Imperfect Financial Expectations: Theory and Evidence

Andrea Vedolin

Boston University

(based on joint work with Pooya Molavi and Alireza Tahbaz-Salehi)

June 2023

Motivation

- Inflation for Italy in June 2023 is 8%
- What do you think is the inflation for 2023?

Motivation

- Inflation for Italy in June 2023 is 8%
- What do you think is the inflation for 2023?

Why Expectations Matter?

• they matter for firms' and consumers' micro decisions

- how much a particular household consumes or saves
- how much a firm produces and the price it sets
- they matter for macroeconomic and policy outcomes
 - inflation expectations central to monetary policy

Why Expectations Matter?

• they matter for firms' and consumers' micro decisions

- how much a particular household consumes or saves
- how much a firm produces and the price it sets
- they matter for macroeconomic and policy outcomes
 - inflation expectations central to monetary policy
- and obviously for asset prices:

 $p = \mathbb{E}[Md]$ $s_t = i_t^{\star} - i_t + \mathbb{E}_t[s_{t+1}]$

Why Expectations Matter?

they matter for firms' and consumers' micro decisions

- how much a particular household consumes or saves
- how much a firm produces and the price it sets
- they matter for macroeconomic and policy outcomes
 - inflation expectations central to monetary policy
- and obviously for asset prices:

 $p = \mathbb{E}[Md]$ $s_t = i_t^{\star} - i_t + \mathbb{E}_t[s_{t+1}]$

• But where do expectations come from?

Rational Expectations (RE) Hypothesis

- The bedrock of modern macro and finance.
- RE maintains that economic agents fully understand the world they live in with all its complexity
 - know the economy's structural equations
 - know the shocks and/or their distributions
 - capable of Bayesian updating

Rational Expectations (RE) Hypothesis

- The bedrock of modern macro and finance.
- RE maintains that economic agents fully understand the world they live in with all its complexity
 - know the economy's structural equations
 - know the shocks and/or their distributions
 - capable of Bayesian updating
- Often combined with another strong assumption: full information
 - ▶ all data about the state of the economy are common knowledge

Rational Expectations (RE) Hypothesis

- The bedrock of modern macro and finance.
- RE maintains that economic agents fully understand the world they live in with all its complexity
 - know the economy's structural equations
 - know the shocks and/or their distributions
 - capable of Bayesian updating
- Often combined with another strong assumption: full information
 - ▶ all data about the state of the economy are common knowledge
- Full Information Rational Expectations (FIRE): objective and subjective expectations coincide

A Strong Assumption

• Advantage: completes the model by fully specifying agents' expectations

- **Disadvantage**: can be a strong assumption. In reality, agents have limited cognitive and computational abilities
 - limited capacity for processing information
 - not understand general equilibrium effects
 - not follow Bayes' rule
 - may not have complete knowledge of information available to others

A Strong Assumption

• Advantage: completes the model by fully specifying agents' expectations

- **Disadvantage**: can be a strong assumption. In reality, agents have limited cognitive and computational abilities
 - limited capacity for processing information
 - not understand general equilibrium effects
 - not follow Bayes' rule
 - may not have complete knowledge of information available to others

Natural to expect departures from FIRE

Overview

- Background: Evidence for departures from FIRE
- Wilderness of Non-Rational Expectations
- A Model of Time-Series Misspecification

Evidence against FIRE

$$\underbrace{\mathbf{x}_{t+h} - \mathbb{E}_t[\mathbf{x}_{t+h}]}_{\text{forecast error}} = \alpha_h + \beta_h^{\text{KW}} \mathbf{x}_t + \epsilon_{t,t+h}$$

• Under rational expectations, forecast errors should not be predictable

$$\beta_h^{\text{KW}} = 0$$
 for all h

$$\underbrace{x_{t+h} - \mathbb{E}_t[x_{t+h}]}_{\text{forecast error}} = \alpha_h + \beta_h^{\text{KW}} x_t + \epsilon_{t,t+h}$$

• Under rational expectations, forecast errors should not be predictable

$$\beta_h^{KW} = 0$$
 for all h

• A consequence of the Law of Iterated Expectations (LIE):

$$\beta_h^{\mathsf{KW}} = \frac{\mathbb{E}^*[x_t(x_{t+h} - \mathbb{E}_t[x_{t+h}])]}{\mathsf{var}(x_t)}$$

$$\underbrace{\mathbf{x}_{t+h} - \mathbb{E}_t[\mathbf{x}_{t+h}]}_{\text{forecast error}} = \alpha_h + \beta_h^{\text{KW}} \mathbf{x}_t + \epsilon_{t,t+h}$$

