Imperfect Financial Expectations: Theory and Evidence

Andrea Vedolin
Boston University

(based on joint work with Pooya Molavi and Alireza Tahbaz-Salehi)

June 2023
Motivation

- Inflation for Italy in June 2023 is 8%
- What do you think is the inflation for 2023?
Motivation

- Inflation for Italy in June 2023 is 8%
- What do you think is the inflation for 2023?

![Inflation Forecasts Graph]

- mean = 6.09%
- high = 7.23%
- low = 5.10%
Why Expectations Matter?

• they matter for firms’ and consumers’ micro decisions
 ▶ how much a particular household consumes or saves
 ▶ how much a firm produces and the price it sets

• they matter for macroeconomic and policy outcomes
 ▶ inflation expectations central to monetary policy
Why Expectations Matter?

• they matter for firms’ and consumers’ micro decisions
 ▶ how much a particular household consumes or saves
 ▶ how much a firm produces and the price it sets

• they matter for macroeconomic and policy outcomes
 ▶ inflation expectations central to monetary policy

• and obviously for asset prices:

\[p = \mathbb{E}[Md] \]
\[s_t = i_t^* - i_t + \mathbb{E}_t[s_{t+1}] \]
Why Expectations Matter?

• they matter for firms’ and consumers’ micro decisions
 ▶ how much a particular household consumes or saves
 ▶ how much a firm produces and the price it sets

• they matter for macroeconomic and policy outcomes
 ▶ inflation expectations central to monetary policy

• and obviously for asset prices:

\[p = \mathbb{E}[Md] \]
\[s_t = i_t^* - i_t + \mathbb{E}_t[s_{t+1}] \]

• But where do expectations come from?
Rational Expectations (RE) Hypothesis

- The bedrock of modern macro and finance.

- RE maintains that economic agents fully understand the world they live in with all its complexity
 - know the economy’s structural equations
 - know the shocks and/or their distributions
 - capable of Bayesian updating
Rational Expectations (RE) Hypothesis

- The bedrock of modern macro and finance.

- RE maintains that economic agents fully understand the world they live in with all its complexity
 - know the economy’s structural equations
 - know the shocks and/or their distributions
 - capable of Bayesian updating

- Often combined with another strong assumption: full information
 - all data about the state of the economy are common knowledge
Rational Expectations (RE) Hypothesis

- The bedrock of modern macro and finance.

- RE maintains that economic agents fully understand the world they live in with all its complexity
 - know the economy’s structural equations
 - know the shocks and/or their distributions
 - capable of Bayesian updating

- Often combined with another strong assumption: full information
 - all data about the state of the economy are common knowledge

- Full Information Rational Expectations (FIRE): objective and subjective expectations coincide
A Strong Assumption

- **Advantage**: completes the model by fully specifying agents’ expectations

- **Disadvantage**: can be a strong assumption. In reality, agents have limited cognitive and computational abilities
 - limited capacity for processing information
 - not understand general equilibrium effects
 - not follow Bayes’ rule
 - may not have complete knowledge of information available to others
A Strong Assumption

- **Advantage**: completes the model by fully specifying agents’ expectations

- **Disadvantage**: can be a strong assumption. In reality, agents have limited cognitive and computational abilities
 - limited capacity for processing information
 - not understand general equilibrium effects
 - not follow Bayes’ rule
 - may not have complete knowledge of information available to others

- Natural to expect *departures from FIRE*
Overview

- Background: Evidence for departures from FIRE
- Wilderness of Non-Rational Expectations
- A Model of Time-Series Misspecification
Evidence against FIRE
Testing FIRE: Kohlhas and Walther (2021)

\[x_{t+h} - \hat{E}_t[x_{t+h}] = \alpha_h + \beta_h^{KW} x_t + \epsilon_{t,t+h} \]

forecast error

- Under rational expectations, forecast errors should not be predictable
 \[\beta_h^{KW} = 0 \quad \text{for all } h \]
Testing FIRE: Kohlhas and Walther (2021)

\[x_{t+h} - \mathbb{E}_t[x_{t+h}] = \alpha_h + \beta^K_W h x_t + \epsilon_{t,t+h} \]

- Under rational expectations, forecast errors should not be predictable
 \[\beta^K_W h = 0 \text{ for all } h \]

- A consequence of the Law of Iterated Expectations (LIE):
 \[\beta^K_W h = \frac{\mathbb{E}^*[x_t(x_{t+h} - \mathbb{E}_t[x_{t+h}])]}{\text{var}(x_t)} \]
Testing FIRE: Kohlhas and Walther (2021)

\[
x_{t+h} - \mathbb{E}_t[x_{t+h}] = \alpha_h + \beta_h^{KW} x_t + \epsilon_{t,t+h}
\]

- Under rational expectations, forecast errors should not be predictable
 \[\beta_h^{KW} = 0 \quad \text{for all } h\]

