices to clear the market. There are also noise traders who trade for exogenous reasons such as liquidity needs. In each period, arbitrageurs and noise traders submit market orders to the market makers. Noise traders submit an aggregate order flow of ζ_i for each asset i which follows an independent uniform distribution on $[-z_h, z_h]$. The magnitude of z_h

8This is simply for mathematical convenience. Under this assumption, we have

$$\frac{\beta q}{1 - \beta(1 - q)} V_t^s = \beta V_L^s, \quad \text{for all } s \in \{G, B\},$$

where the LHS and the RHS are the present value of payoff of an asset with quality s in market I and L, respectively.

9One can consider that there exists a unit mass of firms which issue new securities to invest in new projects whenever their existing projects pay liquidation value or become fully-revealed. If we assume, instead, that unrevealed assets that become fully-revealed are not immediately replaced, the model would require an additional state variable and would be considerably more complex to analyze.

10Once they have acquired a position in an asset, they hold it until it liquidates or its value is revealed, and can then open a new position. They also have the option to decide to close out a position early (before learning it has realized profits), and opening another position next period.
captures the intensity of noise trading in market h in the current period. We assume that z_L is a constant whereas z_I follows a Markov process with N states $z_I^1, z_I^2, ..., z_I^N$ whose transition matrix between states is given by

$$
\Omega = \begin{bmatrix}
\omega_{11} & \cdots & \omega_{1N} \\
\vdots & \ddots & \vdots \\
\omega_{N1} & \cdots & \omega_{NN}
\end{bmatrix}
$$

Note that z_I is the only exogenous shock to the economy in our model at the aggregate level, and its realization is publicly observable to all the agents in the economy. We further assume that there are enough noise trading activities in the market to prevent the price for every asset from being fully-revealing; the support of aggregate noise trading is strictly greater than that of arbitrageurs’ aggregate order flow: $z_I^n + z_L > 1$ for any n. Finally, we assume that all the realizations of noise trading intensity and asset payoff are jointly independent.

3.3 Timing of Events

The timing of events in each period is as follows. At the beginning of the period, asset payoffs realize and they are distributed among claim holders. Next, new assets are issued, and noise trading intensity z_I realizes. After these events, arbitrageurs collect private information on unrevealed assets, then submit orders to market makers together with noise traders. At the end of the period, market makers post asset prices and trades are finalized.

4 Equilibrium

4.1 Active Arbitrage Capital

In each period, an arbitrageur is in either of two situations: “active” or “locked-in”. An active arbitrageur does not have an existing position in unrevealed assets, thus has capital available for new investment whereas a locked-in arbitrageur already has a position in unrevealed assets, thus, does not have capital available for new investment until this position is liquidated. We denote ξ to be the mass of active arbitrageurs, and π to be the mass of locked-in arbitrageurs; thus $\xi + \pi = 1$.
Each active arbitrageur chooses to hold a new position in either market I or L. δ denotes the portion of those choosing to trade assets in market I (so $1 - \delta$ is the portion of those choosing to trade assets in market L). Each locked-in arbitrageur chooses whether to hold on to the position one more period or to close it out in the current period. η denotes the portion of those choosing to close out early (so $1 - \eta$ is the portion of those choosing to hold on to the position). Note that η is included for completeness, but we show that in equilibrium in our model early liquidation is never optimal so that η is zero.

Throughout the paper we use the dot notation to denote the value of any variable in the subsequent period. For example, $\dot{\xi}$ and $\dot{\pi}$ denote the value of ξ and π in the subsequent period, respectively. We define the vector of state variables to be $\theta \equiv (\xi, z_I)$, which is a pair of the current level of active capital and the realization of noise trading intensity.

4.2 Asset Prices

Asset prices are set by the market makers given the aggregate order flows from informed arbitrageurs and noise traders as in the standard Kyle (1985) model. Because market makers are risk neutral, they set the price equal to the expected discounted liquidation value conditional on the aggregate order flow:

$$P_i = \mathbb{E} \left[\beta^n v_i | \theta, X_i \right],$$

where τ_i is the (random) maturity of asset i, and $X_i = \int_{a \in A} x_i^a da + \zeta_i$ is the aggregate order flow for asset i. Knowledge of θ allows market makers to make inference about informed trading activity from the order flow.

Prices are either fully-revealing or non-revealing due to the uniformly-distributed noise trading.\footnote{For technical details, see the proof of Lemma 1 in Appendix A.} If the order flow is large (in absolute value, buy or sell) then it can only result from both informed arbitrageurs and noise traders trading in the same direction, so it is fully revealing. But if the order flow is smaller than this in absolute value, then it could have resulted from either informed traders buying and uninformed arbitrageurs selling, or vice versa. Because arbitrageurs are equally likely to buy and sell, noise trading is uniformly distributed, and the value of the asset is equally likely to be high or low, these two possibilities are equally likely and therefore the trading volume is...
uninformative. We denote P^G and P^B to be the fully-revealing price for good and bad quality, respectively. We also denote P^0 to be the non-revealing price.\footnote{Because the present values are identical across market I and L, prices given the same type of public information are also identical across the two markets:}

We denote P^0 to be the non-revealing price. We denote the probability of information revelation for asset i to be λ_i. As it is shown later in the paper, λ_i plays a dual role of capturing both “price efficiency” (which is inversely related to the degree of mispricing) and “liquidity” (which is inversely related to the expectation of investment duration) of asset i. For notational convenience, we call λ_i as “price efficiency” of asset i henceforth.

4.3 Laws of Motion

We focus on market-wise symmetric rational expectations equilibria under which price efficiency is symmetric across all the assets in each market, i.e., the measure of price efficiency λ_i is equal to λ_I for any asset i in market I, and it is equal to λ_L for any asset i in market I.

The laws of motion of the mass of each group of arbitrageurs are given by

\begin{align*}
\dot{\xi} &= (1 - \delta)\xi + (\delta + \pi)(q + (1 - q)\lambda_I) + \pi\eta(1 - q)(1 - \lambda_I); \quad (2) \\
\dot{\pi} &= (\delta\xi + \pi(1 - \eta))(1 - q)(1 - \lambda_I). \quad (3)
\end{align*}

The first equation describes the evolution of active capital ξ. The RHS of Eq. (2) is the sum of three terms. The first term is the mass of arbitrageurs invested in market L in the current period; this mass becomes entirely active in the subsequent period as the L assets are short-lived. The second and third terms are the mass of arbitrageurs invested in market I in the current period (i.e., $\delta\xi$ new arbitrageurs from the current period and π arbitrageurs locked-in from the previous period) that become available for new investment in the subsequent period. This happens either if the asset pays off or if the market price fully reveals the asset value (in which case the position becomes risk-free, thus relaxing the portfolio constraint), or if locked-in arbitrageurs close out the position early (it turns out they choose not to do this in equilibrium). Overall, a
fraction $q + (1 - q)\lambda_I$ of the arbitrageurs invested in the I market in the current period becomes free for new investment in the subsequent period because of asset paying off or information revelation through prices. A fraction $\eta (1 - q) (1 - \lambda_I)$ of locked-in arbitrageurs from the previous period becomes active next period because of the decision to close out early. Note that Eq. (3) is redundant given that $\xi + \pi = 1$.

4.4 Dynamic Arbitrage

Given the current state θ, we denote $J_I(\theta)$ and $J_L(\theta)$ to be the value of investing in a new position in market I and market L, respectively. Because any active arbitrageur can choose between the two markets, the value of being active given θ equals

$$
J_I(\theta) = \max (J_I(\theta), J_L(\theta)).
$$

(4)

Associated with these value functions is a capital allocation function $\delta(\theta)$ for active arbitrageurs such that

$$
\delta(\theta) \in \begin{cases}
0, & \text{if } J_I(\theta) < J_L(\theta); \\
1, & \text{if } J_I(\theta) > J_L(\theta); \\
[0,1], & \text{otherwise},
\end{cases}
$$

(5)

where capital allocation $\delta(\theta)$ strikes the balance between the value of investing in market I and L if $J_I(\theta) = J_L(\theta)$.

In case an arbitrageur chooses market I, he becomes locked in until it liquidates or its value is revealed (we call it locked in because although he has the option to close out early, arbitrageurs choose not to in equilibrium). We denote $J_I(\theta)$ to be the associated value function given θ. Using the symmetry of trading profits between long and short positions, we can obtain $J_I(\theta)$ and $J_L(\theta)$, whose detailed derivations are relegated to Appendix A, as follows:

$$
J_I(\theta) = - (\lambda_I P^G + (1 - \lambda_I) P^0) + \beta U(\theta);
$$

(6)

$$
J_L(\theta) = - (\lambda_L P^G + (1 - \lambda_L) P^0) + \beta \left[V_L^G + \mathbb{E}[J_f(\hat{\theta})|\theta] \right],
$$

(7)

where

$$
U(\theta) \equiv q V_I^G + (1 - q)\lambda_I P^G + (1 - (1 - \lambda_I)(1 - q))\mathbb{E}[J_f(\hat{\theta})|\theta] + (1 - \lambda_I)(1 - q)\mathbb{E}[J_l(\hat{\theta})|\theta].
$$
Because any locked-in arbitrageur can choose between exiting the position or staying with it, the value function of a locked-in arbitrageur given θ equals

$$J_l(\theta) = \max (J_E(\theta), J_S(\theta)),$$

(8)

where $J_E(\theta)$ is the value of exiting the position and becoming active in the next period, and $J_S(\theta)$ is the value of holding the position one more period:

$$J_E(\theta) = \lambda_I P^G + (1 - \lambda_I) P^0 + \beta E[J_f(\hat{\theta})|\theta];$$

(9)

$$J_S(\theta) = \beta U(\theta).$$

(10)

Similarly as in $\delta(\theta)$, associated with $J_l(\theta)$ is an exit function $\eta(\theta)$ for locked-in arbitrageurs such that

$$\eta(\theta) \in \begin{cases}
{0}, & \text{if } J_E(\theta) < J_S(\theta); \\
{1}, & \text{if } J_E(\theta) > J_S(\theta); \\
[0,1], & \text{otherwise}.
\end{cases}$$

(11)

4.5 Stationary Equilibrium

We define equilibrium in a standard manner for stationary equilibrium with stochastic shocks:13

Definition 1 A stationary equilibrium is a collection of value functions $J_f, J_l, J_I, J_L, J_E, J_S$, capital allocation function δ, exit function η, price efficiency measures λ_I, λ_L, law of motion for the mass of active arbitrageurs ξ such that

1. $J_f, J_l, J_I, J_L, J_E, J_S, \delta, \eta$ satisfy Eqs. (4)-(11).

2. λ_I and λ_L correspond to the probability that prices, which are determined by Eq. (1), reveal true asset values in market I and L, respectively.

3. The law of motion for ξ satisfies Eq. (2).

13As is standard, the equilibrium is called “stationary” because the value functions and the capital flow function are time invariant; however in general the endogenous variables will change over time. Note that “stationary” is not the same as the “steady states” which we describe in Section 5.2. While an equilibrium of our model describes the evolution of the entire system over time as a function of the state variables, the system may over time end up with the endogenous variables converging close to certain values - these are called steady states.
An equilibrium is said to be interior if $J_I(\theta) = J_L(\theta)$, so that active arbitrageurs are indifferent between investing in market I and L. In an interior equilibrium, Eqs. (4),(6),(9) and (10) imply that early liquidation is strictly dominated by holding the position, i.e., $J_E(\theta) < J_S(\theta)$ (hence $J_I(\theta) = J_S(\theta)$), of which the proof is relegated to Appendix A. With early liquidation, the position is closed out and then a new position is opened. But the expected proceeds are offset by the expected cost of acquiring the new position afterwards. Consequently, locked-in arbitrageurs stay inactive until either the price fully reveals the asset value or the asset pays off (i.e., η is equal to zero in an interior equilibrium).\footnote{14Even if arbitrageurs are allowed to open a new risky position simultaneously with closing another one, early liquidation does not dominate staying with the existing position. Furthermore, introducing an arbitrarily small transaction or information acquisition cost would make early liquidation suboptimal.}

We can now characterize price efficiency in financial markets as follows:

Lemma 1 In an interior equilibrium, the probability of information revelation in market I equals

$$\lambda_I = \frac{\delta \xi}{z_I},$$

and the probability of information revelation in market L equals

$$\lambda_L = \frac{(1 - \delta) \xi}{z_L}.$$

Proof. See Appendix. \(\blacksquare\)

As Lemma 1 shows, for a fixed capital allocation δ, equilibrium price efficiency in market $h \in \{I, L\}$ increases in the amount of informed capital ξ and decreases in the intensity of noise trading z_h. This property is intuitive because ξ and z_h have opposite effects on the informativeness of order flows in market h. Of course, capital allocation δ is a function of the state θ, so the overall impact of a shock to z_I on market price efficiency can only be determined in equilibrium, to which we turn next.

We can find conditions which are sufficient to ensure existence and uniqueness of equilibrium as well as monotonicity of equilibrium price efficiency in the amount of active capital as well as in the intensity of noise trading. The conditions provided in the appendix are rather lengthy but straightforward. The conditions provided are satisfied by a wide range of parameter values, including all of our numerical simulations.\footnote{15Note that in general it is difficult to show existence and uniqueness of stationary recursive com-}
Proposition 1 Under the conditions stated in Appendix B, there exists a unique stationary interior equilibrium in which price efficiency in the illiquid market λ_I is monotone increasing in active capital ξ. Furthermore, λ_I is monotone decreasing in noise trading intensity z_I.

Proof. See Appendix. ■

Proposition 1 shows that price efficiency λ_I decreases in noise trading intensity z_I when capital allocation δ is determined endogenously. Such reduction in λ_I slows down the rate at which the current mass of locked-in capital is released, which reduces the mass of active capital in subsequent periods. This effect of a current shock to z_I further impairs future price efficiency and therefore increases the expected duration of an investment in market I. This is in contrast to the contemporaneous effect of a reduction in λ_I which makes market I more attractive to informed arbitrageurs who can benefit from price inefficiency.

