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Why Expectations Matter?

® they matter for firms’ and consumers’ micro decisions

» how much a particular household consumes or saves
» how much a firm produces and the price it sets

® they matter for macroeconomic and policy outcomes

» inflation expectations central to monetary policy
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Why Expectations Matter?

® they matter for firms’ and consumers’ micro decisions

» how much a particular household consumes or saves
» how much a firm produces and the price it sets

® they matter for macroeconomic and policy outcomes

» inflation expectations central to monetary policy

® and obviously for asset prices:
p = E[Md]

se = iff — it + E¢[si41]

But where do expectations come from?
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Rational Expectations (RE) Hypothesis

® The bedrock of modern macro and finance.

® RE maintains that economic agents fully understand the world they live in with
all its complexity

» know the economy’s structural equations
» know the shocks and/or their distributions
» capable of Bayesian updating
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Rational Expectations (RE) Hypothesis

® The bedrock of modern macro and finance.

® RE maintains that economic agents fully understand the world they live in with
all its complexity

» know the economy’s structural equations
» know the shocks and/or their distributions
» capable of Bayesian updating

® Often combined with another strong assumption: full information

» all data about the state of the economy are common knowledge

® Full Information Rational Expectations (FIRE): objective and subjective
expectations coincide
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A Strong Assumption

® Advantage: completes the model by fully specifying agents’ expectations

® Disadvantage: can be a strong assumption. In reality, agents have limited
cognitive and computational abilities

vy Yy vy

limited capacity for processing information

not understand general equilibrium effects

not follow Bayes' rule

may not have complete knowledge of information available to others
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A Strong Assumption

® Advantage: completes the model by fully specifying agents’ expectations

® Disadvantage: can be a strong assumption. In reality, agents have limited
cognitive and computational abilities

limited capacity for processing information
not understand general equilibrium effects
not follow Bayes' rule

vy Yy vy

may not have complete knowledge of information available to others

» Natural to expect departures from FIRE

5/48



Overview

® Background: Evidence for departures from FIRE
® Wilderness of Non-Rational Expectations

® A Model of Time-Series Misspecification
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Evidence against FIRE



Testing FIRE: Kohlhas and Walther (2021)

KW
Xerh — Et[Xepn] = op+ By Xt +€eeqh
—_——

forecast error

® Under rational expectations, forecast errors should not be predictable

W =0 forall h
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® Under rational expectations, forecast errors should not be predictable
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® A consequence of the Law of Iterated Expectations (LIE):
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Testing FIRE: Kohlhas and Walther (2021)

KW
Xerh — Et[xepn] = o+ By xt +€eoqn
—_—

forecast error

® Under rational expectations, forecast errors should not be predictable

W =0 forall h

® A consequence of the Law of Iterated Expectations (LIE):
_ BYEF [xe (Xesn — Eelxern])]
B =
var(xt)
_ B [xe (B [xe4n] — Et[xe1n])]
var(x¢)

=0
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Empirical Evidence: Interest Rates

forecast error 3m interest rate = o + ﬁKW3m interest rate + error

h
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o
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estimated coefficient 3
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horizon

ﬂ,l,(w < 0: systematic over-reaction to interest rate realizations
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Wilderness of Non-Rational Expectations
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Wilderness of Non-Rational Expectations

® Without rational expectations, one ends up in the “wilderness” of alternative
models of expectation formation (Sims, 1980, Sargent, 2001)

® A whole menu of different alternatives:

>

vyYVvVYyYy

vYyYVvVey

Rational inattention, sticky info, etc. (Sims, Mankiw & Reis, Mackowiak &
Wiederholt)

Higher-order uncertainty (Morris & Shin, Woodford, Nimark, Angeletos & Lian)
Level-K thinking (Garcia-Schmidt & Woodford, Farhi & Werning, lovino & Sergeyev)
Cognitive discounting (Gabaix)

Over-extrapolation (Gennaioli, Ma & Shleifer, Fuster, Laibson & Mendel, Guo &
Wachter)

Over-confidence (Kohlhas & Broer, Scheinkman & Xiong)

Representativeness (Bordalo, Gennaioli & Shleifer)

Undue effect of historical experiences (Malmendier & Nagel)

® Different models of expectation formation can have very different implications
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(Partially) Taming the Wilderness

® Standard approach: assume a particular model of expectations and characterize
the degree of forecast-error predictability:

® Alternative: Characterize forecast-error predictability in terms of the objective
and subjective autocorrelation (without imposing a fully specified model)

