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Abstract Bidders are uncertain about their valuation for an object and choose
about which component to learn. Their valuation consists of a common value compo-
nent (which matters to all bidders) and a private value component (which is relevant
only to individual bidders). Learning about a private component yields independent
estimates, whereas learning about a common component leads to correlated information
between bidders. I identify conditions for the second-price auction, such that bidders
only learn about their private component, so an independent private value framework
and efficient outcome arises endogenously. In a first-price auction, every robust equi-
librium is inefficient under certain conditions.
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1 Introduction

Bidding preparation for auctions usually involves evaluating multiple characteristics.
This paper delves into which characteristics bidders should gather information about
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and how such decision is influenced by the auction format in cases wherein people
cannot take into account all existing information.

These issues are relevant to, for example, corporate takeovers, in which acquiring
firms have access to a variety of information about a target company. This information
encompasses the R&D activities and the book value. A reasonable assumption is that
firms cannot perfectly process or uncover all existing information, and are thus driven
to select elements to focus on before the bidding takes place. Should an acquiring firm
conduct research on aspects that are specific to them, such as their R&D overlap? Or
should they focus on factors that also matter to other acquiring firms, such as the book
value of a target?

Another example are resource rights auctions for oil fields or timber. Each bidder
derives the same monetary value from an unknown volume of oil or timber on a site, and
this value stems from the market price. Bidders may incur different costs in extracting
the resources from a site because of the use of different drilling or logging technologies
and variances in experience levels. I inquire into whether a bidder prefers to perform
an exploratory drilling to learn about oil volume (i.e., the common component) or to
learn about the costs of extracting the resource through estimations of the drilling costs
specific to him (i.e., the private component).

The contribution of this paper is to investigate the incentives provided by a vari-
ety of auction formats regarding information selection,1 in particular in a second price
auction (SPA), a first price auction (FPA) and an all-pay auction (APA). The novelty
of this paper lies in its illumination of which random variables bidders seek to learn
(information choice) instead of what level of accuracy of information they favor about a
given real-valued random variable (information acquisition). Holding the level of accu-
racy constant, do bidders prefer their private information to be dependent (information
about a common component) or independent (information about a private component)?

The independent private values setting (IPV) and the interdependent values setting
(IntV) lead to different theoretical predictions and vary significantly in their implica-
tions for auction design and policy. The literature on auctions typically assumes either
IPV or IntV at the outset of the analysis. By restricting the ability of bidders to
learn about the private and common components, I study which value setting arises
endogenously.

1See Porter (1995) for a survey of oil and gas lease auctions and Hendricks and Porter (2014) for an
analysis of the auction mechanisms in selling resource rights in the U.S. See Gentry and Stroup (2017)
for an analysis of auctions and negotiation procedures commonly used in mergers and acquisition.
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For a brief outline of the model, consider two bidders who compete for a single indi-
visible object in a SPA. They share the same common component (e.g., the book value
of a firm) and have independent private value components (e.g., match-specific R&D
overlap). Bidders select how much to learn about a common and a private component.
Information selection is simultaneous and covert.

Let the valuation of each bidder be the sum of two value components. Learning
about the common or the private component has equal accuracy. In a single agent
problem, an agent would be indifferent between learning about either component, as
the two experiments are equally informative about the total value of the object. In an
auction, information about the object plays a dual role. Beyond containing information
about the object’s worth, it is also informative about the signal of the opponent and
his bid. Moreover, a rational bidder conditions his estimate of the object not only on
his own information, but also on what he learns from the event of winning.

In my model, the extent of this winner’s curse and the interdependence between
bidders’ information are endogenous and depend on the bidders’ information choice.
The signals of bidders become more affiliated if they learn more about the common
component. The winner’s curse exacerbates. If the other bidder learns only about his
private component, his information bears no relevance for other bidder and there is no
winner’s curse. Two standard valuation settings are nested in my model. An IPV setting
arises if both bidders learn only about their private components. A pure common value
setting emerges if both bidders learn only about the same common component.

The result for the SPA with two bidders is that in any symmetric equilibrium,
information selection is unique: All learning is only about the private component, and
an IPV setting is the unique equilibrium outcome. The SPA induces the ex-ante efficient
outcome. No resources are wasted by learning about the common component which
is irrelevant for efficiency, and the object is allocated to the bidder with the highest
estimate of his private component. This result holds in a general class of value functions,
as long as the private component has a weakly higher impact on overall value than the
common component.

In the FPA, if the common component has a weakly higher impact on the overall
value than the private component, any robust equilibrium is inefficient. Any outcome
in which bidders learn to some extent about the private component (that is, not a pure
CV) cannot be sustained. In the APA, looking at the more relevant component is the
unique equilibrium candidate.

For a sketch of the argument, fix a symmetric bidding strategy for the bidders, and
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consider the effect of increasing or decreasing the correlation of his private signal with
that of his opponent. Hence, while keeping the marginal distribution of signals fixed,
vary the joint distribution of their signals. A higher correlation increases the second-
order statistic of the signals and the distribution of the loosing bid. On the contrary, a
higher correlation decreases the first-order statistic of the signals and the distribution
of the winning bid. Conditional on winning, a bidder pays the second-order statistic in
the SPA, and the first-order statistic in the FPA. By decreasing correlation via learning
more about the private component, the distribution of the second order statistic puts
more weight on lower bids, and expected payment strictly decreases in the SPA. In
the FPA, as a winning bidder pays his own bid, he does not want to "leave money on
the table" by overbidding his opponent by too much. Having a better estimate of the
opponent’s bid by increasing correlation reduces the expected payment conditional on
a win as it reduces the first order statistic of winning bids. In the APA, as the marginal
bid distribution does not vary, the expected payment conditional on winning is the
same irrespective of the correlation between the bidders.

The approach is to find a deviation strategy that does not decrease the expected
gain and keeps the winning probability constant, but strictly decreases the expected
payment. The deviation strategy varies the correlation for a fixed marginal bid dis-
tribution as described in the last paragraph. For example, let the value of the object
being the sum of the two components, and consider a candidate equilibrium of the SPA
in which both bidders learn only about the common component. Then, the following
deviation is strictly profitable for a bidder: Learn about the private component, but bid
as if it were a signal about the common component. This strategy eliminates interde-
pendence in private signals but employs the same bidding function as the candidate
equilibrium for tractability. The expected gain from this deviation is the same as in the
candidate equilibrium. For every realization of the total value of the object, the prob-
ability of placing the highest bid is the same with the candidate equilibrium and the
deviation strategy. However, given a total value for the object, winning probability for
different compositions of the two components changes with deviating. In the candidate
equilibrium, as both bidders learn about the common component, they win with equal
probability for each realization of it. In the deviation strategy, a deviating bidder is
more likely to win in states that involve a high private and a low common component,
and vice versa. The existence of a deviation strategy that leads to the same expected
gain for a strictly lower payment pushes the incentives of bidders in the SPA towards
independence, and yields a unique information choice in equilibrium of the SPA.
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Section 1.1 describes the related literature. Section 2 introduces the model and the
informational framework. In Section 3 I show how information selection impacts the
joint signal distribution and the resulting value framework. Section 4 narrows down the
information choice of bidders in any equilibrium, and provides conditions for a unique
information choice. I provide sufficient conditions for existence and uniqueness of the
equilibrium of the SPA in Section 4.3. I show the impact of information selection on
the revenue of the designer in Section 5.1, and extend some results to the case of more
than two bidders in Section 5.2, before concluding in Section 6.

1.1 Related Literature

In the classic literature in Auction Theory, the distribution of private information of
bidders is exogenous and does not depend on the choice of the auction format.2 In their
seminal work, Milgrom and Weber (1982) introduce a theory of affiliation in signals,
and derive the equilibrium for the SPA, the FPA and the English auction. The all-pay
auction for affiliated signals has been analyzed by Krishna and Morgan (1997) and Chi
et al. (2017).

The literature on information acquisition in auctions3 endogenizes the private infor-
mation of bidders, by asking how much costly information they seek to acquire about
a single-dimensional payoff relevant variable. Persico (2000) considers costly informa-
tion acquisition in an IntV model in the FPA and the SPA. Before bidding, bidders
choose the accuracy (a statistical order by Lehmann (1988)) of their signal about a
one-dimensional random variable. In the model of Persico (2000), learning with higher
accuracy has two effects: first, the information about the own valuation becomes more
precise; second, bidders obtain a better estimate of the signals of other bidders. There-
fore, a higher accuracy inextricably links these two effects. Persico (2000) shows that
incentives for information acquisition are stronger in the FPA than in the SPA.

In contrast to Persico (2000), in my model the accuracy of information is fixed and
equal for each available signal. Bidders in my model have to select the variable about
which they prefer to learn. The results in Persico (2000) are of a relative nature: given

2For an IPV setup, see Vickrey (1961) and Riley and Samuelson (1981). For a common value model,
see Wilson (1969) and Milgrom (1981).

3Endogenous information acquisition has been analyzed in other areas of Economics. E.g., see
Bergemann and Välimäki (2002), Crémer et al. (2009), Shi (2012) and Bikhchandani and Obara
(2017) in optimal and efficient mechanism design, Martinelli (2006) and Gerardi and Yariv (2007) in
committees, Crémer and Khalil (1992) and Szalay (2009) in principal-agent-settings, and Rösler and
Szentes (2017) in bilateral trade.
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a level of accuracy acquired in the SPA, the level of accuracy in a FPA is higher. In
contrast, my framework provides an absolute prediction: about which component do
bidders learn.

In Bergemann et al. (2009), the value of an object is a weighted sum of everybody’s
payoff type. Information acquisition is binary: either learn perfectly about the own
payoff-type, or learn nothing. Note that in this formulation, learning cannot introduce
any dependence between the signal of bidders, as all payoff types are distributed inde-
pendently (although they matter to other bidders). With positive interdependencies in
payoff types, Bergemann et al. (2009) show that in a generalized Vickrey-Clarke-Groves
mechanism4 bidders acquire more information than would have been socially efficient.

In the IPV setup of Hausch and Li (1991), the SPA and FPA induce equal incentives
to acquire information about the one-dimensional value. Stegeman (1996) shows that
the incentives to acquire information in an IPV setting coincides in FPA and SPA, and
with the incentives of a planner.

The above literature on information acquisition in auctions considers covert infor-
mation acquisition. That is, bidders do not know how much information their competi-
tors acquire before the auction. Another strand of the literature also analyzes overt
information acquisition. Hausch and Li (1991) show that the SPA and the FPA in-
duce different incentives to acquire information when information acquisition is overt,
and revenue equivalence fails. Compte and Jehiel (2007) show in an IPV setup that
an ascending dynamic auction induces more overt information acquisition and higher
revenues than a sealed-bid auction. Hernando-Veciana (2009) compares the incentives
to overtly acquire information in the English auction and the SPA, when bidders can
learn about a common component or about a private component. In his model, it is
exogenous which component information acquisition is about, while in my model, I
endogenize the decision of information selection between the two components.