Note that the dynamics of price efficiency in response to a stochastic shock to z_I is solely determined by the current level of state variables ξ and z_I due to its stationary nature. In the next section, we characterize liquidity hysteresis (or regime shifts) where the dynamics of price efficiency and its long-run evolutionary path changes as a result of crossing certain endogenous thresholds of ξ.

5 Implications

5.1 Equilibrium Price Efficiency across Two Markets

We start with a preliminary result for the cross-sectional and dynamic properties of equilibrium price efficiency and liquidity.

Lemma 2 In an interior equilibrium price efficiency satisfies

$$\lambda_L - \lambda_I = \beta (1 - q) (1 - \lambda_I) \left(1 - E[\dot{\lambda}_I|\theta]\right).$$

(14)
Proof. See Appendix.

The LHS of Eq. (14) is the difference in probabilities of trading at fully-revealing price in market L over market I in the current period. That is, this difference reflects how more likely an arbitrageur is to make a speculative profit when trading in market I compared to trading in market L in the current period.

The RHS of Eq. (14) is the probability $(1-q)(1-\lambda_I)$ of remaining locked in a trade in market I, weighted by the discount factor β, and multiplied by expected future illiquidity in market I, captured by the term $1 - \mathbb{E}[\dot{\lambda}_I|\theta]$. By trading in market I, a speculator gives up the certainty of being able to re-trade in the next period; for arbitrageurs to be indifferent between the two markets, assets in market I must compensate this opportunity cost with a higher probability of trading at non-revealing price in the current period.

5.2 Liquidity Hysteresis

Our model can display liquidity hysteresis, in other words a transitory shock can move the system to a different level of liquidity. In a dynamic model, “equilibrium” tells us the time path of liquidity as a function of the initial level of active capital, the initial level of noise trade, and the shocks that happen over time. Hence, strictly speaking there is no “equilibrium level” of liquidity, which is a concept from a static model. However, in equilibrium, and in the absence of shocks the level of liquidity will converge to a “steady state value.” This is intuitively similar to the equilibrium level of a static model. Hysteresis means that there are multiple steady states. To aid intuition, we now describe these steady state values of liquidity for a simple version of the model without shocks; we will revert to studying the fully stochastic model in subsequent sections.

We start by considering the special case of the model under the assumption that noise trading intensity is fixed at a constant level, i.e., τ_t is a constant in every period. We can then define the steady state equilibria of the model. An equilibrium maps the current period’s state variable ξ to the next period’s state variable $\dot{\xi}$, and a steady state is a fixed point of that mapping. Also (as we show below) the equilibrium law of motion has the property that the endogenous state variable tends to converge to the steady state value. The argument for this special case can be carried over to the general case with stochastic noise trading intensity, but in the case without shocks we can study the steady state analytically. In the next subsection we will add small shocks and show
that, when the noise trading intensity is at the “normal” level (no shocks for a while) the state variable will converge close to a stable point.16

We denote ξ^* to be the steady-state-level mass of active arbitrageurs, and also denote λ_L^* and λ_I^* to be the steady-state-level price efficiency in market L and I, respectively. In steady state, the indifference condition in Eq. (14) can be expressed in terms of λ_L and λ_I as follows:

$$\lambda_L^* - \lambda_I^* = \beta(1 - q)(1 - \lambda_I^*)^2. \quad (15)$$

Eq. (15) reveals that price efficiency plays a dual role. On the one hand, price efficiency determines the profitability of investment opportunities: higher λ_I^* (and also λ_L^*) decreases the probability of acquiring a new position at non-revealing prices. We term this the “first lambda” effect of price efficiency on speculative profits. On the other hand, price efficiency determines the maturity of investment opportunities in long lived assets: higher λ_I^* increases the likelihood of closing out a position with profits earlier. We term this the “second lambda” effect of price efficiency on speculative profits, which is closely related to the definition of liquidity in our paper; with higher lambda an arbitrageur waits less before the arbitrageur’s private information is incorporated in the price, hence can cash in sooner at full value.17

Substituting Eqs. (12) and (13) into Eq. (15) yields the following steady state relationship between δ^* and ξ^* implied by arbitrageurs’ indifference condition:

$$\frac{z_L - (1 - \delta^*)\xi^*}{z_L} = \left(\frac{z_I - \delta^*\xi^*}{z_I}\right) \left[1 - \beta(1 - q)\left(\frac{z_I - \delta^*\xi^*}{z_I}\right)^2\right]. \quad (IC)$$

For a fixed δ^*, a decrease in active arbitrage capital ξ^* decreases price efficiency in both markets. This has a (positive) first lambda effect on speculative profits in both markets but a (negative) second lambda effect in market I, which becomes relatively less attractive. Hence, δ^* must decrease to restore arbitrageurs’ indifference condition across markets.18

16In the literatures on dynamic macroeconomics, and dynamic systems in science, the “steady state equilibrium” of the version of the model without shocks is also called “steady state”, “deterministic steady state,” “stable point,” “asymptotically stable point”, and simply “fixed point”. In the version of the model with shocks it is called “stochastic steady state”, “risky steady state”, “stable point” “asymptotically stable point” and “fixed point”. We will call them “steady state equilibrium” or simply “steady state” for the deterministic version and “stable point” in either version. We use “regime” to refer to the stable point the economy will converge to (in the absence of any further shocks).

17Note that our λ is a price efficiency measure. The variable lambda in Kyle (1985) is not directly comparable because in our model λ does not measure price impact.

18Lemma C.4 in Appendix C provides the sufficient condition for the net benefit of trading in market
An interior steady state equilibrium is found at the intersection of the indifference condition (IC) curve and the following capital movement (CM) curve obtained from the law of motion for active arbitrage capital in Eq. (2) together with Eq. (12) for λ^*_I:

$$\xi^* = (1 - \delta^*)\xi^* + (\delta^*\xi^* + 1 - \xi^*) \left(q + (1 - q)\frac{\delta^*\xi^*}{z_I} \right).$$ \hspace{1cm} \text{(CM)}$$

Note that an increase in the fraction of active arbitrageurs that invest in market I has two opposing effects. On the one hand, as δ^* increases, more arbitrageurs remain trapped in market I. This tends to reduce steady state value for active capital ξ^*. On the other hand, an increase in δ^* improves price efficiency in market I, which increases the rate at which arbitrage capital is released from this market. This feedback effect tends to increase ξ^*. Which effect dominates depends on the model parameters. The first effect dominates in panels (a)-(c) of Figure 1 for δ small, while the second effect dominates for δ large. Intuitively, increasing the rate at which trapped capital is released has a bigger effect when the mass of arbitrageurs that are invested in market I is larger.

We can show existence of the steady state equilibrium:

Proposition 2 (i) There are either one or two stable steady state equilibria. (ii) There exist constants $0 < q < \bar{q} < 1$ and $0 < \beta < \bar{\beta} < 1$ such that the steady state equilibrium is unique if $q > \bar{q}$ and/or if $\beta < \bar{\beta}$ and there are multiple steady state equilibria if $q < \bar{q}$ and $\beta > \bar{\beta}$ and $1 > \frac{3}{4}z_L + z_I$.

Proof. See Appendix. ■

The sufficient conditions for multiple steady states in the proposition are intuitive. Because the feedback between price efficiency and active capital is across periods, its effect is stronger when investors care more about the future and when the duration of an investment in market I is mainly determined by future informed trading.

Figure 1 illustrates the steady state equilibrium values for ξ^* and δ^* determined by the intersection of the IC and CM curves. The steady state is unique in panels (a) and (b), whereas there are three steady states in panel (c), of which two are stable and one (for intermediate values of ξ^* and δ^*) is unstable. Panel (d) illustrates the region of noise trading intensity in the illiquid market where there is uniqueness or multiplicity.

I to decrease as δ increases, for a fixed value of ξ. 19
Figure 1: Steady State Equilibrium. (non-stochastic model) Parameter values common across all panels: \(q = .002, z^L = .2, \beta = .9 \). Values for \(z_I \) in the unique steady state equilibrium in panel (a) is \(z_I = 0.83 \) and in panel (b) is \(z_I = 0.9 \); in the multiple steady state equilibria in panel (c): \(z_I = 0.855 \).

5.3 Shock Response and Liquidity Regimes

Now, we return to analysis of the system in the general case of stochastic shocks, and consider the response to a stochastic shock to noise trading intensity in market \(I \), whereby \(z_I \) deviates from its normal level to a different value for a short period of time; agents anticipate the possibility that a change in noise trading in market \(I \) might occur on the equilibrium path.

To shed light on the response to this temporary liquidity shock, we rearrange the
indifference condition in Eq. (14) as follows:

$$1 - \lambda_L = (1 - \lambda_I)(1 - \beta(1 - q)(1 - E[\dot{\lambda}_I])).$$ \hspace{1cm} (16)

Consider a shock whereby \(z_I\) increases temporarily to a higher value. To aid intuition, assume \(\delta\) does not react to the shock, and consider the effect of the shock to both sides of Eq. (16). By Eq. (13), the LHS of Eq. (16) is unaffected, while the RHS is affected via two channels. By Eq. (12), \(\lambda_I\) drops, making investment in market \(L\) more attractive (the first lambda effect). But, by Eq. (2), lower \(\lambda_I\) implies that \(\dot{\xi}\) also drops because current locked-in capital is released at a lower rate. This decreases \(\dot{\lambda}_I\) and implies that market \(I\) is more illiquid in the subsequent period (the second lambda effect). Arbitrageurs who consider investing in market \(I\) must trade off the larger probability of a non-revealing price in the current period against the longer expected duration of the investment and therefore the larger opportunity cost of being inactive in future periods. When this second effect is sufficiently strong, a larger fraction of active arbitrageurs flows from market \(I\) to market \(L\). Anticipating such a trade-off arising from the first and the second lambda effect, capital allocation \(\delta\) endogenously readjusts given the arrival of a shock in equilibrium.

![Image of graphs](image.png)

Figure 2: Regimes and Evolution of the Mass of Active Capital (\(\xi\)). (stochastic model) Panel (a): transition curves for \(\xi\) for each of three possible contemporaneous values of \(z_I \in \{ z_{I}^{\text{low}}, z_{I}^{\text{normal}}, z_{I}^{\text{high}} \}; \) circles correspond to stable points in the transition curve for \(z_I = z_{I}^{\text{normal}}\). Panel (b): evolutionary paths of \(\xi\) under various initial values and fixing \(z_I = z_{I}^{\text{normal}}\).
Figure 2 illustrates regimes and dynamics of the mass of active capital ξ. Panel (a) plots the transition curve for ξ which maps the current state $\theta = (\xi, z_I)$ into next period active capital $\dot{\xi}$, that is,

$$
\dot{\xi} = [1 - \delta(\theta)]\xi + (\delta(\theta)\xi + 1 - \xi) \left(q + (1 - q) \frac{\delta(\theta)\xi}{z_I} \right).
$$

An intersection with the 45-degree line is a fixed point of the transition curve such that $\dot{\xi} = \xi$. The intermediate (solid) curve displays three fixed points, with the lowest and the highest being stable and the middle one unstable. The middle fixed point corresponds to the threshold value of ξ which separates the two regions of attraction for ξ.\(^{19}\)

Panel (b) of Figure 2 illustrates these regions of attraction by plotting the evolution, as implied by the intermediate curve in panel (a), of the mass of active capital for different initial values. The value of ξ converges to the highest (lowest) stable point for initial values of ξ above (below) the threshold value. Hence, if the value of active capital ξ is close to a stable point, it converges back to it after experiencing a small deviation due to shocks. However, once ξ crosses the threshold value, then ξ is set on a different trajectory and converges to a different stable point. This situation describes a regime shift in active capital and liquidity in the economy.

Such a regime shift is further illustrated in panel (a) of Figure 2. The arrows show the effects of shocks to z_I from its normal level starting from the stable point with high liquidity (or large mass of active capital). A temporary increase in z_I pushes ξ downward in the next periods, but such shock is absorbed in subsequent periods if z_I goes back to its normal state. However, the figure illustrates that if the higher level of noise trading persists for more periods (three periods for the parameters in the figure), then ξ crosses the threshold value. After this happens, ξ is set on a downward trajectory toward the stable point characterized by low liquidity even if noise trading intensity z_I reverts back to its normal state. The mass of active capital ξ can go back from this low level to the original high level only after a sequence of favorable shocks to z_I that push ξ above the critical threshold which would put the dynamics of active capital on the upward trajectory. Our numerical simulation in the next subsection shows an example of such transitions across liquidity regimes.

\(^{19}\)In case of a deterministic model described in Section 5.2, this would be the value of ξ corresponding to the unstable equilibrium in panel (c) of Figure 1 (the middle intersection between the IC and CM curves).
5.4 Numerical Examples

In this subsection, we provide some numerical examples of dynamic responses to stochastic shocks to noise trading intensity to illustrate the feedback channel between price efficiency and active capital. In the numerical examples, we consider a temporary deviation of z_I from its normal level to a higher level, after which z_I reverts back to its normal level (to be clear, all agents in the model understand the Markov process governing changes in z_I but the “normal” level is so called because it is more likely than the higher or lower level). Our examples illustrate how temporary shocks can create long-lasting effects in both markets by triggering flight-to-liquidity and causing liquidity hysteresis.

Figures 3 shows responses to shocks to z_I with two different durations. The shock in the current period ($t = 0$) leads to a drop in price efficiency in market I and therefore a decrease in ξ from its initial value starting from the subsequent period. In cases of both short and long duration shocks, arbitrageurs react by flowing out of market I (i.e., δ decreases) as they anticipate lower liquidity and a larger opportunity cost of being locked in this market going forward. Therefore, market I suffers further decreases in price efficiency, thereby triggering further decreases in ξ until the shock is removed.\(^{20}\) In the case of a short duration shock, market illiquidity is gradually restored once the shock is removed. This replenishes active capital and the economy converges back to the initial stable point. By contrast, the response to a longer duration shock, which drags the level of active capital below the critical threshold, has different dynamics due to liquidity hysteresis. Instead of reverting back, the flow of arbitrageurs out of market I and into market L persists after the shock is removed. This “flight-to-liquidity” continues as the economy transitions from the liquid regime (or the regime with high price efficiency) to the illiquidity regime (or the regime with low price efficiency) that features low values for δ and ξ.