• Under rational expectations, forecast errors should not be predictable

$$\beta_h^{\text{KW}} = 0$$
 for all h

• A consequence of the Law of Iterated Expectations (LIE):

$$\beta_h = \frac{\mathbb{E}^* \mathbb{E}_t^* [x_t(x_{t+h} - \mathbb{E}_t [x_{t+h}])]}{\mathsf{var}(x_t)}$$

$$\underbrace{\mathbf{x}_{t+h} - \mathbb{E}_t[\mathbf{x}_{t+h}]}_{\text{forecast error}} = \alpha_h + \beta_h^{\text{KW}} \mathbf{x}_t + \epsilon_{t,t+h}$$

• Under rational expectations, forecast errors should not be predictable

$$\beta_h^{\text{KW}} = 0$$
 for all h

• A consequence of the Law of Iterated Expectations (LIE):

$$\begin{split} \beta_h &= \frac{\mathbb{E}^* \mathbb{E}_t^* [x_t(x_{t+h} - \mathbb{E}_t[x_{t+h}])]}{\mathsf{var}(x_t)} \\ &= \frac{\mathbb{E}^* [x_t(\mathbb{E}_t^* [x_{t+h}] - \mathbb{E}_t[x_{t+h}])]}{\mathsf{var}(x_t)} = \mathbf{0} \end{split}$$

Empirical Evidence: Interest Rates

forecast error 3m interest rate = $\alpha + \beta^{KW}$ 3m interest rate + error

 $\beta_h^{\rm KW} <$ 0: systematic over-reaction to interest rate realizations

Wilderness of Non-Rational Expectations

Wilderness of Non-Rational Expectations

- Without rational expectations, one ends up in the "wilderness" of alternative models of expectation formation (Sims, 1980, Sargent, 2001)
- A whole menu of different alternatives:
 - Rational inattention, sticky info, etc. (Sims, Mankiw & Reis, Mackowiak & Wiederholt)
 - ▶ Higher-order uncertainty (Morris & Shin, Woodford, Nimark, Angeletos & Lian)
 - ▶ Level-K thinking (Garcia-Schmidt & Woodford, Farhi & Werning, Iovino & Sergeyev)
 - Cognitive discounting (Gabaix)
 - Over-extrapolation (Gennaioli, Ma & Shleifer, Fuster, Laibson & Mendel, Guo & Wachter)
 - Over-confidence (Kohlhas & Broer, Scheinkman & Xiong)
 - Representativeness (Bordalo, Gennaioli & Shleifer)
 - Undue effect of historical experiences (Malmendier & Nagel)
 - ► ...
- Different models of expectation formation can have very different implications

- **Standard approach**: assume a particular model of expectations and characterize the degree of forecast-error predictability:
- Alternative: Characterize forecast-error predictability in terms of the objective and subjective autocorrelation (without imposing a fully specified model)
 - ξ_h^* : objective autocorrelation of x_t at horizon h
 - ξ_h : subjective autocorrelation of x_t at horizon h

- **Standard approach**: assume a particular model of expectations and characterize the degree of forecast-error predictability:
- Alternative: Characterize forecast-error predictability in terms of the objective and subjective autocorrelation (without imposing a fully specified model)
 - ξ_h^* : objective autocorrelation of x_t at horizon h
 - ξ_h : subjective autocorrelation of x_t at horizon h

• Run the following regression

$$x_{t+h} - \mathbb{E}_t[x_{t+h}] = \alpha_h^{\mathsf{KW}} + \beta_h^{\mathsf{KW}} x_t + \epsilon_{t,h}$$

$$x_{t+h} - \mathbb{E}_t[x_{t+h}] = \alpha_h^{\mathsf{KW}} + \beta_h^{\mathsf{KW}} x_t + \epsilon_{t,h}$$

Proposition

Let

 ξ_h^* : objective autocorrelation , ξ_h : subjective autocorrelation

Then

$$\beta_h^{KW} = (\xi_h^* - \xi_h) - \sum_{\tau=1}^{\infty} \sum_{s=1}^{\infty} \Xi_{\tau s}^{-1} \xi_{s+h-1} (\xi_{\tau-1}^* - \xi_{\tau-1}),$$

where Ξ is an infinite-dimensional matrix such that $\Xi_{ij} = \xi_{i-j}$ for all $i, j \ge 1$.

$$x_{t+h} - \mathbb{E}_t[x_{t+h}] = \alpha_h^{\mathsf{KW}} + \beta_h^{\mathsf{KW}} x_t + \epsilon_{t,h}$$

Proposition

Let

 ξ_h^* : objective autocorrelation , ξ_h : subjective autocorrelation

Then

$$\beta_h^{KW} = (\xi_h^* - \xi_h) - \sum_{\tau=1}^{\infty} \sum_{s=1}^{\infty} \Xi_{\tau s}^{-1} \xi_{s+h-1} (\xi_{\tau-1}^* - \xi_{\tau-1}),$$

where Ξ is an infinite-dimensional matrix such that $\Xi_{ij} = \xi_{i-j}$ for all $i, j \ge 1$.

