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Abstract

Hypertensive disorders of pregnancy occur in about 10% of pregnant women
around the world. Though there is evidence that hypertension impactsmaternal
cardiac functions, the relation between hypertension and cardiac dysinctions is
only partially understood. The study of this relationship can be framed as a joint
inferential problem on multiple populations, each corresponding to adi erent hy-
pertensive disorder diagnosis, that combines multivariate informaton provided by
a collection of cardiac function indexes. A Bayesian nonparametric apgach seems
particularly suited for this setup and we demonstrate it on a dataset corsisting of
transthoracic echocardiography results of a cohort of Indian pregnant women We
are able to perform model selection, provide density estimates ofardiac function
indexes and a latent clustering of patients: these readily interpetable inferential
outputs allow to single out modi ed cardiac functions in hypertensive patients com-
pared to healthy subjects and progressively increased alterations Wi the severity of
the disorder. The analysis is based on a Bayesian nonparametric modehat relies
on a novel hierarchical structure, called symmetric hierarchicalDirichlet process.
This is suitably designed so that the mean parameters are identi ed ad used for
model selection across populations, a penalization for multiplicity § enforced, and
the presence of unobserved relevant factors is investigated through latent cluster-
ing of subjects. Posterior inference relies on a suitable Markov Ghin Monte Carlo
algorithm and the model behaviour is also showcased on simulated data.

Keywords| Bayesian nonparametrics, clustering populations, Dirichlet pro@ss, hierarchi-
cal partitions, hierarchical process, hypertensive disorders of ggnancy, model based clustering

1 Introduction

Hypertensive disorders of pregnancy are a class of high blqoéssure disorders that occur
during the second half of pregnancy, which include gestatial hypertension, preeclampsia
and severe preeclampsia. They are characterized by a didstdlood pressure higher
than 90 mm Hg and/or a systolic blood pressure higher than 140mHg and they are

1



often accompanied by proteinuria. These disorders a ect alot 10% of pregnant women
around the world, with preeclampsia occurring in 2{8% of alpregnancies (imokhina
et al., 2019. These disorders represent one of the leading causes of enaal and fetal
morbidity and mortality, contributing to 7{8% of maternal d eath worldwide (Dolea and
AbouZahr, 2003 Shah et al, 2009 McClure et al., 2009. The World Health Organization
estimates that the incidence of preeclampsia is seven timagher in developing countries
than in developed countries. However, the occurrence of tieediseases appears under-
reported in low and middle income countries, implying thathe true incidence is unknown
(lgberase and Ebeighe2006 Malik et al., 2019. While there is evidence that hypertensive
disorders of pregnancy are related with the development cdrcliac dysfunctions both in
the mother and in the child Bellamy et al., 2007 Davis et al, 2012 Ambraic et al.,
202Q Garcia-Gonzalez et al. 202Q Aksu et al., 2021, deMartelly et al., 202J), there is
no common agreement on the relation between the severity ofgertension and cardiac
dysfunction (Tatapudi and Pasumarthy, 20170 and echocardiography is not included in
baseline evaluation of hypertensive disorders of pregngné-urther investigations on these
disorders are needed, especially for developing countriegiere women often give birth
at a younger age with respect to developed countries.

The goal of this work is to detect which cardiac function is &red and under which
hypertensive disorders by relying on a principled Bayesiamnparametric approach. An
interesting case-control study to explore the relation beteen cardiac dysfunction and
hypertensive disorders is provided byatapudi and Pasumarthy (20173, where the mea-
sures of ten di erent cardiac function indexes were recorddn four groups of pregnant
women in India. Groups of women are characterized by di erémypertensive disorder
diagnoses, that are naturally ordered based on the severiof the diagnosed disorder:
healthy (C), gestational hypertension (G), mild preeclamgia (M) and severe preeclamp-
sia (S). Hypertensive diagnoses are used as identi ers for athwe call populations of
patients and we refer to cardiac function indexes also witthe term response variables.
For each response variable we want to determine a partitiorf the four populations of pa-
tients. This amounts to identifying similarities between derent hypertensive disorders,
with respect to each cardiac index. Supposing, for instancthat the selected partition
assigns all the populations to the same cluster, one can clute that no alteration is
shown for the corresponding cardiac index across di erenypertensive diseases.

Our goal of identifying a partition of the four patients' populations for each of the ten
responses can be rephrased as a problem of multiple modeéstbn: we want to select
the most plausible partition for each cardiac index. Frequmist hypothesis testing does
not allow to deal with more than two populations in a straighforward way, and pairwise
comparisons may lead to con icting conclusions. Convergeh Bayesian approach yields
the posterior distribution on the space of partitions, whib can be used for simultaneous
comparisons. Moreover, the presence bf = 10 jointly tested cardiac indexes requires
to perform model selection repeatedly ten times. Once agai Bayesian approach seems



to be preferred, because, as observed for instance3iott and Berger(2009, it does not
require the introduction of a penalty term for multiple commrison, thanks to the prior
distribution build-in penalty.

Here we design a Bayesian nonparametric model, that is taikat to deal with both a
collection of ordered populations and the multivariate irdrmation of the response vari-
ables, while preserving the typical exibility of nonparanetric models and producing easily
interpretable results. When applied to the dataset on tran$toracic echocardiography re-
sults for a cohort of Indian pregnant women in Sectioh, our model e ectively identi es
modi ed cardiac functions in hypertensive patients compad to healthy subjects and pro-
gressively increased alterations with the severity of theigsbrder, in addition to other more
subtle ndings. The observed dataX;» represent the measurement of then-th response
variable (cardiac index) on thei-th individual (pregnant woman) in the j -th population
(hypertensive disorder) and, as in standard univariate ANOVAnodels, they are assumed

((Xi;l;m)inzll yreay (xi;J;m ).nzjl) = ((X 1(i);l;m)in=11 (X J(i):lm)in:Jl)

exchangeability to tackle heterogeneous data and, by de Fitis representation theorem,
it amounts to assuming the existence of a collection of (pasly dependent) random
probability measuresf j, : j =1;:::;J m=1;:::;Mg such that
Xigm J jm id im =100

Hence, for any two populationg 6 j°% homogeneity corresponds to;m = jom (almost
surely). However, a reliable assessment of this type of honeogity is troublesome when
having just few patients per diagnosis, as it happens in theild preeclampsia subsample.
Without relying on simplifying parametric assumptions, a srall sub-sample size may not
be su ciently informative to infer equality of entire unknown distributions. To overcome
this issue, without introducing parametric assumptions, @ resort to an alternative weaker

notion of homogeneity between populationg and j¢ we only require the conditional
means of the two populations to (almost surely) coincide

EXigm | jm) = E(Xijom | jom): (1)

According to this de nition, the detection of heterogeneites in cardiac function indexes
amounts to inferring which cardiac indexes have means that ér across diagnoses, as it
is done in standard parametric ANOVA models. Besides clusteg populations according
to (1), it is also of interest to cluster patients, both within andacross di erent groups,



once the e ect of the speci c hypertensive disorder is takemto account. This task may
be achieved by assuming a model that decomposes the obseovet as

Xigm = jm T "ijm "igm JC igm i2;j;m ) " NC iim i?j;m ) (2)
and the ;;» have a symmetric distribution around the origin, in order teensureE( ijm ) =
0. In view of this decomposition, we will let ., govern the clustering of populations while
the (ijm ; iz;j;m )'s determine the clustering of individuals, namely patiets, after removing
the e ect of the speci c hypertensive disorder. In order to prsue this, for each cardiac
index m, we will specify a hierarchical process prior for {im ; iz;j;m ) that is suited to
infer the clustering structure both within and across di eent hypertensive disorders for
a specic cardiac index. In particular, we will deploy a noveinstance of hierarchical
Dirichlet process, introduced inTeh et al. (2006, that we name symmetric, to highlight
its centering in 0.

Early examples of Bayesian nonparametric models for ANOVA cdoe found inCifarelli
and Regazzini(1978 and Muliere and Petrone(1978, while the rst popular proposal,
due to De lorio et al. (2009, uses the dependent Dirichlet process (DDP)MacEachern
2000 and is therefore termed ANOVA-DDP. This model is mainly tailoed to estimate
populations' probability distributions, while we draw inferences over clusters of popula-
tions' means and obtain estimates of the unknown distributins as a by-product. More-
over, the ANOVA-DDP of De lorio et al. (2009 was not introduced as a model selection
procedure. A popular Bayesian nonparametric model, that @s cluster populations and
can be used for model selection, is the nested Dirichlet pess ofRodriguez, Dunson,
and Gelfand (200§. As shown in Camerlenghi et al.(20199, such a prior is biased
towards homogeneity, in the sense that even a single tie be®n populationsj and j°,
namely Xijm = Xiojom for somei and i® entails jnm = ;o (almost surely). In order
to overcome such a drawback, a novel class of nested, and mepeable, priors has been
proposed inCamerlenghi et al.(20193. See alsdSoriano and Ma(2017 for related work.
Interesting alternatives that extend the analysis to more Han two populations can be
found in Christensen and Ma(2020, Lijoi, Pranster, and Rebaudo (2022 and in Beraha,
Guglielmi, and Quintana (202]). Another similar proposal is the one byGuterrez et al.
(2019, whose model identi es di erences over cases' distribuins and the control group.
These models imply that two populations belong to the sameudter if they share the
entire distribution. However, as already mentioned, distbution-based clustering is not
ideal when dealing with scenarios as the one of hypertensidataset. Further evidence
will be provided in Section5.1, through simulation studies. In addition, note that all
these contributions deal with only one response variable @would need to be suitably
generalized to t the setup of this paper. As far as the contribtions treating multiple
response variables are concerned, uses of nonparametriongr for multiple testing can
be found, for instance, inGopalan and Berry(1998, Do, Muller, and Tang (2009, Dahl
and Newton (2007, Guindani, Maller, and Zhang (2009, Martin and Tokdar (2012 and
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more recently inCipolli, Hanson, and McLain(2016, who propose an approximate nite
Polya tree multiple testing procedure to compare two-samies' locations, and inDenti
et al. (2020. However, in all these contributions, models are developatirectly over
summaries of the original data (e.g. averages, z-scoresyiaas such, do not allow to draw
any inference on the entire distributions and clusters of byects.