Figure 4 shows the responses to shocks to z_I at two different initial levels of active capital ξ (but with an identical duration). As in Figures 3, active capital and price efficiency in market I decrease as a result of shocks and the ensuing capital flow out of market I. In addition, Figure 4 shows how the resilience or fragility of the economy depends on the current level of active capital. Intuitively, a reduction in price efficiency in market I has a stronger feedback effect on future active capital when the mass of arbitrageurs flowing out of market I increases.

\(^{20}\)Price efficiency in market L, however, may increase or decrease depending on the relative magnitudes of two confounding effects: price efficiency in market L tends to increase as arbitrageurs flow into this market, but the overall reduction in active capital has the opposite effect. The latter effect dominates after the short duration shock, while the former effect dominates after the long duration shock.
Figure 3: Transitional Dynamics for a Temporary Shock under Different Shock Durations. A short duration shock (duration of 10 periods, solid line) and a long duration shock (duration of 20 periods, dashed line) is given at $t = 0$. Parameter values: $q = .002$, $z_I \in \{.805, .855, .895\}$, $z_L = .2$, $\beta = .9$. Transition probabilities are given by $\omega_{11} = .4$, $\omega_{12} = .6$, $\omega_{13} = 0$, $\omega_{21} = .12$, $\omega_{22} = .78$, $\omega_{23} = .1$, $\omega_{31} = 0$, $\omega_{32} = .58$, $\omega_{33} = .42$ where states 1, 2 and 3 correspond to low, normal and high level of z_I, respectively.

locked in arbitrageurs is relatively high (equivalently, when active capital is relatively low). As shown in Panel (a), when the initial level of active capital is high relative to the critical threshold, the economy is resilient and the level of ξ reverts back to the stable point with high information. On the other hand, with relatively small initial amount active capital, the economy is fragile and the outflow of arbitrageurs out of market I persists after the shock is removed as active capital crosses the critical threshold and the economy transitions to the illiquidity regime that features low values for δ and ξ.

24
Figure 4: **Transitional Dynamics for a Temporary Shock under Different Levels of the Initial Active Capital.** A short duration shock (duration of 10 periods) is given at $t = 0$ with a higher active capital level (initial value of $\xi = .62$, solid line) and a lower active capital level (initial value of $\xi = .42$, dashed line). Parameter values: $q = .002, z_I \in \{.805, .855, .895\}, z_L = .2, \beta = .9$. Transition probabilities are given by $\omega_{11} = .4, \omega_{12} = .6, \omega_{13} = 0, \omega_{21} = .12, \omega_{22} = .78, \omega_{23} = .1, \omega_{31} = 0, \omega_{32} = .58, \omega_{33} = .42$ where states 1, 2 and 3 correspond to low, normal and high level of z_I, respectively.

With the market experiencing the illiquidity regimes in both examples (as illustrated in Figure 3 and Figure 4), price efficiency in market I deteriorates unambiguously in the aftermath of the shock because of two effects: (i) reduction in ξ which is the stock of active capital, and (ii) reduction in δ which is the flow of active capital to market I. On the other hand, the two effects move in opposite directions in case of λ_L in the aftermath of the shock. The shock in market I leads to contagion to market L by reducing the capital stock ξ, but also leads to flight-to-liquidity by increasing the capital
flow $1 - \delta$ to market L. Therefore, the direction of change in λ_L generally depends on the magnitude of the two effects. In these numerical examples, the flow effect (increase in $1 - \delta$) dominates the stock effect (decrease in ξ), thus, increasing price efficiency in market L instead of decreasing it. However, it is possible to find examples where the shock causes liquidity in both markets to deteriorate.

![Graphs](image)

(a) Active capital
(b) Investment in market I

(c) Price efficiency
(d) Noise trading intensity in market I

Figure 5: **Simulation.** Parameter values: $q = .002, z_I \in \{.805, .855, .895\}, z_L = .2, \beta = .9$. Transition probabilities are given by $\omega_{11} = .4, \omega_{12} = .6, \omega_{13} = 0, \omega_{21} = .12, \omega_{22} = .78, \omega_{23} = .1, \omega_{31} = 0, \omega_{32} = .58, \omega_{33} = .42$ where states 1, 2 and 3 correspond to low, normal and high level of z_I, respectively.

In equilibrium, the market can move in and out of the illiquidity regime. We illustrate this in Figure 5, which shows a simulation of the stochastic model when there is a “normal” and persistent level for noise trading intensity in market I but with small probability noise trading intensity can jump up or down from its normal level, and
these shocks are not persistent. The occurrence of temporary shocks does not have persistent effects in the first portion of the simulation. It is only when bad shocks occur for several consecutive periods (around \(t = 250 \) in the figure) that there is a sustained flight-to-liquidity and the economy enters a different regime. In the figure, the initial high liquidity regime for market \(I \) (white area) is followed by a low liquidity regime for market \(I \) (shaded area) after the occurrence of a sequence of bad shocks in this market. The economy is therefore trapped in this regime for many periods even though noise trading is in its normal state most of the time during these periods. It takes a sequence of good shocks in market \(I \) for the economy to exit this illiquidity regime and revert back to the high liquidity regime for market \(I \). Along the transition, capital flows to market \(I \) and improves liquidity in this market; as a result locked-in capital is released at a faster rate, further increasing liquidity.

6 Discussion

In this section, we discuss the empirical implications of our model.

Professional traders have a saying that they want to “buy in an inefficient market, sell in an efficient market.” This idea is linked to the dual role of price efficiency in our model: price efficiency determines the mispricing wedge which affects the profitability of investment opportunities (“first lambda effect”) but also determines the maturity of new investment (“second lambda effect”). The second lambda measures liquidity in the sense that it determines the speed at which arbitrageurs can close out their positions at a profit because subsequent trades by other arbitrageurs make prices efficient.

In equilibrium, the two effects are bound together as shown in Eq. (14); the cross-sectional difference in mispricing wedges today is related to the expectation of liquidity in the future. To see this more clearly, we can recursively substitute Eq. (14) into itself and obtain the following equation:

\[
\lambda_{L,t} - \lambda_{I,t} = E \left[\sum_{\tau=1}^{\infty} \beta^{\tau} \prod_{j=0}^{\tau-1} (1 - \lambda_{I,t+j}) (1 - \lambda_{L,t+j}) \right], \tag{17}
\]

where \(\lambda_{h,t} \) is price efficiency in market \(h \) at time \(t \). The LHS of Eq. (17) captures the difference in mispricing across markets in the current period, and the RHS captures the opportunity cost arising from future illiquidity in market \(I \), which is the expected
loss in future speculative profits because of trapped capital.\footnote{Observe that $\left(1 - q\right)^\tau \left(1 - \lambda_{I,t}\right) ... \left(1 - \lambda_{I,t+\tau-1}\right)$ is the probability that an arbitrageur's capital invested in market I is not available for a new trade in period $t + \tau$, and $\left(1 - \lambda_{L,t+\tau}\right)$ is the probability of realizing a speculative profit in $t + \tau$ in market L.} Hence, a large difference in mispricing predicts illiquidity, as well as slow convergence of price to fundamental in the future. Furthermore, on the impact of a liquidity shock, the current mispricing wedge in market I should widen relative to that of in market L to compensate for the potentially-foregone trading opportunities in future periods, and this response becomes particularly persistent and magnified if it involves a regime shift (liquidity hysteresis).

Our model implies that the mass of active capital is the key state variable that determines market liquidity. Although active capital itself is difficult to measure, the mispricing wedge (as a proxy for price efficiency) can be measured to some extent.\footnote{There are various empirical price efficiency/mispricing measures in the literature. For example, there are measures based on anomalies in terms of standard factor models (e.g., Stambaugh and Yuan (2017)), index future basis (e.g., Roll, Schwartz, and Subrahmanyam (2007)), non-random walk component in price (e.g., Hasbrouck (1993)), price delay (e.g., Hou and Moskowitz (2005), Saffi and Sigurdsson (2011)), return predictability from order imbalances (e.g., Chordia, Roll, and Subrahmanyam (2005)), price deviation from valuation models (e.g., Doukas, Kim, and Pantzaslis (2010)), and violations of parities (e.g., Rosenthal and Young (1990), Lee, Shleifer, and Thaler (1991)). Some of these measures may be related to mispricing in terms of private or public information although our model is about private information.} Our theory predicts that empirical measures of price efficiency can be used as a proxy for the actual state variable—the mass of active capital. In the following, we discuss some empirical implications of this idea.

There are several well-known episodes of liquidity crises such as the 1987 stock market crash, the 1998 Long-Term Capital Management crisis, and the subprime mortgage crisis of 2007-2009. These episodes are often characterized by a delayed recovery of liquidity in the aftermath (e.g., Mitchell, Pedersen, and Pulvino (2007), Coval and Stafford (2007)). Existing literature often explains those liquidity crises as a result of shock amplifications which impair capital itself.\footnote{For example, capital becomes increasingly less available through the channel of tightened collateral (e.g., Gromb and Vayanos (2002)) or margin constraints (e.g., Brunnermeier and Pedersen (2009)).} In our model, a liquidity crisis can happen even in the absence of any reduction in arbitrage capital itself—what matters is a reduction in active arbitrage capital.

Our simulations illustrate that all it takes to create a full-blown liquidity crisis is merely a transient shock which causes arbitrage capital to get redeployed more slowly. While market liquidity recovers rather quickly after a small shock, a sizable shock (or a sequence of small shocks) can trigger a change in regime and have long-lasting impact. Traders may choose to redeploy capital to intrinsically liquid markets (market L in our
model) in response to a shock. At the core of this argument lies the multiplicity of steady state equilibria (or stable fixed points); a sufficiently large shock can disturb the system enough to put the state variable (active capital) on another path.24 This mechanism allows us to give a distinctive prediction that equilibrium may be shifted toward low liquidity as a result of shocks. In the case of stochastic shocks, it takes a long time to have a series of good shocks that are sufficient to push active capital back to the upward trajectory. This prediction matches empirical observations of long periods of illiquidity in the market.

Using our model, we show that active arbitrageurs may optimally choose to invest in the liquid market upon the arrival of liquidity shocks.25 Capital tends to flow out of a market if this market’s future liquidity is expected to deteriorate. Because lower future liquidity means longer maturity of new trading positions, the mispricing wedge would need to increase to compensate arbitrageurs with lower price efficiency in return for longer maturity. Furthermore, we also show the conditions under which capital flows in or out of a market hit by a liquidity shock. Acharya, Amihud, and Bharath (2013) document the existence of two liquidity regimes for corporate bonds. In particular, they find empirical evidence of flight-to-liquidity: prices of investment-grade bonds rise while prices of speculative-grade bonds fall. Cao, Chen, Liang, and Lo (2013) find that hedge fund managers can time market liquidity based on their forecasts of future market liquidity conditions. Furthermore, Cao, Liang, Lo, and Petrasek (2018) find that hedge funds contribute to price efficiency by investing in relatively more mispriced stocks, but those stocks tend to experience large decline in price efficiency during liquidity crises.

As an opposite situation to flight-to-liquidity, traders sometimes seek more risk by investing in illiquid assets. That is, traders tend to reach for yield during good times with ample liquidity (e.g., Becker and Ivashina (2015)). The positive feedback between active capital and liquidity in our model suggests an alternative mechanism of reaching for yield. As the market starts to have more capital, there is a reinforcement effect in which more locked-in capital is further released. This will raise price efficiency and shorten maturities of investment in illiquid assets. Consequently, capital starts flowing into more illiquid asset classes as active capital expands. This can reduce mispricing

24Even in cases where the system has only one regime (or one steady state), a shock that initially reduces liquidity may lead to further drops in liquidity and long delays before liquidity is re-established. But, it may take arbitrarily long time to recover in case of multiple regimes.

25There is indeed ample evidence about flight-to-liquidity in various markets: investors tend to prefer liquid assets during bad times (e.g., Beber, Brandt, and Kavajecz (2007), Acharya, Amihud, and Bharath (2013), Ben-Rephael (2017)).
wedge greatly by transferring to a high liquidity equilibrium. While a lower mispricing wedge is good for price efficiency, it puts pressure on financial institutions to reach for higher yields. We interpret this situation as reaching-for-yield because arbitrageurs invest more in riskier assets in that situation.

Our model suggests a role for government interventions (such as direct liquidity injections or asset purchases) against liquidity crises. One of the key observations is that a market’s ability to recover from a liquidity shock is determined by the level of active capital (rather than the total stock of capital) in the market.\footnote{Notice that this effect is not driven by self-fulfilling expectations, investor “confidence,” sunspots nor the government “choosing” among multiple equilibria. Our model has a unique equilibrium path in which active capital is the state variable, so if the government can inject capital, it directly influences the state variable of the system.} That is, it is difficult for the market to recover once it transitions to the illiquidity regime even when the stock of capital itself is plentiful. Therefore, an intervention can be more effective by exploiting a higher multiplier effect of extra liquidity if it can be implemented before a complete transition to the illiquidity regime happens;\footnote{See, for example, Dow and Han (2018) for further discussion about the multiplier effects of arbitrage capital.} it can not only prevent flight-to-liquidity, but also accelerate the circulation of active capital by releasing inactive capital more quickly. Furthermore, observable measures such as spreads between liquid and illiquid asset classes, in line with the LHS of Eq. (17), can serve as an indicator for decision making regarding market interventions.

\section{Conclusion}

We study a dynamic stationary model of informed trading with two markets. The model features endogenous liquidity regimes where temporary shocks to noise trading can trigger a shift of the regime. We show that upon the arrival of a shock arbitrage capital may actually flow out of the illiquid market. With some arbitrage capital flowing out, the remaining capital in the market becomes trapped because it is too illiquid for arbitrageurs to want to close out their positions. This in turn deepens illiquidity in a self-reinforcing manner, thereby creating liquidity hysteresis where illiquidity persists even when the initial cause is removed.

In our model, arbitrage capital plays a dual role; the mispricing wedge not only decides the profitability of new investment but also decides the speed at which engaged arbitrage capital is released (thus deciding the availability of arbitrage capital). The
dual role of arbitrage capital implies that efficiency depends on the pool of active capital as a state variable. Furthermore, it creates a feedback channel between active capital and liquidity which leads to multiple regimes where there is a threshold of active capital that separates domains of attraction for liquidity. Therefore, a large adverse shock can trigger a vicious cycle of illiquidity with flight-to-liquidity where arbitrage capital flows to the market with short-lived assets.