My paper also relates to the literature on information choice in games with strategic
complementarities or substitutes. Hellwig and Veldkamp (2009) ask whether bidders
want to coordinate on the same or on different information channels about the same
one-dimensional state of the world in a beauty contest game. They show that the choice
of information relates to the complementarity of actions in their model: if actions are
strategic complements, agents want to know what others know. If actions are strategic

4See Dasgupta and Maskin (2000) for a generalized Vickrey-Clarke-Groves mechanism in the context
of auctions, and Jehiel and Moldovanu (2001) for a general mechanism design setting with externalities
in information and allocations.
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substitutes, agents want different information channels. In a beauty contest game in
Myatt and Wallace (2012), agents choose between multiple information channels about
a common state variable. Agents decide how clearly (endogenous noise) to listen to
which of many available signals, that vary in accuracy (exogenous noise).

Gendron-Saulnier and Gordon (2017) fix the informativeness of signals, similar to
my approach. In their paper, agents have the choice between multiple information
channels, that all have the same informativeness: they are all Blackwell sufficient for
each other. Information channels vary in the level of dependence they induce between
the signals of agents. Actions exhibit strategic complementarities, as in the framework
of Hellwig and Veldkamp (2009) and Myatt and Wallace (2012).

There are two major differences between my model and the papers Hellwig and Veld-
kamp (2009), Myatt and Wallace (2012) and Gendron-Saulnier and Gordon (2017):5

bidding functions do not exhibit strategic complementarities in the auction formats in
my model (see e.g., Athey, 2002) which leads to a fundamentally different strategic
problem. Further, in the above models, all channels contain information about the
same single-dimensional payoff-relevant random variable (the one-dimensional state of
the world). In contrast, in my model bidders choose about which component of the
multidimensional state of the world to learn. Learning about their private compo-
nent leaves them with an independent signal realization, irrespective of the information
acquired by their opponent.

2 Model

Two risk/neutral bidders, indexed by i ∈ {1, 2}, compete for one indivisible object in an
auction. The reservation value of the auctioneer and the outside options of the bidders
are zero.

The valuation for the object of bidder i, denoted by Vi, depends on two attributes:
a common value component S distributed with full support on [0, 1], that is identical
for all bidders, and a private value component Ti distributed with full support on [0, 1],
the idiosyncratic taste parameter of bidder i.6 The common value component and the
two private value components {S, T1, T2} are drawn mutually independent, and T1 and

5See also Yang (2015) for flexible information acquisition in investment games and Denti (2017) for
an unrestricted information acquisition technology in potential games.

6The assumption of full support is for clarity of exposition. Results hold if there are two realizations
in the support.
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T2 are drawn identically. It is without loss to assume that {S, T1, T2} are drawn from a
uniform distribution on [0, 1], given the assumption of full support.7

The value function for each bidder i is Vi := u(S, Ti) and has the same functional
form for both bidders. The private component Tj of the other agent j 6= i has no impact
on the valuation Vi of bidder i.

Assumption 1. The value function u : [0, 1]2 → R satisfies u(0, 0) ≥ 0, u(1, 1) < ∞,
and is continuous and strictly increasing in both arguments in (0, 1)2.

Due to Assumption 1, it is efficient to sell the object. From now on, I assume that
every value function u satisfies this assumption. I consider value functions in the three
classes of the following definition.

Definition 1. The value function u is

1. symmetric if u(a, b) = u(b, a),

2. t-preferred if u(a, b) > u(b, a),

3. s-preferred if u(a, b) < u(b, a),

for all tuples {a, b} ∈ (0, 1)2 with a < b.8

A simple symmetric value function is Vi = S+Ti. If the value function is t-preferred,
the bidder prefers to have a higher quantile of the private component than the common
component (or, if s-preferred, the other way around). For example, the function

u(S, Ti) = SαT 1−α
i

is t-preferred if α ∈ (0, 1
2), s-preferred if α ∈ (1

2 , 1), and symmetric if α = 1
2 .

Information Selection. The realizations of the random variables S, T1, T2 are un-
observable to the auctioneer and the bidders. Instead, bidders engage in information
gathering about their valuations. The information choice of bidder i is one of informa-
tion selection: about which component should he learn how much.

7Let Hs(S) and Ht(Ti) be two arbitrary strictly increasing distribution functions of S and Ti. Then,
by a standard probability integral transformation, relabel each realization with its quantile, that is,
Ŝ = Hs(S) and T̂i = Ht(Ti). Then, Ŝ and T̂i is distributed uniformly on [0, 1]. Then, relabel the value
function in terms of quantiles, such that û(Ŝ, T̂i) := u(H−1

s (Ŝ), H−1
t (T̂i)) = u(S, Ti).

8This can be relaxed, such that the strict inequality holds for a non-zero measure of (0, 1)2.
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For each bidder i ∈ {1, 2}, there are two potential sources of information: random
variable XS

i about S, and random variable XT
i about Ti. Random variable XT

i con-
tains information only about the private component Ti, random variable XS

i is only
informative about the common component S.

Both signals XT
i and XS

i have support [0, 1]. The marginal distribution of the
random variables XT

i or XS
i , conditional on the state Ti = r or S = r, have a cumulative

distribution function F T (·|r) or F S(·|r) for r ∈ [0, 1]. Learning XS
i (XT

i ) is the most
accurate signal that is available about S (Ti) in this environment.

Assumption 2. For all r ∈ [0, 1], the distribution F S(xi|r) and F T (xi|r) admit a
density fS(xi|r) and fT (xi|r), such that:

(2A) ∀xi ∈ [0, 1] : fS(xi|r) = fT (xi|r) =: f(xi|r).

(2B) ∀x′i > xi, f(x′i|r)
f(xi|r) is strictly increasing in r.

Assumption 2A implies the same informativeness on each available signal about its
component. Let F (x) := F S(xi|r) = F T (xi|r). The signals XS

i and XT
i satisfy a strong

monotone likelihood ratio property (MLRP) in Assumption 2B such that higher signal
realizations are more indicative of higher realizations of a component. Moreover, let
f(xi|r) be continuously differentiable in xi for all r.

Due to the following assumptions, the private signals of bidders can only be inter-
dependent via learning about the common variable S:

Assumption (CI). XS
i |= XS

j | S.

Assumption (IN). XT
i |= XT

j , and XT
i |= XS

j .

By Assumption CI, XS
i and XS

j are independent conditional on S.9 According to
Assumption IN, signal XT

i is independent from both signals XS
j and XT

j available to
his opponent j.

Bidders cannot observe both signal realizations XS
i and XT

i , due to physical con-
straints or time limitations. Instead, they face a trade-off between learning about the
common or the private component.

Bidders learn one random variable Xi with support on [0, 1], that is some combina-
tion of XS

i and XT
i . It is a a mixture distribution over two random variables: bidders

choose the probability ρi of learning Xi = XS
i . With probability 1− ρi, bidder i learns

9As XS
i and S are affiliated by Assumption 2A, the random variables XS

1 and XS
2 are affiliated.
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XT
i . E.g., with ρ = 0.5, it is equally likely that Xi = Xs

i as Xi = X t
i . Let ρ = {ρ1, ρ2}

be the vector of information selection variables.
The information selection variable ρi ∈ [0, 1] captures a continuous learning choice

between the two components.10 This learning process resembles a truth-or-noise tech-
nology as in Johnson and Myatt (2006). It creates a signal that contains information
about both components, where the agent decides how to split attention between his two
value components without changing the marginal distribution of Xi. The only costs
of learning more about one component are the opportunity costs of not learning more
about the other component.

The game consists of two stages:

1. After an auction format is announced, bidders simultaneously select how to split
their attention between XS

i and XT
i by choosing ρi.

2. Bidders privately observe their signal Xi and bid in the auction.

Information selection is covert throughout both stages: bidders do not observe the
information selection of their opponent (but anticipate it correctly in equilibrium).
Moreover, bidders select their information after the auction format is announced. This
enables an analysis of the incentives of various auctions on information selection.

3 The Impact of Information Selection

The marginal distribution of bidder i’s signal Xi with information choice ρi is

Pr(Xi ≤ x|ρi) = (1− ρi)F T (x) + ρiF
S(x) = F (x),

where F S(x) := Pr(XS
i ≤ x) =

∫ 1
0 F (x|r)dr =: F T (x) is the unconditional distribution

function of a bidders’ private signal when he learns about either component. It is
not a function of ρi, as applying the signal to both components results in the same
distribution of signals due to F S(x) = F T (x).

The joint distribution of X1 and X2 is endogenous as it depends on the information
10An interior ρi is not a mixed strategy. See a previous version of this paper for a discrete learning

model: bidders learn either XS
i or XT

i perfectly, or mix between the two signals for interior ρi. The
agent observes which experiment his signal stems from for any randomization.
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choices ρ1 and ρ2 of the bidders. The joint density is

g(xi, xj|ρi, ρj) = (1− ρiρj)f(xi)f(xj) + ρiρj

∫ 1

0
f(xi|s)f(xj|s)ds. (1)

With probability (1 − ρiρj) at least one bidder observes a signal about his private
attribute Ti and signals are independent by Assumption IN. With the remaining prob-
ability ρiρj, bidders observe correlated (and conditionally independent) signals about
the same realization of the common attribute S.

Let bidder i have a signal realization xi, given a vector of information choice {ρi, ρj}.
Then, his probability of having a higher signal than his opponent is

Gj(xi|xi, ρi, ρj) := Pr(Xj ≤ xi|Xi = xi, ρi, ρj) (2)

=
∫ xi

0 g(xi, xj|ρi, ρj)dxj
f(xi)

. (3)

The degree of the winner’s curse is endogenous in my model. Let the expected value
of the object, given two signal realizations and information choices be

v[xi, xj; ρi, ρj] := E [Vi|Xi = xi, Xj = xj; ρi, ρj] .

If bidder j learns only about his private component Tj (by setting ρj = 0), his signal
Xj = XT

j contains no payoff relevant information for i, and there is no winner’s curse
for bidder i from winning. If ρj = 1, the signal Xj = XS

j is as informative for bidder
i as it is for j, as it only contains information about the common component S. The
following two value settings are nested in my model:

1. Independent private values (IPV). If ρ1 = ρ2 = 0, private signals X1 and X2

are independent. Bidder i’s expected value does not depend on bidder j’s signal:

v[xi, xj; 0, 0] = E [Vi|Xi = xi, ρi = 0] .

