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Abstract

Models of recursive utility are commonly associated with a preference for
early resolution of uncertainty, often regarded as an important economic chan-
nel in applications. This paper provides a different understanding of recursive
preferences based on attitudes toward correlation, and in particular aversion
to intertemporally correlated risks. I formalize and investigate such a prop-
erty. I show that an increase in correlation makes a decision maker that prefers
early resolution worse off, even when increasing correlation also provides non-
instrumental information about future consumption. Relatedly, I show that
one can separate risk aversion from intertemporal substitution by considering
a domain of choice in which pure preferences for early resolution of uncertainty
play no role. Finally, I apply the insights of this paper to better understand
the features possessed by existing models of recursive utility. I argue that at-
titudes toward correlation are the key behavioral feature driving the results of
consumption-based asset pricing models.
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1 Introduction
Recursive preferences are of central importance in many economic settings. They play
a key role in models of consumption-based asset pricing (Epstein & Zin (1989), Epstein
& Zin (1991)), precautionary savings (Weil (1989), Hansen et al. (1999)), business
cycles (Tallarini (2000)), optimal fiscal policy (Karantounias (2018)), and risk-sharing
(Epstein (2001), Anderson (2005)), among many others. Part of their success is due
to their ability to disentangle risk aversion from intertemporal substitution. This
property is relevant in many settings to quantify the impact of these two different
features on quantities of interest, such as asset prices or precautionary savings. Recall
that the standard model of discounted expected utility in its recursive form can be
written as

Vt = u(ct) + βE (Vt+1) .

In this model, risk aversion and attitudes toward consumption smoothing are both
captured by the curvature of u and therefore they cannot be separately identified
from one another. In contrast, recursive preferences allow for a more general recursive
formulation

Vt = W (ct, I (Vt+1)) ,

where the so-called time aggregator W reflects intertemporal substitution and the
certainty equivalent I reflects attitudes toward risk (or uncertainty), hence obtaining
the desired separation between the two. Ever since the work of Kreps & Porteus
(1978) it has been understood that separating these two important features entails a
preference for non-instrumental information, also referred to as a preference for early
resolution of uncertainty. For example, consider a gamble in which consumption is
fixed at 0 for every t = 1, . . . , T − 1 and pays either 1 or 0 at t = T depending on
the outcome of a coin toss. A strict preference for tossing the coin at t = 1 over
t = 2 indicates a preference for non-instrumental information. There is no planning
advantage to tossing the coin early: in this sense choosing to toss the coin at t = 1
reveals a pure preference for information, even if such information is useless. The
standard additive expected utility model is indifferent between tossing the coin at
t = 1 and t = 2, while models of recursive utility typically prefer early resolution of
uncertainty. A strict preference for information that is useless is seen as puzzling,
and in this sense it is seen as a cost of separating risk aversion from intertemporal
substitution (see for example Epstein et al. (2014)).

This paper provides a different understanding of recursive preferences based on
attitudes toward correlation, and in particular aversion to intertemporally correlated
risks. To illustrate, consider two gambles: A and B.1 In gamble A a fair coin is
tossed at t = 1. If the outcome is heads, then consumption is constant at the level 1
for every period t = 1, . . . , T . Otherwise, it is constant at the level 0 at every period.
In gamble B, consumption is determined by tossing a fair coin at every time period

1The example is a modified version of the example in Duffie & Epstein (1992), p. 355.
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t, giving a level of consumption equal to 1 if heads and 0 otherwise. Introspection
suggests that one should treat these gambles differently.2 A hedging motive suggests
that B should be preferred to A. But at the same time B resolves gradually while
for A all uncertainty resolves at t = 1. In other words, A features early resolution
of uncertainty, making the comparison between these two gambles non-obvious: A
has the advantage of resolving all uncertainty at t = 1, while B is more desirable
because of its hedging value. The standard discounted expected utility model is
always indifferent between these two, while in general recursive preferences allow for
non-indifference between A and B. In this case, it is the standard discounted expected
utility model that presents an undesirable feature, being unable to distinguish between
A and B.

I present a novel and general notion of increasing correlation when uncertainty
resolves gradually. I start from a general notion of an i.i.d. process and introduce
positive correlation between consumption at different time periods, and study the
attitudes toward such an increase in correlation for the major models of recursive
utility. Notably, such a notion does not require probabilistic sophistication allowing
for the study of recursive models of ambiguity aversion. As discussed when comparing
gambles A and B, more correlation means also having more predictive power about
future consumption, i.e. non-instrumental information. Therefore, the total effect of
increasing correlation is determined by the relative strength of the hedging motive
described earlier and preferences for non-instrumental information. I show that the
major models of recursive utility exhibit correlation aversion, even if they also have
a preference for early resolution of uncertainty. In this sense, aversion to correlation
is the more dominant property of recursive utility. At a technical level, correlation
aversion is identified by the time aggregator W being submodular (i.e., having neg-
ative cross derivative). In contrast, from Kreps & Porteus (1978) it is known that
convexity of W in its second argument characterizes a preference for early resolution
of uncertainty. In words, submodularity means that the marginal value of continua-
tion utility is lower when today’s consumption value is higher. While for well-known
preferences such as Epstein-Zin the two properties of the aggregator coincide, I show
that this fact is not true for more general recursive preferences. In particular, I show
that the effect of correlation aversion is stronger than that of preferences for early
resolution of uncertainty under standard regularity assumptions. This point is es-
pecially important in applications such as asset pricing since it clarifies how certain
modelling assumptions influence the results.3

As a consequence of this analysis, I then argue that in order to identify a pure
preference for non-instrumental information one must observe choices over consump-
tion processes in which correlation plays no role. To illustrate, consider the first

2I review related concepts of correlation aversion and the experimental evidence in favor of it in
Section 6.

3For example, recursive maxmin expected utility is indifferent to the timing of resolution of
uncertainty (Strzalecki (2013)), but non-indifferent to correlation.

3



example discussed above. The decision maker is comparing two gambles that feature
deterministic consumption at every time period except when consumption is ran-
dom, differing only for the time at which uncertainty is resolved. This is not mere
chance, but rather a necessity: deterministic consumption is needed to remove the
effect of attitudes toward correlation and therefore to identify pure preferences for
non-instrumental information. I suggests that consumption processes of this type are
not relevant for standard dynamic problems of consumption choice under uncertainty.
For this reason, I introduce a new domain of choice that does not contain such con-
sumption processes and study preferences over such a restricted domain, therefore
weakening completeness of preferences.4 I show that such a domain, nevertheless,
is rich enough to axiomatize a general recursive representation of preferences and
can also allow for disentangling risk aversion from intertemporal substitution. As a
consequence, one can separate risk aversion from intertemporal substitution without
implying a pure preference for early resolution of uncertainty, while at the same time
having a rich domain in terms of applications.

Together, these results provide a unified understanding of the applications of re-
cursive utility. The literature on consumption-based asset pricing has progressively
considered consumption processes that involve more persistence. For example, in the
long-run risk model of Bansal & Yaron (2004) consumption growth contains a small,
persistent predictable component. Such persistence provides non-instrumental infor-
mation: realizations of consumption growth today provide non-instrumental informa-
tion about consumption growth for the long-run future. An investor with preferences
for early resolution of uncertainty should enjoy such non-instrumental information,
and hence demand a lower premium on equity if the persistence of consumption
growth increases. From this perspective, the ability of consumption-based models to
explain the observed premium on equity is hindered rather than helped. However, the
persistent component also increases positive correlation between consumption growth
at different time periods. Therefore, the equity premium in this model is higher
relative to the discounted expected utility benchmark because correlation aversion
is the more dominant feature of preferences, and not due to a preference for early
resolution.5

4As discussed by Aumann (1962, p. 446), Schmeidler (1989, p. 576) and Wakker (1989), com-
pleteness of preferences is a questionable condition in decision theory. In particular, my point here
is closely related to Wakker (1989, p. 42):

Some people may object against completeness because they want the decision maker
to have the right, for a pair of alternatives, simply not to choose between them. This
is not the objection we have in mind. [...] Our objection against completeness is that
many choice situations are not actual, but hypothetical, and that it is unrealistic to
suppose that the decision maker is confronted with very many, some unrealistic, choice
situations.

5This point has to be contrasted with the common understanding of the long-run risk model,
e.g. Bansal et al. (2016) state “The long-run risks (LRR) asset pricing model emphasizes the role
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A strand of the literature (e.g., Hansen et al. (1999)) has motivated the use of
models of recursive utility with robustness concerns and in particular aversion to
model uncertainty. Correlation aversion has a straightforward connection with model
uncertainty. Consider again gamble A. An equivalent way of thinking about such a
gamble is that a biased coin is tossed at every period, but there is uncertainty about
the bias: with equal chance the coin always returns heads or always returns tails. In
contrast, gamble B features no such uncertainty: the coin is known to be unbiased.
In other words, a preference for B over A indicates aversion to model uncertainty.6 In
optimal fiscal policy and risk sharing problems, the key feature of recursive utility is
aversion to volatility in future utility (see for example Karantounias (2018), p. 2284,
or Anderson (2005), p. 94). Correlation aversion has a strong connection with such
a property: in gamble B, at t = 0 future utility is constant and equal to 1

2 , while
for gamble A future utility is volatile, being either 0 or 1. Thus preferring B to A
indicates aversion to volatility in future utility. To sum up, thinking through the
lenses of correlation aversion allows a variety of important properties — aversion to
long-run risk, aversion to model uncertainty, and aversion to volatility in continuation
utility — to be related to observable consumption choice behavior.7 In contrast, as
previously mentioned, preferences for early resolution of uncertainty play no role in
any of these applications.

Finally, I examine the consequences of using correlation aversion for the analysis of
recursive preferences. First, I study which parameters determine correlation aversion
for the major recursive preferences. I also study the implications of this analysis for
dynamic ordinal certainty equivalent (DOCE) preferences, an alternative approach to
separating risk aversion from intertemporal substitution. Further, I revisit Epstein,
Farhi & Strzalecki’s result which suggests that timing premia for the long-run risk
model seem implausibly high based on introspection. Following the analysis based on
aversion to correlation, I ask a different question: “what fraction of your consumption
stream would you give up to remove all persistence in consumption growth?” Under
standard parameter specifications, a preliminary analysis suggests that an investor
would be willing to give up a share of his wealth which is not consistent with the
experimental evidence. This result reinforces Epstein, Farhi & Strzalecki’s point that
the quantitative discipline of the long-run risks model has been lax in modeling aspects
of investors preferences.

The results are stated in a setting of uncertainty (unlike a setting of risk such as
in Kreps & Porteus (1978) or Epstein & Zin (1989)). The main reason that I consider
such a setting is that it allows us to consider recursive models of ambiguity aversion,

of low-frequency movements [...] along with investor preferences for early resolution of uncertainty,
as an important economic-channel that determines asset prices.”.

6This connection is made formal by Al-Najjar & Shmaya (2019). They obtain a representation of
Epstein-Zin recursive utility which admits a direct interpretation in terms of model (or parameter)
uncertainty.

7Beyond macroeconomics, Kochov & Song (2021) apply recursive preferences to repeated games.
In their case, correlation aversion plays a key role in expanding the set of feasible payoffs.
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which are well known to be relevant in the asset pricing literature (e.g see Ju & Miao
(2012) or Collard et al. (2018)).

2 Preliminaries

2.1 Framework
Time is discrete and varies over a finite horizon t ∈ {0, 1, . . . , T} ≡ T . The infor-
mation structure is described by a filtered space (Ω, {Gt}t∈T ) where Ω is an arbitrary
set of states of the world and G = {Gt}t∈T is a sequence of σ-algebras such that
G0 = {Ω, ∅} that satisfy Gt ⊂ Gt+1 for t = 0, . . . , T − 1.8 For simplicity, assume that
every algebra Gt, t ∈ T, is generated by a finite partition, where Gt(ω) denotes the
element of the partition containing ω ∈ Ω.

Let X denote the set of outcomes, which is assumed to be a convex subset of Rn.
The main cases we are interested in are X = R+ and X = [1,∞). An act or process
is an X-valued, G-adapted process, that is, a sequence (ft)t∈T such that ft : Ω → X
is Gt measurable for every t ∈ T . F is the set of all processes or acts. Elements of F
should be thought of as consumption processes. D is the set of deterministic processes,
d = (d0, d1, . . . , dn) ∈ D if and only if dt is measurable w.r.t. G0 for all t. Since each
Gt is finitely generated, then set of all Gt-measurable acts can be endowed with the
product topology. It follows that we can endow F with the product topology.9 The
assumptions of finiteness are not necessary but avoid the need to formally establish
the existence of each recursive utility model considered in this paper.10

Given a measurable space (S,Σ) and K ⊆ R, let B0(Σ, K) denote the set of simple
Σ measurable function with range contained in K. A function I : B0(Σ, K)→ R (i)
continuous if it continuous in the sup-norm topology (ii) monotone if ξ(s) ≥ ξ′(s)
for every s ∈ S implies I(ξ) ≥ I(ξ′) (iii) strictly monotone if it is monotone and
ξ(s) ≥ ξ′(s) for every s ∈ S with one strict inequality implies I(ξ) > I(ξ′) (iv)
normalized if I(x) = x for every x ∈ R (where x denotes the constant function x1Ω)
(v) concave if I(αξ + (1−α)ξ′) ≤ αI(ξ) + (1−α)I(ξ′) for every ξ, ξ′ ∈ B0(Σ, K) (vi)
constant-additive if I(ξ + k) = I(ξ) + k for every k ∈ K (vii) positive homogeneous
if I(βξ) = βI(ξ) for every β > 0. Given a probability measure P defined on (S,Σ),
an expected utility functional is given by EP ξ =

∫
ξ(s)dP (s).