Although the market can move in and out of different regimes, it may take quite a long time to come back to a liquid regime from an illiquidity regime; it requires a sequence of good shocks strong enough to push the mass of active capital toward the path of a liquid regime. This result provides a mechanism for slow moving capital under which a seemingly temporary liquidity shock creates long lasting illiquidity in the market. Our results shed light on why capital moves slowly, how fast (or slowly) it moves, and to which directions it moves. The results further provide interesting implications on liquidity crises, flight-to-liquidity, and cross-sectional patterns of liquidity.
Appendix A: Proofs for Section 4

The derivation of the value functions in Section 4.4:
We first derive J_L. Because asset qualities are equally likely, the continuation value of active arbitrageurs making new investment in market L is

$$J_L(\theta) = \frac{1}{2} J_L(\theta; G) + \frac{1}{2} J_L(\theta; B), \quad (A.1)$$

where $J_L(\theta; s)$ conditions on the quality of the chosen asset being $s \in \{G, B\}$. We have:

$$J_L(\theta; G) = -(\lambda_L P^G_G + (1 - \lambda_L) P^0_0) + \beta \left[V^G_L + E[J_f(\dot{\theta})|\theta] \right];$$

$$J_L(\theta; B) = (\lambda_L P^B_B + (1 - \lambda_L) P^0_0) + \beta \left[-V^B_L + E[J_f(\dot{\theta})|\theta] \right].$$

Because $-(\lambda_L P^G_G + (1 - \lambda_L) P^0_0) + \beta V^G_L = (\lambda_L P^B_B + (1 - \lambda_L) P^0_0) - \beta V^B_L$, it is immediate that $J_L(\theta; G) = J_L(\theta; B)$, thus, we find that $J_L(\theta)$ in Eq. (A.1) is equivalent to the one in Eq. (7).

We turn to the derivation of J_I. In a similar fashion, the continuation value of an active arbitrageur making a new investment in market I is given by

$$J_I(\theta) = \frac{1}{2} J_I(\theta; G) + \frac{1}{2} J_I(\theta; B), \quad (A.2)$$

where

$$J_I(\theta; G) = -(\lambda_I P^G_I + (1 - \lambda_I) P^0_0) + \beta U(\theta; G);$$

$$J_I(\theta; B) = (\lambda_I P^B_I + (1 - \lambda_I) P^0_0) + \beta U(\theta; B), \quad (A.3)$$

and

$$U(\theta; G) \equiv qV^G_I + (1 - q)\lambda_I P^G_I + (1 - (1 - \lambda_I)(1 - q))E[J_f(\dot{\theta})|\theta]$$

$$+ (1 - \lambda_I)(1 - q)E[J_i(\dot{\theta}; G)|\theta];$$

$$U(\theta; B) \equiv -qV^B_I - (1 - q)\lambda_I P^B_I + (1 - (1 - \lambda_I)(1 - q))E[J_f(\dot{\theta})|\theta]$$

$$+ (1 - \lambda_I)(1 - q)E[J_i(\dot{\theta}; B)|\theta]. \quad (A.4)$$

We define $J_i(\theta; s)$ to be the continuation value of a locked-in arbitrageur holding an asset with quality s in market I. Because locked-in arbitrageurs can either liquidate or
keep holding onto their existing positions, we have

\[J_l(\theta; s) = \max (J_E(\theta; s), J_S(\theta; s)) , \quad (A.5) \]

where

\[J_E(\theta; G) = \lambda_I P^G + (1 - \lambda_I) P^0 + \beta E[J_f(\dot{\theta})|\theta]; \]
\[J_E(\theta; B) = -\lambda_I P^B - (1 - \lambda_I) P^0 + \beta E[J_f(\dot{\theta})|\theta]; \]
\[J_S(\theta; s) = \beta U(\theta; s). \]

It is immediate that \(J_E(\theta; G) = J_E(\theta; B) + 2P^0 \). Now, we conjecture that

\[U(\theta; G) = U(\theta; B) + \frac{2P^0}{\beta}. \quad (A.6) \]

Then, Eq. (A.6) implies that \(J_S(\theta; G) = J_S(\theta; B) + 2P^0 \), therefore, using Eq. (A.5) we have

\[J_l(\theta; G) = J_l(\theta; B) + 2P^0. \quad (A.7) \]

Eqs. (A.4) and (A.7) imply that

\[U(\theta; G) - U(\theta; B) = q(V^G_i + V^B_i) + 2(1 - q)P^0. \quad (A.8) \]

Because \(P^0 = \frac{\beta q}{1 - \beta(1 - q)} \left(\frac{V^G_i + V^B_i}{2} \right) \), Eq. (A.8) implies that \(U(\theta; G) = U(\theta; B) + \frac{2P^0}{\beta} \), which proves that the initial conjecture in Eq. (A.6) is indeed true.

Finally, Eq. (A.3) implies that \(J_I(\theta; G) - J_I(\theta; B) = -2P^0 + \beta[U(\theta; G) - U(\theta; B)] \), which in turn implies that \(J_I(\theta; G) = J_I(\theta; B) \) due to Eq. (A.6). Therefore, we conclude that \(J_I(\theta) \) in Eq. (A.2) is equivalent to the one in Eq. (6).

Proof of Lemma 1: Let \(X_i^a \) be the aggregate order flow of arbitrageurs for asset \(i \). Suppose that there are \(\mu_i \) mass of arbitrageurs investing in asset \(i \). Because arbitrageurs are risk-neutral and informed, their aggregate order flow is given by \(X_i^a = \mu_i \) if \(v_i = V^G_i \), and \(X_i^a = -\mu_i \) otherwise. Then, the market makers observe the aggregate order flow \(X_i = X_i^a + \zeta \). Bayes’ theorem implies that the market makers’ posterior belief that \(v_i = V^G_i \) is given by

\[\hat{p}_i(X_i, \mu_i) = \frac{pf^i_X(X_i|G)}{pf^i_X(X_i|G) + (1 - p)f^i_X(X_i|B)}, \quad (A.9) \]
where $p = \frac{1}{2}$ is the prior belief and $f_X^G(\cdot | G)$ and $f_X^B(\cdot | B)$ are the distribution of X_i given $v_i = V_h^G$ and $v_i = V_h^B$, respectively.

Because ζ_i follows a uniform distribution on the interval $[-z_i, z_i]$ in each period, X_i follows a uniform distribution either on the interval $[\mu_i - z_i, \mu_i + z_i]$ if $v_i = V_h^G$, or on the interval $[-\mu_i - z_i, -\mu_i + z_i]$ otherwise. Therefore, Eq. (A.9) implies

$$
\hat{p}_i = \begin{cases}
0 & \text{if } -\mu_i - z_i \leq X_i < \mu_i - z_i \\
 p & \text{if } \mu_i - z_i \leq X_i \leq -\mu_i + z_i \\
1 & \text{if } -\mu_i + z_i < X_i \leq \mu_i + z_i
\end{cases}
$$

Therefore, the probability of revealing the true value of v_i is given by

$$
\lambda_i = Pr(\hat{p}_i = 0 \text{ or } \hat{p}_i = 1) = Pr(-\mu_i - z_i \leq X_i < \mu_i - z_i) + Pr(-\mu_i + z_i < X_i \leq \mu_i + z_i) = \frac{\mu_i}{2z_i} + \frac{\mu_i}{2z_i} = \frac{\mu_i}{z_i}.
$$

In a market-wise symmetric equilibrium, all the future lambdas are equalized across assets in each market. Then, Eqs. (6) and (7) imply that the continuation value of arbitrageurs making new investment is identical across all assets except for the cost of acquiring the position in the current period. Therefore, all arbitrageurs would want to invest in an asset with the lowest λ_i in the current period until λ_i are equalized across assets in each market, i.e., $\lambda_i = \lambda_h$ for all asset i in market h. It is immediate that $\mu_i = \delta \xi$ for market I, and $\mu_i = (1 - \delta)\xi$ for market L. Therefore, we obtain the desired results in Eqs. (12) and (13).

Lemma A.3 In an interior equilibrium, it is never optimal to close out the existing position early, i.e., $J_I(\theta) = J_S(\theta)$.

Proof. We can write $J_S(\theta)$ as

$$
J_S(\theta) = J_I(\theta) + \lambda_I P^G + (1 - \lambda_I) P^0.
$$

In an interior equilibrium, $J_I(\theta) = J_L(\theta)$ and therefore

$$
J_S(\theta) = J_L(\theta) + \lambda_I P^G + (1 - \lambda_I) P^0
$$

$$
= -(\lambda_L P^G + (1 - \lambda_L) P^0) + \beta V_L^G + \beta E[J_I(\dot{\theta})] + \lambda_I P^G + (1 - \lambda_I) P^0
$$

$$
= -(\lambda_L P^G + (1 - \lambda_L) P^0) + \beta V_L^G + J_E(\theta).
$$

34
Because $\lambda_L P^G + (1 - \lambda_L) P^0 < \beta V^G_L$, we have $J_S(\theta) > J_E(\theta)$. ■

Proof of Lemma 2: Using $P^G = \beta q V^G_I / (1 - \beta (1 - q))$, we can represent Eq. (6) as

$$J_I(\theta) = (P^G - P^0) (1 - \lambda_I) + \beta (1 - \lambda_I) (1 - q) \left(E[J_I(\dot{\theta})|\theta] - P^G - E[J_f(\dot{\theta})|\theta] \right) + \beta E[J_f(\dot{\theta})|\theta].$$

Because $J_I(\theta) = J_S(\theta) = J_I(\theta) + \lambda_I P^G + (1 - \lambda_I) P^0$ from Lemma A.3 and $J_f(\theta) = J_I(\theta)$ in an interior equilibrium, the above equation implies

$$J_I(\theta) = (P^G - P^0) (1 - \lambda_I) \left[1 - \beta (1 - q) \left(1 - E[\dot{\lambda}^I|\theta] \right) \right] + \beta E[J_f(\dot{\theta})|\theta]. \quad (A.10)$$

Similarly, using $P^G = \beta V^G_L$, we can represent Eq. (7) as

$$J_L(\theta) = (P^G - P^0) (1 - \lambda_L) + \beta E[J_f(\dot{\theta})|\theta]. \quad (A.11)$$

Because $J_L(\theta) = J_I(\theta)$ in an interior equilibrium, equating Eqs. (A.10) and (A.11) yields

$$(1 - \lambda_L) = (1 - \lambda_I) \left[1 - \beta (1 - q) \left(1 - E[\dot{\lambda}^I|\theta] \right) \right],$$

which in turn implies the desired result in Eq. (14). ■

Appendix B: Proof of Proposition 1

In this section, we prove existence and uniqueness of stationary equilibrium of our model by using the contraction property of equilibrium mapping for price efficiency in the class of Lipschitz continuous functions.\(^{28}\)

Notations

Here we introduce some notations used in the appendices. We let $Z \equiv \{ z^1_I, z^2_I, \ldots, z^N_I \}$ be the set of possible values for noise trading intensity in market I, and let $\bar{z}_I \equiv \max \{ z^1_I, z^2_I, \ldots, z^N_I \}$ and $\underline{z}_I \equiv \min \{ z^1_I, z^2_I, \ldots, z^N_I \}$. Let M be a constant such that $M |z^n_I - z^m_I| \geq \bar{z}_I - \underline{z}_I$ for all n, m. We denote $\omega (z^n_I | z^m_I) \equiv \omega_{mn}$ for the transition

\(^{28}\)See, for example, Follmer, Horst, and Kirman (2005), Acharya and Viswanathan (2011), and Fajgelbaum, Schaal, and Taschereau-Dumouchel (2017) for similar methods of proof of existence and uniqueness of stationary equilibrium of different classes of models.
probability from state \(m \) to \(n \). We also let
\[
\alpha \equiv \max_{\delta'_I, \varepsilon'_I, \varepsilon''_I \in Z} \left| \omega (\delta'_I | \varepsilon'_I) - \omega (\delta'_I | \varepsilon''_I) \right|.
\]

Note that \(\alpha = 0 \) in case noise trading intensity process \(z_I \) is independently and identically distributed, in which case \(\omega (\delta'_I | \varepsilon'_I) - \omega (\delta'_I | \varepsilon''_I) = 0 \) for all \(\delta'_I, \varepsilon'_I, \varepsilon''_I \in Z \).

We let \(\Xi = [\xi, 1] \) be the interval of possible values for \(\xi \) where the lower bound \(\xi = \max \left\{ 1 - \varepsilon_L \frac{1-\sqrt{q}}{1+\sqrt{q}}, 0 \right\} \) is derived in Lemma D.5. We also let \(B(\Xi \times Z) \) be the set of bounded, continuous functions \(\lambda : (\xi, z_I) \in \Xi \times Z \to \mathbb{R} \) with the sup-norm
\[
\|\lambda\| = \sup_{\xi \in \Xi, z_I \in Z} |\lambda (\xi, z_I)|.
\]

Reformulation

We can reformulate the indifference condition \(J_I(\theta) = J_L(\theta) \) in terms of \(\lambda_I \). Let \(\lambda : (\xi, z_I) \in \Xi \times Z \to \mathbb{R} \) be the level of price efficiency in market \(I \) given the state variable \(\theta = (\xi, z_I) \). Using Eqs. (12) and (13) to substitute out \(\lambda_L \) in Eq. (14) and rearranging, we obtain the following functional equation which should be satisfied in an interior equilibrium:

\[
\lambda (\xi, z_I) = A(z_I)\xi - B(z_I)(1 - \lambda (\xi, z_I)) \left(1 - \sum_{\delta'_I \in Z} \omega (\delta'_I | z_I) \lambda (C(\xi, z_I), \delta'_I) \right), \quad (B.1)
\]

where
\[
A(z_I) \equiv \frac{1}{z_L + z_I}; \quad B(z_I) \equiv \frac{\beta (1 - q) z_L}{z_L + z_I}; \quad C(\xi, z_I) \equiv q + (1 - q)\xi + (1 - q)(1 - \xi - z_I)\lambda (\xi, z_I) + (1 - q)z_I[l(\xi, z_I)]^2 \\
= 1 - (1 - q) (1 - \lambda (\xi, z_I)) (1 - \xi + z_I\lambda (\xi, z_I)).
\]

Note that \(\dot{\xi} = C(\xi, z_I) \) follows from the law of motion Eq. (2) and the definition for \(\lambda_I \) in Eq. (12).
Definitions and Assumptions

Here we introduce some assumptions needed to ensure existence and uniqueness of stationary equilibrium of our model, and also introduce other definitions related to those assumptions.