& objective autocorrelation of x; at horizon h

Ep e subjective autocorrelation of x; at horizon h
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(Partially) Taming the Wilderness

® Standard approach: assume a particular model of expectations and characterize
the degree of forecast-error predictability:

® Alternative: Characterize forecast-error predictability in terms of the objective
and subjective autocorrelation (without imposing a fully specified model)

& objective autocorrelation of x; at horizon h

Ep e subjective autocorrelation of x; at horizon h

® Run the following regression

KW | oKW
Xerh — Bel[xern] = o + B xe +€xn
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(Partially) Taming the Wilderness

KW | oKW
Xerh — Be[xepn] = + B8y xe +exp

Proposition
Let

&5, :objective autocorrelation , &y : subjective autocorrelation

Then

N R R ) B R
T7=1s=1

where & is an infinite-dimensional matrix such that E;; = §;_; for all i,j > 1.
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(Partially) Taming the Wilderness

xerh — Eelxeyn] = af + 85 x + exn
Proposition
Let
&5, :objective autocorrelation , &y : subjective autocorrelation

Then

B = (&h — &) Zzuﬁgsﬂ, (&1~ &),

T7=1s=1

where & is an infinite-dimensional matrix such that E;; = §;_; for all i,j > 1.

® The sub. and obj. autocorrelations are summary statistics for predictability
® \What matters is the degree of over- or under-extrapolation at different horizons!

® Need a model for how agents may misperceive time-series dependencies
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A Model of Time-Series Misspecification
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Framework

® A sequence of payoff-relevant variables generated by a latent n-factor model.

® But agents are constrained to thinking through models with at most k factors.
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Framework

® A sequence of payoff-relevant variables generated by a latent n-factor model.
® But agents are constrained to thinking through models with at most k factors.

» agents are otherwise (constrained) rational.
» they estimate the k-factor model that best fits their observations.

» With large k, agents recover the true model (back to RE).

» With small k, expectations exhibit deviations from RE. — our focus

® Asset pricing implications: characterize return predictability as a function of

(1) true data-generating process
(2) the complexity/dimension of agents’ models
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Fact 1: Fama Regressions

Fama betas

4T T T T T T T T T 1
0 20 40 60 80 100 120 140 160 180
Horizon (in months)

Xerh = ap + B (iF —it) + €cpn
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Fact 1: Fama Regressions

forward discount puzzle
Fama (1984)

Fama betas

0 20 40 60 80 100 120 140 160 180
Horizon (in months)

rx X/« .
Xt+h = Op + ﬂh (It — It) + €t+h-
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Fact 1:

Fama betas

Fama Regressions

forward discount puzzle
Fama (1984)

predictability reversals puzzle
Bacchetta and van Wincoop (2010)

Horizon (in months)

* .
teph = ap + BE(iF — i) + €rap
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Fact 2: Forecast-Error Predictability
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Framework
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(Reduced-Form) Framework

® Discrete-time economy with unit mass of identical agents.

oo

® Exogenous sequence of fundamentals {x;}3°_

probability distribution IP*.

generated according to some

19/48



(Reduced-Form) Framework

® Discrete-time economy with unit mass of identical agents.

® Exogenous sequence of fundamentals {x;:}$°_ __ generated according to some
probability distribution IP*.

® Uncovered Interest Rate Parity (UIP):
st = if — it + 0E¢[st41] (1)

where [E[-] is agents’ subjective expectations and in general E[-] # E*[].

19/48



(Reduced-Form) Framework

® Discrete-time economy with unit mass of identical agents.

® Exogenous sequence of fundamentals {x;:}$°_ __ generated according to some
probability distribution IP*.

® Uncovered Interest Rate Parity (UIP):
st = if — it + 0E¢[st41] (1)

where [E[-] is agents’ subjective expectations and in general E[-] # E*[].

® excess returns:

rXe41 = 0Se+1 — St + if — it ()
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Main Assumption (informally)

® Model's structural equation:

st =iy — it + 6B ¢[st41]

The true data-generating process IP* may not have a simple representation.

® There is a limit to the complexity of statistical models that agents are able to
consider.

® They approximate IP* with a simplified model.
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Approximating Complex Models

true model: latent n factors

%/
Xt =C 2Zt

« .
ze=A"z_1+ B er
ZtG]Rn

® agents neither observe nor know the
underlying factors (z1,...,2n).

® they do not know the collection of
parameters 0* = (A*,B*, c*).
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Approximating Complex Models

true model: latent n factors
%!
Xt =C 2Zt
zZt = A*Zt,1 + Bet
Zt € R"

® agents neither observe nor know the
underlying factors (z1,...,2n).