The primitives of interest are a family of G-adapted weak orders (complete and
8See Stokey & Lucas (1989) for canonical interpretations of this setting in terms of

shocks/observations.
9Denoting with |Gt| the number of elements of the partition that generates Gt, the set

{f : Ω→ X : f is measurable w.r.t. Gt},

can be identified with a subset of R|Gt|, and therefore F can be endowed with the product topology.
10See Marinacci & Montrucchio (2010) for a thorough treatment of the topic.
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transitive relations) {�t,ω}(t,ω)∈T ×Ω on R where D ⊆ R ⊆ F .11 Unless otherwise
stated, assume that R = F . Let �0 denote the preference at time zero. For brevity,
I typically denote the collection of preferences {�t,ω}(t,ω)∈T ×Ω with just �t,ω.

2.2 Recursive preferences
I provide a definition of a general recursive representation of preferences.

Definition 1. �t,ω admits a general recursive representation if and only if there exist
(Vt(ω, ·))t,ω that represent �t,ω satisfying the recursive relation VT (ω, h) = u(hT (ω))
for some continuous u : X → R that satisfies u(z) = 0 for some z ∈ X and for t < T ,

Vt(ω, h) = W (ht(ω), It,ω (Vt+1(·, h))) for every h ∈ R, (1)
where Vt(ω,R) = Vt(ω′,R) ≡ Vt, each

It,ω : {ξ ∈ B0(Gt+1, Vt+1) : ξ = Vt+1(·, f), f ∈ R} → R,

is continuous, normalized, and strictly monotone with It,ω = It,ω∗ when Gt(ω) =
Gt (ω∗) and W : X × ∪τ≥t+1Vτ → R is a time aggregator that is continuous and
strictly increasing in the second variable that satisfies W (x, u(z)) = u(x).

A general recursive representation of �t,ω can be identified by its parameters
(W,u, (It,ω)t,ω). Below I describe the most common types of specifications for (W,u, (It,ω)t,ω).12

These can be divided into two cases: risk models and ambiguity models.

• Recursive discounted expected utility (RDEU) preferences, where W (x, y) =
u(x) + βy, β ∈ (0, 1) and It,ω(ξ) = EPt,ωξ with each Pt,ω being a probability on
(Ω,Gt+1).

• Recursive second-order expected utility preferences, where W (x, y) = u(x)+βy,
β ∈ (0, 1) and I(ξ) = φ−1

(
EPt,ωφ(ξ)

)
for some strictly increasing and concave

function φ : u(X) → R and each Pt,ω is a probability on Ω. Such a class
of recursive preferences offers a simple separation between risk aversion and
intertemporal substitution. The most important to instances of such preferences
are given by:

(1) Epstein-Zin preferences (EZ) Epstein & Zin (1989), which are given by13

u(x) =


xρ

ρ
0 6= ρ < 1,

log(x) ρ = 0,
11By G-adapted I mean that �t,ω=�t,ω∗ whenever Gt(ω) = Gt (ω∗).
12For brevity, I omit the conditions required for strict monotonicity of the certainty equivalent.
13Epstein & Zin (1989) consider a more general class of certainty equivalents, but for simplicity I

focus on the case of expected utility.
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and

φ(x) =


ρ
α
x
α
ρ 0 6= α < 1, 0 6= ρ < 1,

1
α

expαx 0 6= α < 1, ρ = 0.

(2) Recursive multiplier preferences (RM), see Hansen & Sargent (2001), where

It,ω(ξ) = min
p∈∆(Ω)

Epξ + θR(p‖Pt,ω),

where R(p‖Pt,ω) is the relative entropy of p with respect to some fixed
countably additive and nonatomic measure Pt,ω on (Ω,Gt+1), and θ ∈
(0,∞] is a parameter. It is well-known (e.g., see Strzalecki (2011)) that
such preferences admit the equivalent representation in terms of recursive
second-order expected utility with φ(·) given by

φ(x) =
{
− exp

(
−x
θ

)
for θ <∞,

x for θ =∞.

• Recursive Epstein-Uzawa (REU) preferences see (Uzawa (1968) and Epstein
(1983)), where u is strictly increasing and W (x, y) = u(x) + b(x)y for some
continuous function b : X → R with b(X) ⊆ (0, 1) and I(ξ) = EPt,ω(ξ) for some
Pt,ω.

• Recursive discounted ambiguity averse preferences (RDAA), see Strzalecki (2013),
where u(X) = R+ or u(X) = R and

Vt(ω, h) = u (ht(ω)) + βIt,ω (Vt+1(·, h)) ,

where β ∈ (0, 1) and It,ω is a concave functional that is constant-additive or
positive homogeneous. Two notable cases of such preferences are:

(1) Recursive maxmin expected utility (RMEU) preferences, see Epstein &
Wang (1994), Epstein & Schneider (2003b) where I(ξ) = minp∈Ct,ω Epξ,
with each set Ct,ω being convex and weak ∗ -closed set of probabilities on
(Ω,Gt+1).

(2) Recursive smooth ambiguity preferences (RSA), (see Klibanoff et al. (2005),
Klibanoff et al. (2009)), where Ω is finite and

It,ω(ξ) = φ−1
(
Eµt,ωφ (EP ξ)

)
for some strictly increasing and concave function φ : u(X) → R and with
each µt,ω being a Borel probability measure on ∆(Ω). In particular, I
assume φ is φ(x) = − exp(− x

α
) or

φ(x) =


xα

α
0 6= α < 1,

log(x) α = 0.
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2.3 IID and attitudes toward temporal resolution
As discussed by Strzalecki (2013), to study attitudes toward timing of resolution of
uncertainty it is helpful to make an assumption of “constant beliefs,” typically referred
to in the literature as IID (Independently and Indistinguishably Distributed) ambi-
guity (see Epstein & Schneider (2003a)). Specifically, such an assumption requires
that that Ω = ST with T ≥ 2, where (S,Σ) is a finite measurable space. Moreover,
Σ = 2S and let Gt = Σt×{∅, S}T−t. In words, this means that at time t one knows the
realization of (s1, . . . , st), but is ignorant about the future. More precisely, observe
that in this case we have Gt((s1, . . . , sT )) = {s1} × . . .× {st} × {∅, S}T−t.

For every act f = (f0, . . . , fT ) each element ft, t ≥ 1 can be written as a function of
the first t elements, (s1, . . . , st) ≡ st. Hence we can write each node (t, ω) equivalently
as st, �t,ω=�st and It,ω = Ist . I assume that Ist = Is̄t ≡ I for every st, s̄t. This
assumption is required to avoid assuming that attitudes toward timing of resolution
are influenced by changing beliefs. To illustrate this point, in the case of risk models
with beliefs given by (P (·|s1, . . . , st))st it implies that for some probability P over S
it holds that P (st+1|s1, . . . , st) = P (st+1) for every st+1.

In such a setting, a preference for early resolution of uncertainty can be defined
as follows.

Definition 2. Fix t ≤ T − 2. Say that h ∈ F resolves earlier than h′ ∈ F whenever
there exist ft+2, . . . , fT ∈ XS and x0, . . . , xt+1 ∈ X such that hj = h′j = xj for all
j ≤ t+ 1, hj(s1, . . . , sj) = fj(st+1) for j ≥ t+ 2, and h′j(s1, . . . , sj) = fj(st+2).
�t,ω exhibits a preference for earlier resolution of uncertainty if and only if for all

h, h′ ∈ F and t ≤ T − 2,
h �t′,ω h′

for all t′ ≤ t and ω ∈ Ω. The notion of indifference is defined analogously.14

Figure 1 contains an example of acts that resolve early (bottom) and late (top).15

The next result summarizes what we know from the literature about attitudes toward
timing of resolution for the most used recursive models in the literature.

Theorem 0 (Chew & Epstein (1991), Strzalecki (2013)). Suppose that �t,ω admits a
recursive representation that is either EZ with α ≤ ρ, RM with θ ≥ 0 or RSA. Then
�t,ω exhibits a preference for early resolution of uncertainty.

Suppose that �t,ω admits an RDEU, MEU, or REU representation. Then �t,ω is
indifferent to the timing of resolution of uncertainty.

14My definition is slightly more general than the one in Strzalecki (2013). It is needed later for
Proposition 4. However, it is equivalent for RDAA preferences defined on F .

15In particular, the act f that resolves early is defined by ft = z for t = 0, 1 and f2(s1, s) = x,
f ′2(s2, s) = y for s = s1, s2 while the act f ′ that resolves late is defined by f ′t = z for t = 0, 1 and
f ′2(s, s1) = x, f ′2(s, s2) = y for s = s1, s2.
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Figure 1: Early resolution vs late resolution.

3 Attitudes toward correlation

3.1 Increasing correlation
As discussed in the introduction, I introduce a general notion of an increase in positive
correlation when uncertainty resolves gradually, and study the implications of such
an increase in correlation for the major models of recursive utility. In applications,
uncertainty typically resolves gradually: the value of consumption at time t is never
fully known until time t itself is reached. For this reason, understanding the impli-
cations of an increase in correlation in such a setting is of fundamental importance.
Notably, such a notion is “belief-free,” which allows me to study preferences that are
not necessarily probabilistically sophisticated. I do so by taking the equivalent in our
setting of an i.i.d. process and introducing correlation.

A generalized i.i.d. process f iid is defined by taking f : S → X and letting
f iidt (st) = f(st) for every t ≥ 1 and f0 = x for some x ∈ X. The maintained
IID assumption says that states are independently distributed. If ft+1 depended on
the entire history (s1, . . . , st), the consumption process would not be independently
distributed. The function f removes any dependence of ft+1 on past realizations of
the states. Now, to introduce correlation one could, for example, change f iid to f corr
so that for fixed s, s′ ∈ S it holds that f corrt ((s1, . . . , st−2, s, s

′)) = f(s). In words, this
means that if s is realized at time t− 1 then f(s) will be paid when s′ is realized at
time t. A specific example is represented in Figure 2 in the case of S = {s1, s2, s3},
Σ = 2S, T = 2 and X = R+. It can immediately be seen that such an increase in
(positive) correlation will make f corr strictly better than f iid (see Figure 2). For this
reason, I focus on increases in correlation that are “symmetric” in a precise sense: if
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Figure 3: Symmetric increase in correlation.

f(s1 . . . , s, s
′) = f(s) then also f(s1 . . . , s

′, s) = f(s′), as depicted in Figure 3.

Definition 3. Given f : S → X, denote with Gf the set of functions gf : S×S → X
that satisfy

gf (sj, si) =

f(si) or
f(sj), gf (si, sj) = f(si),

for every (sj, si). For any f : S → X define the class of correlated acts as16

F corr
f = {f corr ∈ F : f corrt (s1, . . . , st) = gf (st−1, st) for some t ≥ 2, gf ∈ Gf ,

and f corrj (s1, . . . , sj) = f(sj) for j 6= t}.
16I write f corrt (s1, . . . , st) = gf (st−1, st) as short for f corrt (s1, . . . , st) = gf (st−1, st) for every

(st−1, st) ∈ S × S.

11



0

1

0

{s1, s2}

s1

0

1

{s1, s2}

s2

0

1

1

{s1, s2}

s1

0

0

{s1, s2}

s2

Figure 4: Non-correlated (left) and correlated (right) processes

The set of all correlated acts is given by

CORR =
⋃

f∈XS

F corr
f .

Remark 1. To study the effect on preferences of increasing positive correlation, it is
enough to consider an increase in correlation between consumption at some time t and
the subsequent period t + 1. However, it is straightforward to extend the definition
to allow for correlation over multiple periods. Section 6.2 presents a more detailed
discussion.

Going back to the interpretation discussed in the introduction, the function gf can
be thought of as introducing model (or parameter) uncertainty into the consumption
process: the law that determines consumption at time t is uncertain and depends
on a state realized at time t − 1. A symmetric increase in correlation is represented
in Figure 3. This figure illustrates the interpretation mentioned in the introduction,
that increasing correlation also increases the volatility of future utility: if at time
t = 1 the state s1 is realized consumption is more likely to be high also at t = 2, but
the opposite is true in case the state s3 is realized. It is important to contrast such
a notion of an increase in positive correlation with the standard way of comparing a
non-correlated process with a correlated one described in Figure 4. Such a comparison
involves two processes that differ only in their pattern of correlation, but that have
the same timing of resolution of uncertainty. On the contrary, when uncertainty
resolves gradually, increasing correlation has a twofold effect: (i) not only does it
increase the likelihood that consumption at time t matches consumption at time t+1
of future utility, but also (ii) it provides non-instrumental information about future
consumption. Preferences exhibit correlation aversion when the aversion to (i) is
stronger than the positive value provided by (ii).
Definition 4. �t,ω exhibit correlation aversion if and only if

f iid �0 f
corr

for every f ∈ XS and f corr ∈ F corr
f .
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Intuitively, recursive discounted expected utility should be indifferent to both
effects, and indeed such preferences are always indifferent between f iid and f corr

(see Lemma 2 in the appendix). From Theorem 0 we know that for RMEU and
REU, preferences are indifferent to the timing of resolution; therefore (ii) should be
irrelevant and only (i) should have an effect on such preferences. For other types
of recursive preferences, it is not obvious what effect should prevail. In general, one
would expect EZ, RM, and RSA preferences with standard parameter specifications to
be averse to correlation. Yet, by Theorem 0 we also know that such recursive models
prefer early resolution of uncertainty. The final effect on utility will depend on the
relative strength of these two effects. Studying which effect prevails is a standard
practice in economics, such as when one tries to asses the relative strength of income
and substitution effects. The next two sections study attitudes toward correlation for
the most common types of recursive preferences.