Definition B.2 Define the functions \(f, g : (u, z_I) \in [0, 1] \times Z \to \mathbb{R} \) and \(\Gamma : z_I \in Z \to \mathbb{R} \) as follows:

\[
 f(u, z_I) \equiv \max \left\{ 1 - q, (1 - q)(z_Iu - 1), (1 - \xi)u, (1 - \xi)u + (1 - q)(1 - z_Iu) \right\},
\]

and

\[
 g(u, z_I) \equiv \max \left\{ f(u, z_I), (1 - q)z_Iu \right\},
\]

and

\[
 \Gamma(z_I) \equiv \begin{cases}
 \frac{z_I4}{4} \left(1 + \frac{z_I}{z_I} 1 - \sqrt{q} \right)^2, & \text{if } z_I \frac{1 - \sqrt{q}}{1 + \sqrt{q}} \leq z_I; \\
 \frac{z_I}{1 + \sqrt{q}}, & \text{otherwise.}
 \end{cases}
\]

Definition B.3 Let \(\hat{\lambda}_\xi, \lambda^*_\xi \) be the constant values

\[
 \hat{\lambda}_\xi \equiv \frac{1 + \sqrt{1 + \frac{4z_I}{\beta(1-q)^2z_L}}} {2z_I}, \quad \text{(B.3)}
\]

and

\[
 \lambda^*_\xi \equiv \min \frac{1/B(z_I) - 2}{(1 - q)\Gamma(z_I)}. \quad \text{(B.4)}
\]

Let \(\Lambda_\xi \) be the set

\[
 \Lambda_\xi \equiv \left\{ \lambda_\xi \in \mathbb{R}^+ \left| \lambda_\xi \geq \max_{z_I \in Z} A(z_I) + B(z_I) \left[1 + f(\lambda_\xi, z_I) \right] \lambda_\xi, \lambda_\xi \leq \hat{\lambda}_\xi, \lambda_\xi < \lambda^*_\xi \right\},
\]

and also let \(\bar{\lambda}_\xi \) be its infimum

\[
 \bar{\lambda}_\xi \equiv \inf \Lambda_\xi.
\]

Assumption B.4 Parameters are chosen such that \(\Lambda_\xi \) is non-empty.

Assumption B.5 Parameters are chosen such that \(1 > \beta(1-q)z_L + \bar{z}_I 1 - \sqrt{q} \frac{1 - \sqrt{q}}{1 + \sqrt{q}} \).
Definition B.6 Let $\bar{\lambda}_\gamma$ be the constant value
\[
\bar{\lambda}_\gamma \equiv \frac{1 - \bar{z}_I \left(\frac{1 - \sqrt{q}}{1 + \sqrt{q}} \right)}{(z_L + \bar{z}_I) \beta (1 - q) z_L \alpha M}.
\]

Let Λ_z be the set
\[
\Lambda_z \equiv \left\{ \lambda_z \in \mathbb{R}^+ \mid \lambda_z \geq \max_{z_I^n, z_I^m \in \mathbb{Z}, n \neq m} A(z_I^n) A(z_I^m) + B(z_I^n) \left[\lambda_z (1 + \alpha M) + g(\lambda_z, z_I^n) \bar{\lambda}_\xi \right], \lambda_z \leq \bar{\lambda}_\gamma \right\}.
\]
and let $\bar{\lambda}_z$ be its infimum
\[
\bar{\lambda}_z \equiv \inf \Lambda_z.
\]

Assumption B.7 Parameters are chosen such that Λ_z is non-empty and
\[
\bar{\lambda}_\xi \leq \min \left\{ \frac{1 - \alpha M}{(1 - q) \bar{z}_I \frac{2\sqrt{q}}{1 + \sqrt{q}}}, \frac{1}{(1 - q) \bar{z}_I \frac{2\sqrt{q}}{1 + \sqrt{q}}} \left(\frac{1}{(z_L + \bar{z}_I) \lambda_z - \alpha M} \right), \frac{1}{\beta (1 - q)^2 z_L (\bar{z}_I + z_L) \bar{\lambda}_z} \right\}.
\]

It is easy to verify that Assumptions B.4, B.5 and B.7 are jointly satisfied, for example, when q is large enough, or z_L is small enough, or β is small enough, and when α is small enough.

From Eq. (B.1) we define the following mapping:

Definition B.8 Let $T : \lambda \in B(\Xi \times Z) \to B(\Xi \times Z)$ be the mapping
\[
T \lambda(\xi, z_I) \equiv \max \left\{ 0, A(z_I) \xi - B(z_I)(1 - \lambda(\xi, z_I)) \left(1 - \sum_{z_I' \in Z} \omega(z_I'|z_I) \lambda(C(\xi, z_I), z_I') \right) \right\}.
\]

Definition B.9 Let $\mathcal{F}_0 \subset B(\Xi \times Z)$ be the set of bounded continuous functions $\lambda : (\xi, z_I) \in \Xi \times Z \to \mathbb{R}$ which are bounded below by zero and above by one, monotone increasing in ξ, and Lipschitz continuous of modulus $\bar{\lambda}_\xi$ in ξ.

Note that if T has a strictly positive fixed point in \mathcal{F}_0, such a fixed point satisfies Eq. (B.1) by construction.

We define that λ is decreasing in z_I if $\lambda(\xi, z_I^n) - \lambda(\xi, z_I^m) \leq 0$ for all $\xi \in \Xi$ and $z_I^n, z_I^m \in Z$ such that $z_I^n > z_I^m$, and also define that the rate of change in z_I is bounded.
by some constant κ if for all $z^n_I, z^m_I \in Z$ we have

$$\sup_{\xi \in \Xi} |\lambda(\xi, z^n_I) - \lambda(\xi, z^m_I)| \leq \kappa |z^n_I - z^m_I|.$$

Definition B.10 Let $\mathcal{F}_1 \subset \mathcal{F}_0$ be the subset of functions in \mathcal{F}_0 that are decreasing in z_I with the rate of change bounded by $\bar{\lambda}_z$.

Proof of Proposition 1

Recall that λ denotes an element of the set of bounded continuous functions $B(\Xi \times Z)$ whereas λ_I denotes the equilibrium price efficiency function in market I which is a fixed point of the mapping \mathcal{T} defined in Definition B.8. Now, we restate Proposition 1 with the full details:

Proposition 1. Under Assumptions B.4 and B.5, there exists a unique stationary interior equilibrium in which price efficiency in the illiquid market λ_I is monotone increasing in active capital ξ. Furthermore, under Assumption B.7, λ_I is monotone decreasing in noise trading intensity z_I.

Proof. The proof is divided in six steps. First, we show that \mathcal{T} maps \mathcal{F}_0 into \mathcal{F}_0. Second, we prove that \mathcal{F}_0 is a complete metric space. Third, we prove that \mathcal{T} is a contraction on \mathcal{F}_0. By the contraction mapping theorem (see, for example, Theorem 3.2 in Stokey and Lucas (1996)), \mathcal{T} has a unique fixed point in \mathcal{F}_0. We denote this fixed point λ_I. Fourth, we show that under Assumption B.5, λ_I is strictly positive and therefore satisfies Eq. (B.1); since λ_I is in \mathcal{F}_0, then it is increasing in ξ. Fifth, we show that under Assumption B.7, λ_I is decreasing in z_I. Sixth, we show that all equilibrium functions in Definition 1 can be uniquely recovered given λ_I.

Step 1: \mathcal{T} maps \mathcal{F}_0 into \mathcal{F}_0.

Let $\lambda \in \mathcal{F}_0$. Then, λ is bounded between zero and one by assumption. Because $B(z_I) > 0$ and $A(z_I) \in (0, 1)$, then it is immediate from Definition B.8 that $\mathcal{T}\lambda$ is bounded between zero and one. Lemma D.7 shows that under Assumption B.4, $\mathcal{T}\lambda$ is Lipschitz continuous of modulus $\bar{\lambda}_\xi$ in ξ for every $\lambda \in \mathcal{F}_0$. Lemma D.8 shows that under Assumption B.4, $\mathcal{T}\lambda$ is monotone increasing in ξ for every $\lambda \in \mathcal{F}_0$.

Step 2: \mathcal{F}_0 is a complete metric space.
\(F_0 \) with metric induced by the sup-norm is a metric space. We must show it is complete. For this, take a Cauchy sequence \(\{ \lambda_n \} \) of functions in \(F_0 \). Because \(F_0 \) is a subset of \(B(\Xi \times Z) \) and \(B(\Xi \times Z) \) is complete (see, for example, Theorem 3.1 in Stokey and Lucas (1996)), \(\{ \lambda_n \} \) converges to an element \(\lambda^* \) in \(B(\Xi \times Z) \). We must show \(\lambda^* \) is in \(F_0 \). Because each \(\lambda_n \) is bounded between zero and one, so is the limit. Hence, \(\lambda^* \) is bounded between zero and one. Next, we show \(\lambda^* \) is monotone increasing in \(\xi \). Take \(\xi_2 > \xi_1 \) and \(\varepsilon > 0 \), and let \(n_0 \) be such that

\[
|\lambda^*(\xi_1, z_I) - \lambda_n(\xi_1, z_I)|, |\lambda^*(\xi_2, z_I) - \lambda_n(\xi_2, z_I)| < \varepsilon/2
\]

for all \(n \geq n_0 \). Then,

\[
\begin{align*}
\lambda_n(\xi_2, z_I) - \lambda^*(\xi_2, z_I) & \leq \varepsilon/2 \\
-(\lambda_n(\xi_1, z_I) - \lambda^*(\xi_1, z_I)) & \leq \varepsilon/2
\end{align*}
\]

and therefore

\[
0 \leq \lambda_n(\xi_2, z_I) - \lambda_n(\xi_1, z_I) \leq \varepsilon + \lambda^*(\xi_2, z_I) - \lambda^*(\xi_1, z_I).
\]

Because \(\varepsilon \) can be taken to be arbitrarily small, then it must be \(0 \leq \lambda^*(\xi_2, z_I) - \lambda^*(\xi_1, z_I) \).

Finally, we have

\[
|\lambda^*(\xi_1, z_I) - \lambda^*(\xi_2, z_I)| = \lim_{n \to \infty} |\lambda_n(\xi_1, z_I) - \lambda_n(\xi_2, z_I)|.
\]

Because each term in the RHS is bounded by \(\bar{\lambda}_\xi |\xi_1 - \xi_2| \) by assumption, so is the limit. Hence, \(\lambda^* \) is Lipschitz continuous with modulus \(\bar{\lambda}_\xi \).

Step 3: \(T \) is a contraction mapping on \(F_0 \).

Lemma D.9 shows that under Assumption B.4, the mapping \(T \) is a contraction on \(F_0 \). Then, steps 1-3 and the Contraction Mapping Theorem imply that \(T \) has a unique fixed point in \(F_0 \).

Step 4: \(\lambda_I \) is strictly positive.

It is immediate to verify that Assumption B.5 together with Lemma D.5 implies that \(A(z_I)\xi - B(z_I) > 0 \), and therefore \(T\lambda > 0 \) for all \(\lambda \in F_0 \) and all \((\xi, z_I) \in \Xi \times Z \). Because \(\lambda_I \) is a fixed point of the \(T \) mapping, \(\lambda_I \) must be a strictly positive function and it satisfies Eq. (B.1) by construction.

Step 5: \(\lambda_I \) is decreasing in \(z_I \).
Lemmas D.10 and D.11 imply that under Assumptions B.4 to B.7, \(T \) maps \(\mathcal{F}_1 \) into \(\mathcal{F}_1 \). By arguments analogous to Step 2, \(\mathcal{F}_1 \) is a complete metric space. By Step 3, \(T \) is a contraction mapping on \(\mathcal{F}_1 \). By Contraction Mapping Theorem, \(T \) has a unique fixed point in \(\mathcal{F}_1 \). By construction, this is decreasing in noise trading intensity \(z_I \).

Step 6: There exists a unique interior stationary equilibrium.

The previous steps prove that in an interior equilibrium there exists a unique function \(\lambda_I \) that satisfies Eq. (B.1). By Lemma 1, given \(\lambda_I \) we can uniquely recover the capital allocation function \(\delta \) as well as market \(L \) price efficiency \(\lambda_L \). In an interior equilibrium \(J_f(\theta) = J_L(\theta) \), so Eq. (7) gives a functional equation for \(J_L \). Consider the mapping \(T_L : J \in B(\Xi \times Z) \rightarrow B(\Xi \times Z) \) given by

\[
T_L J(\xi, z_I) = - \left(\lambda_L(\xi, z_I) P^G + (1 - \lambda_L(\xi, z_I)) P^0 \right) + \beta \left(V^G_L + \sum_{z'_I \in Z} \omega(z'_I|z_I) J(C(\xi, z_I), z'_I) \right).
\]

It is immediate that \(T_L \) satisfies Blackwell’s sufficient conditions for a contraction on \(B(\Xi \times Z) \). Hence, given \(\lambda_L \), \(T_L \) has a unique fixed point \(J_L \in B(\Xi \times Z) \) satisfying Eq. (7). Furthermore, in an interior equilibrium \(J_f(\theta) = J_I(\theta) \) by definition and \(J_I(\theta) = J_S(\theta) \) due to Lemma A.3 and therefore Eqs. (6) and (10) give two functional equations for \(J_I \) and \(J_S \). Given \(\lambda_I \) and \(J_f \), the same argument as above shows that Eqs. (6) and (10) have a unique solution. This uniquely pins down \(J_f, J_I, J_L, J_E, J_S \) in an interior equilibrium and concludes the proof.

