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Abstract

We build a model of a financial market where a large number of
firms determine their dynamic emission strategies under climate tran-
sition risk in the presence of both green-minded and neutral investors.
The firms aim to achieve a trade-off between financial and environ-
mental performance, while interacting through the stochastic discount
factor, determined in equilibrium by the investors’ allocations. We for-
malize the problem in the setting of mean-field games and prove the ex-
istence and uniqueness of a Nash equilibrium for firms. We then present
a convergent numerical algorithm for computing this equilibrium and
illustrate the impact of climate transition risk and the presence of
green-minded investors on the market decarbonization dynamics and
share prices. We show that uncertainty about future climate risks and
policies leads to higher overall emissions and higher spreads between
share prices of green and brown companies. This effect is partially re-
versed in the presence of environmentally concerned investors, whose
impact on the cost of capital spurs companies to reduce emissions.

Key words: Decarbonization, climate transition risk large financial mar-
kets, equilibrium asset pricing, mean-field games

1 Introduction

Decarbonization of industry is an essential ingredient for a successful en-
vironmental transition, and the financial sector has a key role to play in
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meeting the financing needs of green companies and directing the funds
away from brown, carbon intensive projects. The amount of assets invested
in climate-aware funds increased more than two-fold in each year between
2018 and 2021, reaching USD 408 billion at the end of 2021 (Morningstar
Manager Research, 2022), and several authors aimed to quantify the impact
of these additional funding flows on the emission reductions in the real econ-
omy. Such impact can be achieved only if green-minded investors target a
sufficiently large proportion of companies (Berk and van Binsbergen, 2021),
and the environmental performance of each company depends on factors
which are not directly controlled by investors, such as the general economic
situation, financial health of the company, and future climate policies. The
decarbonization of a financial market is therefore the result of interaction of
a large number of companies, operating in an uncertain environment, and
should be modeled as a dynamic stochastic game with a large number of
players.

Here we develop a dynamic model for the decarbonization of a large fi-
nancial market, arising from an equilibrium dynamics involving companies
and investors, and built using the analytical framework of mean-field games.
Mean-field games, introduced in Lasry and Lions (2007) and Huang et al.
(2006) provide a rigorous way to pass to the limit of a continuum of agents
in stochastic dynamic games with a large number of identical agents and
symmetric interactions. In the limit, the representative agent interacts with
the average density of the other agents (the mean field) rather than with
each individual agent. This limiting argument simplifies the problem, lead-
ing to explicit solutions or efficient numerical methods for computing the
equilibrium dynamics.

The key ingredient of our framework is the notion of mean-field financial
market, which describes a large financial market with a continuum of small
firms, where the performance of each firm is driven by idiosyncratic noise
and a finite number of market-wide risk factors (common noise). We assume
that the investors in this market are ’large’ meaning that in every investor’s
portfolio the idiosyncratic risk of small firms is completely diversified, and
the porfolio value depends only on market-wide risk factors. Consequently,
and consistently with the classical finance theories (Ang and Chen, 2007;
Jagannathan et al., 1995), only market-wide risk factors are priced, and
the stochastic discount factor depends only on the common noise and the
’mean-field’.

We then consider a mean-field market where shares of a continuum of
carbon-emitting firms are traded. Each firm determines its dynamic stochas-
tic emission schedule based on its own information and on the market-wide
risk factors and market-wide decarbonization dynamics, rather than on the
individual decisions of each other small firm, which it cannot observe. To fix
its emission level, each firm optimizes a criterion depending on its financial
and environmental performance. The financial performance is measured by

2



the market value of the firm’s shares and therefore depends on the stochastic
discount factor, introducing an interaction between the firms. The environ-
mental performance is measured by carbon emissions, which are penalized
in the optimization functional of the firm. The strength of this emission
penalty is stochastic, reflecting the uncertainty of climate transition risk.
This “stochastic carbon penalty” is a key feature of our model, allowing
us to analyze the impact of climate policy uncertainty on market decar-
bonization and asset prices in a diffusion setting. We show that even in the
absence of green investors, higher uncertainty about future climate policies
and transition risks creates incentive for all companies to emit more carbon
and leads to higher share prices and higher spreads between share prices of
carbon efficient and carbon intensive companies, confirming the findings of
De Angelis et al. (2022) in a more realistic setting with stochastic emission
schedules.

The second key ingredient of our model is the interaction between two
large investors (or two classes of investors), with different views about the
future: while the regular investor uses the real-world measure, the green-
minded investor uses an alternative measure, which may, for example, over-
weight the probability of some environmental policies, making the costs of
climate transition more material. In the presence of such green-minded in-
vestors, all companies will reduce their emissions and pay lower dividends,
leading to lower share prices. However, carbon intensive companies are af-
fected much stronger than climate-friendly carbon efficient companies. This
pressure on share prices, in turn, spurs the polluting companies to decrease
their emissions.

We rigorously prove the existence and uniqueness of the mean-field game
Nash equilibrium for the contunuum of firms interacting through market
prices of their shares, providing a robust solution to the stochastic “decar-
bonization game” in a competitive environment. The equilibrium is mate-
rialized by the equilibrium stochastic discount factor, which can be used to
compute share prices and emission strategies for each firm. We then develop
a convergent numerical algorithm to compute the equilibrium and use it to
study the impact of climate transition risk and green investors on the market
decarbonization dynamics and share prices.

The paper is structured as follows. After discussing the related litera-
ture in the remainder of this section, we provide a heuristic description of
our approach in the case of a finite number of agents in Section 2. Then,
in Section 3, we introduce the notion of mean-field market where large in-
vestors may invest into a continuum of firms and in Section 4, we describe
the mean-field game setting and define the optimization problem of indi-
vidual firms and the notion of equilibrium used in this paper. In Section
5, we state and prove the main existence and uniqueness result, propose a
convergent numerical algorithm for computing the equilibrium, and prove
its convergence to the solution of the mean field game problem is shown.

3



Section 6 illustrates the theory with numerical examples and discusses the
implications of our results, and section 7 concludes the paper.

Related literature Our paper contributes to the emerging literature on
impact investing, and on the role of climate risk and uncertainty in sus-
tainable finance. Pástor et al. (2021) build a one-period equilibrium model
to describe the impact of investors’ ESG preferences on the performance of
green assets. Avramov et al. (2022) analyze the asset pricing implications
of the uncertainty of corporate ESG profiles, also in a one-period setting.
The impact of sustainable investing on the cost of capital, firm behavior and
social outcomes is studied, in a one-period equilibrium model, in an early
contribution of Heinkel et al. (2001), and more recently, theoretically and
empirically, in (Berk and van Binsbergen, 2021; Oehmke and Opp, 2022;
Chowdhry et al., 2019; Landier and Lovo, 2020; Green and Roth, 2021).
The impact of climate risk on investors’ choices is also studied in a number
of papers. Bolton and Kacperczyk (2021) provide empirical evidence that
investors are requiring compensation for their exposure to carbon risk; Ilhan
et al. (2021) argue that climate policy uncertainty is priced in the options
market, and in particular that cost of downside protection is larger for firms
with carbon intensive business models; Bourgey et al. (2022) quantify the
impact of carbon emissions on a firm’s credit risk in the context of shared
socio-economic pathways, Huang et al. (2018) show that firms adapt their
financing choices to physical climate risks affecting their performance; and
Krueger et al. (2020) report the results of a survey showing that climate
risks are considered to be material by institutional investors, while Ander-
sson et al. (2016), Engle et al. (2020) and Alekseev et al. (2022) develop
investment strategies allowing to hedge these risks.

Given that the vast majority of theoretical research on impact investing is
done in a one-period setting, De Angelis et al. (2022) develop a continuous-
time model for the impact of green investment on company emission dy-
namics, allowing for time-dependent emission schedules. However, in their
model the emissions schedules are deterministic (fixed at time 0), and the
arguments used to prove existence of equilibrium are partly heuristic, be-
cause the number of firms is assumed to be finite. In our model the emission
schedules are stochastic and the firms can change them at any time depend-
ing on their financial performance of the individual company, the market
dynamics, and the materialization of climate risk; moreover, the existence
and uniqueness of equilibrium is shown rigorously.

Our model is based on the general framework of mean field games intro-
duced in Lasry and Lions (2007) and Huang et al. (2006), and more precisely
mean-field games with common noise (Carmona et al., 2016; Ahuja, 2016;
Carmona and Delarue, 2018b; Cardaliaguet et al., 2019; Djete, 2021). Mean
field game with common noise are often untractable due to the lack of com-
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pactness of the space containing the random measures, which correspond to
the conditional law of the state process given the common noise. A possible
workaround is to discretize the common noise to recover compactness and
apply Kakutani’s or Schauder’s fixed point theorem (Carmona et al., 2016;
Barrasso and Touzi, 2022; Cardaliaguet et al., 2022). In this paper, instead
of working on the space of random measures, we write our mean field game
problem as a fixed point equation for the stochastic discount factor (inter-
action term). The proof strategy is to form a strictly convex minimization
problem whose first order condition is equivalent to the fixed point problem.
This allows us to show the existence and uniqueness of a strong solution
to the mean field game problem and to apply the generalized conditional
gradient algorithm (Bredies et al., 2009) to provide a numerical solution.