2. Pure Common values/ mineral rights model (CV). If ρ1 = ρ2 = 1, expected
value of the bidders is symmetric in the two private signals X1 and X2:

v[xi, xj; 1, 1] = v[xj, xi; 1, 1].

For any interior information selection ρ ∈ (0, 1), a general IntV framework applies
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(Milgrom and Weber, 1982).
Define the (random) sum of the two value components for bidder i, the variable

ωi ∈ Ωi = S + Ti with ωi ∈ [0, 2]. Being the sum of two uniform random variables, the
random variable Ωi is distributed with a symmetric triangular distribution with density

function h(ωi) =


ωi if 0 < ωi < 1,

2− ωi if 1 ≤ ωi < 2,

0 otherwise.

4 Analysis

Let M be an auction mechanism in which the highest bid wins the object, and ties are
broken evenly. I consider a symmetric Bayes Nash equilibrium, where bidders select
the same pure ρi = ρM , and follow a pure and non-decreasing bidding function βM(Xi).
The remainder of this section is devoted to proving the following main result.

Theorem 1 (Main Result). 1. In the SPA, in any equilibrium ρII = 0 if the value
function is symmetric or t-preferred.

2. In the FPA, in any equilibrium ρI = 1 if the value function is s-preferred, and
ρI ∈ {1, 0} if it is symmetric.11

3. In the APA, in any equilibrium ρA = 0 if the value function is t-preferred, and
ρA = 1 if s-preferred.

IPV is the unique equilibrium outcome of the SPA in the symmetric or t-preferred
framework. Then, there is no learning about the common component in any equilibrium
of the SPA, if the bidders weakly prefer the private over the common component.

Pure CV is the unique equilibrium outcome in the FPA if the value function is
s-preferred, and an equilibrium if it is symmetric (in Section 4.3 I show that the other
equilibrium ρI = 0 for a symmetric value function is trivial and non-robust).

Let CEM := {ρM , βM} be a candidate equilibrium in an auction mechanism M . I
use the following class of deviation strategies to rule out candidate equilibria: {ρi, βM}.
That is, a bidder uses the same bidding function as in the candidate equilibrium, but
changes his information selection strategy. The advantage of this deviation strategy is

11See Section 4.3 for an argument why the ρI = 0 equilibrium is trivial and not robust.
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tractability, as with such a deviation strategy, the event of winning occurs if and only
if Xi ≥ Xj.12

Let UM
i (ρi|CEM) be the expected utility of bidder i with strategy {ρi, βCE} in

auction M , whose opponent plays according to the candidate equilibrium. It can be
separated into his expected gain EG(ρi|CEM) minus his payment conditional on win-
ning W (ρi|CEM) times the probability of winning P (ρi|CEM):

Ui(ρi|CE) := EG(ρi|CEM)−W (ρi|CEM)P (ρi|CEM). (4)

In the following, I first show the impact of this deviation strategy on the expected
gain and the winning probability, and thereafter on the expected conditional payment.

4.1 Expected Gain and Winning Probability

First, consider the winning probability of bidder i point-wise at every ωi = S+Ti. If the
opponent j follows the candidate equilibrium CEM and bidder i deviates to {ρi, βM},

Pr(i wins|ωi, ρi, CEM) = Pr(Xi ≥ Xj|ωi, ρi, ρM).

Lemma 1. For any a, b ∈ [0, 1],

∂ Pr(Xi ≥ Xj|S = a, Ti = b, ρi, ρj)
∂ρi

= −∂ Pr(Xi ≥ Xj|S = b, Ti = a, ρi, ρj)
∂ρi


> 0 if a > b,

= 0 if a = b,

< 0 if a < b.

If bidder i learns more about S and less about Ti by increasing ρi, his probability
of winning (with deviation strategy {ρi, βM}) increases if the common component is
higher than his private component, and decreases otherwise. Hence, increasing ρi shifts
winning probability into S-Ti-combinations with a higher common component.

Lemma 2. Let CEM = {ρM , βM}. For any ωi, any information selection ρi ∈ [0, 1]
with bidding function βM yields the same winning probability,

∂ Pr(iwins|ωi, ρi, βMi ;CEM)
∂ρi

= 0.
12Ties have zero probability and are ignored.
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Figure 1: Winning probability with ωi = s + ti = 0.8
and ρj = 1, for different ρi. Signals have densities
f(x|r) = (2− 2r) + (4r − 2)x.

Figure 2: Utilities for ωi = 0.8 with u(s, ti) = s0.5t0.5
i

(blue solid), u(s, ti) = s0.8t0.2
i (green dashed) and

u(s, ti) = s0.3t0.7
i (purple dotted dashed).

As long as the bidder follows the same bidding function βM as in the candidate
equilibrium, his information selection ρi has no impact on the probability of winning
for every realization ωi.

Figure 1 shows the probability of bidder i having the highest signal realization
(and hence, winning with {ρi, βM}) on the y-axis when ωi = s+ ti = 0.8. His opponent
chooses ρj = 1 and learns only about S. The x-axis shows the realization of the common
component S that can arise with ωi = 0.8; the corresponding private component at each
point of the x-axis is ti = 0.8 − s. If bidder i chooses ρi = 1, both bidders learn only
about the common component. As they have access to the same information technology,
winning probability is one-half for any realization of s, given ωi (blue solid line).

If bidder i learns more about his private component Ti and less about Si, winning
probability changes (green and purple lines), as shown in Lemma 1. The two vertical
grey lines indicate how bidder i gains winning probability in state (s = 0.7, ti = 0.1),
and looses the same mass of winning probability in state (s = 0.7, ti = 0.1). Due to the
MLRP, higher signals are more likely for higher realizations of the value components.
Hence, the lower ρi, the more likely bidder i wins in states with a high private component
realization, and the less likely he wins with a high common component realization. If
the components coincide, s = ti = 0.4, varying ρi has no effect as it results in the same
joint signal density.

As the two realizations (s = 0.7, ti = 0.1) and (s = 0.7, ti = 0.1) are equally likely,
their overall effect on winning probability cancels out. The same argument holds for
any feasible pair (a, b) and (b, a) such that a + b = 0.8. For any ρi ∈ [0, 1], and given
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ωi = 0.8, bidder i has the same winning probability as proven in Lemma 2. Hence,
information selection shuffles the combinations of S-Ti states in which bidder i wins,
while keeping the overall probability of winning at some ωi fixed.

The total probability of winning is

P (ρi|CEM) :=
∫

Ωi

Pr(i wins|ωi, ρi, βM ;CEM)h(ωi)dωi. (5)

Corollary 1 (Constant Winning Probability). Let CEM = {ρM , βM}. For any ρi ∈
[0, 1], strategy {ρi, βM} yields the same probability of winning P (ρi|CEM) = 1

2 .

This is an immediate corollary of Lemma 2. For any ωi, winning probability does
not depend on ρi. Hence, total winning probability is constant for any ρi.

The impact of a deviation (ρi, βCE) on the expected gain depends on the class of
value function.

Proposition 1 (Expected Gain). Let CEM = {ρM , βM} and bidder i unilaterally
deviate to {ρi 6= ρM , βM}. The expected gain EG(ρi|CEM) is

1. constant for all ρi ∈ [0, 1] if u is symmetric,

2. strictly decreasing in ρi if u is t-preferred,

3. strictly increasing in ρi if u is s-preferred.

The proof proceeds by showing that point-wise for any ωi = s+ti, expected utility is
increasing in ρi if u(s, ti) is s-preferred, decreasing in ρ1 if it is t-preferred, and constant
if it is symmetric.

As established in Lemma 1 and in Figure 1, an increase in ρi symmetrically shifts
winning utility from (S = 0.1, Ti = 0.7) to (S = 0.7, Ti = 0.1). Figure 2 plots three
different value function for a fixed sum of the two components ωi = 0.8, with S on the
x-axis. The effect of increasing ρ1 can be seen at the two vertical lines at (S = 0.1, Ti =
0.7) and (S = 0.7, Ti = 0.1).

For a symmetric value function, the blue solid line in Figure 1 shows that a bidder
is indifferent between (0.1, 0.7) to (0.7, 0.1) (and any other symmetric pair of S-Ti-
combination). Therefore, an increase in ρi will not have any effect on the expected gain.
If the value is s-preferred (green dashed line), bidder i wins with a higher probability at
(S, Ti) = (0.7, 0.1) if he increases ρi, which he prefers over (0.1, 0.7). Hence, an increase
in ρi raises overall expected gain: a bidder is more likely to win when he values the
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object more. For a t-preferred value function (purple dotted-dashed line), an increase
in ρi shifts winning probability into less favourable states with a higher common than
private component (e.g., into (S, Ti) = (0.7, 0.1) instead of (0.1, 0.7)).

4.2 Expected Payment

The first- and second-order statistics of the bids vary within the class {ρi, βM}ρi∈[0,1].
Given an information selection vector {ρi, ρj}, let G(1)(x|ρi, ρj) denote the first-order
statistic of the two signals X1 and X2, and G(2)(x|ρi, ρj) the second-order statistic.

For two distribution functions, write F �FOSD G if distribution F first-order
stochastically dominates G (i.e., F (x) ≤ G(x) for all x). Write F �FOSD G if dis-
tribution F �FOSD G and EF [x] > EG[x]. Write F =FOSD G if F �FOSD G and
G �FOSD F . The following holds for the first- and second-order statistic of signals in
this information structure.

Lemma 3 (Order Statistics). Let ρi > ρ′i.

1. If ρj 6= 0, then G(2)(.|ρi, ρj) �FOSD G(2)(.|ρ′i, ρj) and G(1)(.|ρ′i, ρj) �FOSD G(1)(.|ρi, ρj).

2. If ρj = 0, then G(2)(.|ρi, ρj) =FOSD G(2)(.|ρ′i, ρj) and G(1)(.|ρ′i, ρj) =FOSD G(1)(.|ρi, ρj).

Bidder i can influence the correlation between his signal Xi and that of his opponent
Xj if ρj > 0.13 Increasing correlation by increasing ρi results in a higher second-order
statistic and a lower first-order statistic of the signals in the sense of FOSD. This
becomes apparent with ρj = 1 and as signals become perfectly informative: if bidder i
also sets ρi = 1, he observes the same signal realization as his opponent. In this case,
under perfectly informative signals, the first- and second-order statistics coincide. As
the positive correlation decreases (by decreasing ρi), the wedge between the first-order
and second-order statistic increases.

