Reducing Carbon using Regulatory and Financial Market Tools

4th Long-Term Investors’ Trends Workshop

Franklin Allen¹ Adelina Barbalau² Federica Zeni³
26 June 2023

¹Imperial College London, ²University of Alberta, ³World Bank
Carbon Pricing Regulation

Paris Climate Agreement goals requires $5 to $6.9 trillion per year by 2030
Environmental Protection Agency:
Approx. $190/CO2 to be consistent with Paris Agreement goals.
Global market: approx $6tn, out of which $1.6tn sustainability-linked
Sustainability-Linked Debt Example

Uruguay’s $1.5bn **SLB** issued in 2022, maturing 2034

KPI: % decrease in aggregate gross GHG emissions per real GDP from 1990 to 2025

Initial coupon: % 5.75

\[\Delta \text{Coupon} = \begin{cases}
+15 \text{bps} & \text{if KPI < 50}\% \\
0 & \text{otherwise} \\
-15 \text{bps} & \text{if KPI > 52}\%
\end{cases} \]

Oversubscribed: $3.96bn
Percentage of Sustainably-Linked Debt Issuance vs Carbon Price
Research Questions

Premise

• Heterogeneity in political support for regulation, concern for environmental issues and availability of resources to tackle climate change

• Global financial markets deploy significant amounts of capital towards financing sustainability-oriented projects
Research Questions

Premise

• Heterogeneity in political support for regulation, concern for environmental issues and availability of resources to tackle climate change
• Global financial markets deploy significant amounts of capital towards financing sustainability-oriented projects

Understand interaction between regulatory and financial tools for reducing carbon

• Conditions under which regulation may emerge given political constraints
• Conditions under which carbon-contingent financing may emerge
• Regulation in presence of political constraints and carbon-contingent financing
• When can financial markets alone fully substitute regulation?
Model Setup

Model of investment in polluting or non-polluting technologies

- Standard and environmental risk-neutral agents that behave atomistically
- Regulator chooses a carbon tax subject to median voter constraint
Model Setup

Model of investment in polluting or non-polluting technologies

- Standard and environmental risk-neutral agents that behave atomistically
- Regulator chooses a carbon tax subject to median voter constraint
- Agents can lend and borrow using carbon-contingent securities with principal d and payoff

$$\tilde{r}d - \rho(\bar{e} - e)$$

with \tilde{r} fixed rate of return, ρ market-implied price of carbon, \bar{e} target emissions and e realized emissions.

Target is met: $\bar{e} - e \equiv \Delta > 0$

Target is not met: $\bar{e} - e \equiv -\Delta < 0$
Model Predictions

Carbon-contingent security design can be equivalent to a carbon tax

- A carbon tax corrects the laissez-faire allocation in which the polluting technology is financed by financially-motivated agents

- Absent political support for tax, carbon-contingent financing provided by environmental agents can substitute regulation and enhances welfare
Model Predictions

Carbon-contingent security design can be equivalent to a carbon tax

- A carbon tax corrects the laissez-faire allocation in which the polluting technology is financed by financially-motivated agents

- Absent political support for tax, carbon-contingent financing provided by environmental agents can substitute regulation and enhances welfare

- Existence of financial markets weakens support for regulation

Why? Environmental agents value emissions associated with their actions

- Standard agents internalize possible compensation for reducing emissions

- Welfare losses can occur when markets shift economy from one supporting carbon tax to one that does not, but capital deployed is not large enough
Literature

Financial markets can have an impact

Regulation, financial markets, and corporate behaviour

- Heider and Inderst (2021), Biais and Landier (2022), Oehmke and Opp (2022), Bustamante and Zucchi (2022), Ramadorai and Zeni (2021), Huang and Kopytov (2022), Dottling and Rola-Janicka (2022), Inderst and Opp (2023)

Broader issues in carbon pricing regulation

Baseline Model
Structure of the Economy

- **Time:** two time periods.

- **Technologies:** two technologies

 (i) A polluting technology, which for input I yields

 $$y_\pi = \pi I \quad \text{and} \quad e_\pi = I$$

 where $\pi > 1$ is a production parameter.