- A consequence of the Law of Iterated Expectations (LIE):
 \[
 \beta_h = \frac{\mathbb{E}^* \mathbb{E}_t^*[x_t(x_{t+h} - \mathbb{E}_t[x_{t+h}])]}{\text{var}(x_t)}
 \]
Testing FIRE: Kohlhas and Walther (2021)

\[
x_{t+h} - \mathbb{E}_t[x_{t+h}] = \alpha_h + \beta_h^{KW} x_t + \epsilon_{t,t+h}
\]

- Under rational expectations, forecast errors should not be predictable
 \[\beta_h^{KW} = 0 \text{ for all } h\]

- A consequence of the Law of Iterated Expectations (LIE):
 \[
 \beta_h = \frac{\mathbb{E}^{*}\mathbb{E}_t^{*}[x_t(x_{t+h} - \mathbb{E}_t[x_{t+h}])]}{\text{var}(x_t)}
 = \frac{\mathbb{E}^{*}[x_t(\mathbb{E}_t^{*}[x_{t+h}] - \mathbb{E}_t[x_{t+h}])]}{\text{var}(x_t)} = 0
 \]
Empirical Evidence: Interest Rates

forecast error 3m interest rate = $\alpha + \beta^K W 3m$ interest rate + error

$\beta^K W_h < 0$: systematic over-reaction to interest rate realizations
Wilderness of Non-Rational Expectations
Wilderness of Non-Rational Expectations

- Without rational expectations, one ends up in the “wilderness” of alternative models of expectation formation (Sims, 1980, Sargent, 2001)

- A whole menu of different alternatives:
 - Rational inattention, sticky info, etc. (Sims, Mankiw & Reis, Mackowiak & Wiederholt)
 - Higher-order uncertainty (Morris & Shin, Woodford, Nimark, Angeletos & Lian)
 - Level-K thinking (Garcia-Schmidt & Woodford, Farhi & Werning, Iovino & Sergeyev)
 - Cognitive discounting (Gabaix)
 - Over-extrapolation (Gennaioli, Ma & Shleifer, Fuster, Laibson & Mendel, Guo & Wachter)
 - Over-confidence (Kohlhas & Broer, Scheinkman & Xiong)
 - Representativeness (Bordalo, Gennaioli & Shleifer)
 - Undue effect of historical experiences (Malmendier & Nagel)
 - ...

- Different models of expectation formation can have very different implications
• **Standard approach**: assume a particular model of expectations and characterize the degree of forecast-error predictability:

• **Alternative**: Characterize forecast-error predictability in terms of the objective and subjective autocorrelation (without imposing a fully specified model)

\[\xi^*_h : \text{objective autocorrelation of } x_t \text{ at horizon } h \]

\[\xi_h : \text{subjective autocorrelation of } x_t \text{ at horizon } h \]
• **Standard approach**: assume a particular model of expectations and characterize the degree of forecast-error predictability:

• **Alternative**: Characterize forecast-error predictability in terms of the objective and subjective autocorrelation (without imposing a fully specified model)

\[\xi^*_h : \text{objective autocorrelation of } x_t \text{ at horizon } h \]
\[\xi_h : \text{subjective autocorrelation of } x_t \text{ at horizon } h \]

• Run the following regression

\[x_{t+h} - \mathbb{E}_t[x_{t+h}] = \alpha_h^{KW} + \beta_h^{KW} x_t + \epsilon_{t,h} \]
(Partially) Taming the Wilderness

\[x_{t+h} - \mathbb{E}_t[x_{t+h}] = \alpha_h^{KW} + \beta_h^{KW} x_t + \epsilon_{t,h} \]

Proposition

Let

\[\xi_h^* : \text{objective autocorrelation} \quad \text{and} \quad \xi_h : \text{subjective autocorrelation} \]

Then

\[\beta_h^{KW} = (\xi_h^* - \xi_h) - \sum_{\tau=1}^{\infty} \sum_{s=1}^{\infty} \Xi_{\tau s} \xi_{s+h-1} (\xi_{\tau-1}^* - \xi_{\tau-1}), \]

where \(\Xi \) is an infinite-dimensional matrix such that \(\Xi_{ij} = \xi_{i-j} \) for all \(i, j \geq 1 \).
(Partially) Taming the Wilderness

\[x_{t+h} - \mathbb{E}_t[x_{t+h}] = \alpha_h^\text{KW} + \beta_h^\text{KW} x_t + \epsilon_{t,h} \]

Proposition

Let

\[\xi^*_h : \text{objective autocorrelation}, \quad \xi_h : \text{subjective autocorrelation} \]

Then

\[\beta_h^\text{KW} = (\xi^*_h - \xi_h) - \sum_{\tau=1}^{\infty} \sum_{s=1}^{\infty} \Xi_{\tau s}^{-1} \xi_{s+h-1} (\xi^*_{\tau-1} - \xi_{\tau-1}) , \]

where \(\Xi \) is an infinite-dimensional matrix such that \(\Xi_{ij} = \xi_{i-j} \) for all \(i, j \geq 1 \).

