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Motivation

• Inflation for Italy in June 2023 is 8%
• What do you think is the inflation for 2023?
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Why Expectations Matter?

• they matter for firms’ and consumers’ micro decisions
▶ how much a particular household consumes or saves
▶ how much a firm produces and the price it sets

• they matter for macroeconomic and policy outcomes
▶ inflation expectations central to monetary policy

• and obviously for asset prices:

p = E[Md ]
st = i⋆

t − it + Et [st+1]

• But where do expectations come from?
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Rational Expectations (RE) Hypothesis

• The bedrock of modern macro and finance.

• RE maintains that economic agents fully understand the world they live in with
all its complexity

▶ know the economy’s structural equations
▶ know the shocks and/or their distributions
▶ capable of Bayesian updating

• Often combined with another strong assumption: full information
▶ all data about the state of the economy are common knowledge

• Full Information Rational Expectations (FIRE): objective and subjective
expectations coincide
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A Strong Assumption

• Advantage: completes the model by fully specifying agents’ expectations

• Disadvantage: can be a strong assumption. In reality, agents have limited
cognitive and computational abilities

▶ limited capacity for processing information
▶ not understand general equilibrium effects
▶ not follow Bayes’ rule
▶ may not have complete knowledge of information available to others

▶ Natural to expect departures from FIRE
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Overview

• Background: Evidence for departures from FIRE
• Wilderness of Non-Rational Expectations
• A Model of Time-Series Misspecification
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Evidence against FIRE
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Testing FIRE: Kohlhas and Walther (2021)

xt+h − Et [xt+h]︸ ︷︷ ︸
forecast error

= αh + βKW
h xt + ϵt,t+h

• Under rational expectations, forecast errors should not be predictable

βKW
h = 0 for all h

• A consequence of the Law of Iterated Expectations (LIE):
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Empirical Evidence: Interest Rates

forecast error 3m interest rate = α + βKW3m interest rate + error
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Wilderness of Non-Rational Expectations
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Wilderness of Non-Rational Expectations

• Without rational expectations, one ends up in the “wilderness” of alternative
models of expectation formation (Sims, 1980, Sargent, 2001)

• A whole menu of different alternatives:
▶ Rational inattention, sticky info, etc. (Sims, Mankiw & Reis, Mackowiak &

Wiederholt)
▶ Higher-order uncertainty (Morris & Shin, Woodford, Nimark, Angeletos & Lian)
▶ Level-K thinking (Garcia-Schmidt & Woodford, Farhi & Werning, Iovino & Sergeyev)
▶ Cognitive discounting (Gabaix)
▶ Over-extrapolation (Gennaioli, Ma & Shleifer, Fuster, Laibson & Mendel, Guo &

Wachter)
▶ Over-confidence (Kohlhas & Broer, Scheinkman & Xiong)
▶ Representativeness (Bordalo, Gennaioli & Shleifer)
▶ Undue effect of historical experiences (Malmendier & Nagel)
▶ ...

• Different models of expectation formation can have very different implications
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(Partially) Taming the Wilderness

• Standard approach: assume a particular model of expectations and characterize
the degree of forecast-error predictability:

• Alternative: Characterize forecast-error predictability in terms of the objective
and subjective autocorrelation (without imposing a fully specified model)

ξ∗
h : objective autocorrelation of xt at horizon h
ξh : subjective autocorrelation of xt at horizon h

• Run the following regression

xt+h − Et [xt+h] = αKW
h + βKW

h xt + ϵt,h
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(Partially) Taming the Wilderness

xt+h − Et [xt+h] = αKW
h + βKW

h xt + ϵt,h

Proposition
Let

ξ∗
h :objective autocorrelation , ξh : subjective autocorrelation

Then

βKW
h = (ξ∗

h − ξh) −
∞∑

τ=1

∞∑
s=1

Ξ−1
τs ξs+h−1(ξ

∗
τ−1 − ξτ−1),

where Ξ is an infinite-dimensional matrix such that Ξij = ξi−j for all i , j ≥ 1.

• The sub. and obj. autocorrelations are summary statistics for predictability
• What matters is the degree of over- or under-extrapolation at different horizons!
• Need a model for how agents may misperceive time-series dependencies
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A Model of Time-Series Misspecification
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Framework

• A sequence of payoff-relevant variables generated by a latent n-factor model.
• But agents are constrained to thinking through models with at most k factors.

▶ agents are otherwise (constrained) rational.
▶ they estimate the k-factor model that best fits their observations.

▶ With large k, agents recover the true model (back to RE).