® they do not know the collection of
parameters 0* = (A*,B*, c*).

subjective model: up to k factors

/
Xt = C Wt
wt =Aw;—1 + Bet

thIRk

® if k < n set of models entertained by
agents does not contain the true model
— misspecification

® Agent’'s model, § = (A,B,c), is
endogenous outcome of learning

® only exogenously-specified feature of the agents: k

® “low rank approximation” of the true data-generating process

® similar to model-order reduction in control theory
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Learning

® Agents start with a common prior belief at initial period ty with full support over
the set of k-factor models

Pty € AG)k
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® Form Bayesian posteriors after observing (xy,,

e € A
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Learning

® Agents start with a common prior belief at initial period ty with full support over
the set of k-factor models

Pty € AG)k

® Form Bayesian posteriors after observing (x, ..., Xt—1,Xt):

e € A

® Abstract from finite-sample issues by taking the limit as to — —oo

» any model misspecification is due to mismatch between k and n
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Learning

® Agents are fully Bayesian and their expectations are internally consistent (satisfy
law of iterated expectations) but assign zero prior beliefs on models with more
than k factors.

® Agents’ model is

» endogenous and depends on the true data-generating process and k
» independent of other characteristics of the environment (preferences, etc.)
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Learning

® Agents are fully Bayesian and their expectations are internally consistent (satisfy
law of iterated expectations) but assign zero prior beliefs on models with more
than k factors.

® Agents’ model is

» endogenous and depends on the true data-generating process and k
» independent of other characteristics of the environment (preferences, etc.)

e Ifk>n,

» agents learn the true model (up to an observational equivalence)
» back to rational expectations

® |[fk<n,

» agents end up with a misspecified model of the world
» but one that is the “best” k-dimensional approximation to the true model
» no data would make them revise k
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Subjective Expectations
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Subjective Expectations: Characterization

Proposition
Let ® C O have positive prior measure, i.e., ﬁ(@) >0. If

ess inf KL(6%[|) > ess inf KL(6%|0),
= 0c0,

0cO
then
lim p:(®)=0 P*-almost surely.
tg——o0
V.
® Kullback-Leibler divergence between the agents’ and the true model
KL(Q* ||6) = E* [7 |0g fg (Xt+1 |Xt, . )} — E* [7 |0g f* (Xt+1 |Xt, . )]
uncertainty about one-step-ahead uncertainty under
predictions under agents’ model the true model

» Non-Bayesian estimation
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Subjective Expectations: Characterization

Proposition
Let ® C O have positive prior measure, i.e., ﬁ(@) >0. If
ess inf KL(6%||6) > ess inf KL(0%]6),
0€0 0Ok
then

lim ut(@) =0 P*-almost surely.
tg——o0 )

® Kullback-Leibler divergence between the agents’ and the true model

KL(0*||6): ]E*[flogfg(xt+1|xt,...)} — IE*[flogf*(xt+1|xt,...)]

® Agents’ posteriors concentrate on the set of models with minimum KL

divergence to the true model.

® When k > n, agents learn the true model.

» Non-Bayesian estimation
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Return and Forecast-Error Predictability
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Excess Returns

exchange rates: st =it — it + 0E¢[sr41]

currency returns: rXe 1= 0Sp11 — St + iy — it

® With rational expectations:

E¢[rxe1n] = Ef[rxe4.h] =0
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Excess Returns

exchange rates: st =it — it + 0E¢[sr41]

currency returns: rXe 1= 0Sp11 — St + iy — it

® With rational expectations:

E¢[rxe1n] = Ef[rxe4.h] =0

® Under complexity constraint:
Et[rx;sn] =0

E} [rx¢sn] #0 in general
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Predictability Regressions

® Quantify deviations from the rational expectations benchmark using two families
of predictability regressions:

(1) (excess) return predictability:

x| am
MXeph = Qpy + By Xe + €4h

(2) forecast-error predictability:

fe fe
Xt+h+m—1 — ]Et+h—1[Xt+h+m—1] =% m + Bhvat + €t

® Rational expectations: returns and forecast errors are unpredictable:
By =B, =0forall hhm>1
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Predictability Regressions

® Quantify deviations from the rational expectations benchmark using two families
of predictability regressions:

(1) (excess) return predictability:

Xeph =y + By Xt + €en
(2) forecast-error predictability:

fe fe
Xt+h+m—1 — ]Et+h—1[Xt+h+m—1] =% m + Bhvat + €t

® Rational expectations: returns and forecast errors are unpredictable:
By =B, =0forall hhm>1