- The sub. and obj. autocorrelations are summary statistics for predictability
- What matters is the degree of over- or under-extrapolation at different horizons!
(Partially) Taming the Wilderness

\[x_{t+h} - \mathbb{E}_t[x_{t+h}] = \alpha_h^{KW} + \beta_h^{KW} x_t + \epsilon_{t,h} \]

Proposition

Let

\[\xi_h^* : \text{objective autocorrelation}, \quad \xi_h : \text{subjective autocorrelation} \]

Then

\[\beta_h^{KW} = (\xi_h^* - \xi_h) - \sum_{\tau=1}^{\infty} \sum_{s=1}^{\infty} \Xi_{\tau s}^{-1} \xi_{s+h-1} (\xi_{\tau-1} - \xi_{\tau-1}), \]

where \(\Xi \) is an infinite-dimensional matrix such that \(\Xi_{ij} = \xi_{i-j} \) for all \(i, j \geq 1 \).

- The sub. and obj. autocorrelations are summary statistics for predictability
- What matters is the degree of over- or under-extrapolation at different horizons!
- Need a model for how agents may misperceive time-series dependencies
A Model of Time-Series Misspecification
Framework

- A sequence of payoff-relevant variables generated by a latent \textit{n-factor model}.
- But agents are constrained to thinking through models with \textit{at most} \textit{k factors}.

\[\text{Asset pricing implications: characterize return predictability as a function of}
\]
\[\begin{align*}
\text{(1) true data-generating process} \\
\text{(2) the complexity/dimension of agents' models}
\end{align*} \]
Framework

- A sequence of payoff-relevant variables generated by a latent \(n \)-factor model.
- But agents are constrained to thinking through models with at most \(k \) factors.
 - agents are otherwise (constrained) rational.
 - they estimate the \(k \)-factor model that best fits their observations.

Asset pricing implications: characterize return predictability as a function of

1. true data-generating process
2. the complexity/dimension of agents' models

\[\text{With large } k, \text{ agents recover the true model (back to RE).} \]
\[\text{With small } k, \text{ expectations exhibit deviations from RE.} \]
Framework

- A sequence of payoff-relevant variables generated by a latent \(n \)-factor model.
- But agents are constrained to thinking through models with at most \(k \) factors.
 - agents are otherwise (constrained) rational.
 - they estimate the \(k \)-factor model that best fits their observations.

 - With **large** \(k \), agents recover the true model (back to RE).
 - With **small** \(k \), expectations exhibit deviations from RE. → our focus
Framework

- A sequence of payoff-relevant variables generated by a latent n-factor model.
- But agents are constrained to thinking through models with at most k factors.
 - agents are otherwise (constrained) rational.
 - they estimate the k-factor model that best fits their observations.

- With large k, agents recover the true model (back to RE).
- With small k, expectations exhibit deviations from RE. \rightarrow our focus

- Asset pricing implications: characterize return predictability as a function of

 (1) true data-generating process
 (2) the complexity/dimension of agents' models
Fact 1: Fama Regressions

\[r_{x,t+h} = \alpha_{h}^{x} + \beta_{h}^{x} (i^{*}_t - i_t) + \epsilon_{t+h}. \]
Fact 1: Fama Regressions

\[r_{x,t+h} = \alpha_{h}^{rx} + \beta_{h}^{rx} (i_{t}^{*} - i_{t}) + \epsilon_{t+h}. \]
Fact 1: Fama Regressions

\[r_{x_{t+h}} = \alpha_{h}^{rx} + \beta_{h}^{rx} (i_t^{*} - i_t) + \epsilon_{t+h}. \]
Fact 2: Forecast-Error Predictability

\[x_{t+h-1} - \mathbb{E}_{t+h-1}[x_{t+h-1}] = \alpha_{h}^{fe} + \beta_{h}^{fe} x_{t} + \epsilon_{t}. \]
Framework
(Reduced-Form) Framework

- Discrete-time economy with unit mass of identical agents.
- Exogenous sequence of fundamentals $\{x_t\}_{t=-\infty}^{\infty}$ generated according to some probability distribution \mathbb{P}^*.

Uncovered Interest Rate Parity (UIP):

$$s_t = i^*_t - i_t + \delta E_t[s_{t+1}]$$

where $E[\cdot]$ is agents' subjective expectations and in general $E[\cdot] \neq E^*[\cdot]$.