 (ii) A non-polluting or green technology, which for input I yields

 $$y_g = gI \quad \text{and} \quad e_g = 0$$

 where $1 < g < \pi$ is a green production parameter.
Structure of the Economy (cont.)

- **Agents:** two types of agents indexed by \(i = 1, 2 \) with endowments \(h_i \)

 (i) Standard agents, who form a proportion \(\theta \) of the population

 \[
 U_1 = y_1 - \lambda E
 \]

 (ii) Environmental agents, who form a proportion \(1 - \theta \) of the population

 \[
 U_2 = y_2 - \lambda E - \eta e_2
 \]

 with \(\eta > \pi - g \) green preference parameter, and \(\lambda \) climate exposure parameter

 with \(E = \theta e_1 + (1 - \theta)e_2 \) total emissions associated with agents’ actions.

- **Regulator:** maximizes utilitarian social welfare

 \[
 W = \theta U_1 + (1 - \theta)U_2
 \]
Laissez-Faire

\[E^* = \theta h_1 \]

\[W^* = \theta \pi h_1 + (1 - \theta) g h_2 - \lambda \theta h_1 \]
Laissez-Faire

\[E^* = \theta h_1 \]
\[W^* = \theta \pi h_1 + (1 - \theta) g h_2 - \lambda \theta h_1 \]

Carbon Tax \(\tau \geq \pi - g \)

\[E^{\tau} = 0 \]
\[W^{\tau} = \theta gh_1 + (1 - \theta) gh_2 \]
\[W^{\tau} > W^* \quad \text{if} \quad \pi - g < \lambda \]
Imposing carbon tax is subject to median voter constraint that at least half the population should be better off

$$\max_{\tau} W^\tau \text{ such that } \tau \leq \tau_{0.5}$$

$$\tau^o = \pi - g$$

$$\tau^o = \begin{cases}
\pi - g & \text{if } \pi - g < \lambda \theta \\
0 & \text{otherwise}
\end{cases}$$
Carbon-Contingent Financing Equilibrium

If there is no carbon tax \(\tau = 0 \) a market for carbon-contingent financing arises, in which standard agents act as borrowers and environmental agents act as lenders and the market-implied carbon price is \(\rho \in [\pi - g, \eta] \)

High lenders’ endowments \(h_2 \)
\(\rightarrow \) all standard agents \(\theta \) can be funded and switch to green technology

Low lenders’ endowments \(h_2 \)
\(\rightarrow \) only fraction \(\theta_d < \theta \) of standard investors can access funding
How does existence of financial markets for pricing carbon affect support for tax?

If environmental endowments are sufficient high, the constrained optimal carbon tax is \(\tau^o = 0 \) and all emissions are priced using carbon-contingent securities. Otherwise, if endowments are low

\[
\tau^o = \begin{cases}
\pi - g & \text{if } (\eta - \rho) \frac{\theta_d}{1-\theta} < \lambda(\theta - \theta_d) \\
0 & \text{otherwise}
\end{cases}
\]
Share of standard agents: $\theta = 0.6$
Carbon-Contingent Financing and Political Constraints

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{carbon_contingent_financing_diagram.png}
\caption{Graph illustrating the impact of carbon-contingent financing on emissions reduction and welfare.}
\end{figure}
Extended Model
Extended Model Features

- **Heterogeneous preferences.** Mass one of investors \(i \in [0, 1] \) with green preferences \(\eta_i \) such that \(\eta_i' > 0 \) and

\[
U_i = y_i - \eta_i e_i - \lambda E
\]

endowments \(h_i = \$1 \) for each \(i \), and \(E = \int e_i di \).

- **Convex abatement cost.** Continuum of technologies \(\delta \in [0, 1] \) which deliver

\[
e = (1 - \delta)I, \quad y = (\pi - \phi(\delta))I
\]

for investment \(I \) with \(\pi > 1 \) and \(\phi(\delta) = \frac{1}{2} \phi \delta^2 \).