The outline of the paper is as follows. In Sectio we introduce the model, which
makes use of an original hierarchical prior structure for symetric distributions (Sec-
tion 2.2). In Section 3 we derive the prior law of the random partitions induced by tk
model, key ingredient for the Gibbs sampling scheme devisgdSection4. In Section 5,
we rst present a series of simulation studies that highlighthe behaviour of the model
before applying it to obtain our results on cardiac dysfunctin in hypertensive disorders.
Section 6 contains some concluding remarks. As Supplementary Matdrieve provide
the datasets and Python codes, some further background matd and details about the
derivation of the posterior sampling scheme as well as addihal simulation studies and
results on the application, including an analysis of priorensitivity.

2 The Bayesian nonparametric model

The use of discrete nonparametric priors for Bayesian modehsed clustering has become
standard practice. The Dirichlet process (DP) ferguson 1973 is the most popular
instance, and clustering is typically addressed by resanty to a mixture model, which
with our data structure amounts to

Xigm ] ijim n K(Xigim 5 igm ) ijim 1Bym n Bi:m
form=1;:::;M,j =1;:::;J andi =1;:::;n;. Herek( ; ) is some kernel and the
B:m 'S are discrete random probability measures. Hence, thg;, 's may exhibit ties. The
model speci cation for pr, will be tailored to address the following goals: (i) cluster
the J probability distributions based on their means; (ii) cluser the observationsX;m
according to the ties induced on the i 's by the p;m 's for a given xed j and across
dierent j's. These two issues will be targeted separately: we rst dgs a clustering
scheme for the populations, through the specication of a @r on the means of the
Xijm 's and, then, we cluster the data using a hierarchical DP hawy a speci ¢ invariance
structure that is ideally suited to the application at hand.

2.1 The prior on disease-specic locations

As a model for the observations we consider a nonparametricxture of Gaussian distri-
butions speci ed as

Xigm 1 Cmi mi 2)"N Cim + iim 5 Zm ) 3)

5



where m = ( 1myii am)y m = ( zomi i Lnems 22ms st ny.m), With a similar
de nition for the vector 2, and N ( ; ?2) denotes a normal distribution with mean
and variance 2. The assumption in @) clearly re ects (2). Moreover, in order to account
for the two levels of clustering we are interested in, we widlssume that

_ i _
(uim) Pro Cigms Gm)iGm - Gm (i=150005m) 4)
wheredrm; :::;e:m are discrete random probability measures independent frofng; :::; m)
Thus, the likelihood corresponds to
Y ¥y 1 Xii ) "
— 2 _me I g (d i 5 d i ) )
m=1 j=1 i=1 im isj;m

with ' denoting the standard Gaussian density. Relevant inferees can be carried

This speci cation allows to address the model selection goem in the following way. If
M ™ stands for the space of all partitions of thd populations for them-th cardiac function

15 competing models per cardiac index. Each competing modekresponds to a speci ¢
partition in M ™. In particular, the partition arises from ties between the ppulation
speci c means in , and, hence, the distributionP in (4) needs to associate positive
probabilities to ties between the parameters within the veéor ,, foreachm =1;:::; M.

Let us start considering as distributionP a well-known e ective clustering prior, i.e.
a mixture of DPs in the spirit of Antoniak (1974, namely

id

im ] Pm Prm j=1;::0:3
Bnj! " DP(LGm) m=1;:::;M (6)
! P

where DP(; G ,) denotes the DP with concentration parametet and non-atomic base-
line probability measureG,, and p, is a probability measure onR*. The discreteness
of the DP implies the presence (with positive probability) bties within the vector of

locations , associated to a certain cardiac indem, as desired. The ties give rise to
a random partition: as shown inAntoniak (1974, the probability of observing a spe-
ci c partition of the elements in |, consisting ofk J distinct values with respective

Oning = g (1) (7)



where (); = (! + J)=(!). The use of a shared concentration parameter over)(
to address multiple model selection has been already susfaly employed in Moser,
Rodrguez and Lo and (2021, where they cluster parameters in a probit model. When
there is no pre-experimental information available on congting partitions, the use of {7)
as a prior for model selection has some relevant bene ts. leed, it induces borrowing
of strength across diagnoses and, beihgrandom, it generates borrowing of information
also across cardiac indexes, thus improving the Bayesia@aieing mechanism. These two
features can also be given a frequentist interpretation iretms of desirable penalties. As
a matter of fact, the procedure penalizes for the multiplity of the model selections that
are performed. The penalty has to be meant in the following wa while J and/or M
increase, the prior odds change in favor of less complex misdd-or more details on this,
seeScott and Berger(201Q. Summing up, the mixture of DPs automatically induces a
prior distributionon fM ™ : m=1;:::; Mg, that arises from (7) combined with the prior
pr on!, and it presents desirable properties for model selectiohdt can be interpreted
either in terms of borrowing of information or in terms of pealties.

However, in the analysis of hypertensive disorders, some @rinformation on com-
peting models is available, and this is not yet incorporateth (7). In fact, as already
mentioned, there is a natural order of the diagnoses, whick given by the severity of
the disorders, i.e. C, G, M, S. Partitions that do not comply wh this ordering, e.qg.
ff C; Sgf Gg; f M gg, should be excluded from the support of the prior. Thus, we osider
a prior overM ™ that associates zero probability to partitions that do not espect the nat-
ural order of the diagnoses and a probability proportionald that in (7) for the remaining
partitions, i.e.

8
< M enn - m : ;
ni::i:n if MM is compatible with the natural order
pMp 1)/ |k M M P (8)
-0 otherwise
This amounts to a distribution P for ( 1;:::; m) given by
pmiiisoam) it ™ P, m=1;01M

9)
! Pr

where P,.¢ .. is the distribution obtained sampling a partition accordirg to (8) and as-
sociating to each cluster a unique value sampled fro@,,. Using (9) as a prior for
the disease-speci c locations, we preserve the desirableperties of the mixture of DPs
mentioned before, while incorporating prior information o the severity of the diseases.

As detailed in the next section, we further de ne random probaility measures g,
that satisfy the symmetry condition

Gm(A B)=gm(( A) B) a.s. (10)



m=1;:::;M, in (3) are identi ed, namely E(Xijm ] m; 6m) = jm With probability
one. This identi ability property is crucial to make inference over the location parameters

m'S. Similar model speci cations for discrete exchangeabdlata have been proposed and
studied in Dalal (19791, Doss(1984, Diaconis and Freedmar{1986 and Ghosal, Ghosh,
and Ramamoorthi (1999, of which (5) represents a generalization to density functions
and partially exchangeable data.

2.2 The prior for the error terms

While the clustering of populations is governed byd), we use a mixture of hierarchical
discrete processes for the error terms. This has the advageaof modeling the clustering
of the observations, both within and across di erent sampk once the disease-specic
e ects are account for. This clustering structure allows tanodel heterogeneity across
patients in a much more realistic way with respect to standar ANOVA models based
on assumption of normality. Cardiac indexes may be in uenceby a number of factors
that are not directly observed in the study, such as pre-exiag conditions (Hall, George,
and Granger 2011 and psychosocial factorsRedersen et al.2017. These unobserved
relevant factors may be shared across patients with the saroea di erent diagnosis and
may also result in outliers. To take into account this latentheterogeneity of the data,
we introduce the hierarchical symmetric DP that satis es tle symmetry condition in
(10) and, moreover, allows to model heterogeneous data similato the hugely popular
hierarchical DP (Teh et al., 2009.

The basic building block of the proposed prior is the invaria Dirichlet process, which
was introduced for a single populationJ = 1) in an exchangeable framework byDalal
(19799. Such a modi cation of the DP satis es a symmetry condition in the sense that
it is a random probability measure that is invariant with regpect to a chosen group of
transformations G. A more formal de nition and detailed description of the inariant DP
can be found in Section A of the Supplement. For our purposesis enough to consider
the speci ¢ case of the symmetric Dirichlet process, whichan be constructed through a
symmetrization of a Dirichlet process. Consider a non-atamprobability measureP, on
RandletQy, DP(;Py). If

Q(A) =

Qo(A) +2Qo( A) 8A 2 B(R) (11)
where A = fx 2 R: x 2 Ag, then Q is symmetric about 0 (almost surely) and
termed symmetric DP, in symbolsQ s-DP( ; P o). For convenience and without loss
of generality, we assume thaP, is symmetric: this implies that Py is the expected value
of @ making it an interpretable parameter. The random probabity measureQ is the

basic building block of the hierarchical process that we uge model the heterogeneity
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Figure 1: Graphical representation of the model. Each node represents a randowariable and
each rectangle denotes conditional i.i.d. replications of the model whin the rectangle.

identi ed by the unique values can be shared within and acrespopulations. This prior
Is termed symmetric hierarchical Dirichlet process(s-HDP) and described as

Gm | jm: &m n S-DP( jm ; &m)
ind

q);mj m S'DP( ms I:)O;m)

(12)

where ;, and ., are positive parameters andPo, iS a non-atomic probability distri-
bution symmetric about 0. We use the notation §em;:::;&m)  S-HDP( m; m; Pom),

ical model representation of the over-all proposed modeldssplayed in Figurel.