- The sub. and obj. autocorrelations are summary statistics for predictability
- What matters is the degree of over- or under-extrapolation at different horizons!

$$x_{t+h} - \mathbb{E}_t[x_{t+h}] = \alpha_h^{\mathsf{KW}} + \beta_h^{\mathsf{KW}} x_t + \epsilon_{t,h}$$

Proposition

Let

 ξ_h^* : objective autocorrelation , ξ_h : subjective autocorrelation

Then

$$\beta_h^{KW} = (\xi_h^* - \xi_h) - \sum_{\tau=1}^{\infty} \sum_{s=1}^{\infty} \Xi_{\tau s}^{-1} \xi_{s+h-1} (\xi_{\tau-1}^* - \xi_{\tau-1}),$$

where Ξ is an infinite-dimensional matrix such that $\Xi_{ij} = \xi_{i-j}$ for all $i, j \ge 1$.

- The sub. and obj. autocorrelations are summary statistics for predictability
- What matters is the degree of over- or under-extrapolation at different horizons!
- Need a model for how agents may misperceive time-series dependencies

A Model of Time-Series Misspecification

- A sequence of payoff-relevant variables generated by a latent *n*-factor model.
- But agents are constrained to thinking through models with at most *k* factors.

- A sequence of payoff-relevant variables generated by a latent *n*-factor model.
- But agents are constrained to thinking through models with at most *k* factors.
 - agents are otherwise (constrained) rational.
 - ▶ they estimate the *k*-factor model that best fits their observations.

- A sequence of payoff-relevant variables generated by a latent *n*-factor model.
- But agents are constrained to thinking through models with at most *k* factors.
 - agents are otherwise (constrained) rational.
 - ▶ they estimate the *k*-factor model that best fits their observations.

- ▶ With large *k*, agents recover the true model (back to RE).
- With small k, expectations exhibit deviations from RE. \rightarrow our focus

- A sequence of payoff-relevant variables generated by a latent *n*-factor model.
- But agents are constrained to thinking through models with at most *k* factors.
 - agents are otherwise (constrained) rational.
 - ▶ they estimate the *k*-factor model that best fits their observations.

- ▶ With large *k*, agents recover the true model (back to RE).
- With small k, expectations exhibit deviations from RE. \rightarrow our focus

- · Asset pricing implications: characterize return predictability as a function of
 - (1) true data-generating process
 - (2) the complexity/dimension of agents' models

Fact 1: Fama Regressions

$$\mathsf{rx}_{t+h} = \alpha_h^{\mathsf{rx}} + \beta_h^{\mathsf{rx}} (i_t^* - i_t) + \epsilon_{t+h}.$$

16 / 48

Fact 1: Fama Regressions

$$\mathsf{rx}_{t+h} = \alpha_h^{\mathsf{rx}} + \beta_h^{\mathsf{rx}} (i_t^* - i_t) + \epsilon_{t+h}.$$

Fact 1: Fama Regressions

$$\mathsf{rx}_{t+h} = \alpha_h^{\mathsf{rx}} + \beta_h^{\mathsf{rx}}(i_t^{\star} - i_t) + \epsilon_{t+h}$$

Fact 2: Forecast-Error Predictability

$$\mathbf{x}_{t+h-1} - \mathbb{E}_{t+h-1}[\mathbf{x}_{t+h-1}] = \alpha_h^{\mathsf{fe}} + \beta_h^{\mathsf{fe}} \mathbf{x}_t + \epsilon_t.$$

(Reduced-Form) Framework

- Discrete-time economy with unit mass of identical agents.
- Exogenous sequence of fundamentals {x_t}[∞]_{t=-∞} generated according to some probability distribution P*.
(Reduced-Form) Framework

- Discrete-time economy with unit mass of identical agents.
- Exogenous sequence of fundamentals {x_t}[∞]_{t=-∞} generated according to some probability distribution P*.
- Uncovered Interest Rate Parity (UIP):

$$\mathbf{s}_t = \mathbf{i}_t^* - \mathbf{i}_t + \delta \mathbb{E}_t[\mathbf{s}_{t+1}] \tag{1}$$

where $\mathbb{E}[\cdot]$ is agents' subjective expectations and in general $\mathbb{E}[\cdot] \neq \mathbb{E}^*[\cdot]$.