Appendix C: Proof of Proposition 2

Lemma C.4 When \(\frac{\lambda_I}{z_L} + 1 \geq 2\beta(1-q) \), the IC curve implicitly defines \(\delta \) as an increasing function of \(\xi \).

Proof. Write the IC curve as \(F(\delta, \xi) = 0 \), where

\[
F(\delta, \xi) = \frac{z_L - (1 - \delta) \xi}{z_L} - \left(\frac{z_I - \delta \xi}{z_I} \right) \left[1 - \beta(1-q) \left(\frac{z_I - \delta \xi}{z_I} \right) \right].
\]

We wish to show that \(\frac{\partial F(\delta, \xi)}{\partial \delta} > 0 \) and \(\frac{\partial F(\delta, \xi)}{\partial \xi} < 0 \). We have:

\[
\frac{\partial F(\delta, \xi)}{\partial \delta} = \frac{(1 - \delta)}{z_L} + \frac{\delta}{z_I} - 2 \frac{\delta}{z_I} \beta(1-q) \left(\frac{z_I - \delta \xi}{z_I} \right) = \frac{1}{\xi} \left(\lambda_I - \lambda^L - 2\lambda_I \beta(1-q)(1-\lambda_I) \right).
\]
Because \(F(\delta, \xi) = 0 \) requires \(\lambda_I < \lambda_L \), then \(\frac{\partial F(\delta, \xi)}{\partial \delta} < 0 \). Furthermore,

\[
\frac{\partial F(\delta, \xi)}{\partial \delta} = \frac{\xi}{z_L} + \frac{\xi}{z_I} - 2z_I \beta(1-q) \left(\frac{z_I - \delta \xi}{z_I} \right) = \frac{\xi}{z_I} \left(\frac{z_I}{z_L} + 1 - 2\beta(1-q)(1-\lambda_I) \right).
\]

Clearly, \(\frac{\partial F(\delta, \xi)}{\partial \delta} > 0 \) if \(\frac{z_I}{z_L} + 1 - 2\beta(1-q) \geq 0 \).

Proof of Proposition 2: Part (i) Suppose that Eq. (IC) is not satisfied. Then, it is one of the two cases: either everyone chooses market \(I \) or everyone chooses market \(L \). In the former case, \(\delta = 1 \) and therefore \(\lambda_L = 0 \) and \(\lambda_I \in (0, 1) \). However, we can show that there is no such equilibrium that satisfies Eq. (IC) because, for all \(\lambda_I \in (0, 1) \)

\[
1 > (1 - \lambda_I)(1 - \beta (1 - \lambda_I)(1-q)),
\]

which implies \(J_L(\xi) > J_I(\xi) \). In the latter case, we have \(\delta = 0 \) and therefore \(\xi = 1, \lambda_I = 0 \) and \(\lambda_L = \min \left\{ 1, \frac{1}{z_L} \right\} \). Hence, \(\delta = 0 \) is an equilibrium if \(J_L(1) \bigg|_{\lambda_L=\min \left\{ 1, \frac{1}{z_L} \right\}} \geq J_I(1) \bigg|_{\lambda_I=0} \) which is equivalent to

\[
1 - \min \left\{ 1, \frac{1}{z_L} \right\} \geq 1 - \beta (1-q) \Leftrightarrow \beta (1-q) z_L \geq 1.
\]

Next, we let \(\beta (1-q) z_L < 1 \), for which there is no corner equilibrium, and proceed to show that there exist either one or three interior equilibria. We define \(\hat{\xi} \equiv \delta \xi \) as the net mass of arbitrageurs who are investing in the illiquid market at time \(t \). Likewise, we define \(\hat{\delta} \equiv \delta \xi + \pi \) as the total mass of investors who are investing in the illiquid market at time \(t \). Instead of the original problem stated in terms of \(\delta \) and \(\xi \), we can solve an equivalent problem in terms of \(\hat{\delta} \) and \(\hat{\xi} \). Using the definition of \(\hat{\xi} \) and \(\hat{\delta} \), we find

\[
\xi = \hat{\xi} + 1 - \hat{\delta}, \quad \delta = \frac{\hat{\xi}}{\hat{\xi} + 1 - \hat{\delta}}, \quad \lambda_I = \frac{\hat{\xi}}{z_I}, \quad \lambda_L = \frac{1 - \hat{\delta}}{z_L}.
\]

Using Eq. (C.2), Eq. (CM) can be represented as

\[
\hat{\delta} = \frac{\hat{\xi}}{q + (1-q) \frac{\hat{\xi}}{z_I}}.
\]
Likewise, Eq. (IC) can be represented as
\[
\frac{1 - \hat{\delta}}{z_L} - \frac{\hat{\xi}}{z_I} = \beta(1 - q) \left(1 - \frac{\hat{\xi}}{z_I}\right)^2.
\] (C.4)

By substituting Eq. (C.3) into Eq. (C.4), we obtain
\[
Q(\hat{\xi}) \equiv a_0 + a_1 \hat{\xi} + a_2 \hat{\xi}^2 + a_3 \hat{\xi}^3 = 0,
\]
where \(Q\) is a third degree polynomial with coefficients
\[
\begin{align*}
a_0 &\equiv q(z_I)^3 (1 - (1 - q) z_L \beta); \\
a_1 &\equiv -(z_I)^2 (z_I + q z_L - (1 - q) (1 + (3q - 1) z_L \beta)); \\
a_2 &\equiv -z_I z_L (1 - q) (1 + (3q - 2) \beta); \\
a_3 &\equiv -(1 - q)^2 z_L \beta.
\end{align*}
\]

Since \(\beta (1 - q) z_L < 1\), then \(a_0 > 0\) for all \(q > 0\) and therefore \(Q(0) > 0\). Using the fact that \(z_I + z_L > 1\), we can verify that \(Q(\min\{1, z_I\}) < 0\), which implies that \(Q\) has either one or three real roots in the open interval of \((0, \min\{1, z_I\})\). Each of these roots is an interior steady state equilibrium in which \(\delta \in (0, 1)\).

Next, we turn to the proof of stability. Proposition 1 implies as a special case that there exists a unique equilibrium price efficiency function \(\lambda_I : [\xi, 1] \to \mathbb{R}\) satisfying Definition B.8 at the given level of \(z_I\). For notational convenience, we define \(\hat{C}(\xi) \equiv C(\xi, z_I)\) as the transition equation Eq. (B.2) over the interval \([\xi, 1]\). A solution for the equation \(\xi = \hat{C}(\xi)\) is a steady state, and the previous result shows that there can be at most three such solutions on the interval \([\xi, 1]\). We call them \(\xi^s, \xi^m\) and \(\xi^l\) in the order of size. Lemma D.5 implies that \(\hat{C}(\xi) \geq \xi\). Because \(B(z_I) > 0\) and \(A(z_I) \in (0, 1)\), then it is immediate from Definition B.8 that \(\lambda_I\) is strictly less than one, and therefore \(\hat{C}(1) < 1\). Because \(\hat{C}\) is continuous and \(\hat{C}(\xi) \geq \xi\) and \(\hat{C}(1) < 1\), then \(\hat{C}\) crosses the 45-degree line from above in \([\xi, 1]\) at least once and at the largest steady state \(\xi^l\), so \(\xi^l\) is a stable point. If \(\hat{C}\) crosses the 45-degree twice in \([\xi, 1]\), then it must cross from below at \(\xi^m\), implying \(\xi^m\) is an unstable point. If \(\hat{C}\) crosses the 45-degree three times in \([\xi, 1]\), then it must cross from above at \(\xi^s\), implying that \(\xi^s\) is also a stable point.

Part (ii) For \(q = 1\) we have that \(a_2 = a_3 = 0\), so \(Q\) has a unique root equal to \(x^* = z_I/(z_I + z_L)\). For \(\beta = 0\), we have that \(a_0 > 0, a_2 < 0, a_3 = 0\) which implies that \(Q\)
at most one root in the $[0, 1]$ interval. For $q = 0$ we have that $a_0 = 0$ and Q has three roots x_1, x_2, x_3 equal to

$$
x_1 = 0
$$

$$
x_2 = \frac{z_I}{2\beta} \left(2\beta - 1 - \sqrt{1 + \frac{4\beta}{z_L} (1 - z_I - z_L)} \right)
$$

$$
x_3 = \frac{z_I}{2\beta} \left(2\beta - 1 + \sqrt{1 + \frac{4\beta}{z_L} (1 - z_I - z_L)} \right)
$$

If $1 > \frac{3}{4} z_L + z_I$, then x_2, x_3 are real. It is immediate to see that $0 < x_2 < x_3 < 1$ for β sufficiently close to one. The claim in the proposition follows by continuity of the coefficients a_0, a_1, a_2, a_3 in q and β and by continuous dependence of the roots of a polynomial on its coefficients. ■

Appendix D: Auxiliary Lemmas

Lemma D.5 ξ is bounded from below by

$$
\xi = \max \left\{ 1 - \frac{z_I}{1 + \sqrt{q}} \cdot \frac{1 - \sqrt{q}}{1 + \sqrt{q}}, 0 \right\}.
$$

Proof. Let $\xi = q + \varepsilon$ be such that $C(\xi, z_I) \leq \xi$ for all $\xi \geq \xi$ and $z_I \in Z$. It is sufficient that, for all $\lambda \in [0, 1]$ and $z_I \in Z$,

$$
1 - (1 - q) (1 - \lambda) (1 - (q + \varepsilon) + z_I \lambda) \geq q + \varepsilon,
$$

or equivalently,

$$
\varepsilon \leq (1 - q) \frac{(1 - (1 - \lambda) (1 - q + z_I \lambda))}{1 - (1 - q) (1 - \lambda)}.
$$

Notice that the RHS is convex in λ and minimized at $\lambda = \frac{1 - \sqrt{q}}{1 + \sqrt{q}}$, so

$$
\min_{\lambda, z_I \in Z} q + (1 - q) \frac{(1 - (1 - \lambda) (1 - q + z_I \lambda))}{1 - (1 - q) (1 - \lambda)} = \min_{z_I \in Z} 1 - z_I \frac{1 - \sqrt{q}}{1 + \sqrt{q}}.
$$

■
Lemma D.6 We have

\[|(1 - \lambda(\xi_1, z_I))(C(\xi_2, z_I) - C(\xi_1, z_I))| \leq f(\bar{\lambda}_\xi, z_I) |\xi_2 - \xi_1|, \]

where the function \(f \) is from Definition B.2.

Proof. We first obtain

\[
C(\xi_2, z_I) - C(\xi_1, z_I) = (1 - q) \left[(\xi_2 - \xi_1) + (1 - q)(1 - z_I)(\lambda(\xi_2, z_I) - \lambda(\xi_1, z_I)) \right. \\
- (\xi_2 - \xi_1)\lambda(\xi_2, z_I) - \xi_1(\lambda(\xi_2, z_I) - \lambda(\xi_1, z_I)) \\
+ z_I(\lambda(\xi_2, z_I)^2 - \lambda(\xi_1, z_I)^2) \\
\left. = (1 - q) \left[(1 - \lambda(\xi_2, z_I)) (\xi_2 - \xi_1) + \lambda(\xi_2, z_I) - \lambda(\xi_1, z_I) \right. \right] \\
\left. (1 - \lambda(\xi_2, z_I)) (1 - \lambda(\xi_1, z_I) - \lambda(\xi_2, z_I)) \right].
\]

The Lipschitz continuity and monotonicity of \(\lambda \) in \(\xi \) imply that there exists a value \(\lambda_\xi \in [0, \bar{\lambda}_\xi] \) such that

\[\lambda(\xi_2, z_I) - \lambda(\xi_1, z_I) = \lambda_\xi (\xi_2 - \xi_1), \tag{D.1} \]

and therefore

\[
C(\xi_2, z_I) - C(\xi_1, z_I) = (1 - q) \left[(1 - \lambda(\xi_2, z_I)) \right. \\
+ \lambda_\xi (1 - \xi_1 - z_I (1 - \lambda(\xi_1, z_I) - \lambda(\xi_2, z_I))) \left. \right] (\xi_2 - \xi_1) \\
= (1 - q) \left((1 - \lambda(\xi_2, z_I)) (1 - \lambda(\xi_2, z_I)) \right. \\
+ \lambda_\xi (1 - \xi_1 + z_I \lambda(\xi_1, z_I)) \left. \right] (\xi_2 - \xi_1).
\]

Hence, we can write

\[
(1 - \lambda(\xi_1, z_I))(C(\xi_2, z_I) - C(\xi_1, z_I)) \\
= \left[(1 - q) (1 - \lambda(\xi_1, z_I)) (1 - \lambda(\xi_2, z_I)) (1 - \lambda(\xi_2, z_I)) \right. \\
+ \lambda_\xi (1 - q) (1 - \lambda(\xi_1, z_I)) (1 - \xi_1 + z_I \lambda(\xi_1, z_I)) \left. \right] (\xi_2 - \xi_1), \tag{D.2}
\]

where in the second line we make use of Eq. (B.2). Using the fact that \(\lambda_\xi \in [0, \bar{\lambda}_\xi] \) and
\(\lambda(\xi, z_I) \in [0, 1] \) and \(C(\xi_1, z_I) \in [\xi, 1] \), it is easy to verify that

\[
| (1 - q) (1 - \lambda(\xi_1, z_I)) (1 - \lambda(\xi_2, z_I)) (1 - \lambda(\xi, z_I) + \lambda(1 - C(\xi_1, z_I))) |
\leq \max \{(1 - q), (1 - q) (z_I \tilde{\lambda}_\xi - 1), (1 - q) \tilde{\lambda}_\xi, (1 - q) \tilde{\lambda}_\xi + (1 - q) (1 - z_I \tilde{\lambda}_\xi) \} = f(\tilde{\lambda}_\xi, z_I).
\]

Lemma D.7 Under Assumption B.4, \(T \lambda \) is Lipschitz continuous of modulus \(\tilde{\lambda}_\xi \) in \(\xi \) for every \(\lambda \in F_0 \).