If a bidder plays the same bidding function βM as his opponent, he wins if and only
if he has a higher signal realization Xi than his opponent, irrespective of his information
choice ρi. That is, for any ρi and conditional on winning, bidder i pays the bid of the
second-order statistic in the SPA, and the bid of the first-order statistic in the FPA,

W II(ρi|CEII) =
∫ 1

0
βII(x)dG(2)(x|ρi, ρII). (6)

W I(ρi|CEI) =
∫ 1

0
βI(x)dG(1)(x|ρi, ρI). (7)

13If ρj = 0, due to Assumption (IN), bidder i’s signal is independent of Xj for any ρi ∈ [0, 1].
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The bidding functions βI and βII are non-decreasing, and by Lemma 3 the order
statistics G(1) and G(2) can be FOSD-ordered in ρi. This translated into the following
effect on expected payment conditional on winning WM(ρi|CEM).

Proposition 2. For an auction mechanism M ∈ {II, I, A}, let CEM = {ρM , βM} be
a candidate equilibrium with βM any non-decreasing bidding function. Let ρM > 0.

1. In the SPA, W II(ρi|CEII) is strictly increasing in ρi.

2. In the FPA, W I(ρi|CEI) is strictly decreasing in ρi.

3. In the all-pay auction, WA(ρi|CEA) is constant for any ρi ∈ [0, 1].

Let ρM = 0. Then, WM(ρi|CEM) is constant for any ρi ∈ [0, 1].

In the SPA, decreasing correlation leads to a lower second-order statistic, and hence,
a lower expected payment conditional on winning. This effect is reversed for the FPA,
as the effect of an increase in correlation on the first-order statistic is reversed to the
second-order statistic. In the APA, a bidder pays irrespective of winning, and the
marginal distribution of Xi, F (.), does not depends on the information choice ρi or ρj.
Hence, if he bids with the same bidding function βA, his expected payment is the same.

Overall effect of a (ρi, βM)-deviation. The main Theorem 1 follows by combining
Corollary 1, Proposition 1 with Proposition 2. For example, for a symmetric value
function u(S, Ti), decreasing ρi while keeping βM fixed has the following effect: the
deviation yields the same expected gain (Proposition 1), the same winning probability
of one half (Corollary 1), and a strictly lower (higher) payment in the SPA (FPA)
(Proposition 2). Hence, a decrease (increase) in ρi constitutes a strictly profitable
deviation in the SPA (FPA) for any ρCE > 0.

Social surplus is maximized if a bidder with the highest expected private component
Ti receives the object. All bidders share the same common component S, which therefore
plays no role for the social surplus. Information about the common component is not
socially valuable, and available only by incurring the opportunity costs of not learning
about the private component. For a symmetric or t-preferred value function, Theorem
1 establishes any equilibrium of the SPA is ex-ante efficient as it induces ρII = 0 and
allocates efficiently.
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4.3 Equilibrium Existence

Theorem 1 focuses on which information selection cannot be part of an equilibrium.
The next result shows when an equilibrium exists.

Definition 2. A value function satisfies increasing differences in Ti if u(a, b)− u(b, a)
is non-decreasing in b for every a.

The value functions u(S, Ti) = αS + (1 − α)Ti for α < 1
2 or the product value

u(S, Ti) = STi satisfy increasing differences in Ti. Any symmetric value function u

satisfies increasing differences. If a value function is s-preferred, it cannot satisfy in-
creasing differences. If a value function has increasing differences in Ti, the difference
E[Vi|XT

i = xi] − E[Vi|XS
i = xi] crosses zero exactly once from below as the signal xi

increases, as shown in the proof of the following.

Proposition 3. Let the value function u satisfy increasing differences in Ti. Then,
there exists an equilibrium with ρ = 0 in the SPA, FPA and APA.

With increasing differences in Ti, IPV is always an equilibrium outcome of the three
auctions. This is easiest seen for a symmetric value function. If bidder 2 learns only
about his private component T2, his signal X2 is always independent from the signal
of bidder 1, X1. This holds irrespective of bidder 1’s information choice ρ1. Then, the
information choice of bidder 1 serves only the purpose to learn in the most informative
way about his total value, not to vary the correlation between the signals or to mitigate
the winner’s curse. As each value component is equally informative about the total value
with a symmetric value function, the IPV outcome is sustainable as an equilibrium.

Corollary 2. Let the value function u satisfy increasing differences in Ti. Then, there
exists an essentially14 unique equilibrium in the SPA in which ρII = 0.

Hence, for the SPA and a value function with increasing differences in Ti, my analysis
yields the existence of a unique information choice equilibrium.

Next, consider the unique possible information choice for the FPA, if the value
function is s-preferred. For the FPA, it is straightforward to see that ρI = 1 cannot be
the equilibrium under some conditions. Let ρI = 1 and consider fully revealing signals
about the components. Then, if both bidders choose ρi = 1, they both observe the
same signal realization XS

1 = XS
2 = S. In this case, the bidders do not obtain any

14It is unique up to the bid of the lowest signal realization bidder who never wins.
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information rent as their signal is essentially public, and bid their true estimate of the
good E[Vi|XS

i = S]. Both bidders have an expected utility of zero. A simple deviation
of a bidder to ρi = 0 and bidding E[Vi|XT

i = x, S = 0] is a strictly profitable deviation.
By introducing a sufficiently small amount of noise in the private signals, bidders bid
so close to their true value that their expected utility can be made arbitrarily close to
zero. Then, deviating to the private component is strictly profitable and a CE with
ρI = 1 cannot be sustained for sufficiently precise signals. Then, the equilibrium of the
FPA might only exist in mixed strategies.

In the APA, bidders always pay their bid, irrespective of the event of winning. They
win if they submitted a higher bid than their opponents. Krishna and Morgan (1997)
analyze the all-pay auction in a symmetric interdependent value framework. They find
a condition such that a symmetric equilibrium in increasing strategies exists.

4.4 Robustness

For the remainder of this section, let the value function be symmetric. By Theorem 1, in
any equilibrium of the SPA it holds that ρII = 0. In the FPA, there are two candidates
for an equilibrium, ρI ∈ {0, 1}. In the following, I show that ρI = 0 can be ruled out
by a slight perturbation of the model: I introduce a small degree of interdependence
between the bidders by introducing a small tremble into their information choice. Then,
there is a force in the FPA pushing the bidders towards higher correlation.

With probability ε > 0, a bidder ‘trembles’ when choosing his information and his
signal isXi = XS

i and contains only information about the common component.15 With
probability 1 − ε, his signal Xi contains information about S and Ti as in the model
depending on his chosen ρi.16

This formulation guarantees a strictly positive correlation between the signals of the
bidders for any information choice. Hence, if ε > 0, a bidder can vary the degree of
correlation with his opponent even if his opponent chooses ρj = 0. If ε = 0, the original
model applies: ρj = 0 results in independent signals Xi |= Xj by Assumption (IN).

Proposition 4. Let ε > 0, and u(S, Ti) symmetric. In any equilibrium of the SPA,
ρII = 0. In any equilibrium of the FPA, ρI = 1.

15The following results will also hold for any exogenous mixing where the bidder learns about the
common component with strictly positive probability.

16An alternative formulation is that for each bidder, with probability ε > 0, his private and common
components are perfectly correlated. While this significantly complicates the notation, this does not
change the result. A similar formulation can be found in a previous version of this paper.
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Hence, any equilibrium of the SPA is IPV and ex-ante efficient. Any robust equilib-
rium in the FPA is inefficient. A strictly profitable deviation in the FPA is to increase
correlation ρi > ρI and bid with the same bidding strategy βI as in the candidate
equilibrium. This way, a bidder obtains the same expected gain for a strictly lower
payment. The lower payment stems from a strictly lower distribution of winning bids
(via a strictly lower first-order statistic of signals). If ε > 0, bidder i can increase cor-
relation with his opponent for any ρI < 1. This rules out an equilibrium with ρI = 0
in the FPA.

5 Extensions

5.1 Revenue

In this section, I analyze the effect of ρ on the expected revenue for the auctioneer
in the SPA. Increasing ρ increases the correlation between the two bidders’ private
information, hence, links their private information. While intuition suggests that there
is similarity to the Linkage Principle fromMilgrom andWeber (1982), there are multiple
effects at play and the overall effect on revenue is ambiguous.

Let ΠSPA(ρ) be the expected revenue in the SPA in a symmetric equilibrium, where
both bidders chose ρ (exogenously) and bid optimally. The expected revenue for the
auctioneer in the SPA can be computed as follows.

ΠSPA(ρ) =
∫ 1

0
βSPA(x|ρ)f(2)(x|ρ, ρ)dx (8)

=
∫ 1

0
E[Vi|X1 = x,X2 = x|ρ]f(2)(x|ρ, ρ)dx. (9)

First, I provide numerical examples. Let S, Ti ∈ {0, 1}, and a symmetric additive
value function Vi = S + Ti. Figure 3 plots the expected revenue as a function of ρ, for
three signal distributions: (i) f(x|0) = 3(x − 1)2 and f(x|1) = 1; (ii) f(x|0) = 1 and
f(x|1) = 3x2; (iii) f(x|0) = 1 and f(x|1) = 2x.

In Examples (i) and (iii), the highest revenue is achieved with ρ = 0. In Example
(ii), ρ = 1 maximizes revenue. Furthermore, Examples (i) and (iii) show that revenue
can be non-monotonic in ρ. Hence, the relation between revenue and ρ depends on the
parametric framework of the signal distributions. To provide further insights why the
overall effect on revenue is ambiguous, I de-construct the change in revenue from an
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Figure 3: Revenue as a function of ρ for three numerical examples with binary uniform S, Ti ∈ {0, 1}.

increase in ρ.17 Let ρ < ρ′, and let the change in the bid and the second-order statistic
be defines as

∆β(x|ρ′, ρ) = βSPA(x|ρ′)− βSPA(x|ρ)

∆f(2)(x|ρ
′, ρ) = f(2)(x|ρ′, ρ′)− f(2)(x|ρ, ρ)

Then, the difference in revenue can be expressed as

ΠSPA(ρ′)− ΠSPA(ρ) =
∫ 1

0
∆β(x|ρ′, ρ)f(2)(x|ρ, ρ)dx (10)

+
∫ 1

0
βSPA(x|ρ′)∆f(2)(x|ρ

′, ρ)dx. (11)

The effect of a change in ρ can be separated into two effects: the first summand
in Expression 10 isolates the impact on bidding, given a second-order statistic (linkage
effect); the second summand in Expression 11 isolates the effect on the second order
statistic, given a bidding function (second-order statistic effect). This second-order
statistic effect is absent in the classical framework of the Linkage Principle in Milgrom
andWeber (1982). In their model, disclosing information (publicly) or choosing between
different auction formats has an effect on the bidding function (linkage effect), but not
on the second-order statistic.18

In my model, the second-order statistic effect is present and unambiguously non-
17If revenue, the bidding function and the second order statistic are differentiable in ρ, the following

expressions can be simplified into a marginal statement.
18Varying the linkage in Milgrom and Weber (1982) has no effect on the joint distribution of the

initial private signals, X1 and X2, and hence, no effect on the second-order statistic.