Still referring to the decomposition of the observations to disease-speci ¢ locations
and an error term, i.e. Xijm = jm +"ijm , itturns out thatthe "i; 's are from a symmet-
ric hierarchical DP mixture (s-HDP mixture) with a normal kernel. Hence, the patients'
clusters are identi ed through the";;., , which, according to @), are conditionally inde-
pendent from aN ( ijm ; ﬁj;m ) given (ijm ; iz;j;m ). The choice of the speci c invariant DP
is aimed at ensuring thatE("ijm j&:m ) = 0. The clusters identi ed by the s-HDP mixture
can be interpreted as representing common unobserved fastacross patients, once the
disease-speci ¢ locations have been accounted for. Indeéar any pair of patients, we
may consider the decompositioXjm  Xjojom = m oy m +(ejm  €ojoy) Where

™ = jems ™ = jm  isjom and ejm and esje, are independent and
normally distributed random variables with zero mean and wances 7., and {0,
respectively.

Hence, patients' clustering re ects the residual heterogeity that is not captured by



the disease-speci c component (™ and are related to the subject-speci c locations (m)

and to the zero-mean error componeng(;,  €ojoy). In view of this interpretation, us-
ing a s-HDP mixture over error terms o ers a three-fold advarage. Firstly, the presence
of clearly separated clusters of patients within and acrogsopulations will indicate the
presence of unobserved relevant factors which a ect the ciac response variables. Sec-
ondly, single patients with very low probabilities of co-alstering with all other subjects
will have to be interpreted as outliers. Finally, the estimagd clustering structure can also
be used to check whether the relative e ect of a certain dissa (with respect to another)
is fully explained by the corresponding ™ To clarify this last point consider two dis-
eases: if the posterior co-clustering probabilities amomgtients sharing the same disease
are di erent between the two populations, this will indicae that di erent diagnoses not
only have an in uence on disease-speci c locations (whichimseasured by (m)), but they
also have an impact on the shape of the distribution of the ca@sponding cardiac index.
More details on this can be found in Section D of the Supplemen

3 Marginal distributions and random partitions

As emphasized in the previous sections, ties among thg, 's and the (ijm ; iz;j;m )'s are
relevant for inferring the clustering structure both amonghe populations (hypertensive
diseases) and among the individual units (patients). Indele for eachm (cardiac index)
they induce a random patrtition that emerges as a compositiaf two partitions generated
respectively by the prior in @) and the s-HDP. The laws of these random patrtitions are not
only crucial to understand the clustering mechanism, but ab necessary in order to derive
posterior sampling schemes. In this section such a law is Wed and used to compute the
predictive distributions that, jointly with the likelihoo d, determine the full conditionals
of the Gibbs sampler devised in Sectiod. To reduce the notational burden, in this
and the following section, we remove the dependence of olys#éions and parameters on
the speci ¢ response variablen and denote with ;; the pair ( i; ; ,21) and with  the
collection ( 1.1;::%; 1nys 2150500 ny)-

Conditionally on ! , the law of the partition in (8) leads to the following predictive
distribution for the disease-speci c locations

PN s e g sy ) [ gl i 1)IG
where P )
L _ (ko (nagrng
B wii g 0= P (13)
() k (ng; 20 ny)
where the sum at the denominator runs over the set of partitis consistent with the
one generated by (1;:::; ; 1) and the one at the numerator runs over a subset of those
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partitions where one further has; = ; 1. Forj =4, the predictive equals

l\)+

a1 o1 o2

3+!—G if 16 2= 3

1 +2

8
§| st 3G if 1= 2= 5
§

A Ll
-

.+ G otherwise

Explicit expressions for the functiona, for j = 1;2; 3, can be easily computed usingl@)
and (8) and are provided in Section B of the Supplement.

Moving to second-level partitions induced by the s-HDP, we call that the key con-
cept for studying random partitions on multi-sample data isthe partially exchangeable
partition probability function (pEPPF). See, e.g.Lijoi, Nipoti, and Pnanster (2014 and
Camerlenghi et al.(2019H. The pEPPF returns the probability of a speci ¢ multi-sample
partition and represents the appropriate generalizationfdhe well-known single-sample

in (12) induces a partition of the elements of into equivalence classes identi ed by the
distinct values. Taking into account the underlying partidly exchangeable structure, such
a random partition is characterized by the pEPPF

!

~(N) YooY Njh
k (Ngying)=E Gm (d 1) (14)
i=1 h=1
wheren; = (n;;1;:::;Njx) are non-negative integers, for any = 1;:::;J, such that nj;,
is the number of elements in corresponding tlg populationj and b%longlng to cluster
h. Thus = 7 ny  1foranyh =1;:0k, foyng = njand (o Jong =

N. The determination of probability distributions of this type is challenging and only
recently the rst explicit instances have appeared in the ferature. See e.g.Lijoi et al.
(2019, Camerlenghi et al.(20199 and Camerlenghi et al.(20190. With respect to the
hierarchical case considered i€amerlenghi et al.(2019h, the main di erence is that
here we have to take into account the specic structurel(l) of the .. The almost
sure symmetry of the process generates a natural random miattg between sets in the
induced partition. Therefore, instead of studying the marngal law in (14), we derive
the joint law of the partition and of the random matching. Fomally, consider a specic
partition fAT;A;;:::; AL A gof | such that, forh =1;:::;k, all the elements inA;,
belong toR* R", all the elements inA,, belong toR R* and, if §; 2 A; and
iojo 2 Ay, then the element-wise absolute values of; and o0 are equal. Denote with

n:, the number of elements inAj \f ;i = 1;:::;n,g and with n,, the number of
elements inA, \f §;;i=1;:::;n;0. The probablllty of observmng*, A ALY
is !
o) Z¥w
«(nI;ng;iinnying)=E Em 0 i (d ) (15)
k.
j=1 h=1
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Figure 2: Chinese restaurant franchise representation ofé@lrsymmetric hierarchical DP
for J = 2 populations. Each circle represents a table.

ing may be gained if one considers its corresponding Chinesstaurant franchise (CRF)
metaphor, which displays a variation of both the standard Cinese restaurant franchise
of Teh et al. (2009 and the skewed Chinese restaurant processlgfesias, Orellana, and
Quintana (2009. Figure 2 provides a graphical representation. The scheme is as fol-
lows: there areJ restaurants sharing the same menu and the customers are itieu
by their choice of ;; but, unlike in the usual CRF, at each table twosymmetric dishes
are served. Denote with ; =( ;; §)and ; =( ; §&) the two dishes served
at table t in restaurant j, with , =( ,,; ,dand | =( n; 42 the h-th pair
of dishes in the menu and withn’, and n,,, the number of customers in restauranj
eating dish , and | , respectively. This means that two options are available ta
customer entering restaurani : she/he will either sit at an already occupied table, with
probability proportional to the number of customers at thattable or will sit at a new table
with probability proportional to the concentration parameter ;. In the former case, the
customer will choose the dish; with probability 1=2 and ; otherwise. In the latter
case, the customer will eat a dish served at another table dfe franchise with probability
proportional to half the number of tables that serve that dik, or will make a new order
with probability proportional to the concentration parameer . In view of this scheme,
the probability in (15) turns out to be

and ™) on the right-hand-side is the pEPPF of the hierarchical DP diéved in Camer-
lenghi et al. (20190, namely
|

(N) Q:(:l( D X KO ¥ .
k (Napiinng) = on ) Can D' PKny = i)
j=1 1/n ‘ I h=1 i=1
where each sums runs over alj, in f1;:::;np, 9, if Ny 1, and equals 1 ifn;, =0,
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< P J < . P J P Kk < . <
whereas” ;, = | jnoandjj =, o jn- Note that the latent variable "

is the number of tables in restauranf serving the h-th pair of dishes. MoreoverK,,
is a random variable denoting the number of distinct cluste; out of n;, observations
generated by a DP with parameter ; and di use baselineP, and it is well-known that

\j'h

P(Kn,, = jn) = (j#js(nj;h » ih)]
jih

wherejs(n;n; jn)j is the signless Stilring number of the rst kind. In view of this, one
can deduce the predictive distribution

. X
o iy = j .
P( nj+1; 2] ) 1+, [+ (] )Po()
" # !
VXm0 X ciy O W0
her T nj+ ; . jj+ 2
where
kW Y j‘i:h
Ci )/ Cwn DY ———is(n, + s Tin)ideg. + wn gCin)
@y h=1 j=1 ( J')nf;h +Njp " e HEE M 077

is the posterior distribution of the latent variables; 's, and 1, is the indicator function
of setA.

4 Posterior inference

The ndings of the previous section are the key ingredienttperform posterior inference
with a marginal Gibbs sampler. The output of the sampler is stictured into three levels:
the rst produces posterior probabilities on partitions ofdisease-speci ¢ locations; the
second generates density estimates; the third provides sfars of patients. For notational
simplicity, we omit the dependence om, except for the description of the sampling step
that generates! . Recall that =( 4;:::; 5)and = f( ;0000 o) 0] =150,
with 5 =( i |21 ). The target distribution of the sampler is the joint distribution of
, and! conditionally on the observed dataX .

Sampling . In view of the CRF representation of the s-HDP};; stands for the
label of the table where thei-th customer in restaurantj sits and hy; for the dish label
served at tablet in restaurant j and with t and h we denote the corresponding arrays.
Moreover, de ne the assignment variables;; = 1( ij = t i) 1y = ti ;) ands
Is the corresponding arrays. In order to generate, we need to sample

13



(i) , forh2 h.