▶ With small k, expectations exhibit deviations from RE. → our focus

• Asset pricing implications: characterize return predictability as a function of
(1) true data-generating process
(2) the complexity/dimension of agents’ models
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Fact 1: Fama Regressions
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forward discount puzzle
Fama (1984)

predictability reversals puzzle
Bacchetta and van Wincoop (2010)

16 / 48



Fact 1: Fama Regressions

0 20 40 60 80 100 120 140 160 180

Horizon (in months)

-4

-3

-2

-1

0

1

2

3

4

F
am

a 
be

ta
s

rxt+h = αrx
h + βrx

h (i⋆t − it ) + ϵt+h.

forward discount puzzle
Fama (1984)

predictability reversals puzzle
Bacchetta and van Wincoop (2010)

16 / 48



Fact 1: Fama Regressions

0 20 40 60 80 100 120 140 160 180

Horizon (in months)

-4

-3

-2

-1

0

1

2

3

4

F
am

a 
be

ta
s

rxt+h = αrx
h + βrx

h (i⋆t − it ) + ϵt+h.

forward discount puzzle
Fama (1984)

predictability reversals puzzle
Bacchetta and van Wincoop (2010)

16 / 48



Fact 2: Forecast-Error Predictability
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Framework
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(Reduced-Form) Framework

• Discrete-time economy with unit mass of identical agents.
• Exogenous sequence of fundamentals {xt}∞

t=−∞ generated according to some
probability distribution P∗.

• Uncovered Interest Rate Parity (UIP):

st = i∗
t − it + δEt [st+1] (1)

where E[·] is agents’ subjective expectations and in general E[·] ̸= E∗[·].

• excess returns:

rxt+1 = δst+1 − st + i∗
t − it (2)
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Main Assumption (informally)

• Model’s structural equation:

st = i∗
t − it + δEt [st+1]

• The true data-generating process P∗ may not have a simple representation.
• There is a limit to the complexity of statistical models that agents are able to

consider.

• They approximate P∗ with a simplified model.
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Approximating Complex Models

true model: latent n factors

xt = c∗′zt

zt = A∗zt−1 + B∗ϵt

zt ∈ R
n

• agents neither observe nor know the
underlying factors (z1, . . . ,zn).

• they do not know the collection of
parameters θ∗ = (A∗,B∗,c∗).

subjective model: up to k factors

xt = c ′ωt

ωt = A ωt−1 + Bεt

ωt ∈ R
k

• if k < n set of models entertained by
agents does not contain the true model
→ misspecification

• Agent’s model, θ = (A,B,c), is
endogenous outcome of learning

• only exogenously-specified feature of the agents: k
• “low rank approximation” of the true data-generating process
• similar to model-order reduction in control theory

minimal-order representation

limited memory formulation

example: ARMA(2,1)
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Learning

• Agents start with a common prior belief at initial period t0 with full support over
the set of k-factor models

µt0 ∈ ∆Θk

• Form Bayesian posteriors after observing (xt0 , . . . ,xt−1,xt ):

µt ∈ ∆Θk

• Abstract from finite-sample issues by taking the limit as t0 → −∞
▶ any model misspecification is due to mismatch between k and n
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Learning

• Agents are fully Bayesian and their expectations are internally consistent (satisfy
law of iterated expectations) but assign zero prior beliefs on models with more
than k factors.

• Agents’ model is
▶ endogenous and depends on the true data-generating process and k
▶ independent of other characteristics of the environment (preferences, etc.)

•• If k ≥ n,
▶ agents learn the true model (up to an observational equivalence)
▶ back to rational expectations

• If k< n,
▶ agents end up with a misspecified model of the world
▶ but one that is the “best” k-dimensional approximation to the true model
▶ no data would make them revise k
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Subjective Expectations
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Subjective Expectations: Characterization

Proposition

Let Θ̃ ⊆ Θk have positive prior measure, i.e., µ̄(Θ̃)> 0. If

ess inf
θ∈Θ̃

KL(θ∗∥θ) > ess inf
θ∈Θk

KL(θ∗∥θ),

then

lim
t0→−∞

µt (Θ̃) = 0 P∗-almost surely.

• Kullback-Leibler divergence between the agents’ and the true model

KL(θ∗∥θ) = E∗[− log f θ(xt+1|xt , . . . )] − E∗[− log f ∗(xt+1|xt , . . . )]

uncertainty about one-step-ahead
predictions under agents’ model

uncertainty under
the true model

• Agents’ posteriors concentrate on the set of models with minimum KL
divergence to the true model.

• When k ≥ n, agents learn the true model.