We also contribute to the literature on equilibrium models based on
mean-field games. In mathematical finance Casgrain and Jaimungal (2020);
Fu et al. (2021); Gomes et al. (2021); Féron et al. (2022); Fujii and Taka-
hashi (2022), among other authors, developed models of equilibrium price
formation based on interaction of a large number of traders in the frame-
work of mean-field games. In these models, although market clearing may
be imposed, the agents are cost minimizers rather than utility optimizers so
that that Arrow-Debreu equilibrium is not constructed. A game of many
utility maximizing agents is considered in Lacker and Soret (2020), but the
agents are price takers in this reference. Instead, we build on the classical
equilibrium approach, along the lines of Duffie and Huang (1985); Duffie
(1986); Huang (1987) and many more recent papers (Anderson and Rai-
mondo, 2008; Hugonnier et al., 2012; Riedel and Herzberg, 2013), where
utility-optimizing agents determine prices in equilibrium. Although mean-
field games and related notions have been used in economics, for example,
in industry dynamics models (Luttmer, 2007) and for modeling income and
wealth distributions (Achdou et al., 2022) they have rarely been applied in
equilibrium pricing theory.

2 Motivation : a n-firm financial market model

Although we will be primarily interested in the mean-field game model in
this paper, we start by describing the n-agent setting to motivate the limit
as the number of agents goes to infinity. The discussion in this section
is heuristic; precise statements and proofs will be given in the mean-field
setting in the subsequent sections.

Consider a sequence of filtered probability spaces (Ωn,Fn,Fn,Pn). We
assume that, on each probability space (Ωn,Fn,Fn,Pn), there exists a d-
dimensional standard Brownian motionB0 and an independent n-dimensional
standard Brownian motion (B1, . . . , Bn). The space (Ωn,Fn,Fn,Pn) de-
scribes a financial market with n companies.
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Individual firm dynamics and optimization We assume that the firm
value of i-th company follows the dynamics below:

dV i
t = V i

t (µ
i
tdt+ σitdB

i
t + σi,0t dB0

t ) + citψ
i
tdt, V i

0 = vi. (1)

Here, the Brownian motion B models the idiosyncratic risk of the company,
while B0 corresponds to market-wide and economy-wide risk factors. The
process ψit ≥ 0 denotes the instantaneous emissions of firm i and the process
cit is inversely proportional to the emission intensity of production and will
be referred to as “emission efficacy” in the sequel; the values of this process
are low for carbon-intensive companies and high for green, carbon efficient
firms which create a lot of wealth with little emissions. Thus, in the absence
of emissions, the firm value follows an autonomous dynamics (with perhaps
µit < 0), and to increase the firm value beyond this baseline, the firm must
produce and therefore increase its emissions.

The solution to Equation (1) is given explicitly by

V i
t = viE it + E it

∫ t

0
E i,−1
s cisψsds,

E it = exp

(∫ t

0
σisdB

i
s +

∫ t

0
σi,0s dB0

s +

∫ t

0

(
µis −

(σi)2

2
− (σi,0)2

2

)
ds

)
.

We fix a time horizon T > 0 and assume, as in many papers on equilibrium
asset pricing, that at this time the firm pays to its shareholders a terminal
liquidating dividend equal to the firm value V i

T per share. To be consistent
with the limiting framework, we assume that each company has exactly 1/n
shares outstanding. Further, we assume the existence of a complete and
arbitrage-free financial market, where the shares of all firms are traded, and
the prices are determined by a stochastic discount factor process (ξnt )0≤t≤T
with ξn0 = 1: the price of i-th company’s stock at time t ≤ T is given by

Sit =
1

ξnt
E[ξnTV i

T |Ft]. (2)

Moreover, we assume the existence of a risk-free asset paying zero interest,
which means that

ξnt = E[ξnT |Ft].

This means that it is enough to determine ξnT and to simplify notation we
shall denote ξn := ξnT .

To determine its emission schedule, each company aims to optimize the
following functional:

J i(ψi) = Si0 −
1

2
E
[∫ T

0
αit|ψit|2dt

∣∣∣F0

]
.
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Here, the second term corresponds to direct or indirect costs associated
to emissions, and the stochastic process (αit)0≤t≤T models the future in-
tensity of such costs. Each company therefore aims to achieve a trade-off
between maximizing financial performance, as measured by the share price,
and minimizing the negative environmental impact, as measured by the
emission penalty. Using equilibrium share price as a measure of financial
performance in the optimization objective of the firm is consistent with the
literature (Heinkel et al., 2001). De Angelis et al. (2022) suggest to use the
expected sum of discounted future prices, but since the price at time t = 0 al-
ready accounts for all future cash flows, it seems sufficient and more natural
to use the initial price. On the other hand, convex emission penalty similar
to ours was used, for example in the context of a single-firm optimization
problem in Bourgey et al. (2022).

Using the formula (2) for the share price, we see that maximizing J i is
equivalent to maximizing

E
[
ξnE iT

∫ T

0
E i,−1
t citψ

i
tdt−

1

2

∫ T

0
αit(ψ

i
t)

2dt
∣∣∣F0

]
.

The optimal solution takes the form

ψit =
cit
αit

E[ξnE it,T |Ft], (3)

where E it,T = E i,−1
t E iT , and the corresponding terminal dividend equals

V i
T = viE iT +

∫ T

0

(cit)
2

αit
E it,T E[ξnE it,T |Ft]dt. (4)

The financial market We further assume that in the financial market
there are two investors: the green investor and the regular investor. The
green investor solves the optimization problem

min
W g

En,g[e−γ
gW g

] subject to En[ξnW g] ≤ wg,

and the regular investor solves

min
W r

En[e−γ
rW r

] subject to En[ξnW r] ≤ wr.

Here, En denotes the expectation with respect to the probability measure
Pn, and En,g denotes the expectation with respect to the probability measure
of the green investor Pn,g, defined by

dPn,g

dPn
= Z, Z = e−

∫ T
0 λsdB0

s− 1
2

∫ T
0 |λs|2ds.
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The green investor thus solves the optimization problem under a different
probability measure, under which, for example, the emission cost parameter
αit may follow a different distribution, making the climate transition risks
more material. Note also that the density of the measure change depends
only on the market-wide risk factors but not on individual risk of each
company, since we aim to study large portfolio investors, who do not have
access to private information of each firm.

The solutions to the optimization problems are of the form

W g =
1

γg
ln
ξn

Z
+ cg, W r =

1

γr
ln ξn + cr,

for some constants cg and cr to be determined.
The market clearing condition assuming unlimited supply of the risk-free

asset writes:

W r +W g =
1

n

n∑
i=1

V i
T + c,

for an arbitrary constant c. Solving for the stochastic discount factor, we
find:

ξn =
exp

(
−γ∗ 1

n

∑n
i=1 V

i
T + ρ lnZ

)
E
[
exp

(
−γ∗ 1

n

∑n
i=1 V

i
T + ρ lnZ

)] , (5)

where ρ = γr

γg+γr ∈ (0, 1). Since the optimal dividend of each company V i
T ,

given by (4) depends on the stochastic discount factor, it is tempting to
interpret equation (5) as a fixed-point equation and look for the equilibrium
stochastic discount factor. However in the n-agent setting, the solution (3) is
not optimal in equilibrium, since the stochastic discount factor ξn depends
on the emission strategy of the i-th firm. Nevertheless, this fixed-point
argument becomes valid in the mean-field game setting that we consider in
the rest of this paper. First, in the following section, we define the suitable
notion of financial market, where large investors invest into a continuum of
small companies.

3 Mean-field financial market

Stochastic context and notations The following notations shall be used
for the rest of this paper. Let (Ω,F ,P) be a probability space, supporting a
pair (B,B0) of independent (possibly multidimensional) standard Brownian
motions and an independent random variable X corresponding to the initial
condition. We denote by F = (Ft)t≥0 the P-complete natural filtration of
(X,B,B0) and by F0 = (F0

t )t≥0 the P-complete natural filtration of B0.
In our setting, B is an idiosyncratic noise and B0 is the common noise.
Following standard mean field game theory, the common noise B0 appears
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in the state equation of the representative firm and captures the intrinsic
randomness of the market environment. The expectation with the respect
to the reference measure P will be denoted simply by E, and the expectation
with respect to any other measure Q will be denoted by EQ.

In general, for a σ-field G, we denote by Lp(G) the space of G-measurable
random variables X satisfying

E[|X|p] < +∞,

and for a filtration G = (Gt)0≤t≤T we denote by Lp(G) the space of G-
progressively measurable random processes (Xt)0≤t≤T satisfying

E
[∫ T

0
|Xt|pdt

]
< +∞.

Similarly, we denote by L0(G) and L0(G) the spaces of measurable random
variables and progressively measurable random processes without a specific
integrability condition. Moreover, for a σ-field G we write

Lp+(G) = {X ∈ Lp(G) : X ≥ 0 a.s.}.