Note that, using the latent allocation indicators int and h, the sampling scheme
is more e cient than sampling directly from the full conditional of each ;;, since the
algorithm can update more than one parameter simultaneoysl(Neal, 200Q. De ne
"i = Xij j and denote withh("i;n ] ) the conditional normal density of";; given

=( ; 2), while the marginal density is

Z
h("ij) = h("ijj )Po(d )

To sample ¢;; ; si; ) from their joint full conditional, we rst sample t;; from
8
< Gi) moi i (i)
Pty =tjt ).y (). (i ). @) i)l N Pold (") ) ift2t
i Pnew("ij ] @)) if t = thew

wheret Gi) n Gi) (i) @) coincide with the arrayst, h ,  after having
removed the entries corresponding to theth customer in restaurantj. Moreover

wo 1 . . 1 ..
Poid("ij ] t;j): Eh( iij ] t;j)+ éh( ij ] t;j)

and
o)
: 1 1
noo (i) — h - woo - wo "
Prew("ij ] ) L 2h( glon)t 2h( T i h(*i; )
Then we samples;; from its full conditional
8
< " . .
. h("ijJ ) ifs=1
sy =si stys )/ . U _
h(Myl ) ifs= 1
The conditional distribution of hy; is
8
3000 9 nsytyiw ifh2h ©
p(ht;j - hJ t, h (t )’ (t;j ),S,“) / Z f(hJY) tij =tg - .
2 h(sij "ijj )Po(d ) if h=h"e¥
' F(ii): tij =tg

Finally, when Py is conjugate with respect to the Gaussian kernel, the full aditional
distribution of |, is obtained in closed form as posterior distribution of a Gasian model,
using as observations the collectioh(s;; ;) : hy, ; = hg.

Sampling . When sampling the disease-speci c location parameters, onan rely
on a Chinese restaurant process restricted to those partiis that are consistent with
the ordering of the diseases. Thus, in order to generate we rst sample the labels
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t = fty;:::;t;09, wheret; is the label of the table where thg -th customer sits. Then,

we sample the dish ; associated to tablet for all t 2 t . If z; = Xj; ij , the
conditional density ofz; = (zy;;:::;2,,;) associated to the location parameter , given
j —( 11;'”; nj;j)a IS
1 1)('1' (zi )2)
f (ij j):—eXp 5 IJ—2
p 2_ Q I’J 2 i=1 |7J

Under the prior in (9), the full conditional distribution of t is provided by

%a(!; 500 1)fjl(?j i) if t =t
IO ah i o)l f(z) )G(d) if t=tew
0 otherwise

Finally, when G is conjugate with respect to the Gaussian kernel, the full oditional
distribution of , givenfz; : t; = tg, is obtained in closed form using conjugacy of the
Normal-Normal model.

Sampling the concentration parameter. Finally, the concentration parameter!
can be sampled through an importance sampling step using aspiortance distribution
the prior p, over! . Denoting with M, the selected partition for , and with T, the
number of clusters inM,, we have

P
| mzl Tm M

R

P jMmim=150M)  pi(!)

5 Results

5.1 Simulation studies

We perform a series of simulation studies with two main goalgirst, we aim to highlight
the drawbacks of clustering based on the entire distributrowith respect to our proposal
in the context of small sample sizes. Second, we check the mkslability of detecting
the presence of underlying relevant factors in the sense delsed in Section2.2.

To accomplish the rst goal, we compare the results obtainedsing our model with
the nested Dirichlet process (NDP) Rodriguez et al, 2009, arguably the most popular
Bayesian model to cluster populations. Mimicking the real ypertensive dataset, we
simulate data for 4 samples, ideally corresponding to fourg#iases, with respective sample
sizes of 50, 19, 9 and 22, which correspond to the sample sifebe real data investigated
in Section5.2. Since the NDP does not allow to treat jointly multiple respose variables,
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we consider only one response variable to ensure a fair comg@n. The observations are
sampled from the following distributions and 100 simulatio studies are performed.

Xi1 d 05N (0; 05)+0:5N (2; 0:5) fori=1;:::;n
Xi2 "4 05N (2;05)+0:5N (4; 05) fori=1;:::;n;
Xi3 "4 05N (4;05)+0:5N (6; 0:5) fori=1;:::;n;3
Xia d 05N (6; 0:5)+0:5N (8; 0:5) fori=1;:::;n4

Note that the true data generating process corresponds to sptas from distinct distribu-
tions with pairwise sharing of a mixture component. Alternai/e scenarios are considered
in the additional simulation studies that can be found in Sdmon D of the Supplement.
The implementation of the NDP was carried out through the marngal sampling
scheme proposed iZuanetti et al. (2018, which is suitably extended to accommodate
hyperpriors on the concentration parameters of the NDP. To siplify the choice of the
hyperparameters, as suggested bgelman et al. (2013 p. 535 and p. 551{554) we es-
timate both models over standardized data. For our model, weet G,, = N (0; 1) and

Pom = NIG( =0; =1; =2; =4). Here, NIG(; ; ; ) indicates a normal
inverse gamma distribution. The base distribution for the NP is NIG( = 0; =
0.0, =3; =3), asin Rodriguez et al.(20089. Finally, we use gamma priors with

shape 3 and rate 3 for all concentration parameters, which @&common choice. For each
simulation study, we perform 10,000 iterations of the MCMC lgorithms with the rst
5,000 used as burn-in.

Table 1 displays summaries of the results on population clusteringlarker rows cor-
respond to partitions that are not consistent with the natual ordering of the diseases.
The true clustering structure is given by the nest partition. As already observed irRo-
driguez et al. (2008, the NDP tends to identify fewer, rather than more clustersdue to
the presence of small sample sizes. Using thaximum a posteriori estimate, our model
correctly identi es the partition in 99 out of 100 simulation studies and a partition with
three elements or more in 100 out of 100 simulation studiesh& same counts for the NDP
are, respectively, 0 out of 100 and 21 out of 100. Analogous clusions can be drawn
looking at posterior probability averages and medians agse the 100 simulation studies
(see Tablel) leaving no doubt about the model to be preferred under thiscenario.

Finally, we randomly select three simulation studies amonché 100 to better under-
stand the performance in estimating the other model paramets. Here we comment
on one of the studies, the other two leading to similar resdtare reported in Section
D.1.1 of the Supplement. Figure3a shows point estimates and credible intervals for the
population-speci ¢ location parameters 1; »; 3; 4. The true means belong to the 95%
credible intervals.

Moreover, it turns out that the model is able to detect the preence of two clusters
of subjects leading to a posterior distribution for the numbr of clusters that is rather
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Table 1: Simulation studies summaries.

sHDP NDP

MAP  Average Median MAP  Average Median
Partitions count post. prob. post. prob. count post. prob. pst. prob.
f1,2,3,49 0 0.000 0.000 0 0.000 0.000
f1gf2,3,4g 0 0.000 0.000 2 0.020 0.000
f1,2gf 3,49 0 0.000 0.000 72 0.695 0.860
f1,3,49f2g 0 0.000 0.000 0 0.000 0.000
f 1gf 29f 3,49 0 0.027 0.007 3 0.035 0.000
f1,2,3gf4g 0 0.000 0.000 5 0.061 0.000
f1,49f2,3g 0 0.000 0.000 0 0.000 0.000
f 1gf 2,3gf4g 1 0.054 0.015 0 0.014 0.000
f1,3gf 2,49 0 0.000 0.000 0 0.000 0.000
f1,2,49f 3g 0 0.000 0.000 0 0.000 0.000
f 1gf 2,4gf 3g 0 0.000 0.000 0 0.000 0.000
f1,29f 3gf4g 0 0.004 0.000 18 0.175 0.032
f1,3gf 2gf 4g 0 0.000 0.000 0 0.000 0.000
f 1,4gf 2gf 3g 0 0.000 0.000 0 0.000 0.000
f1gf2gf3gf4dg 99 0.915 0.954 0 0.000 0.000

concentrated on the true value, see Figurgb{3d. Moreover, the point estimate for the
subject partition, obtained minimizing the Binder loss fution, also contains two clusters,
proving the ability of the model to detect the underlying redvant factor. In Section
D of the Supplement, a number of additional simulation studis are conducted, both
using alternative speci cations over the disorder-speat parameters and di erent data
generating mechanisms: the results highlight a good penfisance of the model, which
appears also able to detect outliers, to highlight non-lotian e ects of the disorders and
to produce reliable outputs even under deviation from symnny.

5.2 Impact of hypertensive disorders on maternal cardiac dys-
function

Our analysis is based on the dataset dfatapudi and Pasumarthy (20173, which can be
obtained from https://data.mendeley.com/datasets/d72z4xggx/1. The dataset contains
observations for 10 cardiac function measurements colledtthrough a prospective case-
control study on women in the third semester of pregnancy doed in n; = 50 control
cases (C),n, = 19 patients with gestational hypertension (G),n;z = 9 patients with
mild preeclampsia (M) andn, = 22 patients with severe preeclampsia (S). The cases
are women admitted from 2012 to 2014 to King George Hospital iMisakhapatnam,
India. The healthy sample is composed by normotensive pregrt women. All women
with hypertension were on antihypertensive treatment withoral Labetalol or Nifedipine.
Women with severe hypertension were treated with either draifedipine and parenteral
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Figure 3: Panel (a): Mean point estimates and 95% credible envals for the four popu-
lations, vertical lines correspond to true values. Panel b Posterior distribution on the
number of second-level clusters. Panels (c) and (d): heatpsaof second-level clustering,
darker colors correspond to higher probability of co-clusting; in (c) patients are ordered
based on the diagnosis and the four black squares highligtttet within-sample probabili-
ties and in (d) patients are reordered based on co-clustegiprobabilities.

labetalol or a combination. For more details on the datasetywe refer to Tatapudi and
Pasumarthy (20170. The prior specication is the same as in the previous secin.
Sections E.2 and E.3 of the Supplement contain a prior-setngity analysis and show
rather robust results w.r.t. dierent prior speci cations. Inference is based on 10,000
MCMC iterations with the rst half used as burn-in.