Excess returns:

$$r_{x,t} = \delta s_{t+1} - s_t - i^*_t + i_t$$
(Reduced-Form) Framework

- Discrete-time economy with unit mass of identical agents.
- Exogenous sequence of **fundamentals** \(\{x_t\}_{t=\infty}^{\infty} \) generated according to some probability distribution \(\mathbb{P}^* \).
- Uncovered Interest Rate Parity (UIP):

\[
s_t = i_t^* - i_t + \delta \mathbb{E}_t[s_{t+1}] \tag{1}
\]

where \(\mathbb{E}[\cdot] \) is agents' subjective expectations and in general \(\mathbb{E}[\cdot] \neq \mathbb{E}^*[\cdot] \).
(Reduced-Form) Framework

- Discrete-time economy with unit mass of identical agents.
- Exogenous sequence of fundamentals \(\{x_t\}_{t=-\infty}^{\infty} \) generated according to some probability distribution \(P^* \).
- Uncovered Interest Rate Parity (UIP):
 \[
 s_t = i_t^* - i_t + \delta E_t[s_{t+1}]
 \]
 where \(E[\cdot] \) is agents’ subjective expectations and in general \(E[\cdot] \neq E^*[\cdot] \).
- Excess returns:
 \[
 r_{x,t+1} = \delta s_{t+1} - s_t + i_t^* - i_t
 \]
Main Assumption (informally)

- Model’s structural equation:
 \[s_t = i^*_t - i_t + \delta E_t[s_{t+1}] \]

- The true data-generating process \(\mathbb{P}^* \) may not have a simple representation.
- There is a limit to the complexity of statistical models that agents are able to consider.

- They approximate \(\mathbb{P}^* \) with a simplified model.
true model: latent n factors

$$x_t = c^* z_t$$

$$z_t = A^* z_{t-1} + B^* \epsilon_t$$

$$z_t \in \mathbb{R}^n$$

- agents neither observe nor know the underlying factors (z_1, \ldots, z_n).
- they do not know the collection of parameters $\theta^* = (A^*, B^*, c^*)$.
Approximating Complex Models

true model: latent n factors

\[
x_t = c^* \omega_t
\]
\[
z_t = A^* z_{t-1} + B^* \epsilon_t
\]
\[
\omega_t \in \mathbb{R}^k
\]

- agents neither observe nor know the underlying factors (z_1, \ldots, z_n).
- they do not know the collection of parameters $\theta^* = (A^*, B^*, c^*)$.

subjective model: up to k factors

\[
x_t = c^* \omega_t
\]
\[
z_t = A^* z_{t-1} + B^* \epsilon_t
\]
\[
\omega_t \in \mathbb{R}^k
\]

- if $k < n$ set of models entertained by agents does not contain the true model \rightarrow misspecification
- Agent’s model, $\theta = (A, B, c)$, is endogenous outcome of learning
Approximating Complex Models

true model: latent n factors

\[x_t = c^* z_t \]
\[z_t = A^* z_{t-1} + B^* \epsilon_t \]
\[z_t \in \mathbb{R}^n \]

- agents neither observe nor know the underlying factors (z_1, \ldots, z_n).
- they do not know the collection of parameters $\theta^* = (A^*, B^*, c^*)$.

subjective model: up to k factors

\[x_t = c' \omega_t \]
\[\omega_t = A \omega_{t-1} + B \epsilon_t \]
\[\omega_t \in \mathbb{R}^k \]

- if $k < n$ set of models entertained by agents does not contain the true model \rightarrow misspecification
- Agent’s model, $\theta = (A, B, c)$, is endogenous outcome of learning

- only exogenously-specified feature of the agents: k
- “low rank approximation” of the true data-generating process
- similar to model-order reduction in control theory
Learning

- Agents start with a common prior belief at initial period t_0 with full support over the set of k-factor models

$$\mu_{t_0} \in \Delta\Theta_k$$
• Agents start with a common prior belief at initial period t_0 with full support over the set of k-factor models

$$\mu_{t_0} \in \Delta \Theta_k$$

• Form Bayesian posteriors after observing $(x_{t_0}, \ldots, x_{t-1}, x_t)$:

$$\mu_t \in \Delta \Theta_k$$
• Agents start with a common prior belief at initial period t_0 with full support over the set of k-factor models

\[\mu_{t_0} \in \Delta \Theta_k \]

• Form Bayesian posteriors after observing $(x_{t_0}, \ldots, x_{t-1}, x_t)$:

\[\mu_t \in \Delta \Theta_k \]

• Abstract from finite-sample issues by taking the limit as $t_0 \to -\infty$

 ▶ any model misspecification is due to mismatch between k and n
Learning

• Agents are fully **Bayesian** and their expectations are internally consistent (satisfy law of iterated expectations) but assign **zero prior beliefs** on models with more than k factors.

• Agents’ model is

 ▶ endogenous and depends on the true data-generating process and k
 ▶ independent of other characteristics of the environment (preferences, etc.)
Learning

- Agents are fully Bayesian and their expectations are internally consistent (satisfy law of iterated expectations) but assign zero prior beliefs on models with more than k factors.

- Agents’ model is
 - endogenous and depends on the true data-generating process and k
 - independent of other characteristics of the environment (preferences, etc.)

- If $k \geq n$,
 - agents learn the true model (up to an observational equivalence)
 - back to rational expectations
Learning

• Agents are fully Bayesian and their expectations are internally consistent (satisfy law of iterated expectations) but assign zero prior beliefs on models with more than k factors.