Finally, 1 ∈ Lp(FT ) for all p denotes the constant variable equal to 1 almost
surely.

It is clear that F0 satisfies the immersion property with respect to F
(Carmona and Delarue, 2018a, page 5), which implies, in particular, that
for all ζ ∈ L1(Ft), E[ζ|F0

T ] = E[ζ|F0
t ].

Description of the market In the rest of this section we define the notion
of mean-field financial market, needed to study the behavior of large portfolio
investors in financial markets with many small companies. We consider a
large financial market with a risk-free asset whose price is constant and
equal to 1 and a continuum of risky assets. According to the paradigm of
mean-field games, we define the market by means of the representative risky
asset, whose price follows the dynamics

dSt
St

= ηtdt+ βtdBt + β0t dB
0
t , S0 ∈ L0(F0),

where (ηt)t∈[0,T ], (βt)t∈[0,T ] and (β0t )t∈[0,T ] belong to L0(F) and are such that∫ T

0
(|ηt|+ |βt|2 + |β0t |2)dt < +∞ a.s.

This process defines simultaneously the dynamics of a single asset and
the distribution of prices of all assets in the market at any given time.
For example, the law of St conditional on the common noise, denoted by
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mt = L(St|F0
t ) defines the distribution of asset prices at time t, given the

realization of the common factors up to time t. The process (mt)0≤t≤T is a
random process, adapted to the filtration of the common noise F0 and taking
values in the space of probability measures on R+. Since mt is a probability
measure, we implicitly assume that the total quantity of all stocks in the
market (the market size) is normalized to 1.

We assume that there exists a stochastic discount factor process (ξt)0≤t≤T
with ξ0 = 1 and ξt > 0 for all t ∈ [0, T ] a.s., such that

• (ξt)0≤t≤T is a F0-martingale;

• (Stξt)0≤t≤T is a F-martingale.

Under the martingality assumption, one can also define the equivalent mar-
tingale measure Q by taking Q(A) = E[ξT1A] for all measurable sets A.

By the martingale representation theorem, and given the positivity of
the stochastic discount factor, it can be written in the following form:

ξt = 1−
∫ t

0
ξsθsdB

0
s ,

for some F0-adapted process θ. Applying the integration by parts formula
we can write:

d(Stξt) = Stξt(ηtdt− θtβ
0
t dt+ βtdBt + β0t dB

0
t − θtdB

0
t ),

so that ηt = θtβ
0
t and we can write the representative risky asset price as

follows:
dSt
St

= βtdBt + β0t (θtdt+ dB0
t ).

In other words, only common market-wide risk factors have a risk-premium
and idiosyncratic risk factors are not priced in this large market since they
are fully diversifiable.

A mean-field portfolio strategy is a couple (X0, ϕ), where X0 ∈ L0(F0)
and ϕ is a F-adapted R-valued stochastic process ϕ. In this large market, we
assume that in any investor’s portfolio, the idiosyncratic risk of individual
stocks is fully diversified. This is consistent with the practices of large
portfolio investors who may invest simultaneously in thousands of stocks.
Thus, the value of the investor’s portfolio at time t writes:

Xϕ
t := E

[
X0 +

∫ t

0
ϕsdSs

∣∣∣∣F0
t

]
.

A mean-field portfolio strategy is admissible if Xϕ is bounded below by an
F0-martingale at all times. Consequently, we say that a mean-field market
is weakly complete if for any contingent claim HT ∈ L1(F0

T ,Q) there exists
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an admissible portfolio strategy (X0, ϕ) with Xϕ
T = HT . Since we only

require the replicability of claims in the filtration of the common noise,
weak completeness is in general easier to obtain than standard completeness;
on the other hand because of the large degree of redundancy in a mean-
field market, the mean-field portfolio strategy replicating a given claim is in
general not unique.

If appropriate integrability conditions are satisfied, one can substitute
the dynamics of S and compute:

Xϕ
T = X0 +

∫ T

0
E
[
ϕtStβ

0
t |F0

t

]
(θtdt+ dB0

t ).

Example: Black-Scholes mean-field market Let B0 be of dimension
n, and assume that β0t is a constant random vector: β0t = β0 ∈ F0, and that
it spans the entire space Rn, in other words, there exists a random vector
f ∈ L0(F0) such that E[β0f⊤] is the identity matrix. This means that
the ”common noise” part of stock volatilities is constant in time. By the
martingale representation theorem applied under the risk-neutral measure
Q (Revuz and Yor, 2013, paragraph 5.3), for any claim HT ∈ L1(F0

T ,Q)
there exists an F0-adapted process ϕH with

HT = EQ[HT ] +

∫ T

0
ϕHt (θtdt+ dB0

t ).

Letting ϕt =
f⊤ϕHt
St

and X0 = EQ[HT ], it follows that Xϕ
T = HT , thus the

market is complete in the sense defined above. Note that we have been
able to replicate the claim written on a multidimensional Brownian motion
with a one-dimensional representative asset and a one-dimensional portfolio
strategy, because the representative asset actually represents many assets
(an infinity of them), and the portfolio strategy describes the full distribution
of weights over these assets.

4 A mean-field game model of decarbonization

In this section we present the problem under study. This problem can be
understood as a limiting game when the number of firms tends to infinity
in the above n-player game, but we focus directly on the mean-field setting
and leave the proof of convergence of the n-firm setting to the mean field
for subsequent research.

4.1 The representative firm problem

The value of the firm per share is assumed to evolve according to the fol-
lowing stochastic differential equation

dVt = Vt(µtdt+ σtdBt + σ0t dB
0
t ) + ctψtdt, V0 = V (6)
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where V ∈ L0(F0) and V > 0 almost surely. The processes (µt)0≤t≤T ,
(σt)0≤t≤T , (σ0t )0≤t≤T and (ct)0≤t≤T are assumed to belong to L0(F) and
satisfy ∫ T

0
(|µt|+ |σt|2 + |σ0t |2 + |ct|2)dt < +∞ a.s.

The parameter µ is real-valued, σ and σ0 are vector-valued of the same di-
mension as the corresponding Brownian motions, and c takes positive values
almost surely.

Each firm controls its value via the control ψ which represents its emis-
sion flow. We denote V ψ the solution to the state equation for a given
control ψ. We define the following stochastic exponential

Et = exp

(∫ t

0
σsdBs +

∫ t

0
σ0sdB

0
s +

∫ t

0
(µs −

|σs|2

2
− |σ0s |2

2
)ds

)
, (7)

and we denote Es,t := EtE−1
s for all 0 ≤ s ≤ t ≤ T .

Lemma 1. For any ψ such that
∫ T
0 ψ2

sds < +∞ a.s., the equation (6) has
a unique solution given by

V ψ
t = EtV +

∫ t

0
Es,tcsψsds. (8)

Proof. This result follows from (Protter, 2005, Theorem 7, Chapter V) and
(Protter, 2005, Theorem 52, Chapter V).

We assume that each firm pays a single liquidating dividend at time T ,
equal to V ψ

T , per share. For any stochastic discount factor ξ, assuming the
appropriate integrability conditions are satisfied, the share price of the firm
is therefore given by

Sξ,ψt =
1

ξt
E
[
ξV ψ

T

∣∣∣Ft] , (9)

where ξt := E[ξ|Ft]. The representative firm objective is to maximize its
share price while paying a quadratic cost for its own emissions. We define
the criterion J [ξ] of a representative firm

J [ξ](ψ) = Sξ,ψ0 − E
[∫ T

0

αt|ψt|2

2
dt
∣∣∣F0

]
, (10)

where the process (αt)0≤t≤T ∈ L0(F) is strictly positive a.s. The optimiza-
tion problem of the firm is defined as follows

ess sup
ψ∈L2

α(F)
J [ξ](ψ), L2

α(F) := {ψ ∈ L2(F), ψα1/2 ∈ L2(F)}. (Pf)
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Lemma 2. Assume that E[ξET ] < +∞, and ψξ ∈ L2
α(F), where

ψξt :=
ct
αt

E[ξEt,T |Ft]. (11)

Then the unique optimal solution of the representative firm problem is given
by ψξ.

Remark 3. The optimal emissions level may be alternatively written as

ψξt = ξt ×
1

αt
× ct
ξt
E[ξEt,T |Ft].

The first factor is the stochastic discount factor. Recall that the stochas-
tic discount factor may be interpreted, e.g., as the inverse of the market
portfolio in a market where investors have logarithmic utilities. Therefore,
in a falling market the companies will emit more to compensate for lack
of growth with increased production, while in a growing market they will
reduce their emissions.

The second factor is inversely proportional to the coefficient αt which
determines emission penalty: the firm emits less if the emissions are more
strongly penalized. The third factor represents the market value at time t of
the wealth generated at time T from one unit of emissions at time t, in other
words it represents the discounted financial value of one unit of emissions.
The company will therefore emit more if the wealth it generates for investors
has more value in the market at current prices.