Table 2 displays the posterior distributions for the partitions ofunknown disease-
speci ¢ means along with the corresponding entropy measuments, that can be used
as measures of uncertainty. First note that if one takes alstv¢ ordering among distinct
disease-speci c locations into account, the posterior p#ron probabilities are, as desired,
concentrated on speci ¢ orders of the associated unique wak for all ten cardiac indexes.
For instance, we haveP(f c.ci = e = wmc Of sci9] X) = P(cec = cec =

mcl > sci ] X) =0:463. The ordered partitions with the highest posterior probility
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Table 2: Posterior probabilities over partitions of meansMaximum a posteriori proba-
bilities are in bold .

partitions Cl CWI LVMI VST LVPW EF FS EW AW E/A

fC,G,M,Sg 0.021 0.000 0.000 0.000 0.0000.365 0.303 0.096 0.000 0.000
fCgfG,M,Sg 0.002 0.546 0.001 0.083 0.016 0.078 0.190 0.021 0.036 0.000
fC,GgfM,Sg 0.002 0.000 0.001 0.000 0.000 0.037 0.038 0.072 0.076 0.049
fC,M,Sgf Gg 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
fCgfGgfM,Sy  0.001 0.139 0.001 0.019 0.024 0.028 0.078 0.042 0.232 0.055
fC,G,MgfSy 0463 0.000 0.595 0.000 0.000 0.276 0.0450.498 0.020 0.002
fC,Sgf G,Mg 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
fCgfG,MgfSy  0.146 0.099 0.1880.551 0.672 0.074 0.164 0.092 0.260 0.033
fC,MgfG,Sg 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
fC,G,SgfMg 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
fCgfG,SgfMg ~ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
fC,GgfMgfSy  0.233 0.000 0.107 0.000 0.000 0.083 0.062 0.114 0.091 0.371
fC,MgfGgfSy  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
fC,SgfGgfMg ~ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
fCgfGgfMgfSy 0.133 0.216 0.108 0.347 0288 0060 0.121 0.065287 0.491

log;s p 0.501 0430 0415 0361 0.289 0.632 0.688 0.598 0.613 0.424
Cl cwi

Pap3 e Pap3 ——

Pap2 - L] Pap2 - L]

24 26 28 30 32 34 35 38 200 250 300 350 400 450

Figure 4: 95% credible intervals for population-speci c Iations for ClI and CWI

are displayed in Table3.

Considering the posterior probabilities summarized in Tdb 2 and in Table 3, we
nd that the cardiac index (Cl) is reduced in severe preeclapsia compared to all other
patients, indicating reduced myocardial contractility inthe presence of the most severe
disorder. The cardiac work index (CWI) is a good indicator to wtinguish between cases
and control, but not among cases. The left ventricular massdex (LVMI) is increased in
severe preeclampsia patients compared to other pregnantmen, indicating ventricular
remodelling. While inter ventricular septal thickness (IVST and left ventricular poste-
rior wall thickness (LVPW) di er both between cases and contrts and between severe
preeclampsia and other disorders, indicating a progressivncrease in the indexes with
the severity of the disorder. The posterior probabilities ssociated to indexes of systolic
function such as ejection fraction (EF) and fraction shorteing (FS) are relatively concen-
trated on the partition of complete homogeneity, letting ugo conclude that no di erences
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Table 3: Posterior probabilities over ordered partitions fomeans.

ordered partition with
cardiac index highest posterior probability posterior prb

Cl fC,G,Mg>Tf Sg 0.463
CWI fCg<fG,M,Sg 0.546
LVMI fC,G,Mg<fSg 0.595
IVST fCg<fG,Mg<fSy 0.548
LVPW fCg<fG,Mg<fSy 0.671
EF fC,G,M,Sg 0.365
FS fC,G,M,Sg 0.303
EW fC,G,Mg>f Sg 0.497
AW fCgd G,Mg<fSg 0.256
E/A fCg>fGg>fMg>fSg 0.466

are present among patients. As for the parameters of the diadit function, the posterior
distribution for the E-wave indicator identi es a modi ed index in severe preeclampsia
patients, while the mean E/A ratio indicates a decreasing dstolic function with the
severity of the disorder. The posterior for the A-wave indexsiactually concentrated on
three distinct partitions, leaving a relatively high uncetainty regarding the modi cations
of the index. However, considering jointly the three partibns with the highest poste-
rior probability, di erences are detected between controhnd cases with a total posterior
probability equal to 0.779. Figure4 shows point estimates and credible intervals for
disorder-speci ¢ location parameters for the rst two caréac indexes. Analogous plots
for all cardiac indexes can be found in Section E.1 of the Supment.

Table 4 shows the results obtained using the prior in7), instead of (). We remark
that for all ten cardiac indexes, the posterior associatesgligible probabilities to parti-
tions that are in contrast with the natural order of the diagroses. This is particularly
reassuring in that the model, even without imposing such arraer a priori, is able to sin-
gle it out systematically across cardiac indexes. Moreoveve observe how the partitions
identi ed by MAP are the same of Table 2 for all cardiac index except AW. However,
even under this alternative prior, the A-wave index is concérated on the same three
distinct partitions leading to the conclusion that there eists a di erence between cases
and control.

As far as prediction and second-level clustering are concedy Figure 5 displays the
density estimates and the heatmap of co-clustering probadities between pairs of patients
for the E/A ratio and LVMI. Figure 5b shows that co-clustering probabilities are similar
within and across diagnoses, indicating that the e ect of th diseases on the distribution
of the cardiac index is mostly explained through shifts be®en disease-speci c locations.
Moreover Figure5b suggests the presence of three outliers that have low proliéip of
co-clustering with all the other subjects and that would begnored by the model using
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Table 4: Posterior probabilities over partitions of meansMaximum a posteriori proba-
bilities are in bold .

partitions Cl CWI LVMI VST LVPW EF FS EW AW E/A

fC,G,M,Sg 0.019 0.000 0.000 0.000 0.0000.332 0.247 0.078 0.000 0.000
fCgf G,M,Sg 0.002 0.643 0001 0.114 0031 0.065 0.130 0.048 0.080 0.000
fC,GgfM,Sg 0.004 0.000 0.003 0.000 0.000 0.044 0019 0.152 0.073 0.103
fC,M,Sgf Gg 0.004 0.000 0.000 0.000 0.000 0.037 0.105 0.013 0.000 0.000
fCgfGgfM,Sy  0.002 0.065 0.002 0.047 0.078 0.027 0.036 0.06%24 0.167
fC,G,MgfSy  0.316 0.000 0.527 0.000 0.000 0.178 0.0320.288 0.002 0.000
fC,Sgf G,Mg 0.023 0.000 0.000 0.000 0.000 0.019 0.103 0.006 0.000 0.000
fCgfG,MgfSy  0.173 0.089 0.1240.472 0594 0.033 0.054 0.064 0.140 0.042
fC,MgfG,Sg 0.002 0.000 0.001 0.003 0.000 0.044 0.031 0.017 0.000 0.000
fC,G,Sgf Mg 0.018 0.000 0.000 0.000 0.000 0.061 0.067 0.016 0.000 0.000
fCgfG,SgfMg  0.005 0.163 0.001 0.095 0.006 0.028 0.040 0.015 0.016 0.000
fC,GgfMgfSy  0.213 0.000 0.124 0.000 0.000 0.052 0.014 0.121 0.036 0.241
fC,MgfGgfSy  0.074 0.000 0.137 0.003 0.000 0.041 0.022 0.055 0.001 0.000
fC,Sgf GgfMg ~ 0.014 0.000 0.000 0.000 0.000 0.011 0.067 0.004 0.000 0.000
fCgfGgfMgfSy 0.133 0.040 0.079 0265 0.291 0.029 0.033 0.059 0.22848
log,s p,” 0.687 0.407 0509 0501 0371 0.828 0886 0.823 0.582 0.505

a more traditional ANOVA structure. On the other hand, Figure 5e shows a slightly
di erent pattern for co-clustering probabilities in the fourth square, which suggests that
the heterogeneity between severe preeclampsia patientsdatine other patients is not
entirely explained by shifts in disease-speci ¢ locationsFinally, Figure 5f suggests the
presence of an underlying relevant factor. The correspondi gures for all ten response
variables are reported in Section E.1 of the Supplement ana@rt be used for prediction
and for a graphical analysis aimed at controlling the presea of underlying relevant
factors, outliers and di erences across diseases distiricdm shifts between disease-speci ¢
locations.

Our results are coherent with almost all of the ndings inTatapudi and Pasumarthy
(20178, where results were obtained through a series of indepentiédrequentist tests.
However, importantly, we are able to provide more insights #mks to the simultaneous
comparison approach and the latent clustering of subjectsFor instance, considering
the response LVMI, Tatapudi and Pasumarthy (20170 detected a signi cant increase in
cases compared to controls and an increase in severe preapkia compared to gesta-
tional hypertensive and mild preeclampsia patients. Suclesults do not clarify whether
a modi cation exists between the control group and gestatital hypertensive patients or
between the latter and mild preeclampsia patients. Moreowgin contrast to our analy-
sis, their results do not provide any information concernip the presence of underlying
common factors, outliers or distributional e ects (di erent from shifts in locations).
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Figure 5: Panels (a) and (d): density estimates. Panels (b}] and (e){(f): heatmaps of
the posterior probabilities of co-clustering; in (b) and (gpatients are ordered based on
the diagnosis and the four black squares highlight the withisample probabilities; in (c)
and (f) patients are reordered based on co-clustering prdifties.

6 Concluding remarks

We designed a Bayesian nonparametric model to detect clustef hypertensive disorders
over di erent cardiac function indexes and found modi ed cediac functions in hyperten-
sive patients compared to healthy subjects as well as progsévely increased alterations
with the severity of the disorder. The proposed model has aligation potential also
beyond the considered setup when the goal is to cluster poatibns according to multi-
variate information: it borrows strength across responsatiables, preserves the exibility
intrinsic to nonparametric models, and correctly detects gutitions of populations even in
presence of small sample sizes, when alternative distrimri-based clustering models tend
to underestimate the number of clusters. The key component the model is the s-HDP,
a hierarchical nonparametric structure for the error termshat o ers exibility and serves
as a tool to investigate the presence of unobserved factoositliers and e ects other than
changes in locations. Interesting extensions of the modatlude generalizations to other
types of invariances in order to accommodate identi abili in generalized linear models,
for instance in presence of count data and a log link functiorms well as generalizations
to other types of processes, beyond the Dirichlet process.
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Supplement to \Model Selection for Maternal
Hypertensive Disorders with Symmetric Hierarchical
Dirichlet Processes"

A. A review of the invariant Dirichlet process

We provide a brief review of the invariant Dirichlet process (IDP), introduced by Dalal (19799, which serves as
building block for the proposed model. After recalling the de nition, we present two representations of the process:
the rst is the analog of the stick-breaking construction of the Dirichlet Process (DP), whereas the second is an
extension of the generalized Rolya urn scheme oBlackwell and MacQueen(1973.

on (E; E).
De nition A.1 (Invariant Probability) . A probability measure Py on (E; E) is a G-invariant probability distribution,

De nition A.2 (Invariant Random Probability) . A random probability p on (E; E) is said G-invariant, if it is almost
surely G-invariant.