21



negative for ρ′ > ρ, ∫ 1

0
βSPA(x|ρ′)∆f(2)(x|ρ

′, ρ)dx ≥ 0.

This is because the fixed bidding function βSPA(x|ρ∗) is non-decreasing, and by Lemma
3, F(2)(.|ρ′, ρ′) ≥FOSD F(2)(.|ρ, ρ′) ≥FOSD F(2)(.|ρ, ρ). Increasing the correlation between
the private information of the bidders raises revenues, given a fixed bidding distribution.

Given a symmetric information selection ρ, by the argument in Milgrom and Weber
(1982), a symmetric equilibrium is to bid βSPA(x|ρ) = vi[x, x, ρ, ρ]. Define bidder i’s
change in expected value from a change in ρi or ρj as

∆ρi
vi[ρ′i, ρi;x, ρj] := vi[x, x, ρ′i, ρj]− vi[x, x, ρi, ρj],

∆ρj
vi[ρ′j, ρj;x, ρi] := vi[x, x, ρi, ρ′j]− vi[x, x, ρi, ρj].

The linkage effect in Expression 10 can be decomposed further using this notation,
to isolate the effect of a bidder’s own information selection ρ1 and his opponent’s ρ2 on
equilibrium bidding.

∆β(x|ρ′, ρ) = ∆ρi
vi[ρ′, ρ;x, ρ] + ∆ρj

vi[ρ′, ρ;x, ρ′]

I show that the effect of both terms on revenue are ambiguous, by means of a
numerical example. Let S, Ti ∈ {0, 1} binary with equal probability, and signal densities
be f(x|0) = 2 − 2x and f(x|1) = 2x. For this symmetric setup, any signal x < 0.5 is
bad news about the value of the object, and any signal x > 0.5 good news.19 Thus, for
any ρ1 and ρ2, E[Vi|X1 = 0.5, X2 = 0.5, ρ1, ρ2] = E[Vi] = 1, as x = 0.5 is neutral news.
For any ρ, β(0.5|ρ) = 1, similar to a boundary condition in this framework.

Figure 4 plots E[V1|X1 = x,X2 = x, ρ1, ρ2] for three levels of ρ2 ∈ {0, 0.5, 1}, while
keeping ρ1 = 0.5 fixed. The higher ρ2, the more relevant is the signal of the opponent
about S, and the stronger his impact on the expected value. Bad news (X2 < 0.5) is
worse news, the higher ρ2. A higher ρ2 links the bid of the opponent (and hence the own
payment conditional on winning) stronger with the true value of the object. Hence, an
increase in ρ2 rotates the expected value counter-clockwise around x = 0.5. Due to this
rotation, in contrast to the framework in Milgrom and Weber (1982), a higher linkage
does not lead to a higher expected payment, as it elevates the payment for low signal
realizations. This is easily seen for a signal below 0.5, as any possible bid of the loosing

19This can be easily computed by observing that the likelihood ratio is strictly monotonic due to
the monotone likelihood ratio property, and exactly equal to one at x = 0.5.
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opponent is higher with a lower (and hence, less informative and less ’linked’) ρ2. For
high enough signals above 0.5, this effect might reverse. Hence, the effect of a higher
linkage due to an increase in ρ2 has an ambiguous effect on overall revenue.

Figure 5 plots E[V1|X1 = x,X2 = x, ρ1, ρ2] for ρ1 ∈ {0, 0.5, 1} with a fixed ρ2 = 0.5.
The higher ρ1, the higher the redundancy in bidder 1’s information to the information
of bidder 2.20 Hence, bad news (X1 < 0.5) is worse news and good news (X1 > 0.5) is
better news, if ρ1 is lower. A decrease in ρ1 leads to a higher linkage between the true
value and the price paid. However, this effect in total is also ambiguous, as a lower
linkage leads to a higher expected payment for negative news, but this effect possibly
reverts for high enough signals.

In sum, as ρ1 and ρ2 increase, the two rotations of the bidding function around
x = 0.5 are opposing forces. The two linkage effects in Expression 10 go in opposite
directions, and the effect of a higher linkage on revenue is ambiguous. If the auctioneer
can pick the (symmetric)21 information selection variable ρ for both bidders, his choice
will depend on the parametric assumptions of the informational framework.

5.2 Many Bidders and the All Pay Auction

With N = 2, a deviation strategy of the form {ρi < ρCE, βCE} established, that
the equilibrium in a SPA is efficient if the value function is symmetric or t-preferred.
Unfortunately, with more than two bidders, this class of deviation strategies {ρi, βCE}

20For intuition, let signals be almost perfectly revealing and consider ρ2 = 1. For bidder 1, ρ1 = 1
yields almost no additional information, while ρ1 = 0 yields almost perfect information about T1.

21In this section, I considered a symmetric information choice ρ1 = ρ2 and a symmetric equilibrium.
In the context of the classical set-up of the Linkage Principle, Mares and Harstad (2003) show that a
seller might derive a higher revenue from disclosing information privately and not publicly. In light of
these results, the optimal choice of ρ1 and ρ2 remains an open question.
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(s = 0.7, ti = 0.1) (s = 0.1, ti = 0.7) total winning prob.
CE 1/N 1/N 1/N
DS 0 1 1/2

Table 1: Probability of bidder i winning in DS and CE with ρ∗ = 1, conditional on vi = 1. Both state combinations
have equal probability of h(0.1)h(0.7). Overall winning probability is higher with DS.

is not able to rule out as before inefficient equilibria of the SPA with ρ > 0.
I show the complications that arise with N > 2 for a candidate equilibrium with

ρCE = 1. In the candidate equilibrium, and in a deviation strategy of the form
{ρi, βCE}, bidder i wins if and only if he has a higher signal realization than all of
his opponents, where ties can be ignored. Let Yi = maxj 6=iXj be the highest signal
realization of all opponent bidders of bidder i.

For each total value realization vi for bidder i the following theorem pins down the
probability of winning under DS or CE, depending on whether he observes XT

i or XS
i .

Proposition 5. Let N > 2 and ρCE = 1. Then, for all ωi ∈ [0, 2], the probability of
bidder i having the highest signal is Pr(Xi ≥ Yi|ωi, ρi = 1) = 1

N
. For all ωi ∈ (0, 2),

Pr(Xi ≥ Yi|ωi, ρi) is strictly decreasing in ρi.

Let all other bidders learn about the common component S. The proposition says
that, by decreasing ρi and learning more private component Ti instead of S, bidder i
can strictly increase his probability of having the highest signal for all ωi.

The intuition is best conveyed by an example with fully revealing signals, i.e.,

Pr(XK
i = x|K = r) =

1 if x = r,

0 otherwise.
for K ∈ {S, Ti}. Fix ωi = 0.8 and con-

sider two S-Ti-combinations that are compatible with it for bidder i, (s = 0.1, ti = 0.7)
and (s = 0.7, ti = 0.1). Both combinations occur with equal density. If multiple bidders
have the same highest signal realization, ties are broken evenly about who wins.22

If (s = 0.7, ti = 0.1), all N − 1 other bidders learn a signal XS
j with realization

xj = 0.7. If bidder i learns XS
i as well, he has signal realization 0.7, and wins with

probability 1
N
. If bidder i observes signal XT

i instead about his private component, his
signal realization is 0.1 and he has zero probability of winning. These probabilities are
summarized in the first column of Table 1.

If (s = 0.1, ti = 0.7), all other bidders observe a signal realization xj = 0.1. If
bidder i learns about S, he also observes realization 0.1 and wins with probability 1

N
.

22In the continuous version of my model, ties have zero probability. In this discrete example, ties
occur with strictly positive probability, which requires a tie-breaking rule.
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If bidder i learns about his private component, his signal realization is 0.7 and he wins
with probability 1. This is summarized in the second column of the Table 1.

Winning probability overall in DS is higher than in CE. In (s = 0.1, ti = 0.7),
bidder i has a lot of probability mass of winning to gain by learning about Ti. In state
(s = 0.7, ti = 0.1), even if bidder i learns about S, his probability of a win is not very
high, since the first order statistic of the other bidders is elevated by the high realization
of S. The gain in probability mass of winning in (s = 0.1, ti = 0.7) is larger than the
loss in (s = 0.7, ti = 0.1). This argument becomes stronger N → ∞. As the number
of bidders increases and all other bidders learn about the common component, bidder
i’s probability of winning with CE approaches zero in both (s = 0.1, ti = 0.7) and
(s = 0.7, ti = 0.1). On the other hand, playing DS always guarantees bidder i a win in
state (s = 0.1, ti = 0.7). It is easy to see that when there are only two bidders, gain
and loss in the two states are exactly equal: learning about either component yields the
same overall probability 1

2 of having the highest signal for bidder i in above two state
realizations. This is evident in the third column of Table 1 for N = 2.

In the general setting with noisy signals, a bidder with a deviation strategy {ρi <
1, βCE} will therefore have a higher expected gain. This is because at each ωi, bidder
i wins with a higher probability.

However, the effect on the expected payment in the SPA is ambiguous. First, a
higher winning probability at every ωi corresponds also to a higher probability of having
to pay. In contrast, for two bidders, overall winning probability remained unchanged.
Second, the effect on the expected payment conditional on winning is also uncertain.
With N = 2, the marginal distribution of the own signal and of Yi was identically
distributed. Therefore, the effect or more or less correlation manifested by a first-order
stochastic dominance on the order statistics when varying ρi (see Proposition 3). With
N > 2, the marginal distributions of Xi and Yi do no longer correspond, and no such
order as in Proposition 3 can be established.23

These effects are clearer in the all-pay auction, as the following result shows.

Proposition 6. For N > 2 and u(s, ti) being symmetric, there exists no equilibrium of
the all-pay auction with ρA = 1. There exists an equilibrium with ρA = 0.

In a candidate equilibrium where all bidders learn about S, a bidder has a strictly
profitable deviation: deviate to {ρi = 0, βA}. This results in a strictly higher expected

23For example, let S, Ti be binary with equal probability, and let f(x|0) = 2− 2x and f(x|1) = 2x.
Let ωi = 1 and N = 4. It can be easily computed, that the distribution of Yi conditional on bidder i
winning cross for different ρi, i.e., there is no FOSD in ρi.
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gain as his winning probability increases at every value realization vi, as Proposition
5 shows. As the bidding function is preserved in the deviation from the candidate
equilibrium, the deviation’s expected payment is unchanged in an APA.