Proof. Under the condition E[ξET ] < +∞, using the formula (9) for the
share price and the formula (8) for the terminal firm value, we see that, for
any ψ ∈ Lα(F),

J [ξ](ψ) = E
[
ξ

∫ T

0
Et,T ctψtdt−

1

2

∫ T

0
αt|ψt|2dt

∣∣∣∣F0

]
= E

[∫ T

0
αtψtψ

ξ
t dt−

1

2

∫ T

0
αt|ψt|2dt

∣∣∣∣F0

]
=

1

2
E
[∫ T

0
αt

(
|ψξt |2 − |ψt − ψξt |2

)
dt

∣∣∣∣F0

]
.

from which the result follows.

4.2 The investors problem

We assume that in the market there are two competing investors: a regular
and a green investor. Suppose that we are given a stochastic discount factor
ξ ∈ L1

+(F0
T ) with E[ξ] = 1 and let W denote the space of admissible values

for the terminal wealth of each investor, defined by

W = {W ∈ F0
T : E[ξ|W |] < +∞}.

13



We assume in this section that the market is complete, meaning that every
terminal wealth value W ∈ W can be replicated by each investor using
the available traded instruments. The implications of this assumption are
discussed on page 17.

Each investor maximizes CARA utility function of terminal wealth under
the budget constraint

sup
W∈W

1− E
[
e−γ

rW
]
, s.t. E [ξW ] ≤ wr, (Pr)

sup
W∈W

1− EPg

[
e−γ

gW
]
, s.t. E [ξW ] ≤ wg, (Pg)

where wr and wg are the initial wealths of, respectively, the regular and the
green investor, and γr and γg are their risk aversion coefficients.

The regular investor computes the expectation of its wealth under the
reference probability P whereas the green investor uses another equivalent
probability

dPg = ZdP, Z = exp

(
−
∫ T

0
λsdB

0
s −

1

2

∫ T

0
|λs|2ds

)
,

for some λ ∈ L0(F0), satisfying the Novikov condition

E
[
exp

(
1

2

∫ T

0
|λt|2dt

)]
< +∞.

The optimal wealth values are denotedW r andW g and both depend on the
prescribed stochastic discount factor ξ.

Lemma 4. The optimal terminal wealth values for the regular and the green
investor are given by

W r = wr− 1

γr
ln ξ+

1

γr
E[ξ ln ξ], W g = wg− 1

γg
ln(ξ/Z)+

1

γg
E[ξ ln(ξ/Z)].

Before starting the proof, we recall the Fenchel duality formula for the
negative entropy

ey = sup
x>0

xy − x(ln(x)− 1), (12)

for all y ∈ R. In particular, for any x > 0 we have

ey ≥ xy − x ln(x) + x, (13)

and equality holds at x = ey.

Proof. We consider the optimization problem of the green investor (Pg). Let
λ ≥ 0, using that inequality (13) holds almost surely for x = λξZ−1(ω) and
y = −γgW (ω) for all W ∈ W and ω ∈ Ω, yields

E
[
Ze−γ

gW
]
≥ E [−λξγgW − λξ ln(λξ) + λξ + λξ lnZ] .

14



Then using the budget constraint E [ξW ] ≤ wg and the fact that E[ξ] = 1
yields

E
[
Ze−γ

gW
]
≥ (−γgwg − E[ξ ln(ξ) + ξ ln(Z)])λ− λ lnλ+ λ.

Applying Fenchel duality once again, we obtain

E
[
Ze−γ

gW
]
≥ sup

λ>0
{(−γgwg−E[ξ ln(ξ/Z)])λ−λ lnλ+λ} = e−γ

gwg−E[ξ ln(ξ/Z)],

where the supremum is attained for λ∗ = e−γ
gwg−E[ξ ln(ξ/Z)]. Now, consider

W g = − 1
γg ln(λ

∗ξ/Z). Since x lnx is bounded for x < 1, it follows that

W ∈ W. Since λ∗ξ/Z = e−γ
gW g

, we get that

E[Ze−γ
gW g

] = E[−λ∗ξγgW g − λ∗ξ ln(λξ) + λ∗ξ + λ∗ξ lnZ]

= E[λ∗ξ] = λ∗ = e−γ
gwg−E[ξ ln ξ/Z],

and we conclude thatW g is the optimal solution for the green investor. The
solution for the regular investor then follows by taking Z = 1.

4.3 Market equilibrium

We assume that the financial market is in equilibrium, in other words, the
state price vector ξ is such that the market clears. In the mean-field market
considered in this paper, assuming unlimited supply of the risk-free asset,
for a given strategy ψ of the representative firm, this entails the following
market clearing condition:

W g +W r = E
[
V ψ
T |F0

T

]
+ c

for an arbitrary constant c. Substituting the explicit formulas of Lemma 4,
and recalling that E[ξ] = 1, the above market clearing condition is equivalent
to

ξ =
exp

(
ρ ln(Z)− γ∗E

[
V ψ
T |F0

T

])
E
[
exp

(
ρ ln(Z)− γ∗E

[
V ψ
T |F0

T

])] , (14)

with 1
γ∗ = 1

γr + 1
γg and where ρ := γr

γg+γr ∈ (0, 1) can be interpreted as the
proportion of green investors in the market. Indeed, following De Angelis
et al. (2022), to simplify the interpretation of the impact of green and regular
investors’ wealth on the variables in equilibrium, we may assume that green
and regular investors have equal relative risk aversions; that is, γR = γgwg =
γrwr, where γR denotes the relative risk aversion. In this case, ρ is the
proportion of the green investors’ initial wealth at t = 0, and 1 − ρ is that
of the regular investors; that is, ρ = wg

wg+wr and 1− ρ = wr

wg+wr .
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4.4 Mean-field game equilibrium of companies

We define Ξ as the subset of all ξ ∈ L1
+(F0

T ) satisfying the assumptions of
both Lemma 2 and Lemma 4, in other words,

E[ξ] = 1, E[ξ ln(ξ)] <∞, E[ξ| ln(Z)|] <∞,

E[V ξET ] <∞, E
[∫ T

0
c2t
αt
E[ξEt,T |Ft]2dt

]
<∞.

(15)

Let m = L(V ψ
T |F0

T ) be the law of V ψ
T conditional to the σ-field F0

T

generated by the common noise. The market clearing equation (14) defines
a mapping I : P(P(Ω)) 7→ L1

+(F0
T ), which to a given law m associates the

state price vector ξ. The mean-field game equilibrium takes the form of the
following fixed point problem: find a tuple (ψ̄, ξ̄, m̄) ∈ L2

α(F)×Ξ×P(P(Ω))
such that

ψ̄ = argmin
ψ∈L2

α(F)
J [ξ̄](ψ), ξ̄ = I(m̄), m̄ = L

(
V ψ̄
T |F0

T

)
. (NE)

The first condition means that each firm solves its optimization problem
subject to a given stochastic discount factor. The second condition defines
the stochastic discount factor through the market clearing condition. The
third condition means that this distribution of firms is obtained when every
firm applies its optimal solution. The usual approach in mean field game
is to find a fixed point in the space of probability measures. Most of the
time, this problem is not tractable: due to the presence of common noise,
the space P(P(Ω)) lacks compactness, and existence of probability law m
cannot be ensured. Instead, we will look for a fixed point in the space Ξ.

In our setting, the mean field game problem simplifies due to the specific
form of the interaction mapping I given by equation (14). While the latter is
fully non-linear, it only involves conditional expectation of the state process
with respect to the σ-field F0

T generated by the common noise. It is an
important simplification since we do not require the full knowledge of the
law m to compute the stochastic discount factor. Using Lemma 2, for any
stochastic discount factor ξ ∈ Ξ, the strategy and the state process are
uniquely defined as follows:

V ξ
T = V ET +

∫ T

0
ctEt,Tψξt dt, ψξt =

ct
αt

E[ξEt,T |Ft]. (16)

Then, the Nash equilibrium problem reduces to the following fixed point
problem: find ξ ∈ Ξ, such that

ξ =
exp

(
ρ ln(Z)− γ∗E[V ξ

T |F0
T ]
)

E
[
exp

(
ρ ln(Z)− γ∗E[V ξ

T |F0
T ]
)] . (FP)
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Theorem 5, formulated in the next section, establishes the existence and
uniqueness of solution to (FP). It is clear by (16) that the uniqueness
of the state price vector implies the uniqueness of the strategy and the
state process. The uniqueness of the law m then holds almost surely. As a
consequence, following the terminology of (Carmona et al., 2016, Definition

2.1) we obtain a unique strong solution (ψξ, ξ,L(V ξ
T |F0

T )) ∈ L2
α(F) × Ξ ×

P(P(Ω)) to the mean field game.