(Reduced-Form) Framework

- Discrete-time economy with unit mass of identical agents.
- Exogenous sequence of fundamentals {x_t}[∞]_{t=-∞} generated according to some probability distribution P*.
- Uncovered Interest Rate Parity (UIP):

$$\mathbf{s}_t = \mathbf{i}_t^* - \mathbf{i}_t + \delta \mathbb{E}_t[\mathbf{s}_{t+1}] \tag{1}$$

where $\mathbb{E}[\cdot]$ is agents' subjective expectations and in general $\mathbb{E}[\cdot] \neq \mathbb{E}^*[\cdot]$.

excess returns:

$$rx_{t+1} = \delta s_{t+1} - s_t + i_t^* - i_t$$
(2)

Main Assumption (informally)

Model's structural equation:

$$s_t = i_t^* - i_t + \delta \mathbb{E}_t[s_{t+1}]$$

- The true data-generating process \mathbb{P}^* may not have a simple representation.
- There is a limit to the complexity of statistical models that agents are able to consider.

• They approximate \mathbb{P}^* with a simplified model.

Approximating Complex Models

true model: latent n factors

$$x_t = c^{*'} z_t$$
$$z_t = \mathbf{A}^* z_{t-1} + \mathbf{B}^* \epsilon_t$$
$$z_t \in \mathbb{R}^n$$

- agents neither observe nor know the underlying factors (z₁,..., z_n).
- they do not know the collection of parameters θ^{*} = (A^{*}, B^{*}, c^{*}).

Approximating Complex Models

true model: latent n factors

$$x_t = c^{*'} z_t$$
$$z_t = \mathbf{A}^* z_{t-1} + \mathbf{B}^* \epsilon_t$$
$$z_t \in \mathbb{R}^n$$

- agents neither observe nor know the underlying factors (z₁,..., z_n).
- they do not know the collection of parameters θ* = (A*, B*, c*).

subjective model: up to k factors

$$x_t = c'\omega_t$$
$$\omega_t = \mathbf{A}\,\omega_{t-1} + \mathbf{B}\varepsilon_t$$
$$\omega_t \in \mathbb{R}^k$$

- if k < n set of models entertained by agents does not contain the true model
 → misspecification
- Agent's model, θ = (A, B, c), is endogenous outcome of learning

Approximating Complex Models

true model: latent n factors

$$x_t = c^{*'} z_t$$
$$z_t = \mathbf{A}^* z_{t-1} + \mathbf{B}^* \epsilon_t$$
$$z_t \in \mathbb{R}^n$$

- agents neither observe nor know the underlying factors (z₁,..., z_n).
- they do not know the collection of parameters θ* = (A*, B*, c*).

subjective model: up to k factors

$$x_t = c'\omega_t$$
$$\omega_t = \mathbf{A}\,\omega_{t-1} + \mathbf{B}\varepsilon_t$$
$$\omega_t \in \mathbb{R}^k$$

- if k < n set of models entertained by agents does not contain the true model
 → misspecification
- Agent's model, θ = (A, B, c), is endogenous outcome of learning
- only exogenously-specified feature of the agents: k
- "low rank approximation" of the true data-generating process
- similar to model-order reduction in control theory

 Agents start with a common prior belief at initial period t₀ with full support over the set of k-factor models

 $\mu_{t_0} \in \Delta \Theta_k$

 Agents start with a common prior belief at initial period t₀ with full support over the set of k-factor models

$$\mu_{t_0} \in \Delta \Theta_k$$

• Form Bayesian posteriors after observing $(x_{t_0}, \ldots, x_{t-1}, x_t)$:

 $\mu_t \in \Delta \Theta_k$

 Agents start with a common prior belief at initial period t₀ with full support over the set of k-factor models

$$\mu_{t_0} \in \Delta \Theta_k$$

• Form Bayesian posteriors after observing $(x_{t_0}, \ldots, x_{t-1}, x_t)$:

 $\mu_t \in \Delta \Theta_k$

- Abstract from finite-sample issues by taking the limit as $t_0
 ightarrow -\infty$
 - ▶ any model misspecification is due to mismatch between k and n

- Agents are fully Bayesian and their expectations are internally consistent (satisfy law of iterated expectations) but assign zero prior beliefs on models with more than k factors.
- Agents' model is
 - $\blacktriangleright\,$ endogenous and depends on the true data-generating process and k
 - independent of other characteristics of the environment (preferences, etc.)

- Agents are fully Bayesian and their expectations are internally consistent (satisfy law of iterated expectations) but assign zero prior beliefs on models with more than k factors.
- Agents' model is
 - \blacktriangleright endogenous and depends on the true data-generating process and k
 - independent of other characteristics of the environment (preferences, etc.)

• If $k \ge n$,

- agents learn the true model (up to an observational equivalence)
- back to rational expectations

- Agents are fully Bayesian and their expectations are internally consistent (satisfy law of iterated expectations) but assign zero prior beliefs on models with more than k factors.
- Agents' model is
 - \blacktriangleright endogenous and depends on the true data-generating process and ${\bf k}$
 - independent of other characteristics of the environment (preferences, etc.)