- **Regulator** maximizes utilitarian welfare

\[
W = \int_0^1 U_i di = \int_0^1 (y_i - \eta_i e_i) di - \lambda E
\]
Timeline and Solution

Regulator proposes a revenue-neutral tax

Agents vote y/n

Agents choose investment and financing

Carbon finance market clears

Profits and emissions realize
Timeline and Solution

Regulator proposes a revenue-neutral tax

Agents vote y/n

Agents choose investment and financing

Carbon finance market clears

Profits and emissions realize

Solve by backward induction:

- Determine supply and demand of carbon contingent financing for given tax τ

 \rightarrow Solve for equilibrium market price of carbon $\rho(\tau)$ and cutoff type $x(\tau)$
Timeline and Solution

Regulator proposes a revenue-neutral tax

Agents vote y/n

Agents choose investment and financing

Carbon finance market clears

Profits and emissions realize

Solve by backward induction:

- Determine supply and demand of carbon contingent financing for given tax τ

 \rightarrow Solve for equilibrium market price of carbon $\rho(\tau)$ and cutoff type $x(\tau)$

- Determine median-voter threshold $\bar{\tau}_{0.5}$ given financial markets response

 \rightarrow Solve for the constrained-optimal tax τ^o such that

 $\max_{\tau} W(\tau, \rho(\tau), x(\tau))$ such that $\tau \leq \bar{\tau}_{0.5}$
Market Price of Carbon given Carbon Tax

Ex: Preferences $\eta_i \leq 40$/CO2
Ex: Preferences $\eta_i \leq 40$/CO2
When tax is very high, no role for financial markets.

High tax reduces abatement potential of issuers as well as lenders’ budget.
Market Price of Carbon given Carbon Tax

Ex: Preferences $\eta_i \leq 40$/CO2

When tax is very high, no role for financial markets.

High tax reduces abatement potential of issuers as well as lenders’ budget.

When tax is low, cutoff type is typically above median voter.

Median voter is typically an issuer of carbon-contingent securities.
Median Voter Threshold

Prop: Median voter’s threshold $\bar{\tau}_{0.5}$ verifies

$$\bar{\tau}_{0.5} + f(\rho(\bar{\tau}_{0.5}), x(\bar{\tau}_{0.5})) = \lambda - 2(\bar{\eta} - \eta_{0.5}).$$

Ex: $\lambda = 50$/CO2

Presence of financial markets decreases support for a carbon tax.
But also, financial markets decrease the optimal carbon tax!
Optimal Carbon Tax with Financial Markets

But also, financial markets decrease the optimal carbon tax! **Prop:** The optimal tax τ^o which maximizes the constrained regulator problem

$$\max_{\tau} W(\tau, \rho(\tau)) \quad \text{such that} \quad \tau \leq \bar{\tau}_{0.5}$$

satisfies

$$\tau^o = \min \left(\lambda - \rho^o x^o, \bar{\tau}_{0.5} \right)$$

with $\rho^o x^o$ the equilibrium level of abatement financed by the market given $\tau = \tau^o$.
But also, financial markets decrease the optimal carbon tax!

Prop: The optimal tax \(\tau^o \) which maximizes the constrained regulator problem

\[
\max_{\tau} W(\tau, \rho(\tau)) \quad \text{such that} \quad \tau \leq \bar{\tau}_{0.5}
\]

satisfies

\[
\tau^o = \min \left(\lambda - \rho^o x^o, \bar{\tau}_{0.5} \right)
\]

with \(\rho^o x^o \) the equilibrium level of abatement financed by the market given \(\tau = \tau^o \).

Absent political constraint, carbon tax optimally below Pigouvian benchmark \(\lambda \) → combined presence of tax and markets enhances welfare
Optimal Carbon Tax with Financial Markets

But also, financial markets decrease the optimal carbon tax!

Prop: The optimal tax τ^o which maximizes the constrained regulator problem

$$\max_{\tau} W(\tau, \rho(\tau)) \quad \text{such that} \quad \tau \leq \bar{\tau}_{0.5}$$

satisfies

$$\tau^o = \min \left(\lambda - \rho^o x^o, \bar{\tau}_{0.5} \right)$$

with $\rho^o x^o$ the equilibrium level of abatement financed by the market given $\tau = \tau^o$.