Market completeness A key assumption of Section 4.2, required to close
the loop of Nash equilibrium discussed above, is the dynamic completeness,
or, in our setting, weak completeness of the market resulting from computing
stock prices using the formula (9), with ξ and ψ given by the solution of
the fixed-point equation (FP). Dynamic completeness is in general difficult
to prove in continuous-time equilibrium models, and has only been shown
in specific settings (Anderson and Raimondo, 2008; Hugonnier et al., 2012).
Due to the complexity of our setting, a direct proof of this property seems
out of reach. We therefore follow a large part of the literature by assuming
a posteriori that this property is satisfied. In practice, this means that
in addition to shares of firms, in the market there are also traded options
allowing to replicate any claim measurable with respect to the σ-field of the
common noise F0

T .

5 Solution to the mean field game problem

In this section we state and prove our main results. Existence and unique-
ness of the Nash equilibrium are established in Theorem 5. A fixed point
algorithm (Algorithm 6) is provided to compute the solution of the mean
field game problem and its convergence is established in Theorem 7. The
proof of these results is postponed to dedicated sections 5.1 and 5.2 and re-
lies on the existence and uniqueness of the solution to a convex minimization
problem.

Additional notation We define the negative entropy h : R → R∪ {+∞}
and the indicator function χ : R → R ∪ {+∞} of the set {0},

h(x) =

{
x(ln(x)− 1), if x > 0,
0, if x = 0,

χ(x) =

{
0, if x = 0,
+∞, otherwise.

Further, we define an “entropic” functional H : L1
+(F0

T ) → R ∪ {+∞} and
a linear quadratic functional L : L1

+(F0
T ) → R ∪ {+∞},

H(ξ) = E[Zρh(ξ/Zρ)], L(ξ) = γ⋆E
[
ξV ET +

∫ T

0

αt
2
|ψξt |2dt

]
.
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We finally define the convex functional G : L1
+(F0

T ) → R∪{+∞}, which will
play the role of “potential” of the fixed-point problem (FP):

G(ξ) = H(ξ) + L(ξ) + χ(E [ξ]− 1).

Main results The following theorem characterizes the solution to the
fixed-point problem (FP).

Theorem 5. Assume that the parameters are such that

L(1) < +∞.

Then there a unique solution ξ̄ ∈ Ξ to the fixed-point problem (FP). This
solution satisfies ξ̄ > 0 a.s. and

ξ̄ = argmin
ξ∈L1

+(F0
T )

G(ξ).

We now define an algorithm to solve the fixed point problem (FP) based
on the generalized conditional gradient algorithm. The latter is a generaliza-
tion of the Frank-Wolfe algorithm (Frank and Wolfe, 1956) and is introduced
in Bredies et al. (2009). The idea is to find the minimum of the functionnal
G by solving a semilinearized version of G and considering a suitable convex
combination of the minimizers at each step. We show, under suitable as-
sumptions, that this procedure is equivalent to Algorithm 6 which consists
in iterating the fixed point for a certain sequence of weights (αk)k∈N. To
describe the algorithm we define the following set:

C :=
{
X ∈ L1

+(F0
T ), Ḡ ≤ G(X) ≤ G(1)

}
.

where Ḡ := infξ∈L1
+(F0

T )G(ξ).

Algorithm 6. Let (αk)k∈N be a sequence in [0, 1]. Let ξ0 ∈ C. Consider the
sequence (ξk, ηk)k∈N defined as follows

ηk =
exp

(
−γ∗E[V ξk

T |F0
T ] + ρ lnZ

)
E
[
exp

(
−γ∗E[V ξk

T |F0
T ] + ρ lnZ

)] ,
ξk+1 = αkηk + (1− αk)ξk.

Theorem 7. Assume that the parameters are such that

L(1) < +∞, E
[∫ T

0

c2t
αt

E [ZρEt,T |Ft]2 dt
]
< +∞.

Let p ≥ 2 be such that 2C
p ≤ G(1)−G(ξ̄), where C is the constant introduced

in Lemma 18. For all k ∈ N let αk = 2
k+p and let (ξk)k∈N be the sequence

defined by Algorithm 6. Then,

G(ξk)−G(ξ̄) ≤ 1

k + p

(
4C +

K

(k + p)

)
, K =

(
G(ξ0)−G(ξ̄)− 4C

p

)+

.
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Remark 8. The theorem shows that the algorithm converges when using
step size αk =

2
k+p with p large enough. It implies that (ξk) is a minimizing

sequence and hence, similarly to the proof of Lemma 11, it follows that
(ξk) weakly converges to ξ̄. In practice, G(ξ̄) is not known but one can try
increasing values of p until convergence is obtained.

5.1 Proof of Theorem 5

To prove Theorem 5 we show that the equilibrium stochastic discount factor
is uniquely defined as the solution of the convex minimization problem,

inf
ξ∈L1

+(F0
T )
G(ξ). (P)

The proof is organized as follows: We first show that the mapping G is
proper, strictly convex and weakly lower semicontinuous (Lemma 9). Next
we show that every element of the set C belongs to Ξ (Lemma 10). Then
we show that G admits a unique minimizer ξ̄ ∈ C (Lemma 11), and hence
ξ̄ belongs to Ξ. This minimizer satisfies ξ̄ > 0 a.s. (Lemma 12). Finally we
show that every minimizer of G is a solution to the fixed point problem and
every solution to the fixed point problem is a minimizer of G (Lemma 14).

Lemma 9. The mapping G is proper, strictly convex and weakly lower semi-
continuous.

Proof. Step 1: G is proper and strictly convex. By assumption G(1) =
L(1) < +∞. For all ξ ∈ L1

+(F0
T ) such that E [ξ] = 1, we have

G(ξ) ≥ H(ξ),

since L(ξ) ≥ 0. Using that infx>0 y
ρh(x/yρ) ≥ −yρ, for all y ∈ R+, we have

Zρh(ξ/Zρ) ≥ −Zρ,

almost surely, for all ξ ∈ L1
+(F0

T ). Then

H(ξ) ≥ E
[
inf
ξ>0

Zρh(ξ/Zρ)

]
≥ −E [Zρ] ≥ −E [Z]ρ = −1, (17)

where the last inequality follows by Jensen’s inequality, since ρ < 1. Then
G is lower bounded and is thus proper. The strict convexity of G follows
directly from the strict convexity of H+L and the convexity of the mapping
ξ 7→ χ(E [ξ]− 1).
Step 2: G is weakly lower semicontinuous. We first prove that G is strongly
lower semicontinuous. Since G is lower bounded by step 1 we have that
Ḡ = infξ∈L1

+(F0
T )G(ξ) is finite. Let (ξ

n)n∈N ∈ dom(G) be a sequence stronlgy

converging to ξ. Since strong L1 convergence implies the convergence in
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probability, and convergence in probability implies almost sure convergence
along a subsequence, up to choosing a subsequence we may and will assume
that ξn → ξ almost surely. On the one hand, we have

Zρh(ξn/Zρ) →
n→+∞

Zρh(ξ/Zρ),

almost surely. Since, as we have shown above, Zρh(ξn/Zρ) ≥ −Zρ, Fatou’s
Lemma yields

E [H(ξn)] ≤ lim inf
n→+∞

E [H(ξn)] .

On the other hand, let (ηn)n∈N be a sequence given by ηn = infk≥n ξ
k. By

monotone convergence we have

ψξt =
ct
αt

E [ξEt,T |Ft] =
ct
αt

E
[

lim
n→+∞

ηnEt,T |Ft
]
≤ lim inf

n→+∞

ct
αt

E [ηnEt,T |Ft]

= lim inf
n→+∞

ψη
n

t .

The monotonicity of ψξ with respect to ξ together with the definition of ηn

yields

L(ξ) ≤ lim inf
n→+∞

L(ηn) ≤ lim inf
n→+∞

L(ξn).

Since the sum of lower semicontinuous functions is lower semicontinuous, it
follows that G is strongly lower semicontinuous. Since G is convex by step
1, G is weakly lower-semicontinuous by (Brezis, 2010, Corollary 3.9), which
concludes the step and the proof.

Lemma 10. There is a constant C > 0 such that for any ξ ∈ C,

E [ξ ln(ξ)] ≤ C, E [ξ| ln(Z)|] ≤ C (18)

E[V ξET ] ≤ C, E
[∫ T

0

c2t
αt

E[ξEt,T |Ft]2dt
]
≤ C. (19)

Proof. Since ξ ∈ C,
H(ξ) + L(ξ) ≤ G(1), (20)

Using that L(ξ) ≥ 0 and the concavity of the logarithm, the previous in-
equality yields

ξ ln(Z) ≤ ξ ln(ξ) + Z − ξ. (21)

Then combining (20) and (21), the inequality E [ξ ln(ξ)] ≤ C(1− ρ)−1 since
ρ < 1. As in the proof of Lemma 9, we have that H(ξ) ≥ −E[Zρ]. Then

L(ξ) ≤ G(1) + E[Zρ] ≤ G(1) + 1.

Finally, using the estimates h(ξ) ≥ −1 almost surely, yields

E[ρξ lnZ] ≥ −G(1),
E[ρξ lnZ] ≤ E[ξ ln ξ − ξ + Zρ] ≤ C(1− ρ)−1,

which concludes the proof.