De nition A.4 (Invariant Dirichlet Process). A random probability $ is an IDP with group of transformations G, if

1. pis almost surely G-invariant

where is the concentration parameter andPy the baseline probability measure.

The notation p  IDP( ; P o; G) indicates that the random measure p~is distributed according to an IDP. Note
that, if DP(; P g), then p is not an IDP, since it is not an invariant random probability. Vice versa, if
p IDP(; P o; G), then pis not a DP, since its nite dimensional distributions over non G-invariant partitions are
not Dirichlet. However there is a strong relationship between thetwo processes as shown ibalal (19799.

Theorem A5 (Dalal, 19799. Let ¢ DP(; P ) andp IDP( ;P o; G). Dene

S
a0)==" da( )

=1

then
d
pP=q

Tiwari (1988 provided also a constructive de nition for the IDP, which is the analogue of the stick-breaking
representation of Sethuraman (1994 for the DP.

Proposition A.6 (Tiwari, 1989. If p IDP( ; P o; G), then

X X

0 .
with h= Th @a 9 O Beta(l; ) W Py
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Fig 1: A priori partitions' probabilities joint (on the left) and marginal s

Moreover, if | j Q i Q with Q IDP( ; P ¢; G), by integrating out @, we get the corresponding generalized
Polya urn representation for the process

1 Po |
H DR Xl 1 1X_ .
il ot 1+ L a( ) +ﬁpo
j=1 I=1

For more details about IDPs we refer toDalal (19799, Dalal (1979, Hannum and Hollander (1983, Doss(1984,
Diaconis and Freedman(1986, Tiwari (1988, Ferguson, Phadia, and Tiwari (1992 and Ghosal et al. (1999.

B. Predictive distribution for disease-speci ¢ locations

We recall that the prior over partitions is given by

(
m Lkt Qik:l (ni 1)! if M" is compatible with the natural order
PMy" j 1)/ :
otherwise
wherek is the number of distinct clusters according to the partition M" and ny;:::; ny are the clusters' frequencies

1;mj! Gm
. N 12+31 +6 N 134212421
2:mJ 1m,: (I +2)(!2+! +3) 1;m (| +2)(!2+! +3) m
( 2! +6 1241 ; —

T2z om T 22Tz Om if 1m 6 2m

8
3 ! ; — —
273 am T WGm if ©m= 2m = 3m
H . . . 2 ! H —
4m ] 1m: 2m; 3m;! > T2 3m + 5G6m if 1m 6 2m= 3m
T |

T sm T 137 Gm Otherwise

C. Alternative priors over disorder-speci c locations

For comparison purposes and prior sensitivity analysis we consider alstwo alternative priors over the disorder-
speci ¢ locations: a uniform prior, which does not penalize multidicity but incorporates the prior information on

2
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the severity of disorders, and a mixture of Dirichlet processesIPs), which penalizes for multiplicity but does not
re ect prior information.

C.1. Uniform prior

The uniform prior is obtained associating zero-probability to nonsengal partitions and a uniform prior over the
remaining, i.e. (
if M{" is compatible with the natural order

1
P(MM) /8
(M) 0 otherwise

The predictive distributions are

1 1
il i é j1+§G
and the full conditional distribution of t; is
8 . .
Zfzj (zZij ) ift=1t 1

iDL )y
p(t _tJt ’ yZj s )/
: P>t () )6 if t= tnew

Note that with this prior there is not a common concentration parameter and therefore there is no borrowing of
information across cardiac indexes as well as no Occam's razor e ect.

C.2. Mixture of DPs prior

partition (described in Section 2.1 of the main paper) yields the wdlknown predictive distributions

-5(1 N¢ |

140 ] 141 C

= )
with T; 1 the number of distinct values , in ( 1;:::; j 1) andn¢=cardfi 2f1;:::;j 19: ;= 9. From this,
one easily deduces that the conditional prior odds against two populationsharing the same location is

P(jm 6 jomj!) _ (22)(1i1):|
P(jm = jom]j!) (12)(2)

Under the mixture of DP prior, the full conditional distribution of t; is

8 |
- 20t (i) if £2 0 1)
plt = tjt¢ 1 Oz s A

>1 f (1 )G(d) if t=tnew

wheret( 1) = ftjo: j°6jg (D =f  :t2t(gandn,’ denotes the number of customers already allocated
to table t, after removing the j -th customer.

Moreover, if the prior p, for the concentration parameter is chosen to be gamma with shapa and rate b, the full
conditional for the parameter! can be obtained by generalizing the result for a single mixture of DPsri Escobar and

West (1995, as follows. Denote with T, the number of distinct values of m = f 1.m;:i:; amg, form=1;:::; M
and note that ! depends on the data only throughTz;:::; Ty . The full conditional distribution of ! is:
. w .
p(! Ty Tm)/ po(h) P(Tm j!)
m=1
|
(! 11 Tm L

3
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wherep, (!) is the prior density of I and ¢4(Tm) = p(Tm j! =1). Therefore

2 3
P v o
p(! [T Tm)/ p (1) 1 m T M 4 @M 4 y'@ u? dud
m=1 0
De ning M auxiliary random variables uy, for m=1;:::;M such that up, j! i Beta(! +1; d). It follows that
P
plsugsiinum T Tm) /0 p(P) 0o T M+ )M N U ° @ um)??
m=1 m=1
Finally if pp  Gammaf(a; b), then
. ( ¥ )
p(! juyiiium T Tm)/ 13 m T M2 4 )M exp 1 (b log(um))
m=1
s P |
W M d a+ Thn V W N :
/ ml Gamma a+ Tm Vib log(Um)
v=0 v [ a+m:1 Tm Vv m=1 m=1
b log(um)
m=1

so that the conditional distribution of ! is a mixture of M + 1 Gamma distributions. The sampling of ! becomes

ol ol
p(Vi = Vjug;:iiium)= d’ a+ Tm Vv b log(um)
m=1 m=1
forv2f0;:::;Mg, where T, _is the number of distinct valuesin ,,form=1;:::;M

(i) Sample ! from Gamma a+ mﬂ Tm Vi b mzl log(um) -

D. Additional simulations studies

This section provides additional results obtained from simulation sudies. It is divided in four sub-sections based
on the data generating process (DGP) used to simulate observations.

D.1. Generating mechanism with underlying relevant factor

The DGP used in this sub-section is the same considered in Sectidhl of the main paper, i.e.

Xi1  OBN(0;05)+0:5N(2;05) fori=1;:::;ng
X5 " 0:5N(2; 0:5)+0:5N (4; 0:5)  for i =1;:::;n;
Xis "\ 05N (4;0:5)+0:5N (6; 0:5)  for i=1;:::;n3
Xia iid 0:5N (6; 0:5)+0:5N (8; 0:5) fori=1:::::n,

D.1.1. Inferential results from two additional randomly selectedstudies

In Figures 2 and 3 below, we display the plots regarding the inference for two additbnal randomly selected simulation
studies among the 100 of Section 5.1. Like for the simulation study already dcussed in Section 5.1, the true means
belong to the 95% credible intervals and the model correctly identies the two clusters.
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(a) Inference on location parameters (b) Number of second-level clusters.

(c) Co-clustering. (d) Co-clustering.

Fig 2: Panel (a): Results of the 37th simulation study. Mean point estimates and 95% credible intervals for the four
populations, vertical lines correspond to true values. Panel (b): Poterior distribution on the number of second-level

clusters. Panels (c) and (d): heatmaps of second level clustering,adker colors correspond to higher probability of
co-clustering; in (c) patients are ordered based on the diagnosis and thfaur black squares highlight the within-

sample probabilities and in (d) patients are reordered based on co-cltsring probabilities.
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(a) Inference on location parameters (b) Number of second-level clusters.

(c) Co-clustering. (d) Co-clustering.

Fig 3: Results of the 9th simulation study. Panel (a): Mean point estimates and 95% credible intervals for the four
populations, vertical lines correspond to true values. Panel (b): Poterior distribution on the number of second-level

clusters. Panels (c) and (d): heatmaps of second level clustering,adker colors correspond to higher probability of
co-clustering; in (c) patients are ordered based on the diagnosis and thiur black squares highlight the within-

sample probabilities and in (d) patients are reordered based on co-cltsring probabilities.
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D.1.2. Inference results with alternative priors

Below we display the results obtained on the simulated data of Seatin 5.1 of the main paper using the alternative

priors described in Section C.
Table 1

Simulation studies summaries.

sHDP-with mixture of DPs

sHDP-with unifor prior

MAP Average Median MAP Average Median

Partitions count post. prob. post. prob. count post. prob. p ost. prob.
f1,2,3,49 0 0.000 0.000 0 0.000 0.000
f1gf2,3,49 0 0.000 0.000 0 0.000 0.000
f1,20f 3,49 0 0.000 0.000 0 0.000 0.000
f1,3,49f 2g 0 0.000 0.000 0 0.000 0.000
f 1gf 2gf 3,49 5 0.083 0.022 0 0.030 0.009
f1,2,3gf 49 0 0.000 0.000 0 0.001 0.000
f 1,4gf 2,39 0 0.000 0.000 0 0.000 0.000
f1gf2,3gf4g 2 0.056 0.012 1 0.051 0.014
f1,3gf 2,49 0 0.000 0.000 0 0.000 0.000
f1,2,49f 3g 0 0.000 0.000 0 0.000 0.000
f 1gf 2,49f 3g 0 0.000 0.000 0 0.000 0.000
f 1,29f 3gf 49 0 0.002 0.000 0 0.003 0.000
f 1,30f 29f 49 0 0.000 0.000 0 0.000 0.000
f 1,49f 29f 3g 0 0.000 0.000 0 0.000 0.000
figf2gf3gfdg 93 0.859 0.918 99 0.916 0.956

Both models perform better than the NDP, whose results are in Table 1 ofthe main paper, con rming the
advantages of location-based clustering in presence of small sample esz when compared to distribution-based
clustering. Moreover, sHDP-with mixture of DPs has a slightly worseperformance with respect to our main proposal;
this was expected, since the corresponding prior incorporates lessformation and ignores the natural order of the
four populations.