Moreover, if ρA = 0, no other bidder knows anything of relevance to other bidders.
Any information choice of a bidder results in an independent signal from all other
bidders, and the overall information content does not depend on the information choice.
This establishes existence of an equilibrium with ρA = 0.

6 Conclusion

If bidders cannot consider all possible information, they face the decision about which
variables to learn. I analyze this question in the context of auctions. In takeover
auctions, out of all the multidimensional information available about the target, which
characteristics do bidders choose to focus on? Do they want to know what matters
to others – a common variable like the book value – which induces interdependence in
private information? Or do bidders prefer to focus on a private component like their
specific R&D synergies and receive independent private signals?

The focus of this paper is on information selection, specifically which payoff-relevant
variable to learn about. This contrasts with the literature on information acquisition,
which usually asks how much information about a single payoff relevant variable a
bidder acquires.

In the SPA, information selection in equilibrium is unique if the private component
matters at least as much as the common component. Any candidate equilibrium in
which bidders learn with non-zero weight about the common component cannot be
sustained. I construct deviation strategy, such that a bidder strictly decreases his
expected payment but retains his overall gain and winning probability. By decreasing
correlation via learning about the private component, a bidder is more likely to win
in states with a high private component, and less likely to win in states with a high
common component, while there is no effect on the overall winning probability. In the
FPA, if the common component matters at least as much as the private component
to a bidder, there is a force towards more correlation. Under certain conditions, any
candidate equilibrium but the pure CV outcome can be ruled out.

This paper explores the impact of a selling mechanism on the type of information
bidders select. Information about the common component simplifies coordination and
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is informative about other bidder’s bids. However, learning about a common compo-
nent that matters equally for all bidders is socially wasteful, as this information comes
at the opportunity cost of not learning socially valuable information about the private
components. A designer who wishes to maximize efficiency should take into considera-
tion, that his auction choice might affect about which value components bidders learn.
My analysis suggests that, if the private component matters as least as much as the
common component, the SPA is a good choice, as it is ex-ante efficient. It induces
learning only about the socially relevant variable and allocates the good efficiently. An
IPV setup arises endogenously.

A Appendix

(The proof of Theorem 1 follows after the proof of Proposition 2.)

Proof of Lemma 1. The probability of winning for bidder i with ρi is

Pr(Xi ≥ Xj|S, Ti, ρi, ρj) = ρi Pr(XS
i ≥ Xj|S, Ti, ρj) + (1− ρi) Pr(XT

i ≥ Xj|S, Ti, ρj).

As this is differentiable in ρi, it holds that

∂ Pr(Xi ≥ Xj|S, Ti, ρi, ρj)
∂ρi

= Pr(XS
i ≥ Xj|S, Ti, ρj)− Pr(XT

i ≥ Xj|S, Ti, ρj). (12)

If bidder i learns XS
i , his probability of having the highest signal is

Pr(XS
i ≥ Xj|S = a, Ti = b, ρj) = ρj

∫ 1

0
f(x|a)F (x|a)dx+ (1− ρj)

∫ 1

0
f(x|a)F (x)dx

= ρj
1
2 + (1− ρj)

∫ 1

0
f(x|a)F (x)dx.

If bidder i learns XT
i , it holds that

Pr(XT
i ≥ Xj|S = a, Ti = b, ρj) = ρj

∫ 1

0
f(x|b)F (x|a)dx+ (1− ρj)

∫ 1

0
f(x|b)F (x)dx.

First, I show that the derivative with respect to ρi in Equation 12 at S = a, Ti = b
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is the additive inverse of the derivative at S = b, Ti = a. Using integration by parts,

∂ Pr(Xi ≥ Xj|a, b, ρi, ρj)
∂ρi

+ ∂ Pr(Xi ≥ Xj|b, a, ρi, ρj)
∂ρi

=ρj − ρj
∫ 1

0
f(x|b)F (x|a)dx− ρj

∫ 1

0
f(x|a)F (x|b)dx

=ρj
[
1−

(
1−

∫ 1

0
f(x|a)F (x|b)dx

)
−
∫ 1

0
f(x|a)F (x|b)dx

]
= 0.

Next, I pin down the sign of the derivative in Equation 12. First, let a = b. With∫ 1
0 f(x|b)F (x|a)dx =

[
1
2F (x|a)

]1
0

= 1
2 , it is immediate that ∂ Pr(Xi≥Xj |a,b,ρi,ρj)

∂ρi
= 0.

Let a > b. The strict MLRP implies FOSD, hence, F (x|a) < F (x|b) for all x ∈ (0, 1).
Using this inequality and integration by parts repeatedly, it follows that

Pr(XT
i ≥ Xj|S = a, Ti = b, ρj) =ρj

∫ 1

0
f(x|b)F (x|a)dx+ (1− ρj)

∫ 1

0
f(x|b)F (x)dx

<ρj

∫ 1

0
f(x|b)F (x|b)dx+ (1− ρj)

[
1−

∫ 1

0
f(x)F (x|a)dx

]
=ρj

1
2 + (1− ρj)

∫ 1

0
f(x|a)F (x)dx

= Pr(XS
i ≥ Xj|S = a, Ti = b, ρj).

Hence, ∂ Pr(Xi≥Xj |a,b,ρi,ρj)
∂ρi

> 0 for a > b. For a < b, by the MLRP, it holds that
F (x|a) > F (x|b), all inequalities reverse and ∂ Pr(Xi≥Xj |a,b,ρi,ρj)

∂ρi
< 0, concluding the

proof of the lemma.

Proof of Lemma 2. Fix ωi ∈ (0, 2). Define the subset of S that is feasible with ωi
as S(ωi) := {s ∈ S : ∃ti ∈ [0, 1] : ωi = s + ti} = [max{0, ωi − 1},min{1, ωi}].24 Let
s(ωi) = max{0, ωi − 1} and s(ωi) = min{1, ωi}. Define ŝ(ωi) that bisects this interval:
ŝ(ωi) := s(ωi)+s(ωi)

2 = ωi

2 . Let hωi
(.) be the density of a component, conditional on a

realization ωi. It coincides for both components.
Increasing the information selection ρi yields the following change in winning prob-

ability conditional on ωi:
24If ωi ≥ 1, we have S(ωi) = [ωi − 1, 1]. If ωi < 1, we have S(ωi) = [0, ωi].
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∂ Pr(iwins|ωi, ρi, βMi ;CEM)
∂ρi

= ∂

∂ρi

∫
S(ωi)

Pr(Xi ≥ Xj|S = s, Ti = ωi − s, ρi, ρM)hωi
(s)ds

=
∫ ωi

2

s(ωi)

∂

∂ρi
Pr(Xi ≥ Xj|S = s, Ti = ωi − s, ρi, ρM)hωi

(s)ds

+
∫ s(ωi)

ωi
2

∂

∂ρi
Pr(Xi ≥ Xj|S = s, Ti = ωi − s, ρi, ρM)hωi

(s)ds.

As S and Ti are distributed uniformly, hωi
(s) = hωi

(ωi − s). Further, using Propo-
sition 1, the second summand can be expressed as

∫ s(ωi)

ωi
2

∂

∂ρi
Pr(Xi ≥ Xj|S = s, Ti = ωi − s, ρi, ρM)hωi

(s)ds

= −
∫ s(ωi)

ωi
2

∂

∂ρi
Pr(Xi ≥ Xj|S = ωi − s, Ti = s, ρi, ρ

M)hωi
(ωi − s)ds

= −
∫ ωi

2

s(ωi)

∂

∂ρi
Pr(Xi ≥ Xj|S = s, Ti = ωi − s, ρi, ρM)hωi

(s)ds.

Hence, ∂ Pr(iwins|ωi,ρi,β
M
i ;CEM )

∂ρi
= 0 for all ωi ∈ (0, 2).

Let ωi ∈ {0, 2}. Then, the components coincide S = Ti = ωi

2 ∈ {0, 1}. By Proposi-
tion 1 (for a = b = ωi

2 ),
∂ Pr(iwins|ωi,ρi,β

M
i ;CEM )

∂ρi
= ∂ Pr(Xi≥Xj |S= ωi

2 ,Ti=
ωi
2 ,ρi,ρ

M )
∂ρi

= 0.

Proof of Proposition 1. Take any candidate equilibrium (ρM , βM). Without loss,
let bidder 1 deviate to (ρ1, β

M) with ρ1 6= ρM while bidder 2 follows the candidate
equilibrium.

Fix any ω1 ∈ Ω1. Define s(ω1), s(ω1), ŝ(ω1) and hω1(.) as in the proof of Lemma
2. Let EU(ρ1|ω1, CE) be the utility of bidder 1 from this deviation strategy for this
realization of ωi. It can be expressed as

EU(ρ1|ω1, CE) =
∫ s(ω1)

s(ω1)
u(a, ω1 − a) Pr(i wins|S = a, T = ω1 − a, ρ1, CE)hω1(a)da

=
∫ s(ω1)

s(ω1)
u(a, ω1 − a) Pr(X1 ≥ X2|S = a, T = ω1 − a, ρ1, ρ

M)hω1(a)da
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The derivative with respect to ρ1 yields

∂EU(ρ1|ω1, CE)
∂ρ1

=
∫ s(ω1)

s(ω1)
u(a, ω1 − a)∂ Pr(X1 ≥ X2|S = a, T = ω1 − a, ρ1, ρ

M)
∂ρ1

hω1(a)da

=
∫ ŝ(ω1)

s(ω1)
u(a, ω1 − a)∂ Pr(X1 ≥ X2|S = a, T = ω1 − a, ρ1, ρ

M)
∂ρ1

hω1(a)da

+
∫ s(ω1)

ŝ(ω1)
u(a, ω1 − a)∂ Pr(X1 ≥ X2|S = a, T = ω1 − a, ρ1, ρ

M)
∂ρ1

hω1(a)da

Using Lemma 1, a change of variables and hω1(a) = hω1(ω1 − a) yields

∫ ŝ(ω1)

s(ω1)
u(a, ω1 − a)∂ Pr(X1 ≥ X2|S = a, T = ω1 − a, ρ1, ρ

M)
∂ρ1

hω1(a)da

−
∫ s(ω1)

ŝ(ω1)
u(a, ω1 − a)∂ Pr(X1 ≥ X2|S = ω1 − a, T = a, ρ1, ρ

M)
∂ρ1

hω1(a)da

=
∫ ŝ(ω1)

s(ω1)
u(a, ω1 − a)∂ Pr(X1 ≥ X2|S = a, T = ω1 − a, ρ1, ρ

M)
∂ρ1

hω1(a)da

−
∫ ŝ(ω1)

s(ω1)
u(ω1 − a, a)∂ Pr(X1 ≥ X2|S = a, T = ω1 − a, ρ1, ρ

M)
∂ρ1

hω1(ω1 − a)da

=
∫ ŝ(ω1)

s(ω1)
[u(a, ω1 − a)− u(ω1 − a, a)] ∂ Pr(X1 ≥ X2|S = a, T = ω1 − a, ρ1, ρ

M)
∂ρ1

hω1(a)da.