3.2 Attitudes toward correlation: risk
When a unique probability P defined on S is given, each correlated process f corr can
be equivalently described by means of probabilistic transformations of the process
(st)t of states, in the spirit of Epstein & Tanny (1980). For simplicity, I illustrate this
point for the case in which every state is equally likely.
Definition 5. Write S = {s1, . . . , sn}. Consider P ∈ ∆(S) such that P (s1) =
. . . = P (sn) = 1

n
. An elementary correlation-increasing transformation of P is given

by taking 0 ≤ ε ≤ 1
n

, i, j ∈ {1, . . . , n}, and defining the conditional probabilities
(P ε(·|s))s∈S on S as follows: P ε(·|sk) = P (·) for every k 6= i, j, P (sk|si) = P (sk|si) =
P (sk) for every k 6= i, j P ε(sj|sj) = P (sj) + ε, P ε(si|si) = P (si) + ε, P ε(si|sj) =
P (sj)− ε, and P ε(sj|si) = P (si)− ε.

Such correlation-increasing transformations add memory to the stochastic process
of states. It is then easy to see that any f corr can be obtained equivalently by
performing finitely many of such correlation-increasing transformations of the process
of states. The following example illustrates this point. Moreover, it suggests that in
the case of RM preferences, aversion to correlation is the more dominant effect.
Example 1. S = {s1, s2, s3}, Σ = 2S, T = 2 and X = R+. Assume multiplier
preferences, i.e. W (x, y) = u(x) +βy and I(ξ) = − log(EP e−ξ) with P (s1) = P (s2) =
P (s3) = 1

3 . Let f : S → X be defined by f(s1) = 3
5 , f(s1) = 1

2 , f(s3) = 0. Let
g(s2, s3) = f(s2) = 1

2 , g(s3, s2) = f(s3) = 0 and g(sj, si) = f(si) otherwise. Equiv-
alently, such an increase in correlation can be expressed by means of the following
correlation increasing transformation: P 1

3 (s2|s2) = 1
3 + 1

3 = 2
3 , P 1

3 (s3|s2) = 1
3 −

1
3 = 0,

P
1
3 (s3|s2) = 1

3 + 1
3 = 2

3 , and P 1
3 (s2|s3) = 1

3 −
1
3 = 0. Figure 5 and 6 represent the two

acts f iid and f corr. It is easy to check that f iid �0 f
corr for any β ∈ (0, 1). 4

I prove that such a result holds in general: preferences for early resolution of
uncertainty are dominated by correlation aversion.
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Theorem 1. Suppose that �t,ω has a recursive representation that is either

(i) EZ with α ≤ ρ,

(ii) RM with θ ≥ 0,

(iii) REU with b(·) decreasing,17

then it exhibits aversion to correlation.

Proof. See the appendix.

In particular, as shown in the appendix, one will have f iid �0 f corr whenever
f iid 6= f corr and (i) α < ρ (ii) θ > 0 (iii) b(·) is strictly decreasing. In other words,
for EZ and RM preferences attitudes toward correlation are dominated by aversion
to correlation. Only the latter matters. As for REU, the result confirms the intuition
that only attitudes toward correlation should matter.

To gain a better understanding of this result, observe that both EZ and RM
preferences belong to the class of recursive second-order expected utility preferences.
Such preferences can be equivalently written with a time aggregator

W (x, y) = φ(u(x) + βφ−1(y)),

and an expected utility certainty equivalent. Whenever φ is concave and twice differ-
entiable, as is the case of EZ and RM preferences, such an aggregator is submodular:
an increase in today’s utility lowers the marginal value of continuation utility. Corre-
lation aversion is implied by such a property of the time aggregator. It is important
to contrast this result with what we know from Kreps & Porteus (1978): a preference
for early resolution of uncertainty coincides with convexity of the aggregator in y. As
shown by Strzalecki (2013) (Lemma 3), when φ is twice differentiable such a condition
is equivalent to

β

[
−φ

′′(βy + x)
φ′(βy + x)

]
≤
[
−φ

′′(y)
φ′(y)

]
, (2)

for every y, x ∈ u(X). Hence, in general, attitudes toward correlation differ from
attitudes toward temporal resolution.18 The proof shows that when φ satisfies (2) for

17Bommier et al. (2019) provide a result for REU preferences related to Kochov’s 2015 notion of
intertemporal hedging. Such a notion involves comparing stochastic processes that differ in terms
of correlation but not in terms of temporal resolution, such as those in Figure 4.

18For example, when φ is given by

φ(x) =
∫ x

0
e−t

2
dt,

for every x ∈ R+, it will in general fail to satisfy condition (2). In such cases the effect of correlation
aversion will be even stronger. More in general, the Koopmans, Diamond & Williamson’s aggregator

W (x, y) = (1/θ) log (1 + βxγ + δy) , 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,

is concave in y and at the same time submodular under standard parameter specifications.
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every β ∈ (0, 1), if it also exhibits IRRA (increasing relative risk aversion) the effect
of correlation aversion will be stronger than that of preference for early resolution of
uncertainty. IRRA is one of the most important classes of utility functions (e.g., see
Arrow (1971), p. 96), which in turn contains as a special case the CRRA and CARA
cases represented by EZ and RM preferences. Therefore, such a result holds for a
very important class of aggregators. More generally, I show that correlation aversion
dominates preferences for early resolution of uncertainty under the condition that the
Arrow-Pratt index of risk aversion φ′′

φ′
is convex. As for REU preferences, they posses

a similar submodularity property, which can be seen immediately whenever b(·) is
differentiable and decreasing. Indeed, the cross derivative of the aggregator will take
the form

Wxy = b′(·) ≤ 0,
while such an aggregator is linear in y, and therefore indifferent to timing of resolution.

3.3 Attitudes toward correlation: ambiguity
Recursive ambiguity averse preferences have more complex attitudes toward correla-
tion. The next example shows that this fact need not be true for recursive ambiguity
averse preferences.

Example 2. Assume the same setting of the previous example, i.e. S = {s1, s2, s3},
Σ = 2S, T = 2 and X = R+ and same acts. Suppose this setting models the following
situation: there is one urn containing 90 balls: 30 balls are red, while the remaining 60
balls are either black or yellow in unknown proportions. The state s1 represents the
event that a black ball is drawn, s2 a yellow ball, and s3 a red one. Consider recursive
smooth ambiguity preferences, with p1(s1) = 1− p1(s2) = 2

9 , p1(s1) = 1− p1(s2) = 4
9 ,

p1(s3) = p2(s3) = 1
3 and µ(p1) = µ(p2) = 1

2 . Assume φ(x) = log(x), u(x) = x and
β = 9

7
√

47−8
√

17 ≈ 0.6. Under these assumptions,

V0(f corr) = φ−1Eµφ(EpV1(·, f corr)) = Ep̄V1(·, f corr),

where p̄ = 1
2p

1 + 1
2p

2. Introducing positive correlation removes ambiguity from the
perspective of time 0, in the sense that V1(·, f corr) is unambiguous while V1(·, f iid) is
ambiguous. We have

V0(f corr) ≈ 0.584 > 0.537 ≈ V0(f iid).

4

In other words, for recursive ambiguity preferences, an increase in correlation
might reduce the ambiguity about future utility, thus making an increase in correlation
desirable. The key is that we added correlation to an “ambiguous” consumption
process. The next example suggests that if we add correlation to an “unambiguous”
consumption process then this will produce (weakly) more volatility of future utility.
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Example 3. Suppose now there is one urn containing 100 balls: 50 balls are red
or blue with at least 20 of each color, while the remaining 50 balls are either black
or yellow, again with at least 20 of each color. We can represent this as follows
S = {s1, s2, s3, s4}, Σ = 2S, T = 2 and X = R+. Let f(s1) = f(s2) = 1, f(s3) =
f(s4) = 0, g(s2, s3) = 1 and g(s3, s2) = 0. The acts f iid and f corr are represented in
Figure 7. Preferences are given by RMEU, with I(ξ) = minP∈C EP ξ, that satisfies
P (s1, s2) = 1

2 , P (s3, s4) = 1
2 , P (si) ≥ 1

5 for P ∈ C and i = 1, 2, 3, 4. It is easy to
check that f iid �0 f

corr for any β ∈ (0, 1). In this case f : S → R+ was chosen to
be unambiguous (I make this notion more precise later). Positive correlation creates
ambiguity, in the sense that at time 0 the future utility V1(·, f iid) is unambiguous
while V1(·, f corr) is ambiguous. 4

I generalize this idea in the next theorem. First, I define formally an ambiguous
act in this setting.

Definition 6. A certainty equivalent I : B0(Σ, u(X))→ R admits a global benchmark
if the set

EI = {P ∈ ∆ : EP ξ > I(ξ) for all ξ ∈ B0(Σ, u(X))} ,

is non-empty. Call f : S → X unambiguous if for some P ∈ EI it holds I(u(f)) =
EPu(f) = EQu(f) for every P,Q ∈ EI . Let UI ⊆ XS denote the class of unambiguous
acts.19

Remark 2. I identified ambiguity neutrality with expected utility. Such an assump-
tion may be too restrictive in some cases. In the appendix (see subsection 7) I
generalize the above definition by identifying ambiguity neutrality with probabilistic
sophistication.

The next result extends Theorem 1 to recursive ambiguity averse preferences.

Theorem 2. Assume that �t,ω has an RDAA representation where I has a global
benchmark. Then f iid �0 f

corr for every f ∈ UI .

Proof. See the appendix.

Remark 3. RMEU and RSA preferences with φ CARA or CRRA satisfy the as-
sumption of the theorem. The global benchmark for RMEU is given by any P ∗ ∈ C,
and for RSA by P ∗ = EµP .

In the appendix I discuss in detail when the inequality will be strict, the main
condition being that f corr is not unambiguous in a precise sense (i.e increasing correla-
tion effectively leads to ambiguity in future utility). I also discuss how (see subsection
7.4.4) Theorem 1 and 2 can be extended to an even more general class of recursive
preferences.

19This notion is derived from Ghirardato & Marinacci (2002).
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3.4 When do attitudes toward timing of resolution matter?
As a consequence of Theorems 1 and 2, to identify pure preferences for non-instrumental
information one needs to remove correlation in the consumption process. This can be
achieved by fixing consumption to a certain level independently of what state is real-
ized before the resolution of uncertainty, as in Figure 8. Indeed Definition 2 considers
processes in which consumption is fixed to a constant before uncertainty resolves.

A different setting in which attitudes toward non-instrumental information matter
is the following. Consider enlarging the state space so as to consider processes that
share the same pattern of correlation but whose uncertainty resolves at different
times. For example, suppose that S = A×A for a finite set A and assume T = 2. Let
f = A → X and define h, h′ : Ω → X by h1((a1, a2)) = f(a1), h2((a1, a2)(a′1, a′2)) =
f(a′1), h′1((a1, a2), (a1, a2)) = f(a1) and h′1((a1, a2), (a1, a2)) = f(a2). Figure 9 gives
an example for the case A = {a1, a2}. Observe that both h and h are “i.i.d.” but h′
resolves gradually while h resolves immediately. A preference for h′ over h indicates
a preference for one-shot resolution of uncertainty over gradual resolution.

However, in the standard dynamic consumption problem under uncertainty, con-
sumption processes of the type described above do not play a role. First, consumption
at every time t is never fully deterministic. Indeed, the consumption processes I de-
scribed in the introduction do not allow for consumption to be constant at any time
t ≥ 1. Second, uncertainty resolves always gradually and therefore processes that
feature one-shot resolution of uncertainty such as h are excluded. To illustrate, in
the consumption-savings applications, consumption ct at every period t is a non-
trivial function of income yt, and uncertainty about income resolves gradually. In
consumption-based asset pricing models, in equilibrium one has ct = dt where (dt)t
is the dividend process, whose uncertainty resolves gradually and which is usually
assumed to be non-deterministic at every period t.

In other words, processes such as those in Figure 2 or h in Figure 9 that are
used to identify pure preferences for non-instrumental information are not relevant
in standard applications. For this reason, I suggest one should not take F as a
domain of choice, but rather a strict subset of it, a relevant domain. Consider general
information structures from section 2.1. Say that f ∈ F involves early resolution if
for some t ≥ 1, ft is measurable w.r.t. Gτ for some τ < t. In words, this means that
time t consumption is known at the earlier period τ .

Definition 7 (Relevant Domain). For every t ∈ T , let Ft denote the set given by

Ft = {f ∈ F : ft is Gτ -measurable for some τ < t =⇒ f ∈ D}.

Define the relevant domain to be F r = ∩Tt=1Ft, which I endow with the relative topol-
ogy.