D.2. Generating mechanism with outliers

We present here a simulation study with a twofold goal: (1) compare again thdocation{based clustering approach
of our proposal with the distribution{based clustering approach of the nested Dirichlet process (NDP) under a
di erent DGP; (2) study the performance of our model in presence of otliers. The simulated data have been
sampled according to the following DGP

DGP 1:  X;i1 "N (0;05) fori=1::::;np 1
Xn1 N (4;05)
Xi:2 AN (1; 0:5) fori=1;:::;n,
Xi. 3 "IN (1;05) fori=1;:::;n3
Xiq "N (2;0:5) for i=1;:::;n4

Thus, the true partition is f1g;f2; 3g; f 4. Moreover, there is one outlier in the rst sample.

Table 2
Posterior probabilities over the space of partitions.

s-HDP  NDP
f1,2,3,4g 0 0
f 1gf 2,3,49 0 0
f1,20f 3,49 0 0
f1,3,4gf 2g 0 0
f 1gf 2gf 3,49 0 0
f1,2,3gf 49 0.013  0.980
f 1,49f 2,39 0 0
f 1gf 2,3gf 49 0.771 0.010
f1,30f 2,49 0 0
f1,2,49f 3g 0 0
f 1gf 2,49f 3g 0 0
f 1,29f 3gf 4g 0.006 0.020
f 1,30f 29f 49 0 0
f 1,49f 29f 3g 0 0
f 1gf 2gf 3gf 49 0.210 0
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Table 2 displays the posterior probabilities obtained using our model (s-HP) and the NDP. Our model largely
outperforms the competitor.

(a) Co-clustering. (b) Co-clustering.

Fig 4: Posterior similarity matrices for the simulation study under D GP 1. In (a) patients are ordered based on the
diagnosis and the four black squares highlight the within-sample probabities; in (b) patients are reordered based
on co-clustering probabilities.

Figure 4 shows the posterior co-clustering probabilities obtained in the gnulations study. Our proposal is able
to correctly identify the outlier.

D.3. Generating mechanism with non-location e ects

We present a simulation study with a twofold goal: (1) compare again the locabbn{based clustering approach of our
proposal with the distribution{based clustering approach of the nestel Dirichlet process (NDP) under a di erent
DGP; (2) study the performance of our model for the case of heterogeneitpetween populations not being fully
explained by shift in locations. The simulated data have been sampgd according to the following DGP.

iid

DGP 2: X1 = O5N( 1;055)+0:5N (1; 0:5) for i=1;:::;n;
X2 "N (1;05) fori=1;::0:n,
Xi:3 "IN (1, 0:5) fori=1:::::n3
Xia "IN (2; 0:5) fori=1;::0;n4

Thus, the true partition is f1g;f2; 3g; f 4g. Moreover, the relative e ect of the rst population w.r.t. the othe rs is
not fully explained by the shift of the location, since the whole didribution is di erent and not only the mean.

Table 3
Posterior probabilities over the space of partitions.

s-HDP  NDP
f1,2,3,4g 0 0
f1gf 2,3,49 0.001 0
f1,2gf 3,49 0 0
f1,3,49f 2g 0 0
f 1gf 29f 3,49 0.001 0
f1,2,3gf 49 0.058 0.98
f1,4gf 2,39 0 0
f 1gf 2,3gf 49 0.706 0.01
f1,3gf 2,49 0 0
f1,2,49f 3g 0 0
f 1gf 2,49f 3g 0 0
f 1,2gf 3gf 4g 0.019 0.02
f 1,3gf 29f 49 0 0
f 1,4gf 29f 3g 0 0
f 1gf 2gf 3gf 49 0.214 0
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Table 3 displays the posterior probabilities obtained using our model (s-HP) and the NDP. Our model largely
outperforms the competitor.

(a) Co-clustering. (b) Co-clustering.
Fig 5: Posterior similarity matrices for the simulation study under D GP 2. In (a) patients are ordered based on the

diagnosis and the four black squares highlight the within-sample proballities; in (b) patients are reordered based
on co-clustering probabilities.

Figure 5 shows the posterior co-clustering probabilities. Our proposal is ald to correctly identify the non{location
e ect (see Figure 5(a)).

D.4. Simulation studies under non-symmetric data generating process

Here we report three simulation studies to check the performance oftte model in presence of deviations from
symmetry. The simulated data have been sampled according to the flwing DGPs.

DGP 3: X1 "IN (0; 0:5) fori=1;:::;n1
Xi:2 i Gamma(3; 3) fori=1;:::;n;
Xi;3“dN (1; 0:5) fori=1;:::;n3
Xi-a N (2; 0:5) fori=1;:::,n4
DGP 4. X;1 ' O7N( 1;0:5)+0:3N(1;0:5) for i=1;:::;m
Xi-2 I (1; 0:5) fori=1;:::;ny
Xi 3 N (1; 0:5) fori=1;:::;n3
Xia "IN (2; 0:5) fori=1;:::;n4
DGP 5: Xi1 id Gamma(1G, 10) fori=1;:::;n
Xi:2 i Gamma(1G, 10) fori=1;:::;n3
Xi:3 i Gamma(1G 10) fori=1;:::;n3
Xis " 0:5N(0; 0:5)+0:5N (2; 0:5) for i=1:::::n4

Under all DGPs the model is misspeci ed due to lack of symmetry in o® or more populations. Under DGP 3 and
DGP 4 the true partition is f1g;f2; 3g; f 49, while under DGP 5 it is f1;2;3;4g. In DGP 3 the second population
di ers from the others also in distribution (what we called non-location e ect), the same is true for the rst and

the fourth populations respectively under DGP 4 and DGP 5. Table 4 shows that the model is able to detect the
right clustering of the population-speci ¢ locations under all three DGPs. Moreover, Figure6 shows co-clustering
probabilities that di er in correspondence of the populations a ected by non-location e ects, more or less evidently
based on the DGP used to generate the data. These results under missgi cation are reassuring: the model appears

9
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robust in estimating the partitions of the locations and, moreover, the di erent within-population patterns of co-
clustering probabilities still highlight heterogeneities di er ent than shifts in population-speci ¢ locations.

Table 4
Posterior probabilities over the space of partitions.

DGP3 DGP4 DGP5
£1,2,3,4g 0 0.001 0.494
f1gf2,3,4g 0 0 0.023
f1,29f 3,49 0 0 0.014
1,3,4gf 29 0 0 0
f1gf2gf 3,49 0 0 0.004
f1,2,3gf 49 0.016 0 0.375
f1,49f2,3g 0 0 0
f1gf2,3gf4g 0.736  0.788 0.047
f1,39f 2,49 0 0 0
f1,2,49f 3g 0 0 0
f 1gf 2,49f 3g 0 0 0
f 1,29f 3gf 49 0.015 0 0.030
f 1,39f 29f 49 0 0 0
f 1,49f 29f 3g 0 0 0
figf2gf3gfdg | 0.232 0.211 0.012

(a) Co-clustering DGP 3. (b) Co-clustering DGP 4.

(c) Co-clustering DGP 5.

Fig 6: Posterior similarity matrices under DGP 3-4-5. Patients are ordeed based on the diagnosis and the four
black squares highlight the within-sample probabilities.

10
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E. Hypertensive dataset
E.1. Additional results

The gures below report the density estimates, the heatmaps of co-tistering probabilities between pairs of patients
and population-speci ¢ credible intervals for all ten response variattes.

(b) co-clustering (c) co-clustering
(a) density estimation

(b) co-clustering (c) co-clustering
(a) density estimation

(b) co-clustering (c) co-clustering

(a) density estimation
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(b) co-clustering
(a) density estimation

(b) co-clustering
(a) density estimation

(b) co-clustering
(a) density estimation

(b) co-clustering
(a) density estimation
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(c) co-clustering

(c) co-clustering

(c) co-clustering

(c) co-clustering
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(a) density estimation

(a) density estimation

(a) density estimation

(b) co-clustering

(b) co-clustering

(b) co-clustering
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(c) co-clustering

(c) co-clustering

(c) co-clustering
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E.2. Prior sensitivity to hyperpriorparameters

Here we verify the robustness of the model w.r.t. di erent specications of the hyperparameters. We consider two
alternative speci cations for the hyperparameters, which di er fr om the one employed in Section 5.2.

Prior speci cation 1: Gm = N(O; 1); Pom NIG( =0; =0:01; =3; = 3); all concentration
parameters have prior equal to Gamma(3 3)
Prior speci cation 2:  Gp =N(0; 2); Pom NIG( =0; =1; =2; =4); allconcentration parameters

have prior equal to Gamma(Q1; 0:1)

The model turns out to be rather robust w.r.t. the choice of the hyperparameters, leading to the same selected
models for all cardiac indexes under all considered speci cations. e detailed results are in the following tables and
gures, which report the posterior over partitions of locations, the density estimates, and the posterior similarity
matrices for the last cardiac index.

