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Abstract

Our objective is to price the cross-section of asset returns. Despite considering hun-

dreds of systematic risk factors (“factor zoo”), factor models still have sizable pricing

errors. A limitation of these models is that returns compensate only for systematic risk.

We allow compensation also for unsystematic risk while imposing no arbitrage. The re-

sulting stochastic discount factor (SDF) dominates traditional factor models in pricing

assets. Empirically, about 70% of this SDF’s variation is explained by its unsystematic-

risk component, which is correlated with strategies reflecting market frictions and be-

havioral biases. Our findings provide an avenue for resolving the factor zoo.
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1 Introduction

A major challenge in asset pricing is to explain the cross-section of asset returns. To address

this challenge, the literature has examined a large number of systematic or common risk

factors, leading to a factor zoo (Cochrane, 2011). However, virtually all models featuring

factors from this zoo have sizable pricing errors (Bryzgalova, Huang, and Julliard, 2023),

called alpha. A limitation of these models is that they allow expected excess returns to be

related only to systematic sources of risk and preclude compensation for unsystematic risk

comprised of asset-return shocks unexplained by systematic risk factors. In our work, we

allow compensation also for unsystematic risk and show that this single departure from the

traditional risk-return tradeoff provides an avenue for resolving the factor zoo.

To price a cross-section of assets, we use as a foundation for our analysis the Arbitrage

Pricing Theory (APT) of Ross (1976, 1977), Chamberlain (1983), and Chamberlain and

Rothschild (1983). The APT provides an ideal framework because it allows expected excess

returns to contain asset-specific components with two properties. First, these asset-specific

components are unrelated to the compensation for asset exposures to systematic risk fac-

tors. Second, these asset-specific components satisfy an asymptotic no-arbitrage restriction.

Thus, the APT permits us to entertain, in a no-arbitrage setting, the possibility that these

asset-specific components in expected excess returns represent compensation for unsystem-

atic risk. In our work, we allow unsystematic risk to include both pure asset-specific risk

and weak factors (Lettau and Pelger, 2020).

Our first contribution is to derive an admissible SDF, namely an SDF that prices a

given cross-section of assets correctly, assuming asset returns are described by the APT.

In particular, we show theoretically how systematic and unsystematic risk appear in this

admissible SDF and demonstrate that the asset-specific components in expected excess re-

turns represent compensation for unsystematic risk. Thus, we depart from the conventional

wisdom that financial markets compensate investors only for exposure to systematic sources

of risk and, therefore, investors should diversify away unsystematic risk. To provide mi-

crofoundations for our unconventional idea, we derive the SDF in the equilibrium model of

Merton (1987) that has nonzero compensation for unsystematic risk when the number of

assets is finite. We show that even when the number of assets is asymptotically large, like

in the APT, compensation for unsystematic risk remains nonzero, and the functional form

of the equilibrium SDF is the same as the one we derive based on the APT.
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Our second contribution is providing empirical support for our insight that unsystematic

risk is priced and quantifying its importance. To do this, we develop a projection-based

SDF that is a version of the admissible SDF projected on a set of basis assets and a risk-

free asset. This step is necessary because the admissible SDF, which depends on latent

systematic factors and unsystematic shocks, is empirically infeasible. Furthermore, we

show that the projection-based SDF converges in probability to the admissible SDF as the

number of basis assets increases.

Then, using data for monthly returns on 202 portfolios of stocks, we identify and char-

acterize the SDF and its components. One component reflects systematic risk (“system-

atic SDF component”), and the other unsystematic risk (“unsystematic SDF component”).

Two central findings emerge from our empirical analysis. First, the compensation for un-

systematic risk is nonzero. Second, the unsystematic SDF component explains 72.60% of

the admissible SDF’s variation. Thus, unsystematic risk plays a major role in pricing the

cross-section of asset returns, despite the risk premia associated with unsystematic shocks

being small on average. Furthermore, a back-of-the-envelope calculation suggests that the

two types of unsystematic risk, pure asset-specific risk and weak factors, contribute about

equally to the variation of the unsystematic SDF component.

The quantitative importance of the unsystematic SDF component implies that candidate

factor models with proxies for only systematic risk factors cannot lead to an admissible SDF.