In words, this means that an element of F r either involves no early resolution or
it is deterministic. Notably, it excludes processes as in Figures 8 and 9. At the same
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time, observe that F r is rich enough to contain the consumption processes used in
applications such as those I described in the introduction. In such a domain, pure
attitudes toward timing of resolution do not play a role, in the sense that the ranking
of f, g ∈ F r will be determined by the interaction of attitudes toward correlation
and attitudes toward non-instrumental information. For example, the ranking of the
processes in Figure 10 will depend on how the values of z1, z2 affect the correlation
between consumption at t = 1 and t = 2.

In the next section I assume that one can observe choices only over a subset R of
F r. I show that one can axiomatize a general recursive representation and disentangle
a general notion of risk aversion from intertemporal substitution on a choice domain
in which preferences for non-instrumental information play no role.

4 Recursive preferences on the relevant domain F r

4.1 Representation theorem
Consider again the general information structures from section 2.1. Assume one
observes choices only over a subset R of the relevant domain with D ⊆ R ⊆ F r. I
therefore take �t,ω on R to be the primitive. As discussed in the introduction, such
an assumption amounts to a weakening of the axiom of completeness of preferences.

I show that four standard axioms restricted to R are enough to characterize a
general recursive representation. The first axiom is a standard continuity requirement.
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Axiom 1 (Continuity). For every h ∈ R the sets

{f ∈ R : f �t,ω h} ,

and
{f ∈ R : h �t,ω f} ,

are closed.20

Given τ ∈ T , x, y, z ∈ X, and d ∈ D, (d−t−1, y, xT−t′ , zt−t′) denotes the determin-
istic consumption stream that pays dτ at times τ = 0, . . . , t − 1, y at time t, x at
times τ = t + 1, . . . , T + t − t′ and z at times τ = T + t − t′ + 1, . . . , T . The next
axiom, stationarity, requires preference over deterministic acts to be independent of
a time delay.

Axiom 2 (Stationarity). There exist z ∈ X such that for every t ≤ t′, ω, ω′ ∈ Ω,
d ∈ D, y, ȳ, x, x̄ ∈ X

(d−t−1, y, xT−t′ , zt−t′) �t,ω (d−t−1, ȳ, x̄T−t′ , zt−t′) ⇐⇒
(d−t′−1, y, xT−t′) �t′,ω′ (d−t′−1, ȳ, x̄T−t′).

The next axiom, which I refer to as consequentialism, requires that the decision
maker at a note (t, ω) does not care about (i) what an act pays on unrealized events
nor (ii) what it pays at earlier time periods.

Axiom 3 (Consequentialism). For all t ∈ T and ω ∈ Ω, and all acts f, g ∈ R, if
fk (ω′) = gk (ω′) for all k ≥ t and all ω′ ∈ Gt(ω), then f ∼t,ω g.

Observe that the above axiom implies that the ranking of an act f ∈ R by �t,ω
depends only on (ft(ω), ft+1, . . . , fT ).

Finally, the last axiom excludes preference reversals as new information arrives.

Axiom 4 (Dynamic Consistency). For all t ∈ T, and ω ∈ Ω, and acts f, g ∈ R that
yield identical outcomes up to and including period t, if f �t+1,ω′ g for all ω′ ∈ Gt(ω),
then f �t,ω g and if f �t+1,ω′ g for some ω′ ∈ Gt(ω), then f �t,ω g.21

20Recall that F is endowed by the product topology, and that therefore R can be endowed with
the relative topology

21It is possible to consider a weaker axiom notion of dynamic incosistency, which would result
in a certainty equivalent that It,ω need not be strictly monotone. This could be done by defining
appropriately the notion of a �t,ω-nonnull event. Then one can require that if f �t+1,ω′ g for every
ω′ in a �t,ω -nonnull event, then f �t,ω g. I chose to present the stronger representation as DC is
easier to state.
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Our representation theorem characterizes recursive utility under very general con-
ditions (cf. Kreps & Porteus (1978), Johnsen & Donaldson (1985), Chew & Epstein
(1991), Skiadas (1998), Wang (2003), Hayashi (2005), Bommier et al. (2017)), allow-
ing for both changing beliefs and ambiguity sensitive preferences. The only loss of
generality is constituted by the exclusion of an infinite horizon, which however can
be overcome by means of appropriate technical conditions.

Theorem 3 (Recursive representation). Assume that R is connected. �t,ω satisfy
axioms 1-4 if and only if admits a general recursive representation.

Proof. See the appendix.

Remark 4. One could wonder whether given a recursive representation (W,u, (It,ω)t,ω)
on R the only “reasonable” extension to F is given by the straightforward extension
of (W,u, (It,ω)t,ω) to F . In Section 7.2, I show that one can extend preferences in a
different fashion. Specifically, I introduce preferences that have an Epstein-Zin repre-
sentation on R but on F \R admit the representation introduced by Selden & Stux
(1978) and Selden (1978). Notably, such a “hybrid” model features indifference to
timing of resolution of uncertainty.

Remark 5. The theorem makes no reference to uniqueness of the representation.
Uniqueness can be achieved by adding further conditions that imply uniqueness of
u : X → R. For example, one can assume that X is the set of lotteries over a finite
set Z and obtain uniqueness of u by means of specific axioms such as independence.

At a technical level, the main difficulty introduced by weakening the completeness
axiom is related to showing that R ⊆ F r is rich enough to construct a representation
(more precisely, showing that R is connected). In the appendix (see Lemma and 1
and Remark 7) I show that F r is connected. An example of great interest of a subset
of F r that is connected is given by

IND = {h ∈ F : there exist (ft)t with ft ∈ XS such that ht(s1, . . . , st−1, ·) = ft(·),
and if for some t′, f ′t is constant =⇒ h ∈ D}.

In words, this set contains processes that are “independent” (ht does not depend on
(s1, . . . , st−1)) but not necessarily “identically distributed” (ht depends on a function
ft : S → X which is not identical over time). Hence, in such a domain attitudes
toward temporal resolution or correlation play no role.

4.2 Separating intertemporal substitution from attitudes to-
ward uncertainty

A simple yet important implication of Theorem 3 is that to separate risk aversion
from the intertemporal rate substitution it is enough to observe only choices over a
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subset D ⊆ R ⊆ F r, and therefore there are no implications for attitudes toward
timing of resolution.

Consider preferences �it,ω, i = 1, 2 that admit the representation in (1). Com-
parative risk aversion can be defined in a similar fashion as in Epstein & Zin (1989)
(pp. 949-950) and Chew & Epstein (1991) (Theorem 3.2). For any f ∈ R, (t, ω) and
d ∈ D, denote with (ft(ω), dT−t) the consumption stream that pays ft(ω) at time t
and dτ at times τ = t+ 1, . . . , T .

Definition 8. �1
t,ω is more risk averse than �2

t,ω if for every f ∈ R, d ∈ D and (t, ω)
with t < T

(ft(ω), dT−t) �2
t,ω (ft(ω), ft+1, . . . , fT ) =⇒ (ft(ω), dT−t) �1

t,ω (ft(ω), ft+1, . . . , fT ),

and

(ft(ω), dT−t) �2
t,ω (ft(ω), ft+1, . . . , fT ) =⇒ (ft(ω), dT−t) �1

t,ω (ft(ω), ft+1, . . . , fT ).

Then the following result is immediate.

Proposition 1. �1
t,ω is more risk averse than �2

t,ω if and only if they admit recursive
representations (W i, ui, (I it,ω)t,ω), i = 1, 2 such that u1 = u2, W 1 = W 2 and I1

t,ω(ξ) ≤
I2
t,ω(ξ) for every ξ ∈ {ξ ∈ B0(Gt+1, Vt+1) : ξ = Vt+1(·, f), f ∈ R} and every (t, ω).

Proof. First observe that if W1 = W2, then

(ft(ω), dT−t) �it,ω (ft(ω), ft+1, . . . , fT ) ⇐⇒ Vt+1(d) ≥ I it,ω(V i
t+1(·, f)), (3)

Now if �1
t,ω is more risk averse than �2

t,ω then it is straightforward to check that
they rank prospects in D in the same way. It follows that they must admit recursive
representations (W i, ui, (I it,ω)t,ω), i = 1, 2 such that u1 = u2 and W 1 = W 2. By (3) it
follows that I1

t,ω(ξ) ≤ I2
t,ω(ξ) for every ξ ∈ {ξ ∈ B0(Gt+1, Vt+1) : ξ = Vt+1(·, f), f ∈ R}.

The converse follows immediately by (3).

Remark 6. Observe that if R = D then the “only if” part of the statement is
trivially true since I it,ω are defined on deterministic prospects so that I1

t,ω = I2
t,ω.

More in general, this will be true whenever

{ξ ∈ B0(Gt+1, Vt+1) : ξ = Vt+1(·, f), f ∈ R} = {ξ ∈ B0(Gt+1, Vt+1) : ξ = Vt+1(d), d ∈ D}.
(4)

Now consider the special case of EZ preferences. Assume that �it,ω are represented
by

V i
t (ω, h) = ht(ω)ρi

ρi
+ βi(EPt,ω(V i

t+1(·, h)
αi
ρi )

ρi
αi , (5)

for 0 6= ρ < 1 and that (4) does not hold. In this case we obtain the following.
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Corollary 1. (�t,ω)1
t,ω is more risk averse than (�t,ω)2

t,ω if and only if β1 = β2,
ρ1 = ρ2 and α1 ≤ α2.

Proof. The result follows immediately by the previous proposition upon observing
that I(ξ) = (EP ξα)

1
α is increasing in α (see Theorem 16, Hardy et al. (1952)).

A separation exists between risk aversion and intertemporal substitution, but
the domain is restricted to a domain of choice in which pure preferences for non-
instrumental information play no role. In particular, one can take

R = IND ∪ (CORR ∩ F r).

This domain is rich enough to disentangle risk aversion from intertemporal substi-
tution, but as a consequence of Theorems 1 and 2, only attitudes toward temporal
resolution play no role. Rather, only attitudes toward correlation matter in such a
domain.

5 Important consequences

5.1 What determines aversion to correlation?
If aversion to correlation is the relevant behavioral property, then it is of great im-
portance to understand what drives it. Theorem 1 implies that for EZ preferences,
attitudes toward timing of resolution of uncertainty and attitudes are modeled by
the same parameters. This is not true in general. From the literature we know that
both RMEU and REU preferences are neutral toward timing of resolution, while from
Theorems 1 and 2 we know that they are not indifferent to an increase in correlation.
In other words, this means that in general attitudes toward timing of resolution and
attitudes toward correlation need not be modeled by the same parameters.

In the case of REU preferences the degree of time non-separability modeled by b(·)
drives aversion to correlation. However, for such preferences, risk aversion is tied to
intertemporal substitution. It follows that risk aversion plays no role in determining
aversion to correlation. In contrast, for EZ, RM and RDAA, correlation aversion is
driven by static attitudes toward risk or ambiguity. An important implication for
the LRR model is that if only purely static attitudes toward risk drive aversion to
correlation, one is going to need a lot of persistence for correlation aversion to make
a difference. I make this statement more precise in the next section.

It is natural to ask whether one can achieve a separation between risk aver-
sion/ambiguity aversion, intertemporal substitution and attitudes toward correlation.
Such a question will be pursued in future research.
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σ 0.0078
ϕ 0.044
a 0 and 0.9790
β 0.998
1− α 7.5
ρ 0
x0 0

Table 1: Parameters of the LRR model (see Epstein et al. (2014), Table 1)

5.2 How much would you pay to eliminate persistence?
In light of the previous analysis, I re-examine Epstein, Farhi & Strzalecki’s (2014)
result that common parameter specifications lead to implausibly high timing premia.
I ask a different question: “what fraction of your wealth would you give up to remove
all persistence in consumption?” Consider the consumption process (case I) studied
in Bansal & Yaron (2004)

log
(
ct+1

ct

)
= m+ xt+1 + σεc,t+1,

xt+1 = axt + ϕσεx,t+1,

εc,t+1, εx,t+1 ∼ i.i.d. N(0, 1).

(6)

f iid is given by f iidt = log( ct
ct−1

) for a = 0 (no persistence) and f corr is given by f corrt =
log( ct

ct−1
) for a = 0.9790 (a standard specification for persistence in the literature, see

Bansal & Yaron (2004)). Table 1 summarizes the parameters of the model.
Using the same approach of Epstein et al. (2014) we can compute the utility

associated to both f corr, f iid:

log V0(f corr) = log c0 + β

1− βax0 + β

1− βm+ α

2
βσ2

1− β

(
1 + ϕ2β2

(1− βa)2

)
,

and
log V0(f iid) = log c0 + βx0 + β

1− βm+ α

2
βσ2

1− β
(
1 + ϕ2β2

)
.

Define the persistence premium by

π = 1− V (f corr)
V (f iid) = 1− e

β
1−βax0−βx0+α

2
βσ2
1−β

(
ϕ2β2

(1−βa)2−ϕ2β2
)
.
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Under these assumptions, I obtain the persistence premium:

π = 1− exp
(
−6.5× 0.998× 0.00782

2(1− 0.998)

(
0.0442 × 0.9982

(1− 0.998× 0.979)2 − 0.0442 × 0.9982
))

≈ 1− e−8 ≈ 0.3028.

When 1 − α = 10, one obtains π ≈ 40%. In other words, an investor with such
preferences would be willing to give up either 30% or 40% of his wealth to get rid of
persistence. The experimental evidence from Andersen et al. (2018) suggests that one
should have at most π ≈ 20% (see section 7.4.5). This result suggests that persistence
is either implausibly high or that risk aversion is too high relative to intertemporal
substitution (recall from the previous section that the relationship between ρ and α
determines attitudes toward correlation for EZ preferences).