• If $k \ge n$,

- agents learn the true model (up to an observational equivalence)
- back to rational expectations

• If **k** < **n**,

- agents end up with a misspecified model of the world
- ▶ but one that is the "best" k-dimensional approximation to the true model
- no data would make them revise k

Subjective Expectations

Subjective Expectations: Characterization

Proposition

Let $\widetilde{\Theta} \subseteq \Theta_k$ have positive prior measure, i.e., $\overline{\mu}(\widetilde{\Theta}) > 0$. If

$$\underset{\theta \in \widetilde{\Theta}}{\operatorname{ess inf}} \operatorname{KL}(\theta^* \| \theta) > \underset{\theta \in \Theta_k}{\operatorname{ess inf}} \operatorname{KL}(\theta^* \| \theta),$$

then

$$\lim_{t_0\to -\infty} \mu_t(\widetilde{\Theta}) = 0 \qquad \mathbb{P}^*\text{-almost surely}.$$

• Kullback-Leibler divergence between the agents' and the true model

Subjective Expectations: Characterization

Proposition

Let $\widetilde{\Theta} \subseteq \Theta_k$ have positive prior measure, i.e., $\overline{\mu}(\widetilde{\Theta}) > 0$. If

$$\underset{\theta \in \widetilde{\Theta}}{\operatorname{ess inf}} \operatorname{KL}(\theta^* \| \theta) > \underset{\theta \in \Theta_k}{\operatorname{ess inf}} \operatorname{KL}(\theta^* \| \theta),$$

then

$$\lim_{t_0\to -\infty} \mu_t(\widetilde{\Theta}) = 0 \qquad \mathbb{P}^*\text{-almost surely}.$$

• Kullback-Leibler divergence between the agents' and the true model

$$\mathsf{KL}(\theta^* \| \theta) = \mathbb{E}^* \left[-\log f^{\theta}(x_{t+1} | x_t, \dots) \right] - \mathbb{E}^* \left[-\log f^*(x_{t+1} | x_t, \dots) \right]$$

- Agents' posteriors concentrate on the set of models with minimum KL divergence to the true model.
- When $k \ge n$, agents learn the true model.

Return and Forecast-Error Predictability

Excess Returns

exchange rates:
$$s_t = i_t^* - i_t + \delta \mathbb{E}_t[s_{t+1}]$$

currency returns: $r_{t+1} = \delta s_{t+1} - s_t + i_t^* - i_t$

• With rational expectations:

$$\mathbb{E}_t[\mathsf{rx}_{t+h}] = \mathbb{E}_t^*[\mathsf{rx}_{t+h}] = 0$$

Excess Returns

exchange rates:
$$s_t = i_t^* - i_t + \delta \mathbb{E}_t[s_{t+1}]$$

currency returns: $r_{t+1} = \delta s_{t+1} - s_t + i_t^* - i_t$

• With rational expectations:

$$\mathbb{E}_t[\mathsf{rx}_{t+h}] = \mathbb{E}_t^*[\mathsf{rx}_{t+h}] = 0$$

• Under complexity constraint:

$$\begin{split} \mathbb{E}_t[\mathbf{r}\mathbf{x}_{t+h}] &= \mathbf{0} \\ \mathbb{E}_t^*[\mathbf{r}\mathbf{x}_{t+h}] &\neq \mathbf{0} \qquad \text{in general} \end{split}$$

Predictability Regressions

- Quantify deviations from the rational expectations benchmark using two families of predictability regressions:
 - (1) (excess) return predictability:

$$\mathsf{rx}_{t+h} = \alpha_h^{\mathsf{rx}} + \beta_h^{\mathsf{rx}} x_t + \epsilon_{t,h}$$

(2) forecast-error predictability:

$$x_{t+h+m-1} - \mathbb{E}_{t+h-1}[x_{t+h+m-1}] = \alpha_{h,m}^{\text{fe}} + \beta_{h,m}^{\text{fe}} x_t + \epsilon_{t,h}$$

• Rational expectations: returns and forecast errors are unpredictable: $\beta_h^{xx} = \beta_{h,m}^{fe} = 0$ for all $h, m \ge 1$

Predictability Regressions

- Quantify deviations from the rational expectations benchmark using two families of predictability regressions:
 - (1) (excess) return predictability:

$$\mathsf{rx}_{t+h} = \alpha_h^{\mathsf{rx}} + \beta_h^{\mathsf{rx}} x_t + \epsilon_{t,h}$$

(2) forecast-error predictability:

$$x_{t+h+m-1} - \mathbb{E}_{t+h-1}[x_{t+h+m-1}] = \alpha_{h,m}^{\text{fe}} + \beta_{h,m}^{\text{fe}} x_t + \epsilon_{t,h}$$

- Rational expectations: returns and forecast errors are unpredictable: $\beta_h^{xx} = \beta_{h,m}^{fe} = 0$ for all $h, m \ge 1$
- The term structure of coefficients {β_h^{rx}}_h [∞]_h and {β_{h,m}^{fw}_{h=1} inform us about deviations from the rational-expectations benchmark at each horizon h.