® The term structure of coefficients {37}, and {ﬁffm}ho';l inform us about
deviations from the rational-expectations benchmark at each horizon h.
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Return and Forecast-Error Predictability: Main Result

Theorem

Suppose agents are constrained to k-factor models. Then,

(a) subjective autocorrelation:

¢ zo(u/Mh“u)(u’Msu)
b=

Z:O(U/MSU)Z

forallh>0

where

(M,u) = argmin 1—22(;55 ES+ZZ¢S ¢r §T s

k k
Mes® veR s=1 7=1

s.t. ¢£ ™=y 'MTHM(1 = uu)]S M.
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Return and Forecast-Error Predictability: Main Result

Theorem

Suppose agents are constrained to k-factor models. Then,

(a) subjective autocorrelation:

(VM3 (u' M)

& = ===0 for all h >0

Z:O(U/Msu)2

where

(M,u) = argmin 1—22(;55 ES+ZZ¢S ¢-r §T s

MeSk,ueRk

s=1 7=1
s.t. ¢£ ™=y 'MTHM(1 = uu)]S M.
(b) coefficients of the predictability regressions:
x E* - Zio 1 ()Ll‘gh fe - (m) pox
By =9 Z P mT ' m = Ehpm—1 ZO" Ehr
B =1
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Return and Forecast-Error Predictability: Main Result

E* [xexe 5]

ACF of the fundamental under the true model: &; = B 7]
+ Xt

rx pfe

+ — By Bhm

number of factors in agents’ subjective model: k

» the way the true data-generating process matters is via its ACF.

» only free parameter is the number of factors in the agents’ model.
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Single-Factor Subjective Model (k = 1)

Proposition
If agents are constrained to single-factor models (k = 1), then
0
1-0&

fe * *M %
Bhim = &Ehtm—1—&1 Eh—1

B = (&h — Eh—161)

respectively, where £} is the autocorrelation of the fundamental at lag h.
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Application: Violations of

Uncovered Interest Rate Parity
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Background and Setting

® Fundamental: (log) interest rate differential of foreign and U.S. deposit rates:

Xt:f:—l.t

Price: (log) exchange rate (expressed as the U.S. dollar price of the foreign
currency) satisfying the uncovered interest rate parity (UIP) condition:

st =iy — it + Et[s¢11]

® Currency excess return:

rXer1 = Ser1 — St + (i — it)

® Return Predictability Regression (Fama, 1984):

Xerh = o + Bp(if — it) + e n-

33/48



Fama Regressions

Fama betas

4T T T T T T T T T 1
0 20 40 60 80 100 120 140 160 180
Horizon (in months)

xeph = ap + Bh (il —it) + €y
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Fama Regressions

Fama betas

forward discount puzzle
Fama (1984)

N
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“\V‘AN
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Fama Regressions

Fama betas

forward discount puzzle
Fama (1984)

predictability reversals puzzle
Bacchetta and van Wincoop (2010)

Horizon (in months)

* .
teph = ap + BE(iF — i) + €rap

34/48



Term Structure of UIP Violations in the Model

® Fundamental: log-interest rate differential

Xt:i:—l't

® Construct the autocorrelation of the interest rate differential:

w E*[xexeyn]
{h - *[y2
E*[x{]
® Plug into the formula:
g 685

1-¢5

(optimize numerically for k > 1)
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Term Structure of UIP Violations in the Model

® Fundamental: log-interest rate differential

Xt:i:—l't

® Construct the autocorrelation of the interest rate differential:

w E*[xexeyn]
gh - *[y2
E*[x{]
® Plug into the formula:
g 685

1-¢5

(optimize numerically for k > 1)

® B;¢ only depend on the shape of the ACF of interest rate differential.
we do not use information on exchange rate or currency excess returns.
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UIP Violations

empirically-estimated 3}
model-implied 8}*

horizon (in months)

® generates patterns simultaneously consistent with forward premium and return
predictability puzzles only using information from interest rate differentials.
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Varying the Complexity of Agents’ Model: Autocorrelation

® Compare ACF of agents’ implied model to that of the true process.