5.3 Dynamic ordinal certainty equivalent models
Dynamic ordinal certainty equivalent (DOCE) preferences offer an alternative ap-
proach to disentangle risk aversion from intertemporal substitution. Axiomatized in
Selden (1978) and Selden & Stux (1978), such preferences replace risky consumption
in each period by certainty equivalents with respect to a utility function v(·) and
evaluate the resulting sequence of certainty equivalents with discounted utility with
respect to a utility function u(·). More precisely, Selden-Stux preferences �SSst over
F are represented by

Vt(st, h) = u(ht(s1, . . . , st)) +
T−t∑
j=1

βju

(
v−1

[
E∏j

τ=1 P (st+τ )v
(
ht+j(st, ·)

)])
.

Hall (1985), Zin et al. (1987), Attanasio & Weber (1989) and Kubler et al. (2019)
have studied applications of such preferences.

In contrast with recursive preferences, DOCE preferences are neutral to the timing
of resolution of uncertainty (see Selden & Stux (1978) and Kubler et al. (2019)).
However, such preferences are also indifferent to correlation, as I now show.

Proposition 2. f iid ∼SS0 f corr for every f ∈ XS.

Proof. See the appendix.

Because of the above result, DOCE models have less freedom than recursive pref-
erences in addressing existing asset pricing puzzles. The main leeway is related to
generalizing the formulation of the certainty equivalent to non-expected utility, sim-
ilarly to how Epstein & Zin (1990) showed that one can obtain a partial resolution
of the equity premium puzzle by considering Yaari’s dual theory of choice under
uncertainty (in the context of recursive preferences).
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6 Discussion

6.1 Intertemporal hedging and experimental evidence
The connection between attitudes toward correlation and recursive preferences is not
completely new. Kochov (2015) introduced an axiom called intertemporal hedging
which has a similar content. Bommier et al. (2019) study preferences for intertem-
poral hedging in the case of recursive models of ambiguity aversion. Figure 11 has a
visual description of the intertemporal hedging axiom. As one can see, his definition
involves comparing processes that have the same timing of resolution but differ only
in terms of correlation, and therefore are never part of the relevant domain F r. Since
in applications uncertainty resolves gradually, it is necessary to understand the im-
plications of correlation aversion in such a domain. Moreover, in this way it becomes
possible to compare the relative strength of correlation aversion with preferences for
non-instrumental information.

The notion of intertemporal hedging is based on the literature on correlation
aversion which in turn is based on the framework of risk aversion with multiple com-
modities introduced by Kihlstrom & Mirman (1974), see for example Richard (1975)
and Epstein & Tanny (1980). Miao & Zhong (2015) relate Epstein-Zin utility to an
analogous notion of intertemporal hedging and provide experimental evidence in its
favor. Bommier (2007) studies intertemporal hedging for continuous time models,
providing a formula that relates a measure of intertemporal hedging to intertemporal
substitution and risk aversion. Andersen et al. (2018) provide evidence in favor of
intertemporal hedging.

6.2 Aversion to long-run risk
Strzalecki (2013) introduced the notion of aversion to long-run risk. Such a notion is
related to Duffie & Epstein’s (1992) example discussed in the introduction. Such a no-
tion considers only maximally correlated processes. Therefore, it excludes reasonable
patterns of correlation in a consumption process. For this reason, several important
conceptual issues are ignored. For example, the fact that recursive preferences that
feature ambiguity aversion can prefer more correlation is consumption are ignored.
Notably, RMEU preferences are always indifferent to long-run risk, while introspec-
tion suggests they should be sensitive to correlation. In my setting, the notion of a
correlated process can be extended in a straightforward manner as follows

F corr
f = {f corr ∈ F : for some gf ∈ Gf and

J ⊆ {2, . . . , T}, f corrt (s1, . . . , st) = gf (st−1, st) for every t ∈ J}.

Under such a notion, it is immediately observable that correlation aversion implies
aversion to long-run risk, but not the other way around.
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Figure 11: Intertemporal hedging

7 Appendix

7.1 Preferences for one-shot resolution of uncertainty
In this section I provide further results concerning attitudes toward temporal res-
olution of uncertainty. Specifically, I elaborate on the notion of timing premium
introduced in Epstein et al. (2014). This notion quantifies how much would one pay
to resolve all the uncertainty at time t = 1, as opposed to having gradual resolution
of uncertainty. In other words, it quantifies preferences for one-shot resolution of un-
certainty compared to gradual resolution. I translate their definition into an abstract
framework.

Consider an IID setting. I impose more structure on S. Specifically, assume that
S = A1 × A2 . . . × AT where A1 = A2 = . . . = AT and that each (Ai,Ai) is a finite
measurable space with Ai = 2Ai . An arbitrary element (s1, . . . , st) can be written as
((a1

1, . . . , a
1
T ), . . . , (at1, . . . , atT )).

Definition 9. For any f : A→ X measurable with respect to A1, let f̄t(s1, . . . , st) =
f(at1) for every t, and let f̂ be defined by f̂t(s1, . . . , st) = f(a1

t ). The timing premium
is defined by

π∗(f) = 1− V (f̄)
V (f̂)

.
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Therefore �0 has a non-negative time premium if and only if

f̂ �0 f̄.

An example of f̂ with its associated f̄ is represented in Figure 12. Observe that
for simplicity, I am considering acts f̄ that involve no correlation.

In general, the notions of preference for timing, timing premium, and attitudes
toward timing are different. However, the three coincide for EZ preferences over F .
Recall that these are defined by

Vt(ω, h) = hρt (ω)
ρ

+ β(EP (Vt+1(·, h)
α
ρ )

ρ
α , (7)

for 0 6= ρ < 1 and for ρ = 0

Vt(ω, h) = log(ht(ω)) + β
1
α

log (EP (exp (αVt+1(·, h))) . (8)

Observe that I am further requiring that P (a1
1, . . . , a

1
T ) = P (a1

1, . . . , , a
t
T ). Denote

such preferences over F by �EZt,ω .

Proposition 3. Consider �EZt,ω over F . Then the following are equivalent

1. �t,ω exhibits a preference for early resolution of uncertainty.
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2. �t,ω is averse to correlation.

3. �t,ω has a non-negative time premium.

In particular, 1-3 are equivalent to α ≤ ρ.

Proof. See the appendix.

In other words, for EZ preferences all such feature of preferences are modeled
by the same parameter specifications. It should be no surprise that these three
(different) properties of preferences have been conflated in the literature. In the next
section I delve deeper into the relationship between preferences for early resolution
of uncertainty and the timing premium.

7.2 A hybrid representation on F
Proposition 3 established the equivalence between a non-negative timing premium
and a preference for early resolution of uncertainty in the case of EZ preferences. I
present an example of preferences F that are indifferent to timing of resolution but
can have a positive timing premium.

Consider preferences �t,ω that have the representation (7) or (8) on F r.
I extend the representation to F \ F r by means of the DOCE representation

introduced by Selden & Stux (1978), Selden (1978). Consider the following axioms
on F .

Axiom 5 (Indifference to timing). Consider h, h′ such that for some s̄t = (s̄1, . . . , s̄t)
with 1 ≤ t ≤ T − 2 the act

(h0, h1(s̄1), h2(s̄1, s̄2), . . . , ht(s̄t), . . . , hT (s̄t, ·)),

resolves earlier than

(h′0, h′1(s̄1), h′2(s̄1, s̄2), . . . , h′t(s̄t), . . . , h′T (s̄t, ·)),

and hτ (s1, . . . , sτ ) = h′τ (s1, . . . sτ ) for every (s1, . . . , sτ ) with τ < t and hτ (s1, . . . , sτ ) =
h′τ (s1, . . . sτ ) for every (s1, . . . sτ ) such that τ ≥ t and (s1, . . . , st) 6= (s̄1, . . . , s̄t). Then
it holds that h ∼t′,ω h′ for every t′ ≤ t.

Axiom 6 (Consequentialism). For all t ∈ T and ω ∈ Ω, and all acts f, g ∈ F if
fk (ω′) = gk (ω′) for all k ≥ t and all ω′ ∈ Gt(ω), then f ∼t,ω g.

Let z ∈ X denote 0 when ρ 6= 0 and 1 when ρ = 0.

Axiom 7 (Consistency with Epstein-Zin). Let h, h′ be such that there exist, t, f, f ′ :
S → X and (s1, . . . , st−1) such that ht(s1, . . . , st−1, ·) = f(·), h′t(s1, . . . , st−1, ·) =
f ′(·), hτ = h′τ = z for all τ 6= t and ht(s̄t) = h′τ (s̄t) = z whenever (s̄1, . . . , s̄t−1) 6=
(s1, . . . , st−1). Then

h �t,ω h′ ⇐⇒ h �EZt,ω h′.
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Axiom 8 (Risk Independence). Given any pair h, h′ ∈ F \ F r which are identical
except at the node (s1, . . . , st−1), then letting h̄t(s1 . . . , st−1, ·) = ht(s1 . . . , st−1, ·),
h̄′t(s1 . . . , st−1, ·) = h′t(s1 . . . , st−1, ·) and h̄t = h̄′t = z otherwise,

h̄ ∼t,ω h̄′ =⇒ h ∼t,ω h′.

Proposition 4. �t,ω satisfies axioms 5-7 if and only if it is represented on F \ F r
by

Vt((s1, . . . , st), h) = u(ht(s1, . . . , st)) +
T−t∑
j=1

βju

( [
E∏j

τ=1 P (st+j)
hαt+j(st, ·)

] 1
α

)
, (9)

with

u(x) =


xρ

ρ
0 6= ρ < 1,

log(x) ρ = 0.

Moreover, �t,ω is represented on F by Vt(ω, ·) defined in (7)-(8) and (9).

Denote such preferences with �SSt,ω . Observe that �SSt,ω satisfy dynamic consistency
on F r but at the same time are indifferent to timing of resolution of uncertainty. In
general, the timing premium will be non-zero. However, in the specific case of i.i.d.
processes, I can prove that it will always be smaller.

Proposition 5 (Timing premium inequality). Denote with πEZ and πSS the tim-
ing premium associated with �EZt,ω and �SSt,ω EZ preferences and for the Selden-Stux
representation, respectively. Then if α ≤ ρ it holds that

πSS(f) ≤ πEZ(f),

for every f : A→ X.

Proof. See the appendix.

In general, preferences for one-shot resolution of uncertainty reflect more than a
pure attitude toward timing of resolution. To illustrate this fact, I compare below
πEZ and πSS for the LRR consumption process in (6) (with the parameters in Table
1). As one can see from Table 2, πSS can be also quite high even if such preferences
are neutral to timing of resolution. Indeed, in this case, the high timing premium is
driven by aversion to correlation.

7.3 Dynamic inconsistency
Epstein et al. (2014) make an important point
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Table 2: Timing premium in the LRR model as a varies

a = 0 a = 0.8 a = 0.9 a = 0.972 a = 0.979
Global EZ preferences 4.12% 4.3% 4.86% 12.39% 17.8%
EZ-SS preferences 0.2% 0.75% 1.36% 16.48% 26.1%

At a psychic level, early resolution of risk may reduce anxiety. However,
anxiety is plausibly more important when risk must be endured for a long
time. Therefore, the risk premium required for bearing a lottery is greater
the longer is the time that the individual has to live with the anxiety of not
knowing how the lottery will be resolved. In other words, the willingness
to bear a given risk declines as the date of resolution approaches, a form of
dynamic inconsistency. However, such dynamic inconsistency is precluded
when utility is recursive and thus anxiety cannot be a rationale for a timing
premium given the utility functions considered here.

My approach permits addressing this point. Indeed, I can construct preferences that
(i) are dynamically consistent on F r, (ii) have a preference for earlier resolution of
uncertainty and (iii) the non-neutral attitudes toward timing stem from dynamic
inconsistency.

Consider preferences �t,ω on F that are represented by

Vt(st, h) = u(ht(st))+
T∑
j=1

βj [EP (st+j)u(ht+j+1(st+j+1))−α(h)βEP (st+j)VARP (u(ht+j+1(st+j , ·))],

(10)
with α(h) = 0 for h ∈ F r and for some α > 0, α(h) = α for every h ∈ F \ F r.

In words, such preferences are RDEU on F r but otherwise evaluate an act h by
looking at its discounted expected value minus the expected discounted variance of
h multiplied by a term α > 0. It is easy to see that such preferences in general will
not satisfy dynamic consistency. For example, suppose that T = 2 and h = (z, z, f)
for f : S → X. Then V0(h) = β2EP (s)u(f(s)) − αβ2VARPu(f(s)). Notice that the
functional I(ξ) = EP ξ − αVARP ξ is not monotone. The intuition is simple: even
if ξ might be better than ξ′ in every state, ξ might be more volatile. Therefore, by
Theorem 3 such preferences will not be dynamically consistent. Concerning attitudes
toward timing, we have the following.
Proposition 6. Assume preferences �t,ω have the representation in 10. Then �t,ω
exhibits a preference for earlier resolution of uncertainty.
Proof. See the appendix.

Therefore, the parameter α can be thought of as measuring how anxious the
decision maker is about not knowing how a process h will resolve: the later uncertainty
resolves, the higher the future expected variance term will be.
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7.4 Proofs
7.4.1 Proof of Theorem 3

I first start with a key lemma. Observe that since X is a subset of Rn and each Gt
is generated by a finite partition, F is a metric space and so is F r under the relative
topology.