• Agents’ model is
 ▶ endogenous and depends on the true data-generating process and k
 ▶ independent of other characteristics of the environment (preferences, etc.)

• If $k \geq n$,
 ▶ agents learn the true model (up to an observational equivalence)
 ▶ back to rational expectations

• If $k < n$,
 ▶ agents end up with a misspecified model of the world
 ▶ but one that is the “best” k-dimensional approximation to the true model
 ▶ no data would make them revise k
Subjective Expectations
Proposition

Let $\tilde{\Theta} \subseteq \Theta_k$ have positive prior measure, i.e., $\bar{\mu}(\tilde{\Theta}) > 0$. If

$$\operatorname{ess inf}_{\theta \in \tilde{\Theta}} \operatorname{KL}(\theta^* \| \theta) > \operatorname{ess inf}_{\theta \in \Theta_k} \operatorname{KL}(\theta^* \| \theta),$$

then

$$\lim_{t_0 \to -\infty} \mu_t(\tilde{\Theta}) = 0 \quad \mathbb{P}^*-\text{almost surely.}$$

- Kullback-Leibler divergence between the agents’ and the true model

$$\operatorname{KL}(\theta^* \| \theta) = \mathbb{E}^*[-\log f^\theta(x_{t+1} | x_t, \ldots)] - \mathbb{E}^*[-\log f^*(x_{t+1} | x_t, \ldots)]$$

uncertainty about one-step-ahead predictions under agents’ model

uncertainty under the true model

Non-Bayesian estimation
Subjective Expectations: Characterization

Proposition

Let \(\tilde{\Theta} \subseteq \Theta_k \) have positive prior measure, i.e., \(\mu(\tilde{\Theta}) > 0 \). If

\[
\text{ess inf}_{\theta \in \tilde{\Theta}} \text{KL}(\theta^* \| \theta) > \text{ess inf}_{\theta \in \Theta_k} \text{KL}(\theta^* \| \theta),
\]

then

\[
\lim_{t_0 \to -\infty} \mu_t(\tilde{\Theta}) = 0 \quad \mathbb{P}^*-\text{almost surely}.
\]

- Kullback-Leibler divergence between the agents’ and the true model

\[
\text{KL}(\theta^* \| \theta) = \mathbb{E}^*[-\log f^\theta(x_{t+1}|x_t, \ldots)] - \mathbb{E}^*[-\log f^*(x_{t+1}|x_t, \ldots)]
\]

- Agents’ posteriors concentrate on the set of models with minimum KL divergence to the true model.

- When \(k \geq n \), agents learn the true model.
Return and Forecast-Error Predictability
Excess Returns

exchange rates: \[s_t = i_t^* - i_t + \delta \mathbb{E}_t [s_{t+1}] \]

currency returns: \[r_{x_{t+1}} = \delta s_{t+1} - s_t + i_t^* - i_t \]

- With rational expectations:
 \[\mathbb{E}_t [r_{x_{t+h}}] = \mathbb{E}_t^* [r_{x_{t+h}}] = 0 \]
Excess Returns

exchange rates: \[s_t = i_t^* - i_t + \delta E_t[s_{t+1}] \]
currency returns: \[r_{x_{t+1}} = \delta s_{t+1} - s_t + i_t^* - i_t \]

• With rational expectations:
 \[E_t[r_{x_{t+h}}] = E^*_t[r_{x_{t+h}}] = 0 \]

• Under complexity constraint:
 \[E_t[r_{x_{t+h}}] = 0 \]
 \[E^*_t[r_{x_{t+h}}] \neq 0 \quad \text{in general} \]
Predictability Regressions

- Quantify deviations from the rational expectations benchmark using two families of predictability regressions:

\[(1)\] (excess) return predictability:
\[r_{x,t+h} = \alpha_{r_x}^h + \beta_{r_x}^h x_t + \epsilon_{t,h}\]

\[(2)\] forecast-error predictability:
\[x_{t+h+m-1} - \mathbb{E}_{t+h-1}[x_{t+h+m-1}] = \alpha_{fe}^{h,m} + \beta_{fe}^{h,m} x_t + \epsilon_{t,h}\]

- Rational expectations: returns and forecast errors are unpredictable:
\[\beta_{r_x}^h = \beta_{fe}^{h,m} = 0 \text{ for all } h, m \geq 1\]
Predictability Regressions

• Quantify deviations from the rational expectations benchmark using two families of predictability regressions:

1. (excess) return predictability:

\[r_{x,t+h} = \alpha_{h}^{rx} + \beta_{h}^{rx} x_{t} + \epsilon_{t,h} \]

2. forecast-error predictability:

\[x_{t+h+m-1} - \mathbb{E}_{t+h-1}[x_{t+h+m-1}] = \alpha_{h,m}^{fe} + \beta_{h,m}^{fe} x_{t} + \epsilon_{t,h} \]