Return and Forecast-Error Predictability: Main Result

Theorem

Suppose agents are constrained to k-factor models. Then,

(a) subjective autocorrelation:

$$\xi_h = \frac{\sum_{s=0}^{\infty} (u' \mathbf{M}^{h+s} u) (u' \mathbf{M}^s u)}{\sum_{s=0}^{\infty} (u' \mathbf{M}^s u)^2} \qquad \text{for all } h \ge 0$$

where

$$\begin{split} (\textit{\textit{M}},\textit{\textit{u}}) = & \underset{\textit{\textit{M}} \in \mathbb{S}^{k}, \textit{\textit{u}} \in \mathbb{R}^{k}}{\operatorname{argmin}} \quad 1 - 2\sum_{s=1}^{\infty} \phi_{s}^{(1)} \xi_{s}^{*} + \sum_{s=1}^{\infty} \sum_{\tau=1}^{\infty} \phi_{s}^{(1)} \phi_{\tau}^{(1)} \xi_{\tau-s}^{*} \\ & \text{s.t.} \qquad \phi_{s}^{(m)} = u' M^{m-1} [\textit{\textit{M}}(\textit{\textit{I}} - \textit{\textit{uu}}')]^{s-1} \textit{\textit{M}}\textit{u}. \end{split}$$

Return and Forecast-Error Predictability: Main Result

Theorem

Suppose agents are constrained to k-factor models. Then,

(a) subjective autocorrelation:

$$\xi_h = \frac{\sum_{s=0}^{\infty} (u' \mathbf{M}^{h+s} u) (u' \mathbf{M}^s u)}{\sum_{s=0}^{\infty} (u' \mathbf{M}^s u)^2} \qquad \text{for all } h \ge 0$$

where

$$\begin{split} (\textit{\textit{M}},\textit{\textit{u}}) = & \underset{\textit{\textit{M}} \in \mathcal{S}^k, \textit{\textit{u}} \in \mathbb{R}^k}{\operatorname{argmin}} \quad 1 - 2\sum_{s=1}^{\infty} \phi_s^{(1)} \xi_s^* + \sum_{s=1}^{\infty} \sum_{\tau=1}^{\infty} \phi_s^{(1)} \phi_\tau^{(1)} \xi_{\tau-s}^* \\ & \text{s.t.} \qquad \phi_s^{(m)} = u' \mathcal{M}^{m-1} [\textit{\textit{M}}(\textit{\textit{I}} - \textit{\textit{uu}}')]^{s-1} \textit{\textit{M}}\textit{\textit{u}}. \end{split}$$

(b) coefficients of the predictability regressions:

$$\beta_{h}^{\rm PX} = \delta \frac{\xi_{h}^{*} - \sum_{\tau=1}^{\infty} \phi_{\tau}^{(1)} \xi_{h-\tau}^{*}}{1 - \sum_{\tau=1}^{\infty} \delta^{\tau} \phi_{\tau}^{(1)}} \qquad , \qquad \beta_{h,m}^{\rm fe} = \xi_{h+m-1}^{*} - \sum_{\tau=1}^{\infty} \phi_{\tau}^{(m)} \xi_{h-\tau}^{*}.$$

Return and Forecast-Error Predictability: Main Result

ACF of the fundamental under the true model: $\xi_h^* = \frac{\mathbb{E}^*[x_t x_{t+h}]}{\mathbb{E}^*[x_t^2]}$ + $\beta_h^{rx}, \beta_{h,m}^{fe}$ number of factors in agents' subjective model: k

- ▶ the way the true data-generating process matters is via its ACF.
- only free parameter is the number of factors in the agents' model.

Single-Factor Subjective Model (k = 1)

Proposition

If agents are constrained to single-factor models (k = 1), then

$$\beta_{h}^{rx} = \frac{\delta}{1 - \delta\xi_{1}^{*}} (\xi_{h}^{*} - \xi_{h-1}^{*}\xi_{1}^{*})$$
$$\beta_{h,m}^{fe} = \xi_{h+m-1}^{*} - \xi_{1}^{*m}\xi_{h-1}^{*}$$

respectively, where ξ_h^* is the autocorrelation of the fundamental at lag h.