Lemma 1. F r is a separable and connected metric space.

Proof. First observe that F is separable and therefore F r is separable since any subset
of a separable metric space is separable. I now show that F r is path-connected. Take
h ∈ F r and d ∈ D. Clearly if h ∈ D then the result follows by convexity of D (recall
that X is convex). Assume h ∈ F r \ D. Let {P t

1, . . . , P
t
nt} denote the partition of Ω

that generates Gt. I construct a continuous path ι : [0, 1]→ F r that connects h to d.
Since X is convex, for every t we just let ιt(α) = (1−α)ht +αdt. Fix t ≥ 1. Without
loss of generality, assume that nt−nt−1 = 1 and P t−1

nt−1 = P t
nt ∪P t

nt−1. Let ω ∈ P t
nt and

ω′ ∈ P t
nt−1. If (1−α)ht(ω)+αdt = (1−α)ht(ω′)+αdt, we obtain a contradiction since

ht(ω) = ht(ω′) but h ∈ F r \ D. Therefore, ιt(α) ∈ F r for every α. It follows that we
can connect via a path any f ∈ F r to d ∈ D. Hence, we can connect any h, h′ ∈ F r
by a path. We conclude that F r is path-connected and therefore connected.

Remark 7. It is easy to construct examples of strict subsets of F r that are also
connected. For example, consider the case in which Ω = ST with T ≥ 1 where (S,Σ)
is a finite measurable space with Σ = 2S and Gt = Σt × {∅, S}T−t. Then the set

IND = {h ∈ F : there exist (ft)t with ft ∈ XS such that ht(s1, . . . , st−1, ·) = ft(·),
and if for some t′, f ′t is constant =⇒ h ∈ D},

is easily seen to be connected. Observe that such a domain is the natural extension
to T periods of “certain × uncertain” consumption plans (e.g., see Selden (1978),
Johnsen & Donaldson (1985)). Indeed, the two coincide when T = 1.

I turn now to the proof of the Theorem 3. See also Johnsen & Donaldson (1985),
Proposition 2.

Proof of Theorem 3. I first prove sufficiency of the axioms. First by continuity, con-
sequentialism and sinceR is connected and separable by Lemma 1, one can apply well
known results from Debreu (1954) to show that there exist (sequentially) continuous
functions (Vt(ω, ·))t,ω such that

Vt(ω, h) = Vt(ht(ω), ht, . . . , hT ) for every h ∈ R.
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Observe that by stationarity there exists a (sequentially) continuous function u : X →
R such that VT (ω, h) = u(hT (ω)) and Vt(ω, (x, zT−t−1)) = u(x) for every ω ∈ Ω and
t < T . Moreover, we can normalize u(·) from the stationarity axiom so that u(z) = 0.

I construct It,ω : B0(Gt+1, Vt+1(ω,R)) → R as follows: for every h, by con-
tinuity, dynamic consistency, consequentialism, and stationarity we can construct
dω,t = (dt+1, . . . , dT ) ∈ XT−t such that for any d̄ ∈ D

h ∼t,ω (d̄−t−1, ht(ω), dω,t) ∈ D. (11)

Observe that all acts in (11) belong to R. In particular, dω,t can be constructed
recursively as follows. Starting from t = T − 1, observe that for any ω ∈ Ω, there
exist x, y ∈ X such that

VT−1(hT−1(ω), x) ≥ VT−1(hT−1(ω), hT ) ≥ VT−1(hT−1, y).

To see this, let x = hT (ω̄) and y = hT (
¯
ω), where ω̄ = arg maxω u(hT (ω)) and

¯
ω = arg minω u(hT (ω)). The statement follows by applying dynamic consistency.
Therefore, by continuity and connectedness X we can find dT−1,ω ∈ X such that
h ∼T−1,ω (d̄−t−1, hT (ω), dT−1,ω). Now for any t < T − 1 and ω, assume one has
constructed dt+1,ω′ for every ω′ ∈ Gt(ω). Let d̄t,ω = (ht+1(ω̄), dt+1,ω̄) and

¯
dt,ω =

(ht+1(
¯
ω), dt+1,

¯
ω) where

ω̄ = arg max
ω′

V (ht+1(ω), dt+1,ω′),

and

¯
ω = arg min

ω′
V (ht+1(ω), dt+1,ω′),

Then by dynamic consistency and stationarity we have

Vt(ht(ω), d̄t,ω) ≥ Vt(ω, h) ≥ Vt(ht(ω),
¯
dt,ω).

Again, by connectedness of X and continuity we can find dt,ω such that (11) is verified.
Now observe that this implies that for each (t, ω), t = 0, . . . , T and ω ∈ Ω we have

Vt(ω,R) = Vt(ω′,R) ≡ Vt (observe that Vt ⊆ Vt′ whenever t′ ≤ t). Define

It,ω : B0(Gt+1, Vt+1)→ R,

by It,ω(ξ) = Vt+1(dω,t) and where ξ(ω) = Vt+1(ω, h). Observe that It,ω is well defined
by dynamic consistency.

I now claim that It,ω is strictly monotone, normalized and continuous. That It,ω is
normalized follows by definition. Strict monotonicity follows by dynamic consistency.
To prove continuity, assume that ξn → ξ. Let hn and h satisfy ξn = Vt+1(·, hn),
ξ = Vt+1(·, h) and lim hn = h. By contradiction, suppose that It,ω(ξn) 6→ It,ω(ξn). It
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follows that Vt+1(dnt,ω) 6→ Vt+1(dt,ω). Hence, there exists ε ≥ 0 such that for every
N ∈ N there exists n ≥ N such that

|Vt+1(dt,ω)− Vt+1(dnt,ω)| ≥ ε > 0.

By dynamic consistency it follows that there exists ε > 0 such that for every N ∈ N
there exists n ≥ N such that

|Vt
(
ht(ω), Vt+1(dnt,ω)

)
− Vt (ht(ω), Vt+1(dt,ω)) | ≥ ε > 0.

Observe that by continuity we have Vt(ω, hn)→ Vt(ω, h). Hence, we have arrived at
a contradiction. Therefore It,ω(ξn)→ It,ω(ξn) as desired.

Now assume that ht(ω) = h′t(ω) and It,ω(Vt+1(·, h)) = It,ω(Vt+1(·, h′)). By dynamic
consistency, it follows that h ∼t,ω h′. Moreover, if It,ω(Vt+1(·, h)) > It,ω(Vt+1(·, h′))
then ht,ω �t,ω h′. By Lemma 1 in Gorman (1968) it follows that there exists a
continuous function Wt : X × Vt+1 → R strictly increasing in its second argument
such that

Vt(ω, h) = Wt (ht(ω), It,ω (Vt+1(·, h))) .
Finally observe that by stationarity it holds that Wt(x, y) = Wt′(x, y) for every t, t′,
x ∈ X and y ∈ Vmax{t,t′}+1. Therefore, we can set W ≡ W0, which delivers the
representation.

I now turn to the necessity of the axioms. It is immediate to check that the
recursive representation satisfies axiom 3. To show that the representation satisfies
continuity, take h ∈ R and a sequence (fn)n in R such that fn �t,ω h and lim fn = f .
This means that Vt(ω, fn) ≥ Vt(h) for every n so that by sequential continuity of
Vt(ω, ·) we obtain that the set

{f ∈ R : f �t,ω h} ,

is closed. Showing that the set

{f ∈ R : h �t,ω f} ,

is closed can be done in the same way. Turn now to axiom 2. Let z ∈ X be such that
u(z) = 0 and W (x, u(z)) = u(x) (we know z exists by assumption). Now for every
t ≤ t′, ω, ω′, d ∈ D, y, ȳ, x, x̄ ∈ X it holds that Vt′+1(xT−t′) = Vt+1((xT−t′ , zt−t′)). It
follows that

Vt(ω, (d−t−1, y, xT−t′ , zt−t′)) = W (y, Vt+1(xT−t′))
≥ Vt (ω, (d−t−1, ȳ, x̄T−t′ , zt−t′)) = W (ȳ, Vt+1(x̄T−t′))
⇐⇒ Vt′(ω, (d−t′−1, y, xT−t′)) = W (y, Vt′+1(xT−t′))
≥ Vt′ (ω, (d−t′−1, ȳ, x̄T−t′)) = W (ȳ, Vt′+1(x̄T−t′)),
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which implies that axiom 2 is satisfied. Finally, take h, h′ ∈ R and (t, ω) with
ht(ω) = h′t(ω). If h �t+1,ω′ h

′ for every ω′ ∈ Gt(ω) then Vt+1(ω′, h) �t+1,ω′ Vt+1(ω′, h′)
which by monotonicity of It,ω implies It,ω(Vt+1(·, h)) ≥ It,ω(Vt+1(·, h′)). Since W is
strictly increasing in its second variable, it follows that Vt(ω, h) �t,ω Vt(ω, h′) as
desired. Moreover, if for some ω′ ∈ Gt(ω) the inequality is strict, then by strict
monotonicity of It,ω we get It,ω(Vt+1(·, h)) > It,ω(Vt+1(·, h′)) as desired.

7.4.2 Proof of Theorem 1

I first provide an important result that will be useful later.
Lemma 2. Consider a probability p on (S, 2S). Then for every f : S → X and
g : S × S → X as in Definition 3 it holds that∑

s′∈S
p(s′)

∑
s∈S

p(s)u(g(s, s′)) =
∑
s∈S

p(s)u(f(s)).

Proof. Observe that ∑
s∈S

p(s)u(g(s, s′)) = u(f(s′)) + ε(s′), (12)

for every s′ ∈ S, where

ε(s′) =
∑

s 6∈B(s′)
p(s)u(f(s))− u(f(s′))

∑
s 6∈B(s′)

p(s),

and B(s′) = {s ∈ S : g(s, s′) = f(s′)}.
Now the statement follows by observing that ∑′s p(s′)ε(s′) = 0. Indeed, we have∑

s′∈S
p(s′)ε(s′) =

∑
s∈S′

p(s′)
∑

s6∈B(s′)
p(s)u(f(s))−

∑
s′∈S

p(s′)u(f(s′))
∑

s 6∈B(s′)
p(s).

Observe that by definition of g(·, ·) it holds s ∈ B(s′) ⇐⇒ s′ ∈ B(s). Therefore∑
s∈S′

p(s′)
∑

s 6∈B(s′)
p(s)u(f(s)) =

∑
s∈S′

∑
s6∈B(s′)

p(s′)p(s)u(f(s))

= 1
2
∑
s∈S′

∑
s 6∈B(s′)

p(s′)p(s)(u(f(s)) + u(f(s′))),

and ∑
s′∈S

p(s′)u(f(s′))
∑

s 6∈B(s′)
p(s) =

∑
s∈S′

∑
s6∈B(s′)

p(s′)p(s)u(f(s′))

= 1
2
∑
s∈S′

∑
s 6∈B(s′)

p(s′)p(s)(u(f(s)) + u(f(s′))).

Hence ∑
s′∈S

p(s′)ε(s′) = 0,

as desired.
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Observe that Lemma 2 implies that f iid ∼RDEU0 f corr where �RDEUt,ω is any RDEU
preference.

Turning to the proof of Theorem 1, I first introduce formally important notions
related to quasi-arithmetic means defined by

Mφ,P (ξ) = φ−1 (EP (φ (ξ))) = φ−1
(

n∑
i=1

φ(ξ(si))P (si)
)
, (13)

for every ξ ∈ B0(S,R+).

Definition 10. Consider φ : R+ → R increasing, concave and twice differentiable.
Say that φ satisfies

1. PERU (preference for early resolution of uncertainty) if for every β ∈ (0, 1)

β

[
−φ

′′(βy + x)
φ′(βy + x)

]
≤
[
−φ

′′(y)
φ′(y)

]
, (14)

2. DARA (decreasing absolute risk aversion) if x ≥ y implies

−φ
′′(x)
φ′(x) ≤ −

φ′′(y)
φ′(y) ,

and satisfies IARA (increasing absolute risk aversion) if the above inequality is
true with the opposite sign;

3. IRRA (increasing relative risk aversion) if x ≥ y implies

−xφ
′′(x)
φ′(x) ≤ −y

φ′′(y)
φ′(y) .

The following result, whose proof I omit, is immediate.

Proposition 7. Consider φ : R+ → R increasing, concave and twice differentiable.
If φ satisfies PERU, then it satisfies DARA.

I provide an important result concerning the concavity of the quasi-arithmetic
means defined in (13).

Theorem 4. Assume that φ : R+ → R strictly increasing, strictly concave, and twice
differentiable. The following are equivalent:

1. The quasi-arithmetic mean Mφ,P is concave.

2. The Arrow-Pratt-de Finetti coefficient of absolute risk aversion −φ′′

φ′
is convex.
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Proof. First observe that −φ′′

φ′
is convex if and only if φ′

φ′′
is convex. It suffices to prove

that φ′

φ′′
is convex if and only if φ′′

φ′
is concave. Let A(x) = φ′′(x)

φ′(x) for every x ∈ u(X).
Take x, y ∈ u(X). It is enough to prove that

1
A
(
x+y

2

) ≤ 1
2

(
1

A(x) + 1
A(y)

)
. (15)

Recall that in general it holds that

x+ y

2 ≥ 1
1
2( 1

x
+ 1

y
) .

Hence the claim follows by rewriting (15) as

1
1
2

(
1

A(x) + 1
A(y)

) ≤ A
(
x+ y

2

)
.