• Rational expectations: returns and forecast errors are unpredictable:

\[\beta_{h}^{rx} = \beta_{h,m}^{fe} = 0 \text{ for all } h, m \geq 1 \]

• The term structure of coefficients \(\{\beta_{h}^{rx}\}_{h=1}^{\infty} \) and \(\{\beta_{h,m}^{fe}\}_{h=1}^{\infty} \) inform us about deviations from the rational-expectations benchmark at each horizon \(h \).
Theorem

Suppose agents are constrained to k-factor models. Then,

(a) subjective autocorrelation:

$$
\xi_h = \frac{\sum_{s=0}^{\infty} (u' M^{h+s} u) (u' M^s u)}{\sum_{s=0}^{\infty} (u' M^s u)^2}
$$

for all $h \geq 0$

where

$$(M, u) = \arg\min_{M \in S^k, u \in \mathbb{R}^k} 1 - 2 \sum_{s=1}^{\infty} \phi_s^{(1)} \xi_s^* + \sum_{s=1}^{\infty} \sum_{\tau=1}^{\infty} \phi_s^{(1)} \phi_\tau^{(1)} \xi_{\tau-s}^*$$

s.t. $$\phi_s^{(m)} = u' M^{m-1} [M(I - uu')]^{s-1} Mu.$$
Return and Forecast-Error Predictability: Main Result

Theorem

Suppose agents are constrained to k-factor models. Then,

(a) **subjective autocorrelation:**

\[
\xi_h = \frac{\sum_{s=0}^{\infty} (u'M^{h+s}u)(u'M^s u)}{\sum_{s=0}^{\infty} (u'M^s u)^2} \quad \text{for all } h \geq 0
\]

where

\[
(M, u) = \arg\min_{M \in \mathcal{S}^k, u \in \mathbb{R}^k} \left[1 - 2 \sum_{s=1}^{\infty} \phi_s^{(1)} \xi_s^* + \sum_{s=1}^{\infty} \sum_{\tau=1}^{\infty} \phi_s^{(1)} \phi_{\tau}^{(1)} \xi_{s-\tau}^* \right]
\]

s.t.

\[
\phi_s^{(m)} = u'M^{m-1}[M(I - uu')]^{s-1} Mu.
\]

(b) **coefficients of the predictability regressions:**

\[
\beta_{rx}^{h} = \delta \frac{\xi_{h}^* - \sum_{\tau=1}^{\infty} \phi_{\tau}^{(1)} \xi_{h-\tau}^*}{1 - \sum_{\tau=1}^{\infty} \delta^\tau \phi_{\tau}^{(1)}} \quad , \quad \beta_{fe}^{h,m} = \xi_{h+m-1}^* - \sum_{\tau=1}^{\infty} \phi_{\tau}^{(m)} \xi_{h-\tau}^*.
\]
Return and Forecast-Error Predictability: Main Result

ACF of the fundamental under the true model: \(\xi_h^* = \frac{\mathbb{E}^*[x_t x_{t+h}]}{\mathbb{E}^*[x_t^2]} \)

+

the way the true data-generating process matters is via its ACF.

number of factors in agents' subjective model: \(k \)

only free parameter is the number of factors in the agents' model.
Proposition

If agents are constrained to single-factor models \((k = 1)\), then

\[\beta_{rx}^{h} = \frac{\delta}{1 - \delta \xi_{1}^{*}} (\xi_{h}^{*} - \xi_{h-1}^{*} \xi_{1}^{*}) \]

\[\beta_{fe}^{h,m} = \xi_{h+m-1}^{*} - \xi_{1}^{*} m \xi_{h-1}^{*} \]

respectively, where \(\xi_{h}^{*}\) is the autocorrelation of the fundamental at lag \(h\).
Application: Violations of Uncovered Interest Rate Parity
Background and Setting

- **Fundamental**: (log) interest rate differential of foreign and U.S. deposit rates:

 \[x_t = i_t^* - i_t \]

- **Price**: (log) exchange rate (expressed as the U.S. dollar price of the foreign currency) satisfying the uncovered interest rate parity (UIP) condition:

 \[s_t = i_t^* - i_t + E_t[s_{t+1}] \]

- **Currency excess return**:

 \[r_{x,t+1} = s_{t+1} - s_t + (i_t^* - i_t) \]

- **Return Predictability Regression (Fama, 1984)**:

 \[r_{x,t+h} = \alpha_{r_x}^h + \beta_{r_x}^h(i_t^* - i_t) + \epsilon_{t,h}. \]
Fama Regressions

\[r_{x,t+h} = \alpha_{h}^{rx} + \beta_{h}^{rx}(i_{t}^{*} - i_{t}) + \epsilon_{t+h}. \]
Fama Regressions

forward discount puzzle
Fama (1984)