Absent political constraint, carbon tax optimally below Pigouvian benchmark λ → combined presence of tax and markets enhances welfare

However, median voter constraint $\bar{\tau}_{0.5}$ is lower because of anticipated financial markets response → possibility of welfare losses.
Carbon-Contingent Financing and Political Constraints

![Graph showing the relationship between median voter gap \(\bar{\eta} - \eta_{0.5} \) and emissions reduction. The graph illustrates the scenarios of "Tax Only" and "Carbon Finance." The x-axis represents the median voter gap, while the y-axis shows emissions reduction.]
Concluding Remarks

Baseline Model

- Carbon-contingent financing arises when there is no political support for a tax and can fully substitute regulation if the capital deployed is large enough.
- When markets shift the economy from one supporting a carbon tax to one that does not, and capital deployed is small, welfare losses can occur.

Extended Model

- Carbon-contingent financing and tax co-exist (intensive margin substitution).
- Absent support for tax, financial markets offer a welfare-improving alternative.
- When support for tax is strong, combined presence of carbon tax and carbon-contingent financing achieves higher welfare than tax alone.
- Financial markets weaken support for tax and welfare losses can occur.
Implications

We study conditions under which carbon-contingent financing can substitute carbon tax within one economy. Important first step in thinking about transition globally

- In 2009 developed countries committed to jointly mobilize $100bn a year by 2020 to developing countries
- Capital mobilized through sustainability-linked debt is orders of magnitude larger ($1.6tn total) and has a wider reach, being implemented in countries where support for regulation has been insufficient
- Carbon-contingent securities combine global nature of capital markets with the carbon-price incentives of regulation
Thank You!
Borrower’s problem: i borrows d_i and invests $h_i + d_i$ in preferred technology

$$U_i = \max_{I_{\pi}, I_g} \pi I_{\pi} + g I_g - (\eta_i + \tau) I_{\pi} - \bar{r} d_i + \rho (\bar{e}_i - e_i) - \lambda E \; \text{s.t.} \; I_{\pi} + I_g \leq h_1 + d_1$$

with $\eta_1 = 0$ and $\eta_2 = \eta$, and $\theta (\bar{e}_1 - e_1) = (1 - \theta) (\bar{e}_2 - e_2) \geq 0$.

- Environmental agent: $\bar{e}_2 = 0 \rightarrow$ never borrows
- Standard agent: $\bar{e}_1 = h_1$ if not tax $\tau = 0$ and $e_1 = I_{\pi}$. Borrows if $\rho \geq \pi - g$ and switches to green technology.
Lender’s Problem: agent i lends d_i and invests $h_i - d_i$ in preferred technology

- Standard agent

\[U_1 = \max_{d_1 \leq h_1} (\pi - \tau)(h_1 - d_1) + \bar{r}d_1 - \rho(\bar{e}_1 - e_1), \]

yields $\rho = 0$ and $\bar{r} = g$ if $\tau = \pi - g$, or $\rho = 0$ and $\bar{r} = \pi$ if $\tau = 0$ never lends
Carbon-Contingent Financing

Lender’s Problem: agent i lends d_i and invests $h_i - d_i$ in preferred technology.

- Environmental agent lends at $\rho \in [\pi - g, \eta]$.

\[
U_2 = \max_{d_2 \leq h_2} g(h_2 - d_2) + \bar{r}d_2 - \rho(\bar{e}_2 - e_2) + \eta(\bar{e}_2 - e_2),
\]

with $\theta(\bar{e}_1 - e_1) = (1 - \theta)(\bar{e}_2 - e_2) \geq 0$ and subject to financing constraint

\[
g(h_2 - d_2) + \bar{r}d_2 - \rho(\bar{e}_2 - e_2) \geq 0,
\]

agents lends at $\bar{r} = g$ and $\rho = \eta > \pi - g$. Standard agents borrows and switches at $\rho \in [\pi - g, \eta]$. If endowments satisfy

\[
h_2 \geq \frac{\pi - g}{g} \frac{\theta}{1 - \theta} h_1
\]

all standard agents access carbon-contingent financing and switch to green technology. Otherwise, only fraction $\theta_d < \theta$ obtaining financing and switches.