20



Lemma 11. There is a unique solution ξ̄ ∈ C of the problem (P).

The proof follows the direct method of variation calculus.

Proof. For all ξ ∈ C, by Lemma 10 there exists C > 0 such that E [ξ ln(ξ)] ≤
C. Then by de la Vallée Poussin theorem (de la Vallée Poussin, 1915,
Theorem VI) the set is uniformly integrable. Now by the Dunford-Pettis
(Brezis, 2010, Theorem 4.30) the set C is weakly relatively compact and by
the Eberlein-Šmulian Theorem (Dunford and Schwartz, 1988, Section V.6.1,
p.430), the set C is weakly sequentialy relatively compact. Now let (ξn)n∈N ∈
C be a minimizing sequence, that is to say such that limn→∞G(ξn) = Ḡ. By
weak compactness of C, there exists ξ̄ ∈ L1

+(F0
T ) such that the minimizing se-

quence weakly converges to ξ̄. Using that G is weakly lower-semicontinuous
by Lemma 9, yields that

Ḡ ≤ G(ξ̄) ≤ lim inf
n→∞

G(ξn) ≤ lim
n→∞

G(ξn) = Ḡ,

which shows that ξ̄ is a minimizer of G. Finally the uniqueness follows by
strict convexity of the criterion G.

Lemma 12. The minimizer ξ̄ of G satisfies ξ > 0 a.s.

Proof. Assume by way of contradiction that there is a set A ∈ F0
T with

pA := P[A] > 0 and ξ̄ = 0 on A. For ε ∈ (0, 1), define

ξε = (1− ε)ξ̄ +
ε

pA
1A.

It is easy to check that as ε ↓ 0,

G(ξε)−G(ξ̄) = ε ln(ε) +O(ε).

Since the right-hand side is negative for ε small enough, this contradicts the
fact that ξ̄ is a minimizer of G.

Lemma 13. Let ξ ∈ C. For any η ∈ L1(F0
T ) such that E [η] = 0 and |η| ≤ 1

2ξ
almost surely, we have

lim
λ→0

λ−1 (G(ξ + λη)−G(ξ)) = E [η(δH(ξ) + δL(ξ))] , (22)

with δL(ξ) := E[V ξ
T |F0

T ] and δH(ξ) := ln(ξ/Zρ).

Proof. For any λ ∈ (0, 1) we have

λ−1 (G(ξ + λη)−G(ξ)) = λ−1 ((H + L)(ξ + λη)− (H + L)(ξ)) ,

since E [ξ + λη] = E [ξ] = 0. We consider separately the functionals H and
L. For the functional H, we have

λ−1(H(ξ + λη)−H(ξ)) = λ−1E [Zρ (h((ξ + λη)/Zρ)− h(ξ/Zρ))] . (23)
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Let (x, y) ∈ R+×R, and assume that λ|y| ≤ x. By the fundamental theorem
of calculus we have

λ−1(h(x+ λy)− h(y)) = y

∫ 1

0
ln(x+ tλy) dt.

By monotonicity and concavity of the logarithm we have

ln(x) + ln(1− t) ≤ ln(x+ λtη) ≤ ln(x) + ln(2),

for any t ∈ [0, 1]. Then we have that

y ln(x) + y

∫ 1

0
ln(1− t)dt ≤ λ−1(h(x+ λy)− h(y)) ≤ y(ln(ξ) + ln(2)).

Combining the above estimates and using both that E[η] = 0 and |η| ≤ 1
2ξ

yields

λ−1|E [Zρh((ξ + λη)/Zρ)− h(ξ/Zρ)] | = E [|η ln(ξ/Zρ)|] ≤ 1

2
|H(ξ)| ≤ C.

where the last inequality follows by Lemma 10. We conclude that (23)
admits an integrable bound and so by dominated convergence

lim
λ↓0

λ−1(H(ξ̄ + λη)−H(ξ̄)) = E[η ln(ξ)].

We now consider the functional L. By a direct computation we have

λ−1(L(ξ̄ + λη)− L(ξ̄)) = γ⋆
(
E
[
η

(
V ET +

∫ T

0
αtψ

ξ
t dt

)]
+
λ

2
E
[∫ T

0
αt|ψηt |2dt

])
,

and it is clear that the last term converges to zero as λ ↓ 0. Using that
η ∈ L1(F0

T ), the conclusion follows applying the law of iterated expectations

and using that V ξ
T is solution to equation (16).

Lemma 14. ξ̄ is a minimizer of G if and only if it is a solution to the fixed
point problem (FP).

Proof. Step 1: The if part. Let ξ̄ ∈ Ξ be a solution to the fixed point
problem (FP). For any ξ ∈ L1

+(F0
T ) with E[ξ] = 1, by convexity of L and

H, we have

G(ξ)−G(ξ̄) ≥ E
[
(ξ − ξ̄)

(
δH(ξ̄) + δL(ξ̄)

)]
.

By Lemma (13) and using that ξ̄ is a solution to the fixed point equation
(FP) yields that

E
[
(ξ − ξ̄)

(
δH(ξ̄) + δL(ξ̄)

)]
= E

[
(ξ − ξ̄)

(
ln ξ̄ − ρ lnZ + γ∗E[V ξ̄

T |F
0
T ]
)]

= CE
[
(ξ − ξ̄)

]
,
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with C := lnE
[
exp

(
ρ lnZ − γ∗E[V ξ̄

T |F0
T ]
)]

> 0. Since E[ξ] = E[ξ̄] = 1, we

conclude that G(ξ)−G(ξ̄) ≥ 0 and hence ξ̄ is a minimizer of G.
Step 2: The only if part. Let ξ̄ be the minimizer of G. Let η ∈ L1(F0

T ) such
that |η| ≤ 1

2 ξ̄ a.s. and E[η] = 0. For any λ ∈ (0, 1), Lemma 13 yields

λ−1
(
G(ξ̄ + λη)−G(ξ̄)

)
= E [η(δH(ξ) + δL(ξ))] ≥ 0.

Since the choice of η ∈ L1(F0
T ) is arbitrary provided that |η| ≤ 1

2ξ and
E[η] = 0, and since ξ̄ > 0 a.s., we conclude that necessarily

ln ξ̄ − ρ ln(Z) + γ∗E[V ξ̄
T |F

0
T ] = C

for some constant C. The value of this constant may be found from the
condition E[ξ̄] = 1, leading to the fixed point equations (FP).

5.2 Proof of Theorem 7

The proof of Theorem 7 will be given after a series of preparatory lemmas.
We start with the following simple representation that follows directly from
the definition of L.

Corollary 15. For all ξ, η ∈ L1
+(F0

T ), we have that

L(η)− L(ξ) = E [(η − ξ)δL(ξ)] +R(ξ, η).

with R(ξ, η) := γ⋆

2 E
[∫ T

0 αt|ψηt − ψξt |2dt
]
≥ 0.

For any ξ ∈ C we define the semilinearized criterion h : C × L1(F0
T ) →

R ∪ {+∞}, and the point η ∈ L1
+(F0

T ) as follows

η = argmin
η′∈L1(F0

T )

h(ξ, η′), h(ξ, η) := E [ηδL(ξ)] +H(η) + χ (E [η]− 1) . (24)

Lemma 16. We have (24) holds if and only if,

η =
exp

(
−γ∗E[V ξ

T |F0
T ] + ρ lnZ

)
E
[
exp

(
−γ∗E[V ξ

T |F0
T ] + ρ lnZ

)] . (25)

Proof. Step 1: The only if part. Let λ > 0 and η′ ∈ L1(F0
T ) be such that

E[η′] = 0, then by optimality of η we have,

h(ξ, η + λη′)− h(ξ, η) = E
[
η′ (δL(ξ) + δH(η))

]
≥ 0.

Since the choice of η is abitrary, the conclusion follows as in step 2 in the
proof of Lemma 14.
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Step 2: The if part. For any η′ ∈ L1
+(F0

T ), by convexity of h(ξ, ·), we have

h(ξ, η′)− h(ξ, η) ≥ E
[
(η′ − η) (δL(ξ) + δH(η))

]
.

Using that η is given by (24) yields that

h(ξ, η′)− h(ξ, η) ≥ CE
[
(η′ − η)

]
= 0, (26)

since E[η′] = E[η] = 1 with C := E [exp (δL(ξ) + δH(η))] > 0. Then η is a
minimizer of h(ξ, ·).

We define the primal gap ε : C → R and the primal gap certificate g : C →
R,

ε(ξ) = G(ξ)−G(ξ̄), g(ξ) = h(ξ, ξ)− inf
η∈L1(F0

T )
h(ξ, η). (27)

Lemma 17. For any ξ ∈ C we have that g(ξ) ≥ 0 and g(ξ) ≥ ε(ξ).

Proof. It is clear that the primal gap certificate g is non-negative for all
ξ ∈ C. By definition of h we have that

h(ξ, η)− h(ξ, ξ) = E [(η − ξ)δL(ξ)] +H(η) + χ (E [η]− 1)− χ (E [ξ]− 1) .