$r_{X_{t+h}} = \alpha_h^{rX} + \beta_h^{rX}(i^*_t - i_t) + \epsilon_{t+h}$.
Fama Regressions

\[r_{X_{t+h}} = \alpha_h^{rx} + \beta_h^{rx} (i_t^* - i_t) + \epsilon_{t+h}. \]
Term Structure of UIP Violations in the Model

• Fundamental: log-interest rate differential

\[x_t = i_t^* - i_t \]

• Construct the autocorrelation of the interest rate differential:

\[\xi_h^* = \frac{E^*[x_t x_{t+h}]}{E^*[x_t^2]}. \]

• Plug into the formula:

\[\beta_{rx}^h = \frac{\xi_h^* - \xi_1^* \xi_{h-1}^*}{1 - \xi_1^*} \]

(optimize numerically for \(k > 1 \))
Term Structure of UIP Violations in the Model

- Fundamental: log-interest rate differential
 \[x_t = i^*_t - i_t \]

- Construct the autocorrelation of the interest rate differential:
 \[\xi^*_h = \frac{\mathbb{E}^*[x_tx_{t+h}]}{\mathbb{E}^*[x^2_t]} . \]

- Plug into the formula:
 \[\beta^r_{xh} = \frac{\xi^*_h - \xi^*_1 \xi^*_h-1}{1 - \xi^*_1} \]
 (optimize numerically for \(k > 1 \))

- \(\beta^r_{xh} \) only depend on the shape of the ACF of interest rate differential. we do not use information on exchange rate or currency excess returns.
UIP Violations

- generates patterns simultaneously consistent with forward premium and return predictability puzzles **only using information from interest rate differentials.**
Varying the Complexity of Agents’ Model: Autocorrelation

- Compare ACF of agents’ implied model to that of the true process.
Varying the Complexity of Agents’ Model: Autocorrelation

- Compare ACF of agents’ implied model to that of the true process.
Varying the Complexity of Agents’ Model: Autocorrelation

- Compare ACF of agents’ implied model to that of the true process.
Varying the Complexity of Agents’ Model: Autocorrelation

- Compare ACF of agents’ implied model to that of the true process.
Return Predictability: Varying the Complexity of Agents’ Model
Forecast-Error Predictability

- Forecasts: survey data from *Consensus Economics*:
 \[\mathbb{E}_t[x_{t+3}] \]

- Forecast-Error Predictability regression:
 \[
 x_{t+h+m-1} - \mathbb{E}_{t+h-1}[x_{t+h+m-1}] = \alpha_{h,m}^{fe} + \beta_{h,m}^{fe} x_t + \epsilon_{t,h}
 \]

- Model-implied coefficient:
 \[
 \beta_{h,3}^{fe} = \xi^*_{h+2} - \xi^*_1 \xi^*_{h-1}
 \]
 (optimize numerically for \(k > 1 \))

- \(\beta_{h,3}^{fe} \) only depend on the shape of the ACF of interest rate differential and does not depend on survey data, exchange rates, or realized returns.
Forecast-Error Predictability
Conclusions
Conclusions

- A framework in which investors are constrained in model complexity.
- Implies rich dynamics for the term structure of deviations from the benchmark rational expectations.
- Implications for violations of uncovered interest rate parity
Conclusions

• A framework in which investors are constrained in model complexity.
• Implies rich dynamics for the term structure of deviations from the benchmark rational expectations.
• Implications for violations of uncovered interest rate parity

Grazie
Minimal-Order Representation

- Data-generating process: $z_t \in \mathbb{R}^n$
 \[
 z_t = A^* z_{t-1} + B^* \epsilon_t \\
 x_t = c^* z_t
 \]

- Model order: dimension of the model's minimal representation
 \[
 n = \text{rank}(Q^*),
 \]
 where
 \[
 Q^* = \begin{bmatrix}
 q_0^* & q_1^* & q_2^* & \cdots \\
 q_1^* & q_2^* & q_3^* & \cdots \\
 \vdots & \vdots & \vdots & \ddots
 \end{bmatrix}
 \]
 and
 \[
 q_h^* = \text{cov}^*[x_t x_{t+h}]
 \]
An agent who constructs k moving averages $s_t = (s_{1t}, s_{2t}, \ldots, s_{kt})$ of the past realizations of the fundamentals:

$$s_{it} = w_i x_t + \sum_{j=1}^{k} q_{ij} s_{jt-1},$$

and treats these moving averages as summary statistics for making predictions about all future realizations of the fundamental:

$$\mathbb{E}_t[x_{t+\tau}] = \sum_{i=1}^{k} v_{\tau i} s_{it} \quad \text{for all } \tau \geq 1,$$
Representation as Limited Memory

• An agent who constructs k moving averages $s_t = (s_{1t}, s_{2t}, \ldots, s_{kt})$ of the past realizations of the fundamentals:

$$s_{it} = w_i x_t + \sum_{j=1}^{k} q_{ij} s_{jt-1},$$

and treats these moving averages as summary statistics for making predictions about all future realizations of the fundamental:

$$\mathbb{E}_t [x_{t+\tau}] = \sum_{i=1}^{k} v_{\tau i} s_{it} \quad \text{for all } \tau \geq 1,$$