— data

— k=1
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-0.25 |— —
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lag (in months)
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Varying the Complexity of Agents’ Model: Autocorrelation

® Compare ACF of agents’ implied model to that of the true process.
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Varying the Complexity of Agents’ Model: Autocorrelation

® Compare ACF of agents’ implied model to that of the true process.

lag (in months)
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Return Predictability: Varying the Complexity of Agents’ Model

30 60 90 120

horizon (in months)
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Forecast-Error Predictability

® Forecasts: survey data from Consensus Economics:

E¢[x¢+3]

® Forecast-Error Predictability regression:

fe fe
Xerhtm—1 = Beyno1[Xerhem—1] = o + Bl mXe + €6,

® Model-implied coefficient:
fe * %3 px
Bhe,a = 5h+2 &6

(optimize numerically for k > 1)

° Bffa only depend on the shape of the ACF of interest rate differential and does
not depend on survey data, exchange rates, or realized returns.
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Forecast-Error Predictability

fe
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Conclusions
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Conclusions

® A framework in which investors are constrained in model complexity.

® |mplies rich dynamics for the term structure of deviations from the benchmark

rational expectations.

Implications for violations of uncovered interest rate parity
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Conclusions

® A framework in which investors are constrained in model complexity.

® |mplies rich dynamics for the term structure of deviations from the benchmark

rational expectations.

Implications for violations of uncovered interest rate parity

Grazie
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Minimal-Order Representation

® Data-generating process: z; € R"
zz=A*z;_1 + B¢t

!
Xt:C* Zt

® Model order: dimension of the model’s minimal representation

n =rank(Q"),

where

Q*

*
4G 4 43 - and q; = cov” [XeXeth)
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Representation as Limited Memory

® An agent who constructs k moving averages st = (si¢, 2t - .., Ske) of the past
realizations of the fundamentals:

k
Sit = WiXt + E qijSjt—1,
Jj=1

and treats these moving averages as summary statistics for making predictions
about all future realizations of the fundamental:
k
Et[xt4+r] = Z VriSit for all 7> 1,
i=1
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Representation as Limited Memory

® An agent who constructs k moving averages st = (si¢, 2t - .., Ske) of the past
realizations of the fundamentals:

k
Sit = WiXt + E qijSjt—1,
Jj=1

and treats these moving averages as summary statistics for making predictions
about all future realizations of the fundamental:
k

Et[xt4+r] = E VriSit for all 7> 1,
i=1

® Parameterize such an agent: ¢ = (w,Q,{v-}2°,) € ¥j.

Proposition J

There is a one-to-one correspondence between ¥, and Q.
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Example

® ARMA(2,1) stochastic process:

Xt — Q1Xt—1 — PaXe—2 = €t +P1€r_1

® Hidden-factor model representation:

1 1
Zty1 = [zl 0 zy + " €t
Xt = [1 0] Zt.

® |n this case,

Xt
Zt =
Paxe—1 + Prer
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Alternative (non-Bayesian) Estimation

Theorem

Let Oy denote an arbitrary compact subset of ©.

(a) If GA}E\/IL € arg max, & fg(xt, ...,X0) is the maximum likelihood estimator,
K
lim KL(6*||6ML) = min KL(6"(|6) IP*-almost surely.
t—o0 0€0y

® Same expectations whether agents...

(a) use maximum likelihood to estimate their model
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Alternative (non-Bayesian) Estimation

Theorem
Let Oy denote an arbitrary compact subset of ©.
(a) If GA%VIL € arg max, & f9(xt,...,xo0) is the maximum likelihood estimator,
K

lim KL(6*||6ML) = min KL(6"(|6) IP*-almost surely.
t—o0 €O,

A . t
(b) If 0115\/18E € arg meEak %ZT:O (Xr41 — ]Ef,[xTJrlD{ then

lim KL(0*||6MSE) = min KL(6"(|6) P*-almost surely.
t—o0 0€0,

® Same expectations whether agents...

(a) use maximum likelihood to estimate their model
(b) pick their model to minimize the MSE of their one-step-ahead predictions
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Micro-Founded Model (Allen, Morris, and Shin, 2006)

® A single asset in zero net supply with dividend stream {x;}°_
® Overlapping generations of traders who each live for two periods
® At each date,

» young traders build up a position in the asset but do not consume
» old traders unwind their position and acquire the consumption good

® Utility of acquiring gjr units of the asset

1
ui(qit) = (Ye+1 — ye + xt)qie — 57%‘%
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Micro-Founded Model

® Utility of acquiring gj+ units of the asset

1
ui(qit) = (Ye+1 — Yyt + xt)qir — §7qi2t

® First-order conditions:

1
qit = 5 (xt — yt + Eit[ye11])

® Market clearing:

1
Xt — Yt +/ Eit[yt+1] = 0.
0
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