In the interval of integration (s(ω1), ŝ(ω1)), it holds that a < ω1 − a. Thus, due to
Lemma 1, ∂ Pr(X1≥X2|S=a,T=ω1−a,ρ1,ρM )

∂ρ1
< 0. Furthermore, [u(a, ω1 − a)− u(ω1 − a, a)] is

zero if the value function is symmetric, positive if it is t-preferred, and negative if it is
s-preferred. Hence, for any ω1,

∂EU(ρ1|ω1, CE)
∂ρ1


= 0 if u is symmetric,

< 0 if u is t-preferred,

> 0 if u is s-preferred.

Overall, the sign of the derivative carries over to the total expected gainEG(ρ1|CEM),

∂EG(ρ1|CEM)
ρ1

=
∫

Ω1

∂EU(ρ1|ω1, CE)
∂ρ1

h(w1)dw1.

Proof of Lemma 3. Without loss, fix ρ2 and let ρ1 vary. Using Corollary 1, Pr(X1 ≥
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X2|ρ1, ρ2) = 1
2 , the first-order statistic can be expressed as

G(1)(x|ρ1, ρ2) = Pr(X1 ≤ x|X1 ≥ X2, ρ1, ρ2)

=2 Pr(X1 ≤ x,X1 ≥ X2, ρ1, ρ2)

=2(1− ρ1ρ2)
∫ x

0
f(x)F (x)dx+ 2ρ1ρ2

∫ 1

0

∫ x

0
f(x|s)F (x|s)dxds

=1
2(1− ρ1ρ2)F (x)2 + 1

2ρ1ρ2

∫ 1

0
F (x|s)2ds.

As it holds by definition that F (xj) =
∫ 1
0 F (xj|s)ds, we have

∂G(1)(x|ρ1, ρ2)
∂ρ1

=1
2ρ2

[∫ 1

0
F (x|s)2ds−

(∫ 1

0
F (x|s)ds

)2]
.

Let ρ2 = 0. Then it is immediate that ∂G(1)(x|ρ1,ρ2)
∂ρ1

= 0. Let ρ2 > 0. Then, the strict
Cauchy-Bunyakovsky-Schwartz inequality25 and strong MLRP yields for all xj ∈ (0, 1),

(∫ 1

0
F (x|s)ds

)2
<
∫ 1

0
ds
∫ 1

0
F (x|s)2ds.

Hence, ∂G(1)(x|ρ1,ρ2)
∂ρ1

> 0 for all x ∈ (0, 1), which concludes the proof of FOSD for the
first-order statistic G(1).

The following lemma establishes a reversed FOSD order relationship between the
first-order and second-order statistic.

Lemma 4. Let R ∈ {�FOSD,�FOSD,=FOSD, } be a FOSD relation and ρ′1 6= ρ′′1. Then,
G(1)(.|ρ′1, ρ2)RG(1)(.|ρ′′1, ρ2) if and only if G(2)(.|ρ′′1, ρ2)RG(2)(.|ρ′1, ρ2).

Proof. Decomposing F (x) into a first-order and a second-order statistic yields

F (x) = Pr(Xi ≤ x|ρi, ρj)

= Pr(Xi ≥ Xj, Xi ≤ x|ρi, ρj) + Pr(Xi < Xj, Xi ≤ x|ρi, ρj)

=1
2
(
G(1)(x|ρi, ρj) +G(2)(x|ρi, ρj)

)
, (13)

where Pr(Xi ≥ Xj|ρi, ρj) = Pr(Xi < Xj|ρi, ρj) = 1
2 followed from Corollary 1.

25The Cauchy-Bunyakovsky-Schwartz inequality
[∫ b

a
c(s)d(s)ds

]2
≤
∫ b

a
c(s)2ds ·

∫ b

a
d(s)2ds is strict

unless c(s) = α · d(s) for some constant α (see Hardy et al., 1934, Chapter VI). In above argument,
c(s) = 1, and d(s) = F (x|s). Due to the strong MLRP, unless x ∈ {0, 1}, F (x|s) is not constant in s.
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F (x) does not depend on ρi. Hence, if G(1)(x|ρ′i, ρj) > (=)G(1)(x|ρ′′i , ρj), then
G(2)(x|ρ′′i , ρj) > (=)G(1)(x|ρ′i, ρj) to satisfy Equation 13.

Hence, the result for the first-order statistic proven above together with above
Lemma 4 establishes the result for the second-order statistic.

Proof of Proposition 2. Let ρM = 0. Then, varying ρi has no effect on neither
the first-order nor the second-order statistic by Lemma 3. Hence, expected payment
conditional on winning in the SPA (Equation 6) and FPA (Equation 7) is constant for
any ρi ∈ [0, 1].

Let ρM > 0. Then, increasing ρi elevates the second-order statistic in a FOSD
order, and the first-order statistic decreases. As the bidding functions βII and βI are
increasing, this yields the result.

Finally, consider the APA for any ρA ∈ [0, 1]. A bidder pays his bid βA irrespective
of winning, and overall winning probability is 1

2 when using βA (Corollary 1). Hence,
WA(ρi|CEA)1

2 =
∫ 1
0 β

A(x)dF (x). Hence, WA(ρi|CEA) does not depend on ρi.

Proof of Theorem 1. The proof follows immediately from combining Proposition 1,
Corollary 1, and Proposition 2.

First, consider the SPA and let the valuation function be symmetric or t-preferred. If
ρII > 0, then {ρ1 < ρII , βII} is a strictly profitable deviation: it yields a weakly higher
expected gain (Proposition 1, 1. and 2.), the same winning probability (Corollary 1)
for a strictly lower expected payment (Proposition 2, 1.).

Next, consider a candidate equilibrium of the FPA with ρI ∈ (0, 1) and let the
valuation function be symmetric or t-preferred. A deviation ρ1 > ρI and βI is strictly
profitable, as it results in a weakly higher expected utility for a strictly lower payment.
Consider a candidate equilibrium of the FPA with ρI = 0 and a s-preferred valuation
function. Then, a deviation strategy ρ1 > ρI and βI is strictly profitable, as it yields
a strictly higher expected gain (Proposition 1, 3.) for the same expected payment
(Proposition 2).

Finally, consider the APA. If u(., .) is t-preferred, for any candidate equilibrium with
ρA > 0, {ρ1 < ρA, βA} is a strictly profitable deviation (higher expected gain for the
same expected payment). Accordingly, for a s-preferred value function u, {ρ1 > ρA, βA}
is a strictly profitable deviation for a candidate equilibrium with ρ < 1.

Proof of Proposition 3. Let the candidate equilibrium be ρCE = 0, and the bidders
follow an optimal symmetric, pure and strictly increasing bidding function βCE, given
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this information choice. Bidders are in an IPV setup and the standard IPV bidding
functions for SPA, FPA and APA constitute a fix point, given this fixed information
choice ρCE = 0.

The proof proceeds as follows: in Part A, I show that no bidder has a profitable
deviation from choosing ρi = 1 and learning XS

i instead of XT
i . In Part B, I prove that

any interior ρi ∈ (0, 1) cannot lead to a strictly profitable deviation. Without loss, I
construct deviations for bidder 1.

Part A. Let bidder 1 deviate to ρ1 = 1 and learn XS
1 . Let βDS be the optimal

deviation strategy of bidder 1 after the deviation. It is without loss to assume that
βDS is pure and non-decreasing in the SPA, FPA and APA.

Next, I show that the strategy ρ1 = 0, βDS yields a weakly higher payoff than the
initial deviation strategy ρ1 = 1, βDS.

Bidder 2 learns about T2, and thus X2 = XT
2 is independent of XS

1 and XT
1 . Thus,

the density of bidder 2’s signal is independent of the signal X1, g2(x2|x1, ρ1 = 0, ρ1 ∈
{0, 1}) = f(x2). Hence, the expected payments in all three auction formats with βDS

and signal realization x1 do not depend on the information choice ρ1:

SPA :
∫
x2:βCE(x2)<βDS(x1)

βCE(x2)f(x2)dx2.

FPA :
∫
x2:βCE(x2)<βDS(x1)

βDS(x1)f(x2)dx2.

APA :
∫ 1

0
βDS(x1)f(x1)dx1.

Thus, overall expected payment is the same with ρ1 ∈ {0, 1}, as long as bidder
1 follows the deviation strategy βDS. The winning probability with βDS and signal
realization x1 (when bidder 2 follows the CE) is P (x1) :=

∫
x2:βCE(x2)<βDS(x1) f(x2)dx2.

Winning probability for each x1 also does not depend ρ1.
The overall difference in expected utility from learning with ρ1 = 0 and ρ = 1 while

bidding with βDS can be expressed as
∫ 1

0

(
E[V1|XT

1 = x1]− E[V1|XS
1 = x1]

)
P (x1)f(x1)dx1. (14)

Next, I show that the expression in Equation 14 is non-negative.

Definition 3 (Karamardian and Schaible, 1990). A function H(x) is quasi-monotone
if x′ > x and H(x) > 0 imply H(x′) ≥ 0.
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Lemma 5. Let u(., .) satisfy increasing differences in Ti. Then, the expression(
E[V1|XT

1 = x1]− E[V1|XS
1 = x1]

)
f(x1) is quasi-monotone.

Proof. As f(x1) is non-negative, it is sufficient to show that E[V1|XT
1 = x1]−E[V1|XS

1 =
x1] is quasi-monotone. A signal realization x1 induces the same posterior distribution
over a component, irrespective of whether it is the private or common component. The
other component is distributed with a uniform distribution on [0, 1], as a signal is only
informative about one component. Hence, E[V1|XT

1 = x1] =
∫ 1

0
∫ 1

0 u(a, b)dF (b|x1)da
and E[V1|XS

1 = x1] =
∫ 1

0
∫ 1

0 u(b, a)dF (b|x1)da.
The difference in the expected value between the two information sources can thus

be expressed as

E[V1|XT
1 = x1]− E[V1|XS

1 = x1] =
∫ 1

0

∫ 1

0
[u(a, b)− u(b, a)] dF (b|x1)da.