Application: Violations of

Uncovered Interest Rate Parity

Background and Setting

• Fundamental: (log) interest rate differential of foreign and U.S. deposit rates:

$$x_t = i_t^{\star} - i_t$$

 Price: (log) exchange rate (expressed as the U.S. dollar price of the foreign currency) satisfying the uncovered interest rate parity (UIP) condition:

$$s_t = i_t^\star - i_t + \mathbb{E}_t[s_{t+1}]$$

• Currency excess return:

$$r_{t+1} = s_{t+1} - s_t + (i_t^* - i_t)$$

• Return Predictability Regression (Fama, 1984):

$$\mathsf{rx}_{t+h} = \alpha_h^{\mathsf{rx}} + \beta_h^{\mathsf{rx}}(i_t^{\star} - i_t) + \epsilon_{t,h}.$$

Fama Regressions

$$\mathsf{rx}_{t+h} = \alpha_h^{\mathsf{rx}} + \beta_h^{\mathsf{rx}}(i_t^{\star} - i_t) + \epsilon_{t+h}.$$

34 / 48

Fama Regressions

$$\mathsf{rx}_{t+h} = \alpha_h^{\mathsf{rx}} + \beta_h^{\mathsf{rx}} (i_t^* - i_t) + \epsilon_{t+h}.$$

Fama Regressions

$$\mathsf{rx}_{t+h} = \alpha_h^{\mathsf{rx}} + \beta_h^{\mathsf{rx}} (i_t^* - i_t) + \epsilon_{t+h}.$$

Term Structure of UIP Violations in the Model

• Fundamental: log-interest rate differential

$$x_t = i_t^* - i_t$$

• Construct the autocorrelation of the interest rate differential:

$$\xi_h^* = \frac{\mathbb{E}^*[x_t x_{t+h}]}{\mathbb{E}^*[x_t^2]}.$$

• Plug into the formula:

$$\beta_h^{\rm rx} = \frac{\xi_h^* - \xi_1^* \xi_{h-1}^*}{1 - \xi_1^*}$$

(optimize numerically for k > 1)

Term Structure of UIP Violations in the Model

• Fundamental: log-interest rate differential

$$x_t = i_t^* - i_t$$

• Construct the autocorrelation of the interest rate differential:

$$\xi_h^* = \frac{\mathbb{E}^*[x_t x_{t+h}]}{\mathbb{E}^*[x_t^2]}$$

• Plug into the formula:

$$\beta_h^{\rm rx} = \frac{\xi_h^* - \xi_1^* \xi_{h-1}^*}{1 - \xi_1^*}$$

(optimize numerically for k > 1)

β_h[×] only depend on the shape of the ACF of interest rate differential.
 we do not use information on exchange rate or currency excess returns.

UIP Violations

 generates patterns simultaneously consistent with forward premium and return predictability puzzles only using information from interest rate differentials.

Return Predictability: Varying the Complexity of Agents' Model

Forecast-Error Predictability

• Forecasts: survey data from *Consensus Economics*:

 $\mathbb{E}_t[x_{t+3}]$

• Forecast-Error Predictability regression:

$$x_{t+h+m-1} - \mathbb{E}_{t+h-1}[x_{t+h+m-1}] = \alpha_{h,m}^{\text{fe}} + \beta_{h,m}^{\text{fe}} x_t + \epsilon_{t,h}$$

Model-implied coefficient:

$$\beta_{h,3}^{\rm fe} = \xi_{h+2}^* - {\xi_1^*}^3 \xi_{h-1}^*$$

(optimize numerically for k > 1)

• $\beta_{h,3}^{\text{fe}}$ only depend on the shape of the ACF of interest rate differential and does not depend on survey data, exchange rates, or realized returns.

Forecast-Error Predictability

Conclusions

Conclusions

- A framework in which investors are constrained in model complexity.
- Implies rich dynamics for the term structure of deviations from the benchmark rational expectations.
- Implications for violations of uncovered interest rate parity

Conclusions

- A framework in which investors are constrained in model complexity.
- Implies rich dynamics for the term structure of deviations from the benchmark rational expectations.
- Implications for violations of uncovered interest rate parity

Grazie

Minimal-Order Representation

• Data-generating process: $z_t \in \mathbb{R}^n$

$$z_t = \mathbf{A}^* z_{t-1} + \mathbf{B}^* \epsilon_t$$
$$x_t = c^{*'} z_t$$

• Model order: dimension of the model's minimal representation

 $n = \operatorname{rank}(\mathbf{Q}^*),$

where

$$\mathbf{Q}^* = \begin{bmatrix} q_0^* & q_1^* & q_2^* & \cdots \\ q_1^* & q_2^* & q_3^* & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix} \quad \text{and} \quad q_h^* = \operatorname{cov}^*[x_t x_{t+h}]$$