Now the result follows by an application of Theorem 1 and Theorem 5 in Chudziak
et al. (2019).

Thanks to Theorem 4, we obtain the following powerful result, which shows that
the conjunction of DARA and IRRA on φ imply the concavity of the quasi-arithmetic
mean Mφ,P .

Corollary 2. Assume that φ satisfies PERU. Then Mφ,P is concave if and only if φ
satisfies IRRA.

Proof. First observe that by Theorem 4, if Mφ,P is concave then φ′′

φ′
is convex, which

is easily seen to imply that the mapping x 7→ −xφ
′′(x)
φ′(x) is increasing. This reasoning

proves the “only if” part of the proof. To prove the “if” part, observe that

(xA(x))′ = xA′′(x) + 2A′(x).

If φ satisfies PERU, then A′(x) ≤ 0 by Proposition 7. Hence if φ satisfies IRRA, it
has to be the case that

A′′(x) ≥ 0.

The result therefore follows by Theorem 4.

Such a result in a way completes Theorem 12 and Corollary 1 in Marinacci &
Montrucchio (2010), which characterize when quasi-arithmetic means are constant
subadditive and subhomogeneous. Indeed, one way to think about Corollary 2 is
that it implies that for quasi-arithmetic means to be concave it is enough to assume
constant superadditivity (DARA) and subhomogeneity (IRRA).
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Corollary 3. Assume that φ is given by

φ(x) =
∫ x

0
e−t

2
dt,

for every x ∈ R+. Then Mφ,P is concave.

Proof. The Arrow-Pratt-de Finetti index in this case is given by −φ′′(x)
φ′(x) = 2x and the

result therefore follows by Theorem 4.

Corollary 4. Assume that φ is given by φ(x) = xλ

λ
for λ < 1 or φ(x) = −e−θx with

θ ≥ 0 for every x ∈ R+. Then Mφ,P is concave.

Proof. In both cases, the proof follows by Theorem 4, upon observing that .

Proof of Theorem 1. Let ξ = u(f) and ξ′ by ξ′(s, s′) = u(f corrt (s, s′)) for every s, s′ ∈
S. For (i) and (ii), we reason as follows. Now as mentioned, the functional

Mφ,P (·) = φ−1(EPφ(·)),

is concave in the EZ and RM case. Now by Lemma 2 we have that

EP (ξ′(s, ·)) = ξ + ε,

and
EP ε = 0.

Now let
Vt−1(ω, f corr) = ξ(ω) + βφ−1EPφ(ξ′(s, ·) + k),

and
Vt−1(ω, f iid) = ξ(ω) + βφ−1EPφ(ξ(·) + k),

where k = βφ−1EPφ(Vt+1). By Corollary 4, Mφ,P is concave and therefore by further
applying Lemma 2 we obtain

EPφ−1EPφ(ξ′(s, ·) + k) ≤ φ−1EPφ(EP (ξ(·) + k).

Hence the random variable

Vt−1(ω, f corr) = ξ(ω) + βφ−1EPφ(ξ′(s, ·) + k),

is dominated according to second order stochastic dominance by the random variable

Vt−1(ω, f iid) = ξ(ω) + βφ−1EPφ(ξ(·) + k).

Since φ is concave, it follows that

Vt−2(ω, f iid) ≥ Vt−2(ω, f corr)
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for every ω, whence V0(f corr) − V0(f iid) ≤ 0. Moreover, observe that the inequality
will be strict whenever g is non-trivial since φ is strictly concave.

As for (iii), first observe that since S is finite we can write it as S = {s1, . . . , sn}.
Therefore, EP ξ = ∑n

i=1 P (si)ξ(si). Without loss of generality, assume that f corr2 = g.
Now we have

V0(f corr)− V0(f iid) =
n∑
i=1

b(f(si))
n∑
i=1

p(si)b(f(si))
 ∑
j:sj 6∈B(si)

p(sj) (u(g(si, sj)− u(f(sj)))
+

+
n∑
i=1

p(si)u(f(si))
n∑
i=1

b(f(si))p(si)
∑

j:sj 6∈B(si)
p(sj) [b(g(si, sj)− b((f(sj)))]

Note that
n∑
i=1

b(f(si))p(si)
∑

j:sj 6∈B(si)
p(sj) [b(g(si, sj)− bf(sj))] = 0.

Moreover,
n∑
i=1

p(si)b(f(si))
( ∑
j:sj∈B(si)

p(sj) [u(g(si, sj)− u(f(sj))]
)

=

n∑
i=1

( ∑
j:sj 6∈B(si)

b(f(si))p(si)p(sj) [u (f(si))− u(f(sj))]
)

=

1
2

n∑
i=1

∑
j:sj 6∈B(si)

p(si)p(sj) [u(f(si))− u(f(sj))] (b(f(sj))− b(f(si)).

Now observe that

u(f(si))− u(f(s)) ≤ 0 ⇐⇒ b(f(s))− b(f(si)) ≥ 0.

Therefore V0(f corr)− V0(f iid) ≤ 0. Moreover, the inequality will be strict whenever b
is strictly decreasing, f is not constant and g 6= f .

Remark 8. It is important to repeat that the result holds for a general class of
recursive second-order expected utility preferences, i.e. those for which the function
φ satisfies the condition that −φ′′

φ′
be convex, even when φ does not satisfy PERU.

For example, if φ is given by
φ(x) =

∫ x

0
e−t

2
dt,

by Corollary 3 correlation aversion still applies. At the same time, for such a φ PERU
in general will not be satisfied.
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7.4.3 Proof of Theorem 2

Lemma 3. Suppose I : B0(Σ, u(X)) is concave with benchmark given by ξ 7→ EP ξ.
Then if I(ξ) = EP ξ for any x ∈ u(X) it holds that I(ξ + βx) = EP (ξ + βx) for every
β ∈ (0, 1).
Proof. If I is constant-additive it follows that I(ξ + βx) = I(ξ) + βx = EP (ξ) +
βx = EP (ξ + βx) as desired. If I is homogeneous, then EP (ξ + βx) ≥ I(ξ + βx) =
I
(

1+β
1+β (ξ + βx)

)
= (1 + β)I

(
1

1+β ξ + 1
1+βx

)
≥ I(ξ) + βI(x) = EP (ξ + βx).

Theorem 5. Consider the second-order quasi-arithmetic mean given by

Mφ,µ(ξ) = φ−1
(∫

φ

(
n∑
i=1

ξ(si)P (si)
)

dµ(P )
)
,

where µ is a probability measure over ∆(S). If −φ′′

φ′
is convex, then Mφ,µ is concave.

Proof. Take a sequence of discrete measures (µn)n that converges to µ in the weak*-
topology. Then by applying Theorem 4 we have for every ξ, η

Mφ,µn

(1
2ξ + 1

2η
)
≥ 1

2Mφ,µn (ξ) + 1
2Mφ,µn (η) .

The result follows by taking limits.
Remark 9. The previous result implies that RSA preferences feature a concave
certainty equivalent, and therefore satisfy the assumptions of Theorem 2.
Proof of Theorem 2. Consider any unambiguous act f and associated f iid and f corr.
Without loss of generality, assume that f corr2 (s1, . . . , st) = g(st−1, st). Let ξ = u(f)
and ξ′(s, s′) = u(g(s, s′)). Let B = ∑T−1

t=1 β
t. Observe that by Lemma 3

V0(f iid) = u(f0) + βI(ξ +BI(ξ)),

and
V0(f corr) = u(f0) + βI

(
ξ + βI

(
ξ′ + B − β

β
I(ξ)

))
.

Denote with EP (·) the benchmark for I. Recall that I satisfies

EP ξ ≥ EP ξ′ =⇒ I(ξ) ≥ I(ξ′), (16)

whenever ξ is such that u(f) = ξ and f is unambiguous.
Let us evaluate ξ + βI

(
ξ′ + B−β

β
I(ξ)

)
according to EP (·),

EP
[
ξ + βI

(
ξ′ + B − β

β
I(ξ)

)]
≤ EP

(
ξ
)

+ βI

(
EP ξ′ +

B − β
β

I(ξ)
)

≤ EP
(
ξ
)

+ βI

(
EP ξ + B − β

β
I(ξ)

)
= EP (ξ)(1 +B),
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where the first inequality follows from concavity of I, while the second equality from
(16) and Lemma 2.

By (16) it follows that

I(ξ +BI(ξ)) ≥ I

(
ξ + βI

(
ξ′ + B − β

β
I(ξ)

))
,

and hence
V0(f iid) ≥ V0(f corr),

as desired.
In particular, the inequality will be strict whenever for some s, s′ ∈ S ξ′(s, ·)) +

B−β
β
I(ξ) and ξ′(s′, ·)) + B−β

β
I(ξ) are not unambiguous and I satisfies the following

strict concavity property: for every (ξ)ni=1 such that for some i 6= j, ξi, ξj are not
unambiguous and (α)ni=1 positive weights summing to 1 it holds

n∑
i=1

αiI(ξi) < I(
n∑
i=1

αiξi).

7.4.4 Generalizing Theorem 1 and 2

Denote with ∆ the set of probability simple probability measures on R. A functional
J : ∆→ R is

1. monotone if it is monotone w.r.t. first order stochastic dominance;

2. risk averse if whenever µ is a mean preserving spread of λ then I(λ) ≥ I(µ);

3. concave if for every µ, λ ∈ ∆ and α ∈ [0, 1], J(αµ + (1− α)λ) ≥ αJ(µ) + (1−
α)J(λ).

Theorem 6. Suppose that �t,ω admits a recursive representation given by

Vt(ω, h) = u(ht(ω)) + βJ(P ◦ V −1
t+1(·, h)),

for some probability P , where J : ∆→ R is monotone, risk averse and concave. Then
�t,ω exhibits aversion to correlation.

Proof. Let ξ = u(f) and ξ′ by ξ′(s, s′) = u(f corrt (s, s′)) for every s, s′ ∈ S. We have

EP ξ + βEPJ(P ◦ V −1
t+1 (·, f corr)) ≤ EP ξ + βJ

(
EP

[
P ◦ V −1

t+1(·, f corr)
])
.

Observe that

EP
[
P ◦ V −1

t+1(·, f corr)
]

=
∑
s′∈S

P (s′)P ◦ ξ−1′(·, s′) + k,
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where k is the discounted continuation utility and ∑
s′∈S P (s′)P ◦ ξ−1′(·, s′) is the

mixture in ∆ of the collection of probabilities (P ◦ ξ−1(·, s′))s∈S with weights given
by (P (s′))s′∈S. By Lemma 2, µ = ∑

s′∈S P (s′)P ◦ξ−1′(·, s′) is a mean preserving spread
of P ◦ ξ−1(·) so that by risk aversion of J ,

EP ξ + βEPJ(P ◦ V −1
t+1(·, f corr)) ≤ EP ξ + βEPJ(P ◦ V −1

t+1(·, f iid)).

By applying risk aversion once again it follows that

J(ξ + βJ(P ◦ V −1
t+1(·, f corr))) ≤ J(u(ht(ω)) + βJ(P ◦ V −1

t+1(·, f iid))),

from which we obtain f iid �0 f
corr for every f : S → X which concludes the proof.

For every probability measure on S and ξ ∈ B0(Σ, u(X)), let P ◦ ξ−1 denote the
element of ∆ given by P ◦ ξ−1(x) = P (ξ−1(x)) for every x ∈ R.

Example 4. An example of such recursive preferences is given by the recursive utility
model studied in Epstein & Zin (1990) that uses Yaari’s 1987 rank-dependent model.
In this case we have that X = R++ and for every µ with support given by (xi)ni=1,
where xi < xi+1, i = 1, . . . , n− 1

J(µ) = φ−1

 n∑
i=1

g
 i∑
j=1

µj

− g
i−1∑
j=1

µj

φ(xi)
 ,

and φ is CARA.

Definition 11. A certainty equivalent I : B0(Σ, u(X)) → R admits a global bench-
mark w.r.t. a monotone and risk averse J : ∆→ R if the set

EI =
{
P ∈ ∆ : J

(
P ◦ ξ−1

)
> I(ξ) for all ξ ∈ B0(Σ, u(X))

}
,

is non-empty. Call f : S → X unambiguous if for some P ∈ EI it holds I(u(f)) =
J (P ◦ ξ−1). Let UI ⊆ XS denote the class of unambiguous acts.

Example 5. Hansen & Sargent (2020) and Cerreia-Vioglio et al. (2020) consider the
following criterion

Vt(st, h) = u(ht(st)) + β min
P∈∆(S)

{∫
Vt+1(·, h)dP + αmin

q∈Q
R(P‖q)

}
,

where α > 0 and Q is a convex compact subset of ∆(S). It is easy to show that these
preferences admit the equivalent representation

Vt(st, h) = u(ht(st)) + βmin
q∈Q

φ−1
∫
φ (Vt+1(·, h)) dq,

where φ(x) = − exp(− x
α

). The benchmark in this case is given by J(µ) = φ−1Eµφ(x)
and P is any element of Q. Then UI will be non-empty whenever the set AG = {E ⊆
S : P (E) = P ′(E) for all P, P ′ ∈ Q} is non-empty.
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Theorem 7. Assume that �t,ω has an RDAA representation where I has a global
benchmark w.r.t J . Then it exhibits correlation aversion for the class UI .