By Corollary 15 we have that

L(η)− L(ξ) ≥ E [(η − ξ)δL(ξ)] ,

which yields that
h(ξ, η)− h(ξ, ξ) ≤ G(η)−G(ξ).

Taking the infimum with respect to η ∈ L1(F0
T ) both sides of the latter

inequality concludes the proof.

Lemma 18. Let the parameters be such that L(1) < +∞ and moreover

E
[∫ T

0

c2t
αt

E [ZρEt,T |Ft]2 dt
]
< +∞.

For any α ∈ [0, 1], there exists a constant C > 0, which does not depend on
ξ, such that

G(ξα)−G(ξ̄) ≤ (1− α)(G(ξ)−G(ξ̄)) + α2C.

Proof. By convexity of the functional H, we have:

H(ξα)−H(ξ) ≤ α (H(η)−H(ξ)) . (28)

Combining (28) with Lemma 15 yields

G(ξα)−G(ξ) ≤ α(H(η)−H(ξ)) + αE[(η − ξ)δL(ξ)] + α2R(ξ, η).
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By Lemma 17 it follows that

G(ξα)−G(ξ) ≤ α(h(ξ, η)− h(ξ, ξ)) + α2R(ξ, η)

≤ −αg(ξ) + α2R(ξ, η)

≤ α(G(ξ̄)−G(ξ)) + α2R(ξ, η).

where in the last inequality we used the convexity of L. Rearranging the
terms, we then get:

G(ξα)−G(ξ̄) ≤ (1− α)(G(ξ)−G(ξ̄)) + α2R(ξ, η).

We now turn to the analysis of the residual term. By the Young inequality
we have

R(ξ, η) ≤ γ⋆E
[∫ T

0

c2t
αt

E [ξEt,T |Ft]2 dt
]
+ γ⋆E

[∫ T

0

c2t
αt

E [ηEt,T |Ft]2 dt
]

≤ C + γ⋆E
[∫ T

0

c2t
αt

E [ηEt,T |Ft]2 dt
]
,

where the second line follows by Lemma 10. Now by Lemma 16, we have
that η is given by (25). To bound the second term, we use the explicit form
of η. By definition of δL and the Jensen’s inequality,

E
[
exp

(
−γ∗E[V ξ

T |F
0
T ] + ρ lnZ

)]
= E [exp (−δL(ξ) + ρ lnZ)]

≥ exp (−E [δL(ξ)] + ρE[lnZ]) .

By Lemma 10 we have that E [δL(ξ)] ≤ C. Since ρE[lnZ] is bounded by
assumption, there exists a constant c > 0, which does not depend on ξ such
that,

E
[
exp

(
−γ∗E[V ξ

T |F
0
T ] + ρ lnZ

)]
≥ c,

and therefore η ≤ c−1Zρ. Substituting this into the expression for the second
part of the residual term R(ξ, η), we get:

E
[∫ T

0

c2t
αt

E [ηEt,T |Ft]2 dt
]
≤ c−2E

[∫ T

0

c2t
αt

E [ZρEt,T |Ft]2 dt
]
,

which is finite by assumption of the lemma.

Proof of Theorem 7 . Let k ∈ N and let εk = G(ξk) − G(ξ̄). Assume that
ξk ∈ C, then by Lemma 18,

εk+1 ≤
k + p− 2

k + p
εk +

4C

(k + p)2

≤ G(1)−G(ξ̄)− 2

k + p
(G(1)−G(ξ̄)) +

4C

(k + p)2

≤ G(1)−G(ξ̄) +
4C − 2(k + p)(G(1)−G(ξ̄))

(k + p)2
≤ G(1)−G(ξ̄),
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by definition of p. Therefore, ξk+1 ∈ C, and by induction ξk ∈ C for all
k ∈ N. It follows that

εk+1 −
4C

k + p+ 1
≤ k + p− 2

k + p

(
εk −

4C

k + p

)
.

and therefore

εk −
4C

k + p
≤

(
ε0 −

4C

p

) k−1∏
j=0

j + p− 2

j + p
.

The product can be estimated as follows:

log

k−1∏
j=0

j + p− 2

j + p

 =

k−1∑
j=0

log

(
1− 2

j + p

)

≤ −2

k−1∑
j=0

1

j + p
≤ −2

∫ k

0

dx

x+ p
= −2 log(k + p).

Gathering all estimates, we finally obtain:

εk ≤
4C

k + p
+

(
ε0 −

4C

p

)+ 1

(k + p)2
.

6 Examples and illustrations

Let B0 be a 2-dimensional Brownian motions with components (B0,1, B0,2).
We assume that the process (ct) describing the emission efficacy of pro-
duction is constant in time for each firm, ct = C, and that the process (αt)
describing the emission penalty is the same for all firms (and F0-measurable).
Although the emission efficacy is constant in time, the emission schedules
of firms can still vary stochastically, in response to changes in the emission
penalty αt and the financial value of emissions, as explained in Remark 3.

The differences between firms appear only due to different firm values
and different values of the emission efficacy C. We model the differences
in initial firm values and emission efficacies by introducing F0-measurable
random variables V and C, which describe the distribution of these quanti-
ties. For green, carbon-efficient firms, C is large, while for brown firms, C
is small. The emission penalty (αt) is a stochastic process defined by

αt = eγB
0,2
t − γ2

2
t,

where γ ∈ R is a constant, which measures the uncertainty associated to
future emission penalty, in other words γ is a climate transition risk param-
eter. To simplify notation and without loss of generality (by normalizing
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the emission efficacy C) we have assumed here that α0 = 1. Thus, under
the real-world probability the emission penalty is a martingale, and has con-
stant expectation. This process models the evolution of the environment in
which all firms operate including carbon taxes, consumer preferences, etc.

The density of the change of measure of the green investor is defined by

Z = eλB
0,2
T −λ2T/2,

where λ ∈ R is a constant. Under the probability measure of the green
investor, B0,g

t = B0,2
t − λt is a Brownian motion and

αt = eγB
0,g
t +λγt− γ2

2
t,

has increasing expectation (assuming λ and γ are positive). Thus, green
investors are concerned that costs and penalties associated to carbon emis-
sions will grow. The parameter λ modulates the strength of this effect, in
other words, it can be interpreted as the environmental concern of the green
investors. To give an example, assume that γ = 0.3. Then, the variance
of αT for T = 5 years equals ≈ 57%. If λγ = 0.1, then, under the green
investor probability, the emission penalty will grow by 65% over 5 years.

The parameters of the firm value dynamics σ, σ0 and µ are assumed to
be constant, and we let

E t,T = eσ
0B0,1

t +(µ−(σ0)2/2)t.

The fixed point equation then writes

ξ =
exp

(
−γ∗V ξ

T + ρ(λB0,2
T − λ2t/2)

)
E
[
exp

(
−γ∗V ξ

T + ρ(λB0,2
T − λ2T/2)

)] ,
V ξ
T = V ET +

∫ T

0
C2
0e

−γB0,2
t +|γ|2t/2E t,T E[ξE t,T |F0

t ]dt,

where we denote C2
0 = E[C2

0 ] and V = E[V ].

Solution using the fixed point algorithm We start by discretizing the
integral:

V̂ ξ
T = V ET + h

n∑
k=0

wkC
2
0e

−γB0,2
tk

+|γ|2tk/2E tk,T E[ξE tk,T |F̂k],

where h = T
n , ti = ih, w0 = wn = 1

2 , wk = 1 for k = 1, . . . , n − 1 and

F̂i = σ(ε1j , ε
2
j , j ≤ i) with εpj =

1√
h
(B0,p

tj
−B0,p

tj−1
), k = 1, 2. This leads to the

following algorithm:
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• Fix p sufficiently large (different values may be tested until convergence
is obtained).

• Simulate independent standard normal random increments: (ε1,ij , ε
2,i
j )

for j = 1, . . . , n, i = 1, . . . , N .

• Let ξ(0),i = 1, i = 1, . . . , N .

• For q = 0, . . . , Niter:

– For k = 0, . . . , n, compute

v
(q)
k = arg inf

v∈C2k

N∑
i=1

(
v(ε1,i1 , ε2,i1 , . . . , ε1,ik , ε

2,i
k )− E itk,T ξ

(q),i
)2

– Let

η(q+1),i =
exp

(
−γ∗V̂ (q+1),i

T + ρ(λ
√
h
∑n

j=1 ε
2,i
j − λ2T/2)

)
1
N

∑N
i=1 exp

(
−γ∗V̂ (q+1),i

T + ρ(λ
√
h
∑n

j=1 ε
2,i
j − λ2T/2)

)
with

V̂
(q+1),i
T = V E i0,T

+ h

n∑
k=0

wkC
2
0e

−γ
√
h
∑k

j=1 ε
2,i
j +|γ|2tk/2E itk,T v

(q)
k (ε1,i1 , ε2,i1 , . . . , ε1,ik , ε

2,i
k )

ξ(q+1),i = αqη
(q),i + (1− αq)ξ

(q),i, αq =
2

p+ q
.