Representation as Limited Memory

 An agent who constructs k moving averages s_t = (s_{1t}, s_{2t},..., s_{kt}) of the past realizations of the fundamentals:

$$s_{it} = w_i x_t + \sum_{j=1}^k q_{ij} s_{jt-1},$$

and treats these moving averages as summary statistics for making predictions about all future realizations of the fundamental:

$$\mathbb{E}_t[x_{t+ au}] = \sum_{i=1}^k v_{ au i} s_{it}$$
 for all $au \ge 1$,

Representation as Limited Memory

 An agent who constructs k moving averages s_t = (s_{1t}, s_{2t},..., s_{kt}) of the past realizations of the fundamentals:

$$s_{it} = w_i x_t + \sum_{j=1}^k q_{ij} s_{jt-1},$$

and treats these moving averages as summary statistics for making predictions about all future realizations of the fundamental:

$$\mathbb{E}_t[x_{t+ au}] = \sum_{i=1}^k \mathsf{v}_{ au i} \mathsf{s}_{it} \qquad ext{for all } au \geq \mathsf{1},$$

• Parameterize such an agent: $\psi = (w, \mathbf{Q}, \{v_{\tau}\}_{\tau=1}^{\infty}) \in \Psi_k$.

Representation as Limited Memory

 An agent who constructs k moving averages s_t = (s_{1t}, s_{2t},..., s_{kt}) of the past realizations of the fundamentals:

$$s_{it} = w_i x_t + \sum_{j=1}^k q_{ij} s_{jt-1},$$

and treats these moving averages as summary statistics for making predictions about all future realizations of the fundamental:

$$\mathbb{E}_t[x_{t+ au}] = \sum_{i=1}^k \mathsf{v}_{ au i} \mathsf{s}_{it} \qquad ext{for all } au \geq 1,$$

• Parameterize such an agent: $\psi = (w, \mathbf{Q}, \{v_{\tau}\}_{\tau=1}^{\infty}) \in \Psi_k$.

Proposition

There is a one-to-one correspondence between Ψ_k and Θ_k .

▶ back

Example

• ARMA(2,1) stochastic process:

$$x_t - \phi_1 x_{t-1} - \phi_2 x_{t-2} = \epsilon_t + \psi_1 \epsilon_{t-1}$$

• Hidden-factor model representation:

$$\begin{aligned} z_{t+1} &= \begin{bmatrix} \phi_1 & 1 \\ \phi_2 & 0 \end{bmatrix} z_t + \begin{bmatrix} 1 \\ \psi_1 \end{bmatrix} \epsilon_t \\ x_t &= \begin{bmatrix} 1 & 0 \end{bmatrix} z_t. \end{aligned}$$

• In this case,

$$z_t = \begin{bmatrix} x_t \\ \phi_2 x_{t-1} + \psi_1 \epsilon_t \end{bmatrix}$$

Alternative (non-Bayesian) Estimation

Theorem

Let
$$\widehat{\Theta}_{k}$$
 denote an arbitrary compact subset of Θ_{k} .
(a) If $\hat{\theta}_{t}^{\mathrm{ML}} \in \operatorname{arg\,max}_{\theta \in \widehat{\Theta}_{k}} f^{\theta}(x_{t}, \dots, x_{0})$ is the maximum likelihood estimator,

$$\lim_{t \to \infty} \mathsf{KL}(\theta^{*} || \hat{\theta}_{t}^{\mathrm{ML}}) = \min_{\theta \in \widehat{\Theta}_{k}} \mathsf{KL}(\theta^{*} || \theta) \qquad \mathbb{P}^{*}\text{-almost surely.}$$

- Same expectations whether agents...
 - (a) use maximum likelihood to estimate their model

Alternative (non-Bayesian) Estimation

Theorem

- Same expectations whether agents...
 - (a) use maximum likelihood to estimate their model
 - (b) pick their model to minimize the MSE of their one-step-ahead predictions

Micro-Founded Model (Allen, Morris, and Shin, 2006)

- A single asset in zero net supply with dividend stream $\{x_t\}_{t=-\infty}^{\infty}$
- · Overlapping generations of traders who each live for two periods
- At each date,
 - young traders build up a position in the asset but do not consume
 - old traders unwind their position and acquire the consumption good

• Utility of acquiring q_{it} units of the asset

$$u_i(q_{it}) = (y_{t+1} - y_t + x_t)q_{it} - \frac{1}{2}\gamma q_{it}^2$$

Micro-Founded Model

• Utility of acquiring q_{it} units of the asset

$$u_i(q_{it}) = (y_{t+1} - y_t + x_t)q_{it} - \frac{1}{2}\gamma q_{it}^2$$

• First-order conditions:

$$q_{it} = \frac{1}{\gamma} \left(x_t - y_t + \mathbb{E}_{it}[y_{t+1}] \right)$$

• Market clearing:

$$x_t - y_t + \int_0^1 \mathbb{E}_{it}[y_{t+1}] = 0.$$