Non-Bayesian estimation
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Return and Forecast-Error Predictability
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Excess Returns

exchange rates: st = i∗t − it + δEt [st+1]

currency returns: rxt+1 = δst+1 − st + i∗t − it

• With rational expectations:

Et [rxt+h] = E∗
t [rxt+h] = 0

• Under complexity constraint:

Et [rxt+h] = 0
E∗

t [rxt+h] ̸= 0 in general
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Predictability Regressions

• Quantify deviations from the rational expectations benchmark using two families
of predictability regressions:

(1) (excess) return predictability:

rxt+h = α
rx
h + β

rx
h xt + ϵt,h

(2) forecast-error predictability:

xt+h+m−1 − Et+h−1[xt+h+m−1] = α
fe
h,m + β

fe
h,mxt + ϵt,h

• Rational expectations: returns and forecast errors are unpredictable:
βrx

h = βfe
h,m = 0 for all h,m ≥ 1

• The term structure of coefficients {βrx
h }∞

h=1 and {βfe
h,m}∞

h=1 inform us about
deviations from the rational-expectations benchmark at each horizon h.

28 / 48



Predictability Regressions

• Quantify deviations from the rational expectations benchmark using two families
of predictability regressions:

(1) (excess) return predictability:

rxt+h = α
rx
h + β

rx
h xt + ϵt,h

(2) forecast-error predictability:

xt+h+m−1 − Et+h−1[xt+h+m−1] = α
fe
h,m + β

fe
h,mxt + ϵt,h

• Rational expectations: returns and forecast errors are unpredictable:
βrx

h = βfe
h,m = 0 for all h,m ≥ 1

• The term structure of coefficients {βrx
h }∞

h=1 and {βfe
h,m}∞

h=1 inform us about
deviations from the rational-expectations benchmark at each horizon h.

28 / 48



Return and Forecast-Error Predictability: Main Result

Theorem
Suppose agents are constrained to k-factor models. Then,

(a) subjective autocorrelation:

ξh =

∑∞
s=0(u

′Mh+su)(u′Msu)∑∞
s=0(u

′Msu)2
for all h ≥ 0

where

(M,u) = argmin
M∈Sk ,u∈Rk

1 − 2
∞∑

s=1

ϕ
(1)
s ξ∗

s +

∞∑
s=1

∞∑
τ=1

ϕ
(1)
s ϕ

(1)
τ ξ∗

τ−s

s.t. ϕ
(m)
s = u′Mm−1[M(I − uu′)]s−1Mu.

(b) coefficients of the predictability regressions:

βrx
h = δ

ξ∗
h −

∑∞
τ=1ϕ

(1)
τ ξ∗

h−τ

1 −
∑∞

τ=1 δ
τϕ

(1)
τ

, βfe
h,m = ξ∗

h+m−1 −
∞∑

τ=1

ϕ
(m)
τ ξ∗

h−τ .
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∞∑
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Return and Forecast-Error Predictability: Main Result

ACF of the fundamental under the true model: ξ∗
h =

E∗ [xt xt+h ]
E∗ [x2

t ]

+

number of factors in agents’ subjective model: k

 −→ βrx
h ,βfe

h,m

▶ the way the true data-generating process matters is via its ACF.

▶ only free parameter is the number of factors in the agents’ model.
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Single-Factor Subjective Model (k = 1)

Proposition

If agents are constrained to single-factor models (k = 1), then

βrx
h =

δ

1 − δξ∗
1
(ξ∗

h − ξ∗
h−1ξ∗

1 )

βfe
h,m = ξ∗

h+m−1 − ξ∗
1

m
ξ∗

h−1

respectively, where ξ∗
h is the autocorrelation of the fundamental at lag h.
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Application: Violations of

Uncovered Interest Rate Parity
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Background and Setting

• Fundamental: (log) interest rate differential of foreign and U.S. deposit rates:

xt = i⋆
t − it

• Price: (log) exchange rate (expressed as the U.S. dollar price of the foreign
currency) satisfying the uncovered interest rate parity (UIP) condition:

st = i⋆
t − it + Et [st+1]

• Currency excess return:

rxt+1 = st+1 − st + (i⋆
t − it )

• Return Predictability Regression (Fama, 1984):

rxt+h = αrx
h + βrx

h (i⋆
t − it ) + ϵt,h.
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Fama Regressions
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Term Structure of UIP Violations in the Model

• Fundamental: log-interest rate differential

xt = i⋆
t − it

• Construct the autocorrelation of the interest rate differential:

ξ∗
h =

E∗[xtxt+h]

E∗[x2
t ]

.