• Parameterize such an agent: $\psi = (w, Q, \{v_{\tau}\}_{\tau=1}^{\infty}) \in \Psi_k$.
Representation as Limited Memory

- An agent who constructs k moving averages $s_t = (s_{1t}, s_{2t}, \ldots, s_{kt})$ of the past realizations of the fundamentals:

$$s_{it} = w_ix_t + \sum_{j=1}^{k} q_{ij}s_{jt-1},$$

and treats these moving averages as summary statistics for making predictions about all future realizations of the fundamental:

$$\mathbb{E}_t[x_{t+\tau}] = \sum_{i=1}^{k} v_{\tau i}s_{it} \quad \text{for all } \tau \geq 1,$$

- Parameterize such an agent: $\psi = (w, Q, \{v_{\tau}\}_{\tau=1}^{\infty}) \in \Psi_k$.

Proposition

There is a one-to-one correspondence between Ψ_k and Θ_k.
Example

• ARMA(2,1) stochastic process:

\[x_t - \phi_1 x_{t-1} - \phi_2 x_{t-2} = \epsilon_t + \psi_1 \epsilon_{t-1} \]

• Hidden-factor model representation:

\[
\begin{align*}
 z_{t+1} &= \begin{bmatrix} \phi_1 & 1 \\ \phi_2 & 0 \end{bmatrix} z_t + \begin{bmatrix} 1 \\ \psi_1 \end{bmatrix} \epsilon_t \\
 x_t &= \begin{bmatrix} 1 & 0 \end{bmatrix} z_t.
\end{align*}
\]

• In this case,

\[
 z_t = \begin{bmatrix} x_t \\ \phi_2 x_{t-1} + \psi_1 \epsilon_t \end{bmatrix}
\]
Alternative (non-Bayesian) Estimation

Theorem

Let $\hat{\Theta}_k$ denote an arbitrary compact subset of Θ_k.

(a) If $\hat{\theta}_{t}^{\text{ML}} \in \arg\max_{\theta \in \hat{\Theta}_k} f^\theta(x_t, \ldots, x_0)$ is the maximum likelihood estimator,

$$\lim_{t \to \infty} \text{KL}(\theta^* \| \hat{\theta}_{t}^{\text{ML}}) = \min_{\theta \in \hat{\Theta}_k} \text{KL}(\theta^* \| \theta) \quad \mathbb{P}^*-\text{almost surely.}$$

• Same expectations whether agents...

(a) use maximum likelihood to estimate their model
Alternative (non-Bayesian) Estimation

Theorem

Let \(\Theta_k \) denote an arbitrary compact subset of \(\Theta_k \).

(a) If \(\hat{\theta}_t^{\text{ML}} \in \arg \max_{\theta \in \Theta_k} f^\theta(x_t, \ldots, x_0) \) is the maximum likelihood estimator,

\[
\lim_{t \to \infty} KL(\theta^* \parallel \hat{\theta}_t^{\text{ML}}) = \min_{\theta \in \Theta_k} KL(\theta^* \parallel \theta) \quad \mathbb{P}^*-\text{almost surely.}
\]

(b) If \(\hat{\theta}_t^{\text{MSE}} \in \arg \min_{\theta \in \Theta_k} \frac{1}{t} \sum_{\tau=0}^{t} (x_{\tau+1} - E_{\tau}[x_{\tau+1}])^2 \), then

\[
\lim_{t \to \infty} KL(\theta^* \parallel \hat{\theta}_t^{\text{MSE}}) = \min_{\theta \in \Theta_k} KL(\theta^* \parallel \theta) \quad \mathbb{P}^*-\text{almost surely.}
\]

• Same expectations whether agents...

 (a) use maximum likelihood to estimate their model
 (b) pick their model to minimize the MSE of their one-step-ahead predictions

• A single asset in zero net supply with dividend stream \(\{x_t\}_{t=\infty}^{\infty} \)
• Overlapping generations of traders who each live for two periods
• At each date,
 ▶ young traders build up a position in the asset but do not consume
 ▶ old traders unwind their position and acquire the consumption good

• Utility of acquiring \(q_{it} \) units of the asset
 \[
 u_i(q_{it}) = (y_{t+1} - y_t + x_t)q_{it} - \frac{1}{2}\gamma q_{it}^2
 \]
Micro-Founded Model

• Utility of acquiring q_{it} units of the asset

$$u_i(q_{it}) = (y_{t+1} - y_t + x_t)q_{it} - \frac{1}{2} \gamma q_{it}^2$$

• First-order conditions:

$$q_{it} = \frac{1}{\gamma} (x_t - y_t + \mathbb{E}_{it}[y_{t+1}])$$

• Market clearing:

$$x_t - y_t + \int_0^1 \mathbb{E}_{it}[y_{t+1}] = 0.$$