The computation of v
(q)
k , k = 1, . . . , n−1 is implemented with a deep neural

network using Keras-Tensorflow framework. Here, C2k denotes the set of
continuous functions from R2k to R.

Outputs of the algorithm In addition to the quantities listed above, the
algorithm allows to compute the following economically relevant quantities:

• The total average emissions, given by

ΨT =

∫ T

0
E[ψt|F0

T ]dt =

∫ T

0
C0e

−γB0,2
t +γ2t/2E[ξE t,T |F0

t ]dt.

The discretized version after q iterations writes

Ψ
q+1
T = h

n∑
k=0

wkC0e
−γ

√
h
∑k

j=1 ε
2,i
j +|γ|2tk/2v

(q)
k (ε1,i1 , ε2,i1 , . . . , ε1,ik , ε

2,i
k ),

q ≥ 1.
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• The expected emissions of the representative company at date t, given
by

E[ψt|F0] = C0E
[
ξe−γB

0,2
t + γ2t

2 E t,T
]
.

The discretized version of this quantity is:

C0

N

N∑
i=1

ξ(q),ie−γ
√
h
∑k

j=1 ε
2,i
j +|γ|2tk/2E itk,T .

• The initial stock price of the representative company, given by

Sξ0 = V E[ξET |F0] + E
[∫ T

0

c2s
αs

E2[ξEs,T |Fs]ds
∣∣∣F0

]
= V E[ξET ] + C2

0E
[∫ T

0
e−γB

0,2
t +γ2t/2E2[ξE t,T |Ft]dt

]
(29)

The discretized version of this formula writes:

V vq0+
C2
0h

N

N∑
i=1

n∑
k=0

wke
−γ

√
h
∑k

j=1 ε
2,i
j +|γ|2tk/2

(
v
(q)
k (ε1,i1 , ε2,i1 , . . . , ε1,ik , ε

2,i
k )

)2

The first term in the above formula corresponds to the fraction of the
market price that is due to the initial value of the firm, and the second
term corresponds to the fraction of the price that is due to the value
created by the firm through emissions. The second term is proportional
to the squared emission efficacy of production; the higher the carbon
intensity the lower will be the stock price and the higher the cost of
capital. This effect is present in the market even if there are no green
investors, because of the emission penalty, which is always present in
the model. However, this effect will be stronger in the presence of
green investors, or if their environmental concern is higher.

We implement the algorithm to illustrate the impact of the climate risk
and of the fraction and the environmental concern of green investors on the
decarbonization dynamics and the cost of capital of firms with varying envi-
ronmental performance. The parameters ρ (proportion of green investors), γ
(volatility of emissions penalty, a proxy for climate risk) and λ (proportional
to environmental stringency of green investors) are changing throughout the
tests and are described below. The other parameters are kept constant and
given in the following table.
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Figure 1: Convergence of the distribution of stochastic discount factor ξ
(left graph) and of the total average emissions.

Variable Value Description
T 5 Time horizon, years
γ∗ 0.5 Risk aversion parameter
σ0 10% Volatility of the common noise part of

firm value dynamics
µ 5% Drift of the firm value dynamics

V 1 Average initial firm value

C2 1 Average squared emission efficacy of
production

C 0.7 Average emission efficacy of produc-
tion

n 20 Number of discretization steps
N 50 000 Number of sample trajectories
p 2 Weight in the fixed-point algorithm

We first illustrate the convergence of the algorithm. Figure 1 plots the
convergence of the distribution of ξq and of the total average emissions Ψ

q
T

as q increases from 0 to 9. Here we took γ = 0.3 and λ = 0 (no green
investors). The curves have been smoothed with a Gaussian kernel density
estimator. We see that convergence is obtained starting from 5-6 iterations
of the algorithm; in the numerical tests below we perform 10 iterations.

Impact of climate risk on the decarbonization dynamics In the first
series of tests, we assume that there are no green investors (λ = 0) and study
the impact of climate risk on the decarbonization dynamics by changing
the parameter γ (volatility of the emission penalty). Figure 2 shows the
distribution of total average emissions (left graph) and expected emissions
of the representative company (with carbon intensity of production equal
to 1) per unit of time (right graph), for different values of the volatility of
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Figure 2: Distribution of total average emissions (left) and expected emis-
sions of the representative company per unit of time (right), for different
values of the volatility of emission penalty γ.

emission penalty γ. We see that as the intensity of climate risk/uncertainty
grows, every company and the entire market increase their carbon emissions.
This phenomenon has already been observed in De Angelis et al. (2022): lax
or uncertain climate policies do not encourage companies to reduce their
emissions.

Impact of green investors on the decarbonization dynamics We
now illustrate the impact of the proportion and the environmental concern
of the green investors on the total average emissions of all companies. Figure
3 shows the distribution of total average emissions (left graph) and expected
emissions of the representative company per unit of time (right graph), for
different values of the environmental concern of green investors λ, with γ =
0.3 and ρ = 0.5. We see that as the environmental concern grows, the
distribution of total average emissions shifts to the left and narrows down,
while the expected emissions decrease for all dates. Figure 4 illustrates the
impact of the proportion of green investors ρ, for γ = 0.3 and λ = 0.4, and we
see that increasing the proportion of green investors leads to a considerable
reduction of carbon emissions.

Impact of the green investors on share prices We now discuss the
impact of the climate risk, the fraction and the environmental concern of
green investors on the share price of the representative company. Table 1
shows the impact of various parameters on the two components of the price
formula (29): P1 is the coefficient multiplied by the firm value V , and P2 is
the coefficient multiplied by the squared emission efficacy C2

0 . We see that
the first component (sensitivity to firm value) is quite stable. Indeed, the
quantity E[ξET ] only weakly depends on ξ, because E[ξ] = 1 and the volatil-
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Figure 3: Distribution of total average emissions (left) and expected emis-
sions of the representative company per unit of time (right), for different
values of the environmental concern of green investors λ.
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Figure 4: Distribution of total average emissions (left) and expected emis-
sions of the representative company per unit of time (right), for different
values of the proportion of green investors ρ.
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γ λ ρ P1 P2

Impact of γ

0.15 0 0.5 1.2102± 0.0004 6.260± 0.011
0.3 0 0.5 1.2112± 0.0003 6.928± 0.014
0.45 0 0.5 1.2128± 0.0003 8.143± 0.010

Impact of λ

0.3 0 0.5 1.2112± 0.0003 6.928± 0.014
0.3 0.2 0.5 1.2103± 0.0003 6.834± 0.017
0.3 0.4 0.5 1.2115± 0.0003 6.730± 0.019

Impact of ρ

0.3 0.4 0.0 1.2112± 0.0003 6.928± 0.014
0.3 0.4 0.25 1.2108± 0.0005 6.825± 0.020
0.3 0.4 0.5 1.2115± 0.0003 6.730± 0.019
0.3 0.4 0.75 1.2119± 0.0004 6.710± 0.020
0.3 0.4 1.0 1.2113± 0.0003 6.595± 0.021

Table 1: Two components of the price formula (29): P1 is the sensitivity to
the firm value V , and P2 is the sensitivity to the squared emission efficacy
C2
0 . The standard errors quantify the Monte Carlo error only and were

computed by running the test 10 times.

ity σ0 is not very high in our examples. On the other hand, the sensitivity to
emission efficacy P2 changes considerably between different tests. First, this
sensitivity is always positive: all things being equal, carbon-efficient compa-
nies will enjoy higher stock prices than carbon-intensive companies. Second,
this sensitivity increases when there is more climate risk / uncertainty (i.e.,
when γ is high). This happens because, when climate uncertainty increases,
all companies will emit more carbon, create more value and therefore pay
higher dividends. However, carbon efficient companies create more value
with one unit of extra emissions than carbon intensive companies, and are
less exposed to climate risk, so that the spread between green and brown
company share prices will grow. Finally, the sensitivity of share price to
emission efficacy appears to decrease when the proportion of green investors
and their environmental stringency grow. Indeed, in a market with many
green-minded investors, all companies will emit less carbon, pay lower divi-
dends and thus have lower share prices.

7 Conclusion

In this paper we develop a model for the decarbonization of a large finan-
cial market, arising from an equilibrium dynamics involving companies and
investors, and built using the analytical framework of mean-field games. In
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our model, emission schedules are stochastic and may change dynamically
depending on the firm’s own information, the materialization of climate risk
and other market-wide or economy-wide factors. The model allows us to
study the impact of climate risk and of the environmental concern of green
investors on the market decarbonization dynamics in a stochastic frame-
work: we can, for example, compute the distribution of aggregate emissions
depending on the realization of common risk factors. Here, we suppose that
there are two representative investors (regular and green) who have access to
the same information set. In future research, the model could be extended
to include many investors with varying degree of greenness and with access
to information. Equilibrium dynamics will then need to be determined both
at the level of companies and at the level of investors, leading to a two-
stage mean-field game. Another promising direction would be to quantify
the speed of convergence of the n-firm model to the mean-field setting, to
understand how well the mean-field model approximates smaller markets.
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