Proof. Take \(\lambda \in F_0 \). We decompose

\[
T \lambda(\xi_2, z_I) - T \lambda(\xi_1, z_I) = T_1 + T_2 + T_3,
\]

where

\[
T_1 = A(z_I)(\xi_2 - \xi_1);
\]

\[
T_2 = B(z_I) [\lambda(\xi_2, z_I) - \lambda(\xi_1, z_I)] \left(1 - \sum_{z_I' \in Z} \omega(z_I'|z_I) \lambda(C(\xi_2, z_I), z_I') \right);
\]

\[
T_3 = B(z_I)(1 - \lambda(\xi_1, z_I)) \sum_{z_I' \in Z} \omega(z_I'|z_I) (\lambda(C(\xi_2, z_I), z_I') - \lambda(C(\xi_1, z_I), z_I')).
\]

First, it is immediate that \(|T_1| \leq A(z_I)|\xi_2 - \xi_1| \). Second, the Lipschitz continuity and monotonicity of \(\lambda \) in \(\xi \) imply that there exists \(\lambda_{\xi_0} \in [0, \tilde{\lambda}_\xi] \) such that \(\lambda(\xi_2, z_I) - \lambda(\xi_1, z_I) = \lambda_{\xi_0} (\xi_2 - \xi_1) \). Because \(\sum_{z_I' \in Z} \omega(z_I'|z_I) \lambda(C(\xi_2, z_I), z_I') \leq 1 \), we have

\[
|T_2| \leq B(z_I)\tilde{\lambda}_\xi|\xi_2 - \xi_1|.
\]

Again by the Lipschitz continuity and monotonicity of \(\lambda \) in \(\xi \), there exist \(\lambda_{\xi_1} \in [0, \tilde{\lambda}_\xi] \) such that

\[
T_3 = B(z_I)(1 - \lambda(\xi_1, z_I)) (C(\xi_2, z_I) - C(\xi_1, z_I)) \lambda_{\xi_1},
\]

and therefore,

\[
|T_3| \leq B(z_I) |(1 - \lambda(\xi_1, z_I)) (C(\xi_2, z_I) - C(\xi_1, z_I))| \tilde{\lambda}_\xi.
\]
By Lemma D.6, the previous inequality can be written as

$$|T_3| \leq B(z_I)f(\bar{\lambda}_\xi, z_I)\bar{\lambda}_\xi|\xi_2 - \xi_1|.$$

Summing up terms, we get

$$|T\lambda(\xi_2, z_I) - T\lambda(\xi_1, z_I)| \leq (A(z_I) + B(z_I) \bar{\lambda}_\xi |\xi_2 - \xi_1|.$$

Taking the maximum of the RHS over \(z_I\) values yields that \(T\lambda\) is Lipschitz continuous of modulus \(\bar{\lambda}_\tau\) in \(\xi\), where

$$\bar{\lambda}_\tau = \max_{z_I \in Z} A(z_I) + B(z_I) \bar{\lambda}_\xi$$

and the function \(f\) is as in Definition B.2. Under Assumption B.4, Definition B.3 implies \(\bar{\lambda}_\tau \geq \bar{\lambda}_\xi\). This concludes the proof. \(\blacksquare\)

Lemma D.8 Under Assumption B.4, \(T\lambda\) is monotone increasing in \(\xi\) for every \(\lambda \in \mathcal{F}_0\).

Proof. Take \(\lambda \in \mathcal{F}_0\) and let \(\xi_2 > \xi_1\). By the proof of Lemma D.7, there exist \(\lambda_{\xi_0}, \lambda_{\xi_1} \in [0, \bar{\lambda}_\xi]\) such that

\[
T\lambda(\xi_2, z_I) - T\lambda(\xi_1, z_I) = \left\{\begin{array}{l}
A(z_I) + B(z_I) \left(\frac{1 - \sum_{z'_I \in Z} \omega(z'_I \mid z_I) \lambda(C(\xi_2, z_I), z'_I) + \lambda_{\xi_0}}{(1 - \lambda_{\xi_1} |\xi_2 - \xi_1|) (C(\xi_2, z_I) - C(\xi_1, z_I))} \right) \lambda_{\xi_1} (\xi_2 - \xi_1) \right. \\
\end{array}\right.
\]

Hence, \(T\lambda\) is increasing in \(\xi\) if

$$A(z_I) + B(z_I) \left[\frac{(1 - \lambda(\xi_1, z_I)) (C(\xi_2, z_I) - C(\xi_1, z_I))}{(\xi_2 - \xi_1)} \lambda_{\xi_1} \right] \geq 0.$$

Using Eq. (D.2) in the proof of Lemma D.6, there exists some \(\lambda_\xi \in [0, \bar{\lambda}_\xi]\) such that the above inequality is equivalent to

$$A(z_I) + B(z_I) [(1 - q) (1 - \lambda(\xi_1, z_I)) (1 - \lambda(\xi_2, z_I)) (1 - \lambda_{\xi_2} z_I) + \lambda_{\xi_1} (1 - C(\xi_1, z_I))] \lambda_{\xi_1} \geq 0,$$

which is satisfied if

$$H(\bar{\lambda}_\xi, z_I) \geq 0,$$

47
where

\[H(\bar{\lambda}_\xi, z_I) \equiv \min_{\lambda_1, \lambda_2 \in [0,1], x \in [0,1], \lambda_\xi \in [0,\bar{\lambda}_\xi]} A(z_I) + B(z_I) \left[(1 - q) (1 - \lambda_1) (1 - \lambda_2) (1 - \lambda_\xi z_I) + \lambda_\xi (1 - x) \right] \bar{\lambda}_\xi. \]

For \(\bar{\lambda}_\xi \leq \frac{1}{z_I} \), it is immediate that \(H(\bar{\lambda}_\xi, z_I) \) is positive. For \(\bar{\lambda}_\xi > \frac{1}{z_I} \), \(H(\bar{\lambda}_\xi, z_I) \) is positive if

\[A(z_I) + B(z_I)(1 - q) (1 - \bar{\lambda}_\xi z_I) \bar{\lambda}_\xi \geq 0, \]

or equivalently, if

\[\bar{\lambda}_\xi \leq \frac{1 + \sqrt{1 + \frac{4z_I}{\beta(1-q)^2z_L^2}}}{2z_I}. \]

Taking the minimum of the RHS over \(z_I \) values in \(Z \) yields the expression for \(\hat{\lambda}_\xi \) in Definition B.3. Under Assumption B.4, Definition B.3 implies \(\bar{\lambda}_\xi \leq \hat{\lambda}_\xi \). This concludes the proof.

Lemma D.9 Under Assumption B.4, the mapping \(T \) is a contraction on \(F_0 \).

Proof. Take \(\lambda_1, \lambda_2 \in F_0 \). We decompose

\[T \lambda_2(\xi, z_I) - T \lambda_1(\xi, z_I) = T_1 + T_2 + T_3, \]

where

\[T_1 = B(z_I) [\lambda_2(\xi, z_I) - \lambda_1(\xi, z_I)] \left(1 - \sum_{z'_I \in Z} \omega(z'_I | z_I) \lambda_2(C_2(\xi, z_I), z'_I) \right); \]

\[T_2 = B(z_I)(1 - \lambda_1(\xi, z_I)) \sum_{z'_I \in Z} \omega(z'_I | z_I) (\lambda_2(C_1(\xi, z_I), z'_I) - \lambda_1(C_1(\xi, z_I), z'_I)); \]

\[T_3 = B(z_I)(1 - \lambda_1(\xi, z_I)) \sum_{z'_I \in Z} \omega(z'_I | z_I) (\lambda_2(C_2(\xi, z_I), z'_I) - \lambda_2(C_1(\xi, z_I), z'_I)). \]

First, we have

\[|T_1| \leq B(z_I) \left(1 - \sum_{z'_I \in Z} \omega(z'_I | z_I) \lambda_2(C(\xi, z_I), z'_I) \right) ||\lambda_2 - \lambda_1|| \leq B(z_I)||\lambda_2 - \lambda_1||. \]
Second, we have

$$|\mathcal{T}_2| \leq B(z_I)||\lambda_2 - \lambda_1||.$$

Third, using Eq. (B.2) we have

$$C_2(\xi, z_I) - C_1(\xi, z_I) = (1 - q) (\lambda_2(\xi, z_I) - \lambda_1(\xi, z_I)) [1 - \xi - z_I (1 - \lambda_1(\xi, z_I) - \lambda_2(\xi, z_I))],$$

and therefore

$$|\mathcal{T}_3| \leq B(z_I)\bar{\lambda}_\xi (1 - q)(1 - \lambda_1(\xi, z_I)) (1 - \xi - z_I (1 - \lambda_1(\xi, z_I) - \lambda_2(\xi, z_I))) |||\lambda_2 - \lambda_1||.$$

Let $\Gamma (z_I)$ be the value

$$\Gamma (z_I) = \max_{\lambda_1, \lambda_2 \in [0,1], \xi \in [\xi,1]} ||(1 - \lambda_1) (1 - \xi - z_I (1 - \lambda_1 - \lambda_2))||.$$

It is immediate to verify that $\Gamma (z_I)$ is from Definition B.2. Therefore,

$$|\mathcal{T}_3| \leq B(z_I)\bar{\lambda}_\xi (1 - q)\Gamma (z_I) ||\lambda_2 - \lambda_1||.$$

Summing up terms, we have

$$|\mathcal{T}\lambda_2(\xi, z_I) - \mathcal{T}\lambda_1(\xi, z_I)| \leq B(z_I)(2 + \bar{\lambda}_\xi (1 - q)\Gamma (z_I)) ||\lambda_2 - \lambda_1||.$$

Therefore, \mathcal{T} is a contraction mapping if for all $z_I \in Z$

$$B(z_I)(2 + \bar{\lambda}_\xi (1 - q)\Gamma (z_I)) < 1,$$

or equivalently, if

$$\bar{\lambda}_\xi < \bar{\lambda}_\xi^* = \min_{z_I \in Z} \frac{1/B(z_I) - 2}{(1 - q)\Gamma (z_I)}.$$

Under Assumption B.4, $\bar{\lambda}_\xi < \bar{\lambda}_\xi^*$ by Definition B.3. This concludes the proof.

Lemma D.10 Under Assumptions B.4, B.5 and B.7, $T\lambda$ is decreasing in z_I for all $\lambda \in \mathcal{F}_1$.

49
Proof. Let $z_I^m > z_I^n$. The difference of $T \lambda(\xi, z_I)$ with respect to z_I is given by

$$
T \lambda(\xi, z_I^n) - T \lambda(\xi, z_I^m)
= (A(z_I^n) - A(z_I^m)) \left(\xi - \beta (1 - q) z_L (1 - \lambda(\xi, z_I^m)) \left(1 - \sum_{z'_I \in Z} \omega(z'_I | z_I^m) \lambda(\xi, z_I^m), z'_I \right) \right)
+ B(z_I^n) (\lambda(\xi, z_I^n) - \lambda(\xi, z_I^m)) \left(1 - \sum_{z'_I \in Z} \omega(z'_I | z_I^m) \lambda(\xi, z_I^m), z'_I \right)
+ B(z_I^n) (1 - \lambda(\xi, z_I^n)) \sum_{z'_I \in Z} \omega(z'_I | z_I^n) [\lambda(C(\xi, z_I^n), z'_I) - \lambda(C(\xi, z_I^m), z'_I)]
+ B(z_I^n) (1 - \lambda(\xi, z_I^n)) \sum_{z'_I \in Z} (\omega(z'_I | z_I^n) - \omega(z'_I | z_I^m)) \lambda(\xi, z_I^m), z'_I).
$$

We can simplify each line in the expression above as follows. First, using the definitions of A and B we can write

$$
(A(z_I^n) - A(z_I^m)) \xi = A(z_I^n) A(z_I^m) \xi (z_I^m - z_I^n);
(A(z_I^n) - A(z_I^m)) \beta (1 - q) z_L = A(z_I^n) B(z_I^m) (z_I^m - z_I^n).
$$

(D.3)

Second, since λ is decreasing in z_I, then, for any $\xi \in \Xi$, $z_I^m, z_I^n \in Z$ there exists some $\lambda_z \in [0, \overline{\lambda}_\xi]$, which depends on ξ, z_I^n, z_I^m, such that,

$$
\lambda(\xi, z_I^n) - \lambda(\xi, z_I^m) = \lambda_z (z_I^m - z_I^n).
$$

(D.4)

Third, because λ is increasing and Lipschitz in ξ with modulus $\overline{\lambda}_\xi$, there exists some $\lambda_\xi \in [0, \overline{\lambda}_\xi]$, which depends on ξ, z_I^n, z_I^m, z_I', such that

$$
\lambda(C(\xi, z_I^n), z'_I) - \lambda(C(\xi, z_I^m), z'_I) = \lambda_\xi (C(\xi, z_I^n) - C(\xi, z_I^m)).
$$

(D.5)

Fourth, because λ is decreasing in z_I, for all $\xi \in \Xi$ we have

$$
\alpha (\lambda(\xi, z_I) - \lambda(\xi, z_I)) \leq \sum_{z'_I \in Z} (\omega(z'_I | z_I^n) - \omega(z'_I | z_I^m)) \lambda(\xi, z'_I) \leq \alpha (\lambda(\xi, z_I) - \lambda(\xi, z_I)),
$$

and furthermore, because the rate of change of λ in z_I is bounded by $\overline{\lambda}_z$ and $M |z_I^n - z_I^m| \geq$

\[29\] Recall the definition $\alpha \equiv \max_{z_I, z_I^n, z'_I \in Z} |\omega(z'_I | z_I^n) - \omega(z'_I | z_I^m)|$.