Proof of Theorem 7. The proof works in the same way as the proof of Theorem 2.
Using the fact that J is risk-averse we have:

EP ξ ≥ EP ξ′ =⇒ J(P ◦ ξ) ≥ J(P ◦ ξ′) =⇒ I(ξ) ≥ I(ξ′), (17)

whenever ξ is such that u(f) = ξ and f is unambiguous.

7.4.5 An upper bound on the persistence premium

Andersen et al. (2018) estimate an intertemporal utility function under uncertainty
which can be written as

V (f) = u−1φ−1EP
[
ϕ

(
n∑
t=1

βtu (ft)
)]

,

where β ≈ 0.998, φ(x) = x0.68 and u(x) = x0.65.
Given x > 0 and n = 2, let f iid be the process that pays x and 0 with probability 1

2
each and f corr the process that pay {x, x} and {0, 0} with probability 1

2 each. There-
fore, f corr is maximally correlated in the sense that the probability that consumption
at t = 1 matches consumption at t = 2 is 1. In this case the persistence premium is
given by

π = 1−

(
0.5

(
x1−0.35 + x1−0.35

1+0.114

)1−0.32
)1/(1−0.32)(1−0.35)

(
(x1−0.35)1−0.32 × 0.5 +

(
x1−0.35

1+0.114

)1−0.32
(1− 0.5)

)1/(1−0.32)(1−0.35) ≈ 1−0.8 ≈ 0.2.

Hence π ≈ 20% provides an upper bound for the persistence premium.

7.4.6 Proof of Proposition 3

Definition 12 (Definition 2 in Strzalecki (2013)). �t,ω exhibits a preference for earlier
resolution of uncertainty if and only if for all h, h′ ∈ F and t ≤ T − 2 such that there
exist x0, . . . , xt+1, xt+3, . . . , xT and f : S → X such that hj = h′j = xj for all j 6= t+ 1
and for j = t+ 2, hj(s1, . . . , sj) = f(st+1) and h′j(s1, . . . , sj) = f(st+2) it holds that

h �t′,ω h′

for all t′ ≤ t and ω ∈ Ω.

Lemma 4. Assume that �t,ω has an RDAA representation on F . Then it exhibits a
preference for early resolution if and only if it exhibits a preference for early resolution
according to definition 12.
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Proof. Take x0, . . . , xt+1 ∈ X and ft+2, . . . , fT ∈ XS and define h, h′ appropriately.
We have

Vt (ω, (x0, . . . , xt+1, ht+2, ht+3, . . . , hT ))

= u (xt) + βI

u (xt+1) + β

T−t−1∑
j=0

βju (ft+j+1 (st+1))
 .

In contrast,

Vt
(
ω,
(
x0, . . . , xt+1, h

′
t+2, h

′
t+3, . . . , h

′
T

))
= u (xt) + βI

u (xt+1) + βI

T−t−1∑
j=0

βju (ft+j+1 (st+2))
 .

If we let u(xt+1) = k and u(fi) = ξi for i = t + 1, . . . , T , we obtain that a preference
for early resolution is equivalent to

I

(
β
T−t−1∑
i=0

βiξt+1+i + k

)
≥ β

T−t−1∑
i=0

βiI(ξt+1+i) + k.

Letting ∑T−t−1
i=0 βiξi = η, since by assumption u(X) is unbounded for every ζ ∈

B0(Σ, u(X)), there exists (ξi)i such that ∑T−t−1
i=0 βiξi = ζ we obtain

I (βη + k) ≥ βI(η) + k,

for all η ∈ B0(Σ, u(X)) and k ∈ u(X). Now by Lemma 1 in Strzalecki (2013), �t,ω
displays a preference toward earlier resolution of uncertainty if and only if

I(βξ + k) ≥ βI(ξ) + k,

for all ξ ∈ B0(Σ, u(X)) and all k ∈ u(X). Therefore, the result follows.

Lemma 5. Let (Ai,Ai)ni=1 be a collection of measurable spaces and let (A,A) be
the product of such measurable spaces. For every ξ, ξ′ ∈ B0(A,R+) such that ξ is
measurable w.r.t. Ai and ξ′ measurable w.r.t. Aj with i 6= j it holds that∫ ∫

φ(βξ′ + ξ)dP (aj)dP (ai) ≤
∫
φ
(
βφ−1

(∫
φ(ξ′)dP (aj)

)
+ ξ

)
dP (ai).

where φ(x) = x
α
ρ with ρ < α, ρ, α < 1. Moreover, the inequality is strict whenever ξ′

is not constant.

Proof. By an application of Theorem 4 in Strzalecki (2013), we have∫
φ(βξ′ + ξ(ai))dP (aj) ≤ φ

(
βφ−1

(∫
φ(ξ′)dP (aj)

)
+ ξ(ai)

)
,
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for every ai ∈ A. It follows that∫ ∫
φ(βξ′ + ξ)dP (aj)dP (ai) ≤

∫
φ
(
βφ−1

(∫
φ(ξ′)dP (aj)

)
+ ξ

)
dP (ai),

as desired. Since Theorem 4 in Strzalecki (2013) uses Jensen’s inequality and φ is
strictly convex, the inequality is strict whenever ξ′ is not constant.

Proof of Proposition 3. (i) =⇒ (ii) By Theorem 4 (Remark 1) in Strzalecki
(2013) and Lemma 2, it follows that α ≤ ρ. Therefore, the result follows by
Theorem 1.

(ii) =⇒ (i) Applying Theorem 1, if ρ < α, then preferences are not averse to
correlation. Therefore, if preferences are averse to correlation it has to be that
α ≤ ρ.

=⇒ (iii) =⇒ (i). Suppose ρ < α. I claim that V0(f̂) < V0(f̄) for every
non-constant f .
Let ξt(at1) = u(f(at1)) whenever at1 = a1

t (observe that ξt(at1) = u(f(a1
t ))) and

let
ηT = ξT−1 + βφ−1

∫
φ(ξT )dP (aT1 ),

and for t < T
ηt = ξt−1 + βφ−1

∫
φ(ηt+1)dP (at1).

Then we have
V0(f̄) = u(x) + βφ−1

∫
φ (η1) dP (a1

1),

and
V0(f̂) = u(x) + βφ−1

∫
φ

(
T−1∑
t=0

βtξt+1

)
.

By repeated applications of Lemma 5, we obtain

V0(f̂) =
∫
. . .
∫
φ

(∑
t

βtξt + ξ1

)
dP (a1

1) . . . dP (a1
T ) ≤ βφ−1

∫
φ(η1)dP (a1

1).

Specifically, the inequality will be strict for any non constant f . Therefore, it
follows that the timing premium is negative. Hence, if the timing premium is
always non-negative it must be the case that α ≤ ρ.
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7.4.7 Proof of Proposition 2

Proof of Proposition 2. We have

V0(f iid)− V0(f corr) =

= βt
(
u
(
v−1

[
E∏t

j=1 P (sj)v
(
f iidt (·)

)]]
− u

(
v−1

[
E∏T

t=1 P (st)v (f corrt (·))
])]

.

By Lemma 2 it follows that

u
(
v−1

[
E∏t

j=1 P (sj)v
(
f iidt (·)

)])
− u

(
v−1

[
E∏T

t=1 P (st)v (f corrt (·))
])

= 0.

whence V0(f iid) = V0(f corr) so that f iid ∼SS0 f corr.

7.4.8 Proof of Proposition 4

Proof of Proposition 4. The proof parallels that of Selden & Stux (1978) (proof of
Lemma 1). I prove sufficiency of the axioms in the case of �0, and using consequen-
tialism the result follows for �t,ω analogously. I claim that for every h ∈ F \F r, there
exists c̄ = (h0, c1, . . . , cT ) ∈ D such that c̄ ∼0 h and

ct =
[
E∏t

τ=1 P (sτ )h
α
t

] 1
α

,

which establishes the representation since �0 has an EZ representation so that

V0((h0, c1, . . . , cT ))) = u(h0) +
T∑
t=1

βju(cj),

as desired. First, for every st−1 = (s1, . . . , st−1), let

c1
t (st−1) =

[
EP (st)h

α
t

] 1
α .

Observe that axioms 7 and 8, we have

h ∼0 (h0, . . . , hT−1, c
1
T ).

Now by further applying axioms 7 and 8 we get

(h0, . . . , hT−1, c
1
T ) ∼0 (h0, . . . , c

1
T−1, c

1
T ).

By axiom 5,
(h0, . . . , c

1
T−1, c

1
T ) ∼0 (h0, . . . , c

1
T−1, ĉ

1
T ),

where ĉ1
T (s1, sT−2 . . . , ·, sT ) is constant and

ĉ1
T (s1, . . . , ·) = c1(s1, . . . , ·).
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By another application of axioms 7 and 8 we obtain:

(h0, . . . , c
1
T−1, ĉ

1
T ) ∼0 (h0, . . . , c

1
T−1, c

2
T ),

where
c2
T =

[
EP (sT−1)P (sT )h

α
T

] 1
α .

Proceeding as in the previous to steps, we obtain at step t

h ∼0 (h0, . . . , c
1
T−t+1, . . . , c

t−1
T−1, c

t
T ),

where
ctj =

[
E∏j

τ=T−t+1 P (sτ )h
α
j

] 1
α

.

Specifically, after T steps we get

h ∼0 (h0, c1, . . . , cT ),

as desired.
I turn to the necessity of the axioms. It is immediately verified that axioms 6-8

are satisfied. I prove that the representation satisfies indifference to timing.
Take h, h′ such that for some s̄t = (s̄1, . . . , s̄t) with 1 ≤ t ≤ T − 2 the act

(h0, h1(s̄1), h2(s̄1, s̄2), . . . , ht(s̄t), . . . , hT (s̄t, ·)),

resolves earlier than

(h′0, h′1(s̄1), h′2(s̄1, s̄2), . . . , h′t(s̄t), . . . , h′T (s̄t, ·)),

and hτ (s1, . . . , sτ ) = h′τ (s1, . . . sτ ) for every (s1, . . . , sτ ) with τ < t and hτ (s1, . . . , sτ ) =
h′τ (s1, . . . sτ ) for every (s1, . . . sτ ) such that τ ≥ t and (s1, . . . , st) 6= (s̄1, . . . , s̄t). Then
we have for t′ ≤ t

Vt′((s1, . . . , st′), h)− Vt′((s1, . . . , st′), h′) ∝
T−t∑
j=0

βju

( [
E∏j

τ=1 P (st+τ )h
α
t+j

] 1
α

)
−

T−t∑
j=0

βju

( [
E∏j

τ=1 P (st+τ )h
′α
t+j

] 1
α

)
.

Observe that by assumption on h, h′ we have

E∏j

τ=1 P (st+τ )h
α
t+j = E∏j

τ=1 P (st+τ )h
′α
t+j,

for j = 0, . . . , T − t.
Therefore Vt′((s1, . . . , st′), h)− Vt′((s1, . . . , st′), h′) = 0 whence the result follows.
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7.4.9 Proof of Proposition 5

Proof of Proposition 5. For simplicity, I focus on the case ρ 6= 0. The proof for the
case ρ = 0 follows by analogous arguments. Let

B =
T−1∑
t=0

βt = βT − 1
(β − 1)β .

Since α ≤ ρ we have

V EZ
0 (f̂) = u(f0) + β

[
EP ((a1

1,...,a
1
T ))

(
Vt+1((a1

1, . . . , a
1
T ), f̂)

)α
ρ

] ρ
α

= u(f0) + β

EP ((a1
1,...,a

1
T ))

(
B

B

T−1∑
t=1

βt−1u(ft(a1
t ))
)α
ρ

ρ
α

= u(f0) + βB

EP ((a1
1,...,a

1
T ))

(
T−1∑
t=1

βt−1

B
u(ft(a1

t ))
)α
ρ

ρ
α

≥ u(f0) + βB

[
T−1∑
t=0

βt

B
EP ((a1

1,...,a
1
T ))

1
ρα

(
fρt (a1

t )
)α
ρ

] ρ
α

=

= u(f0) + βB
1
ρ

([
EP (a1

t )fαt (a1
t )
] 1
α

)ρ
= V SS

0 (f̂).

Hence the result follows by the fact that V EZ
0 (f̄) = V SS

0 (f̄) so that

πEZ(f) ≥ πSS(f) ⇐⇒ 1− V EZ
0 (f̄)
V EZ

0 (f̂)
≥ 1− V SS

0 (f̄)
V SS

0 (f̂)
⇐⇒ V EZ

0 (f̂) ≥ V SS
0 (f̂),

as wanted.

7.4.10 Proof of Proposition 6

Proof of Proposition 6. Take t ≤ T−2 and h, h′ ∈ F such that there exist ft+2, . . . , fT ∈
F and x0, . . . , xt+1 ∈ X such that hj = h′j = xj for all j ≤ t + 1, hj(s1, . . . , sj) =
fj(st+1) for j ≥ t+ 2, and h′t+2 = fj(st+2). Observe that∑

j=0
βjEP (st+j)VARP (u(ht+j+1(st+j, ·))] = 0,

and ∑
j=0

βjEP (st+j)VARP (u(h′t+j+1(st+j, ·))] ≥ 0.

Since it holds that

u(ht(st)) +
T∑
j=1

βj [EP (st+j)u(ht+j+1(st+j+1)) = u(h′t(st)) +
T∑
j=1

βj [EP (st+j)u(h′t+j+1(st+j+1)),
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we obtain
h �t′,ω h′,

for all t′ ≤ t as desired.
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