Table 5
Posterior probabilities over partitions of means, using pri  or speci cation 1. Maximum a posteriori probabilities are in bold.

partitions Cl CwiI LVMI IVST LVPW EF FS EW AW E/A
fC,G,M,Sg 0.018 0.000 0.000 0.000 0.000 0.371 0.276 0.100 0.000 0.000
f Cgf G,M,Sg 0.002 0.526 0.001 0.086 0.015 0.068 0.207 0.025 0.028 0.000
fC,GgfM,Sg 0.002 0.000 0.000 0.000 0.000 0.038 0.035 0.058 0.072 0.045
f C,M,Sgf Gg 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

f Cgf Ggf M,Sg 0.001 0.139 0.000 0.021 0.023 0.025 0.087 0.034 0.244 0.054
fC,G,Mgf Sg 0.436 0.000 0.612 0.000 0.000 0.279 0.04 0.499 0.007 0.001
fC,Sgf G,Mg 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
fCgf G,Mgf Sg 0.157 0.100 0.180 0.542 0.678 0.073 0.172 0.103 0.265 0.026
fC,Mgf G,Sg 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
fC,G,Sgf Mg 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

fCgf G,Sgf Mg 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
fC,Gof Mgf Sg 0.252 0.000 0.092 0.000 0.000 0.081 0.054 0.113 0.087 0.361
fC,Mgf Ggf Sg 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
fC,Sgf Ggf Mg 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
fCgfGgfMgfSg  0.131 0.234  0.116 0.351 0.284 0.066 0.130 0.068 0.295 0.513

(b) co-clustering (c) co-clustering
(a) density estimation
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Table 6
Posterior probabilities over partitions of means, using pri  or speci cation 2. Maximum a posteriori probabilities are in bold.

partitions Cl CWwiI LVMI IVST LVPW EF FS EW AW E/A
fC,G,M,Sg 0.023 0.000 0.000 0.000 0.000 0.341 0.281 0.109 0.000 0.000
fCof G,M,Sg 0.002 0.484 0.000 0.097 0.055 0.079 0.199 0.028 0.029 0.000
fC,Ggf M,Sg 0.002 0.000 0.001 0.000 0.000 0.036 0.029 0.042 0.074 0.058
fC,M,Sgf Gg 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
f Cgf Ggf M,Sg 0.001 0.134 0.001 0.022 0.028 0.033 0.090 0.033 0.238 0.068
fC,G,MgfSg 0.408 0.000 0.585 0.000 0.000 0.254 0.036 0.494 0.014 0.001
fC,Sgf G,Mg 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
f Cgf G,Mgf Sg 0.145 0.111 0.184 0.530 0.643 0.077 0.172 0.105 0.254 0.019
fC,Mgf G,Sg 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
fC,G,Sgf Mg 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
f Cgf G,Sgf Mg 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
fC,Gof Mgf Sg 0.247 0.000 0.097 0.000 0.000 0.089 0.050 0.106 0.076 0.346
fC,Mgf Ggf Sg 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
fC,Sgf Ggf Mg 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
fCgfGgfMgfSy 0.172 0.270 0131 0.351 0.274 0.091 0.144 0.084 0.315 0.508

(a) density estimation

(b) co-clustering
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(c) co-clustering
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E.3. s-HDP with uniform prior estimates on the Hypertensive Dataset

Here we report the results on the real dataset, obtained with the s-HDP \ith independent uniform priors on disease-
speci ¢ locations, described in Section C.1. This prior inducesridependence between di erent cardiac indexes and
no borrowing of information (i.e. penalization for multiplicity) is ap plied. Moreover, compared to the priors used
in Section 5 of the main paper, here the prior associates higher probaltty to ner partitions and, thus, does not
apply a Ockham's-razor penalty, resulting in a di erent MAP for the E F.

Table 7
Posterior probabilities over partitions obtained through i  ndependent uniform priors. Maximum a posteriori probabiliti es are in bold.

partitions Cl Cwi LVvMI  IVST LVPW EF FS EW AW E/A
fC,G,M,Sg 0.009 0.000 0.000 0.000 0.000 0.248 0.216 0.047 0.000 0.000
fCof G,M,Sg 0.002 0.568 0.001 0.084 0.014 0.078 0.205 0.027 0.039 0.000
fC,Ggf M,Sg 0.003 0.000 0.002 0.000 0.000 0.082 0.079 0.160 0.102 0.055
fC,M,Sgf Gg 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
fCof Ggf M, Sg 0.001 0.143 0.001 0.024 0.029 0.027 0.087 0.041 0.262 0.064
fC,G,Mgf Sg 0.376 0.000 0.555 0.000 0.000 0.324 0.060 0.422 0.005 0.002
fC,Sgf G,Mg 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
fCof G,Mgf Sg 0.157 0.115 0.188 0.614 0.730 0.078 0.189 0.096 0.304 0.045
fC,Mgf G,Sg 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
fC,G,Sgf Mg 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

fCgf G,Sgf Mg 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
fC,Gof Mgf Sg 0.353 0.000 0.173 0.000 0.000 0.125 0.088 0.162 0.087 0.378
fC,Mgf Ggf Sg 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
fC,Sgf Ggf Mg 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
fCgf GgfMgfSg  0.099 0.174  0.079 0.278 0.227 0.039 0.077 0.045 0.201 0.457

p

logis B i 0.493 0.426 0.432 0.352 0.269 0.664 0.725 0.624 0.603 0.448

(b) co-clustering (c) co-clustering
(a) density estimation
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E.4. NDP estimates on the Hypertensive Dataset

Finally we display the results obtained with ten independent NDPs used on the real dataset. As expected, the NDP
tends to identify coarser partitions. Moreover, the independene between cardiac indexes of the NDP approach leads
to more concentrated posterior probabilities, because no borrowing dhformation (i.e. penalization for multiplicity)

is applied.

Table 8
Posterior probabilities over partitions obtained through i  ndependent NDPs. Maximum a posteriori probabilities are in bold.

partitions Cl Cwi LVvMI  IVST LVPW EF FS EW AW E/A
fC,G,M,Sg 0.117 0.000 0.000 0.000 0.000 0.613 0.394 0.116 0.000 0.000
fCgf G,M,Sg 0.004 0.999 0.001 0.696 0.663 0.047 0.099 0.049 0.313 0.000
fC,Ggf M,Sg 0.010 0.000 0.014 0.000 0.001 0.027 0.035 0.206 0.043 0.768
fC,M,Sgf Gg 0.013 0.000 0.000 0.000 0.000 0.040 0.067 0.051 0.000 0.000
fCgf GgfM,Sg 0.001 0.000 0.001 0.013 0.163 0.005 0.015 0.088 0.468 0.013
fC,G,Mgf Sg 0.552 0.000 0.906 0.000 0.000 0.103 0.091 0.154 0.002 0.000
fC,Sgf G,Mg 0.070  0.000 0.000 0.000 0.000 0.025 0.069 0.029 0.000 0.000
fCgf G,Mgf Sg 0.077 0.001 0.010 0.207 0.136 0.010 0.032 0.050 0.093 0.006
fC,Mgf G,Sg 0.009 0.000 0.003 0.023 0.000 0.035 0.045 0.017 0.001 0.000
fC,G,SgfMg 0.047 0.000 0.000 0.000 0.000 0.068 0.081 0.073 0.000 0.000

fCof G,Sgf Mg 0.003 0.001 0.000 0.052 0.027 0.007 0.022 0.012 0.030 0.000
fC,Ggf Mgf Sg 0.065 0.000 0.047 0.000 0.000 0.011 0.016 0.071 0.007 0.208
fC,Mgf Ggf Sg 0.025 0.000 0.017 0.004 0.000 0.007 0.017 0.033 0.001 0.000
fC,Sgf Ggf Mg 0.006 0.000 0.000 0.000 0.000 0.006 0.014 0.023 0.000 0.000
fCgf GgfMgfSg  0.007 0.000 0.002 0.007 0.012 0.001 0.007 0.032 0.044 0.006
p

logis P Pi 0.603 0.016 0.167 0.349 0.368 0.567 0.785 0.898 0.509 0.239

References

Blackwell, D. and J. B. MacQueen (1973). Ferguson distributions via Rolya urn schemes.Annals of Statistics 1,
353{355.

Dalal, S. (1979a). Dirichlet invariant processes and applications to honpametric estimation of symmetric distri-
bution functions. Stochastic Processes and their Applications 999{107.

Dalal, S. R. (1979b). Nonparametric and robust Bayes estimation of location.Optimizing methods in statistics 9
141{166.

Diaconis, P. and D. Freedman (1986). On inconsistent Bayes estimates obtation. Annals of Statistics 14, 68{87.

Doss, H. (1984). Bayesian estimation in the symmetric location problemZeitschrift far Wahrscheinlichkeitstheorie
und Verwandte Gebiete 68127{147.

Escobar, M. D. and M. West (1995). Bayesian density estimation and inferece using mixtures. Journal of the
American Statistical Association 90, 577{588.

Ferguson, T. S., E. G. Phadia, and R. C. Tiwari (1992). Bayesian nonparameti¢ inference.Lecture Notes-Monograph
Series 17 127{150.

Ghosal, S., J. K. Ghosh, and R. Ramamoorthi (1999). Consistent semiparameic Bayesian inference about a
location parameter. Journal of Statistical Planning and Inference 77, 181{193.

Hannum, R. and M. Hollander (1983). Robustness of Ferguson's Bayes estimator @f distribution function. The
Annals of Statistics, 632{639.

Sethuraman, J. (1994). A constructive de nition of Dirichlet priors. Statistica Sinica 4, 639{650.

Tiwari, R. C. (1988). Convergence of Dirichlet invariant measures and thdimits of Bayes estimates.Communications
in Statistics-Theory and Methods 17 375{393.

18