• Plug into the formula:

βrx
h =

ξ∗
h − ξ∗

1 ξ
∗
h−1

1 − ξ∗
1

(optimize numerically for k > 1)

• βrx
h only depend on the shape of the ACF of interest rate differential.

we do not use information on exchange rate or currency excess returns.
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UIP Violations

• generates patterns simultaneously consistent with forward premium and return
predictability puzzles only using information from interest rate differentials.
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Varying the Complexity of Agents’ Model: Autocorrelation

• Compare ACF of agents’ implied model to that of the true process.
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Return Predictability: Varying the Complexity of Agents’ Model
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Forecast-Error Predictability

• Forecasts: survey data from Consensus Economics:

Et [xt+3]

• Forecast-Error Predictability regression:

xt+h+m−1 − Et+h−1[xt+h+m−1] = αfe
h,m + βfe

h,mxt + ϵt,h

• Model-implied coefficient:

βfe
h,3 = ξ∗

h+2 − ξ∗
1

3ξ∗
h−1

(optimize numerically for k > 1)

• βfe
h,3 only depend on the shape of the ACF of interest rate differential and does

not depend on survey data, exchange rates, or realized returns.
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Forecast-Error Predictability
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Conclusions
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Conclusions

• A framework in which investors are constrained in model complexity.
• Implies rich dynamics for the term structure of deviations from the benchmark

rational expectations.
• Implications for violations of uncovered interest rate parity

Grazie
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Minimal-Order Representation

• Data-generating process: zt ∈ Rn

zt = A∗zt−1 + B∗ϵt

xt = c∗′zt

• Model order: dimension of the model’s minimal representation

n = rank(Q∗),

where

Q∗ =

q∗
0 q∗

1 q∗
2 . . .

q∗
1 q∗

2 q∗
3 . . .

...
...

. . .

 and q∗
h = cov∗[xtxt+h]

back
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Representation as Limited Memory

• An agent who constructs k moving averages st = (s1t ,s2t , . . . ,skt ) of the past
realizations of the fundamentals:

sit = wi xt +

k∑
j=1

qij sjt−1,

and treats these moving averages as summary statistics for making predictions
about all future realizations of the fundamental:

Et [xt+τ ] =

k∑
i=1

vτ i sit for all τ ≥ 1,

• Parameterize such an agent: ψ = (w ,Q,{vτ }∞
τ=1) ∈ Ψk .

Proposition
There is a one-to-one correspondence between Ψk and Θk .

back
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Example

• ARMA(2,1) stochastic process:

xt − ϕ1xt−1 − ϕ2xt−2 = ϵt + ψ1ϵt−1

• Hidden-factor model representation:

zt+1 =

[
ϕ1 1
ϕ2 0

]
zt +

[
1
ψ1

]
ϵt

xt =
[
1 0

]
zt .

• In this case,

zt =

[
xt

ϕ2xt−1 + ψ1ϵt

]

back

45 / 48



Alternative (non-Bayesian) Estimation

Theorem

Let Θ̂k denote an arbitrary compact subset of Θk .
(a) If θ̂ML

t ∈ argmax
θ∈Θ̂k

f θ(xt , . . . ,x0) is the maximum likelihood estimator,

lim
t→∞

KL(θ∗∥θ̂ML
t ) = min

θ∈Θ̂k

KL(θ∗∥θ) P∗-almost surely.

(b) If θ̂MSE
t ∈ argmin

θ∈Θ̂k

1
t
∑t

τ=0(xτ+1 − Eθ
τ [xτ+1])2, then

lim
t→∞

KL(θ∗∥θ̂MSE
t ) = min

θ∈Θ̂k

KL(θ∗∥θ) P∗-almost surely.

• Same expectations whether agents...
(a) use maximum likelihood to estimate their model

(b) pick their model to minimize the MSE of their one-step-ahead predictions

back
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Micro-Founded Model (Allen, Morris, and Shin, 2006)

• A single asset in zero net supply with dividend stream {xt}∞
t=−∞

• Overlapping generations of traders who each live for two periods
• At each date,

▶ young traders build up a position in the asset but do not consume
▶ old traders unwind their position and acquire the consumption good

• Utility of acquiring qit units of the asset

ui (qit ) = (yt+1 − yt + xt )qit −
1
2
γq2

it
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Micro-Founded Model

• Utility of acquiring qit units of the asset

ui (qit ) = (yt+1 − yt + xt )qit −
1
2
γq2

it

• First-order conditions:

qit =
1
γ
(xt − yt + Eit [yt+1])

• Market clearing:

xt − yt +

∫ 1

0
Eit [yt+1] = 0.

back
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