By assumption, u(a, b)− u(b, a) is non-decreasing in b for any a. Further, as signal
distributions satisfy the MLRP, for any x′1 > x1, we have F (.|x′1) �FOSD F (.|x1).

The following result is Lemma 1 in Persico (2000) (for the proof, see his Appendix).

Lemma 6. For x ∈ [0, 1], let J(x) be a non-decreasing function, and H(x) be quasi-
monotone. If

∫ 1
0 H(x)dx = 0, then

∫ 1
0 H(x)J(x)dx ≥ 0.

Let H(x1) :=
(
E[V1|XT

1 = x1]− E[V1|XS
1 = x1]

)
f(x1), which is quasi-monotone by

Lemma 5. Let J(x) := P (x1) be the winning probability which is non-decreasing in x1 as
the bidding function βDS is non-decreasing. Finally, by the law of iterated expectations

∫ 1

0

(
E[V1|XT

1 = x1]− E[V1|XS
1 = x1]

)
f(x1)dx1 = E [V1]− E [V1] = 0.

Hence, by Lemma 6, the integral in Equation 14 is non-negative. Learning with ρ1

and bidding with βDS yields a weakly higher payoff than the initial deviation strategy
ρ1 = 1 and βS. However, by construction, βCE is the optimal bidding strategy for
ρ1 = 0. This contradicts that the initial deviation ρ1 = 1 and βDS was strictly profitable.

Part B Let the candidate equilibrium be ρCE = 0 and bidders bid optimally with
βCE, given this information choice only about the private component. By contradiction,
assume that bidder 1 has a strictly profitable deviation by deviating to ρ1 ∈ (0, 1) and
bidding according to βDS. By construction of the learning technology, for an interior
ρ1, bidder 1 does not observe the source of his signal, XT

1 or XS
1 .
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Bidder 1 would be weakly better of by learning whether his observed signal is about
the common component or the private component: the deviation strategy βDS would
still feasible, but now he could adapt his bidding to the source of his signal. If he
observed XT

1 , his optimal payoff would be exactly his candidate equilibrium payoff. If
he observed XS

1 , his optimal payoff is weakly lower than in the candidate equilibrium,
as shown in Part A. Thus, this is a contradiction to the strategy ρ1 ∈ (0, 1) and βDS

being a strictly profitable deviation.

Proof of Proposition 4. Bidder i’s signal is

Xi =

X
S
i with probability [ε+ (1− ε)ρi] ,

XT
i with probability (1− ε)(1− ρi).

(15)

Define ρεi := ε + (1 − ε)ρi. If ε > 0, the effective information choice of bidder i is
reduced to the interval ρεi ∈ [ε, 1] and bounded away from zero.

Combining Proposition 1 (same expected gain for any ρi) with Corollary 1 and
Proposition 2 (strictly lower (higher) payment with lower ρi in the SPA (FPA)) yields
the result. In the FPA, ρI = 0 can be ruled out in equilibrium, because it results in
ρεj = ε > 0, and hence if bidder i increases his ρi, he can exploit a strictly lower second
order statistic of signals and a strictly lower expected payment by Proposition 2.

Proof of Proposition 5. Let ωi = 0. Then s = 0 and ti = 0. For any ρi, bidder i’s
signal Xi has density f(x|0). Irrespective of ρi, the probability of bidder i having the
highest signal if ωi = 0 is

∫ 1
0 f(xi|0)F (x|0)N−1dxi = 1

N
. Similarly, for ωi = 2 (i.e., s = 1

and ti = 1), winning probability of bidder i is 1
N
.

Next, let ωi ∈ (0, 2). Define the feasible set of the common component by S(ωi), and
let ŝ(ωi) = minS(ωi)+maxS(ωi)

2 be the dissection of S(ωi) into two equidistant intervals.
The density of S given ωi is h(s|ωi) = 1

h(ωi) if s ∈ S(ωi) and 0 otherwise. If bidder
i chooses ρi, his probability of having the highest signal is

Pr(Xi ≥ Yi|ωi, ρi, ρCE) = ρi Pr(XS
i ≥ Yi|ωi, ρCE) + (1− ρi) Pr(XT

i ≥ Yi|ωi, ρCE).

If learning XS
i , it holds that

Pr(XS
i ≥ Yi|ωi, ρCE) =

∫
S(ωi)

∫ 1

0
f(x|s)F (x|s)N−1hωi

(s)dxds =
∫
S(ωi)

1
N
hωi

(s)ds = 1
N
.
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Due to the uniform distribution of components, hωi
(s) = 1

s(ωi)−s(ωi) = 1
t(ωi)−t(ωi)

. If
learning XT

i , it holds that

Pr(XT
i ≥ Yi|ωi, ρCE) =

∫
S(ωi)

∫ 1

0
f(x|ωi − s)F (x|s)N−1hωi

(s)dxds

= 1
s(ωi)− s(ωi)

∫
S(ωi)

∫ 1

0
f(x|ωi − s)F (x|s)N−1dxds

= 1
s(ωi)− s(ωi)

∫
S(ωi)

∫ 1

0

N − 1
N

f(x|ωi − s)F (x|s)N−1dxds

+ 1
s(ωi)− s(ωi)

∫
S(ωi)

∫ 1

0

1
N
f(x|ωi − s)F (x|s)N−1dxds. (16)

Integrating the inner integral of the second summand by parts yields

1
s(ωi)− s(ωi)

∫
S(ωi)

∫ 1

0

1
N
f(x|ωi − s)F (x|s)N−1dxds

= 1
s(ωi)− s(ωi)

∫
S(ωi)

1
N

(
1−

∫ 1

0
(N − 1)f(x|s)F (x|s)N−2F (x|ωi − s)dx

)
ds

= 1
N
−
∫
S(ωi)

∫ 1

0

N − 1
N

f(x|s)F (x|s)N−2F (x|ωi − s)dx
1

s(ωi)− s(ωi)
ds

= 1
N
−
∫
S(ωi)

∫ 1

0

N − 1
N

f(x|s)F (x|ωi − s)F (x|s)N−2dx
1

s(ωi)− s(ωi)
ds.

Plugging this back into equation 16, and using µ(s, x|ωi) := f(x|ωi − s)F (x|s) −
f(x|s)F (x|ωi − s), gives the following expression

Pr(XT
i ≥ Yi|ωi)

= 1
N

+
∫
S(ωi)

∫ 1

0

N − 1
N

[f(x|ωi − s)F (x|s)− f(x|s)F (x|ωi − s)]F (x|s)N−2 1
s(ωi)− s(ωi)

dxds.

= 1
N

+ 1
s(ωi)− s(ωi)

∫ 1

0

∫
S(ωi)

N − 1
N

µ(s, x|ωi)F (x|s)N−2dsdx

= 1
N

+ 1
s(ωi)− s(ωi)

N − 1
N

∫ 1

0
(
∫ ŝ(ωi)

max{ωi−1,0}
µ(s, x|ωi)F (x|s)N−1ds (17)

+
∫ min{ωi,1}

ŝ(ωi)
µ(s, x|ωi)F (x|s)N−2ds)dx. (18)

Using µ(s, x|ωi) = −µ(ωi − s, x|ωi), we have
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∫ min{ωi,1}

ŝ(ωi)
µ(s, x|ωi)F (x|s)N−2ds =

∫ ŝ(ωi)

max{ωi−1,0}
µ(ωi − s, x|ωi)F (x|ωi − s)N−2ds

= −
∫ ŝ(ωi)

max{ωi−1,0}
µ(s, x|ωi)F (x|ωi − s)N−2.

Plugging this back into equation 18 yields

1
N

+ 1
s(ωi)− s(ωi)

N − 1
N

∫ 1

0

∫ ŝ(ωi)

max{ωi−1,0}
µ(s, x|ωi)

[
F (x|s)N−2 − F (x|ωi − s)N−2

]
dsdx.

(19)

For N = 2, the expression in square brackets and the double integral is zero. For
N > 2, the strong MLRP and thus, FOSD26 imply: for all a < b and for all x ∈ (0, 1),
we have F (x|a) > F (x|b). As the integral is below ŝ(ωi), we have s < ωi− t. Therefore,
for x ∈ (0, 1), [

F (x|s)N−2 − F (x|ωi − s)N−2
]
> 0.

A well-known implication of the MLRP is that for all a < b, we have reverse hazard
rate dominance

f(x|a)
F (x|a) ≤

f(x|b)
F (x|b) .

Due to s ≤ ωi − s in the reverse hazard rate, µ(s, x|ωi) ≥ 0 in the entire domain
of integration. This establishes the non-negativity in the second summand of Equation
19. Thus, for N > 2 and ωi ∈ (0, 2) we have Pr(XT

i ≥ Yi|ωi) > 1
N
.

Proof of Proposition 6. First, I show that ρA = 1 cannot be an equilibrium for
N > 2 bidders. The proof is by contradiction. Let {ρA = 1, βA} be an equilibrium.
Then, consider the following deviation for (without loss) bidder 1: {ρ1 = 0, βA}.

The marginal signal distribution of bidder 1 is F (x), irrespective of his choice of ρ1.
Thus, his expected payment in the APA does not depend on ρi, as he foregoes his bid
irrespective of the event of winning,

∫ 1
0 β

A(x)dF (x).
Next, consider the expected gain. With the candidate equilibrium strategy and in

26For implications of the MLRP, like FOSD and reverse hazard rate dominance, see Milgrom and
Weber (1982).
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the deviation, a bidder wins if and only if he has a higher signal than his opponent,

EG(ρ1|CEA) =
∫ 1

0
v1 Pr(X1 > Y1|v1, ρ1, ρ

A)h(v1)dv1.

Fix a value v1 for bidder 1. In the candidate equilibrium, he wins if XS
1 > Y1.

With the deviation, he wins if XT
1 > Y1. Thus, due to Proposition 5, the probability of

winning with XT
1 is (strictly) higher for any (interior) v1. Hence, a bidder’s expected

gain is strictly higher with ρ1 = 0 than ρ1 = 1 when bidding with βA, but the expected
payment is the same. Hence, {ρA = 1, βA} cannot be an equilibrium.

Next, I establish existence of an equilibrium with ρA = 0. Let ρj = 0 for all
j 6= 1, and follow a symmetric pure increasing bidding function βA. For any ρ1 ∈ [0, 1],
X1 is independent of Yi by Assumption (CI). In this IPV setup, after any signal the
optimal bid with signal Xi coincides for any information choice ρi, β(xi) = E[Vi|XS

i =
xi] = E[Vi|XT

i = xi]. A bidder is indifferent between learning about S or Ti as both
leads to the same informativeness overall, the same marginal distribution of his private
information, and no interdependence with his opponent.
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