50
\[\bar{z}_I - z_I \] by definition, then

\[\lambda(C(\xi, z_I^n), \bar{z}_I) - \lambda(C(\xi, z_I^n), z_I) \leq \bar{\lambda}_z (\bar{z}_I - z_I) \leq \bar{\lambda}_z M |z_I^n - z_I^n|. \]

Hence, the above inequalities imply

\[
\sum_{z'_I \in Z} (\omega (z'_I | z^n_I) - \omega (z'_I | z_I^n)) \lambda(C(\xi, z_I^n), z'_I) \\
\in \left[-\alpha M \bar{\lambda}_z |z_I^n - z_I^n|, \alpha M \bar{\lambda}_z |z_I^n - z_I^n| \right].
\]

Using Eqs. (D.3)-(D.6) we can rewrite the difference of \(\mathcal{T} \lambda(\xi, z_I) \) with respect to \(z_I \) as

\[
\mathcal{T} \lambda(\xi, z^n_I) - \mathcal{T} \lambda(\xi, z_I^n) = \Pi(\xi, z_I^n, z_I^n)(z_I^n - z_I^n)
\]

where

\begin{align*}
\Pi(\xi, z_I^n, z_I^n) &= A(z_I^n)A(z_I^n)\xi - A(z_I^n)B(z_I^n)(1 - \lambda(\xi, z_I^n)) \left(1 - \sum_{z'_I \in Z} \omega (z'_I | z_I^n) \lambda(C(\xi, z_I^n), z'_I) \right) \\
&\quad + B(z_I^n)\lambda_z \left(1 - \sum_{z'_I \in Z} \omega (z'_I | z_I^n) \lambda(C(\xi, z_I^n), z'_I) \right) \\
&\quad + B(z_I^n)(1 - \lambda(\xi, z_I^n)) \left[\frac{C(\xi, z_I^n) - C(\xi, z_I^n)}{z_I^n - z_I^n} \lambda_\xi + \chi \right],
\end{align*}

for some \(\lambda_z \in [0, \bar{\lambda}_z], \lambda_\xi \in [0, \bar{\lambda}_\xi] \) and \(\chi \in [-\alpha M \bar{\lambda}_z, \alpha M \bar{\lambda}_z] \).

The difference of \(C(\xi, z_I) \) with respect to \(z_I \) can be written as

\[
C(\xi, z_I^n) - C(\xi, z_I^n) \\
=(1 - \xi) \left[(\lambda(\xi, z_I^n) - \lambda(\xi, z_I^n))[1 - \xi - z_I^n(1 - \lambda(\xi, z_I^n) - \lambda(\xi, z_I^n))] \\
+ \lambda(\xi, z_I^n)(1 - \lambda(\xi, z_I^n)) (z_I^n - z_I^n) \right]
\]

\[
=(1 - \xi) \left[\lambda_z[1 - \xi - z_I^n(1 - \lambda(\xi, z_I^n) - \lambda(\xi, z_I^n))] \\
+ \lambda(\xi, z_I^n)(1 - \lambda(\xi, z_I^n)) \right] (z_I^n - z_I^n),
\]

where the second line makes use of Eq. (D.4). Using Eq. (D.8) we can write Eq. (D.7)
as
\[
T \lambda(\xi, z_I^n) - T \lambda(\xi, z_I^m) \\
= A(z_I^n)A(z_I^m)\xi(z_I^m - z_I^n) \\
+ (B(z_I^n)\lambda_z - A(z_I^n)B(z_I^m)(1 - \lambda(\xi, z_I^m))) \left(1 - \sum_{z_I' \in Z} \omega(z_I'|z_I^m) \lambda(C(\xi, z_I^m), z_I') \right) (z_I^m - z_I^n) \\
+ B(z_I^n)(1 - \lambda(\xi, z_I^n)) \left[(1 - q) \left[\lambda_z[1 - \xi - z_I^n(1 - \lambda(\xi, z_I^n)) - \lambda(\xi, z_I^m)] + \lambda(\xi, z_I^m)(1 - \lambda(\xi, z_I^m))\right] \right] \lambda_\xi + \chi \right) (z_I^m - z_I^n).
\]

Hence, we obtain that \(T \lambda\) is decreasing in \(z_I\) if for all \(\lambda_1, \lambda_2, \lambda_3 \in [0, 1], \xi \in [\xi, 1], \lambda_z \in [0, \bar{\lambda}_z], \lambda_\xi \in [0, \bar{\lambda}_\xi],\) we have

\[
A(z_I^n)A(z_I^m)\xi + (B(z_I^n)\lambda_z - A(z_I^n)B(z_I^m)(1 - \lambda_2)) (1 - \lambda_3) \\
\times B(z_I^n)(1 - \lambda_1) \left[(1 - q) \left[\lambda_z[1 - \xi - z_I^n(1 - \lambda_1 - \lambda_2)] + \lambda_2 (1 - \lambda_2)\right] \lambda_\xi - \alpha M \bar{\lambda}_z \right] \geq 0.
\]

It is easy to verify that the LHS of the above inequality is minimized at \(\lambda_1 = \lambda_2 = 0\) for all \(\lambda_3 \in [0, 1], \xi \in [\xi, 1], \lambda_z \in [0, \bar{\lambda}_z], \lambda_\xi \in [0, \bar{\lambda}_\xi],\) which leaves

\[
A(z_I^n)A(z_I^m)\xi + (B(z_I^n)\lambda_z - A(z_I^n)B(z_I^m)) (1 - \lambda_3) \\
+ B(z_I^n) \left[(1 - q) \lambda_z (1 - \xi - z_I^n) \lambda_\xi - \alpha M \bar{\lambda}_z \right] \geq 0. \tag{D.9}
\]

Next, it is immediate to check that the LHS of Eq. (D.9) is minimized at \(\xi = \bar{\xi}\) for all \(\lambda_3 \in [0, 1], \lambda_z \in [0, \bar{\lambda}_z], \lambda_\xi \in [0, \bar{\lambda}_\xi]\) if the following condition on \(\bar{\lambda}_\xi\) holds:

\[
\bar{\lambda}_\xi \leq \frac{1}{(z_I + z_L) \beta (1 - q)^2 z_L \bar{\lambda}_z}. \tag{D.10}
\]

Hence, if Eq. (D.10) holds, Eq. (D.9) is satisfied if

\[
A(z_I^n)A(z_I^m)\xi + (B(z_I^n)\lambda_z - A(z_I^n)B(z_I^m)) (1 - \lambda_3) \\
+ B(z_I^n) \left[(1 - q) \left(1 - \xi - z_I^n\right) \lambda_z \lambda_\xi - \alpha M \bar{\lambda}_z \right] \geq 0.
\]

Using the definitions of \(A, B\) and \(\xi \geq 1 - \bar{z}_I \frac{1 - \sqrt{q}}{1 + \sqrt{q}},\) the above inequality can be rearranged
As
\[
\frac{1}{z_L + \bar{z}_I^m} \left(1 - \bar{z}_I \frac{1 - \sqrt{q}}{1 + \sqrt{q}} \right) + \beta (1 - q) z_L \left[\left(\lambda_z - \frac{1}{z_L + \bar{z}_I^m} \right) (1 - \lambda_3) - (1 - q) \lambda_z \bar{z}_I \frac{2 \sqrt{q}}{1 + \sqrt{q}} \lambda_\xi - \alpha M \bar{\lambda}_z \right] \geq 0.
\]

Because the LHS is linear in \(\lambda_z \), it is minimized either at \(\lambda_z = 0 \) or \(\lambda_z = \bar{\lambda}_z \). At \(\lambda_z = 0 \) the LHS bounded from below by the value
\[
\frac{1}{z_L + \bar{z}_I^m} \left(1 - \bar{z}_I \frac{1 - \sqrt{q}}{1 + \sqrt{q}} \right) - \beta (1 - q) z_L \left(\frac{1}{z_L + \bar{z}_I^m} + \alpha M \bar{\lambda}_z \right), \tag{D.11}
\]
and at \(\lambda_z = \bar{\lambda}_z \) the LHS is equal to
\[
\frac{1}{z_L + \bar{z}_I^m} \left(1 - \bar{z}_I \frac{1 - \sqrt{q}}{1 + \sqrt{q}} \right) + \beta (1 - q) z_L \left[\left(\bar{\lambda}_z - \frac{1}{z_L + \bar{z}_I^m} \right) (1 - \lambda_3) - \bar{\lambda}_z \left((1 - q) \bar{z}_I \frac{2 \sqrt{q}}{1 + \sqrt{q}} \bar{\lambda}_\xi + \alpha M \right) \right]. \tag{D.12}
\]

It is immediate that Eq. (D.11) is positive if
\[
\bar{\lambda}_z \leq \frac{1 - \bar{z}_I \frac{1 - \sqrt{q}}{1 + \sqrt{q}} - \beta (1 - q) z_L}{(z_L + \bar{z}_I) \beta (1 - q) z_L \alpha M}, \tag{D.13}
\]
which is satisfied under Assumptions B.5 and B.7. For (D.12), we see that either \(\bar{\lambda}_z \leq \frac{1}{z_L + \bar{z}_I^m} \), in which case Eq. (D.12) is minimized at
\[
\frac{1}{z_L + \bar{z}_I^m} \left[1 - \bar{z}_I \frac{1 - \sqrt{q}}{1 + \sqrt{q}} - \beta (1 - q) z_L \left(1 - \max\left\{ \left(1 - q \right) \bar{z}_I \frac{2 \sqrt{q}}{1 + \sqrt{q}} \bar{\lambda}_\xi + \alpha M, 1 \right\} \right) \right], \tag{D.14}
\]
which is positive under Assumption B.5 if
\[
\bar{\lambda}_\xi \leq \frac{1 - \alpha M}{(1 - q) \bar{z}_I \frac{2 \sqrt{q}}{1 + \sqrt{q}}}, \tag{D.15}
\]
or \(\bar{\lambda}_z > \frac{1}{z_L + \bar{z}_I^m} \), in which case Eq. (D.12) is minimized at
\[
\frac{1}{z_L + \bar{z}_I} \left[1 - \bar{z}_I \frac{1 - \sqrt{q}}{1 + \sqrt{q}} - \beta (1 - q) z_L \left(1 - \left(z_L + \bar{z}_I \right) \bar{\lambda}_z \left((1 - q) \bar{z}_I \frac{2 \sqrt{q}}{1 + \sqrt{q}} \bar{\lambda}_\xi + \alpha M \right) \right) \right]. \tag{D.16}
\]
Under Assumption B.5, Eq. (D.16) is positive if

\[
\tilde{\lambda}_z \leq \frac{1}{(1-q)\bar{z}_I^{2\sqrt{q}}(1+\sqrt{q})} \left(\frac{1}{(z_L+\bar{z}_I)^2} - \alpha M \right). \tag{D.17}
\]

Putting together the bounds in Eqs. (D.10), (D.15) and (D.17) gives the inequality in Assumption B.7. □

Lemma D.11 Under Assumptions B.4, B.5 and B.7, the rate of change of \(T\lambda \) in \(z_I \) is bounded by \(\tilde{\lambda}_z \) for all \(\lambda \in F_1 \).

Proof. We bound the rate of change of \(T\lambda \) in \(z \). Using Eq. (D.8) and the definition of \(C \) in Eq. (B.2) we compute

\[
(1 - \lambda(\xi, z^n_I))(C(\xi, z^n_I) - C(\xi, z^m_I)) \\
=(1-q) \left[\lambda_z(1 - \lambda(\xi, z^n_I))(1 - \xi - z^n_I(1 - \lambda(\xi, z^n_I) - \lambda(\xi, z^m_I))) + \lambda(\xi, z^m_I)(1 - \lambda(\xi, z^n_I))(1 - \lambda(\xi, z^m_I)) \right] (z^m_I - z^n_I) \\
=(1-q) \left[\lambda_z(1 - C(\xi, z^n_I)) + (\lambda(\xi, z^m_I) - z^n_I\lambda_z)(1 - \lambda(\xi, z^n_I))(1 - \lambda(\xi, z^m_I)) \right] (z^m_I - z^n_I). \tag{D.18}
\]

Using Eqs. (D.7) and (D.18), we have:

\[
|T\lambda(\xi, z^n_I) - T\lambda(\xi, z^m_I)| \\
\leq A(z^n_I)A(z^m_I)|z^m_I - z^n_I| + B(z^n_I)\lambda_z \left(1 - \sum_{z'_I \in Z} \omega(z'_I|z^m_I) \lambda(C(\xi, z^m_I), z'_I) \right) |z^m_I - z^n_I| \\
+ B(z^n_I)G(\xi, z^m_I, z^n_I)\lambda_z |z^m_I - z^n_I| + B(z^n_I)(1 - \lambda(\xi, z^n_I))\tilde{\lambda}_z \alpha M |z^m_I - z^n_I| \\
\leq A(z^n_I)A(z^m_I)|z^m_I - z^n_I| + B(z^n_I)\left[\tilde{\lambda}_z (1 + \alpha M) + G(\xi, z^m_I, z^n_I)\lambda_z \right] |z^m_I - z^n_I|,
\]

where

\[
G(\xi, z^m_I, z^n_I) \equiv |\lambda_z(1 - C(\xi, z^n_I)) + (1-q) [\lambda(\xi, z^m_I) - z^n_I\lambda_z](1 - \lambda(\xi, z^n_I))(1 - \lambda(\xi, z^m_I))|.
\]
From Definition B.2, we have
\[
g(\bar{\lambda}_z, z^n_I) = \max \left\{ 1 - q, (1 - q) z^n_I \bar{\lambda}_z, \bar{\lambda}_z (1 - \xi) + (1 - q) (1 - z^n_I \bar{\lambda}_z) \right\}.
\]
Then, it is immediate that
\[
G(\xi, z^m_I, z^n_I) \leq g(\bar{\lambda}_z, z^n_I).
\]
Therefore, we have
\[
|T\lambda(\xi, z^n_I) - T\lambda(\xi, z^m_I)| \leq \left[A(z^n_I) A(z^m_I) + B(z^n_I) (\bar{\lambda}_z (1 + \alpha M) + g(\bar{\lambda}_z, z^n_I) \bar{\lambda}_z) \right] |z^m_I - z^n_I|.
\]
Taking the maximum of this bound, we obtain that the rate of change of \(T\lambda\) in \(z_I\) is bounded by \(\bar{\lambda}_\xi\), which we define as
\[
\bar{\lambda}_\xi = \max_{z^n_I, z^m_I \in \mathbb{Z}, n \neq m} A(z^n_I) A(z^m_I) + B(z^n_I) [\bar{\lambda}_z (1 + \alpha M) + g(\bar{\lambda}_z, z^n_I) \bar{\lambda}_z].
\]
Under Assumption B.7, Definition B.6 implies \(\bar{\lambda}_z \leq \bar{\lambda}_\xi\). This concludes the proof.

References

56