We show that by construction, the unsystematic SDF component satisfies the definition of

a weak factor in a cross-section of basis assets. Thus, statistical methods of factor analysis,

such as Principal Component Analysis (PCA), cannot identify it in the data. Instead, to

identify the unsystematic SDF component and subsequently obtain an admissible SDF, one

must recognize that unsystematic risk is priced, and we show how to do this.1 This insight

paves the way to resolving the factor zoo.

We study 457 trading strategies to understand which ones reflect sizable compensation

for unsystematic risk. We find that, of the strategies with high compensation for unsys-

tematic risk, some can be interpreted as being behavioral—for example, the performance

factor (Stambaugh and Yuan, 2017), the long-horizon financial factor (Daniel, Hirshleifer,

and Sun, 2020a), the factor reflecting expectations about future earnings (La Porta, 1996),

1Our findings emphasize the arguments of MacKinlay (1995) and Daniel and Titman (1997) about the
importance of assets’ characteristics for understanding risk premia and the inability of a factor model to
explain a cross-section of stock returns, but with two crucial differences. First, our model ensures asymptotic
no-arbitrage. Second, we demonstrate that, in our framework, the asset-specific components in expected
returns represent compensation for unsystematic risk.

3



and the momentum factor (Jegadeesh and Titman, 1993)—while others as reflecting market

frictions—for example, the betting-against-beta factor (Frazzini and Pedersen, 2014) and

distress risk (Campbell, Hilscher, and Szilagyi, 2008). The compensation offered by these

strategies for bearing unsystematic risk is large; for instance, the premium for bearing the

unsystematic risk for the 12-month momentum strategy of Jegadeesh and Titman (1993) is

8.27% per annum.

Turning next to the analysis of the systematic SDF component, we find that the market

return explains 95% of its variation.2 The substantial contribution of the market return in

explaining the variation of the systematic SDF component is because it plays an essential

role in determining the level of stock returns, as shown by Clarke (2022), among others.

However, because the systematic SDF component accounts for only 27.40% of the variation

in the admissible SDF, the contribution of the market return to the overall SDF’s variation

is only 26.03% (that is, 95%× 27.40%).

Our third contribution is to use our framework to shed light on the poor performance

of popular candidate factor models used to price a cross-section of stock returns, and

to show how to use our methodology to correct them. We consider: (i) a model with

the market return, as suggested by the CAPM of Sharpe (1964), (ii) a model with the

consumption-mimicking portfolio, as implied by the Consumption Capital Asset Pricing

Model (C-CAPM) of Breeden (1979), and (iii) the three-factor model (FF3) of Fama and

French (1993).3 These candidate factor models may be misspecified because they omit sys-

tematic sources of risk, the search for which has been the focus of the existing literature.

But, these candidate models may be misspecified also because they omit compensation for

unsystematic risk, the focus of our work. Both theoretically and empirically, we identify

and characterize the wedge between the admissible SDF and the SDFs implied by these

candidate factor models.

The central insight from our empirical analysis of these three candidate models is that

their implied SDFs represent less than 40% of the variation in the admissible SDF. The

principal source of missing variation is unsystematic risk, which, in these models, similar to

virtually all other factor models, is assumed to have zero compensation. These candidate

factor models also omit sources of systematic risk, and we show how to correct for this type

2To explain 99% of variation in the systematic SDF component, we need the returns on four extra trading
strategies, all highly correlated with the variable known as the size factor.

3We do not analyze other candidate factor models because the conclusions we draw from our empirical
analysis of these three candidate factor models apply to virtually any candidate factor model that is based
on the premise that only systematic risk is compensated in financial markets.
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of misspecification as well. Moreover, once we use our approach to include what is missing

in each of the three analyzed candidate models, we obtain admissible SDFs that are almost

perfectly correlated.

When traditional asset-pricing models, such as the CAPM, fail to explain a cross-section

of stock returns, the response has been to search for additional proxies for systematic

factors. For instance, momentum (Jegadeesh and Titman, 1993), value (Fama and French,

2015), and investment (Hou, Xue, and Zhang, 2015) have attracted attention as successful

proxies. We find that these variables correlate more highly with the unsystematic rather

than the systematic SDF component. This finding has two important implications. First,

these variables appear to be weak factors in the cross-section of basis assets, as opposed

to systematic factors. Second, these variables contribute to explaining the cross-section

of expected returns because they reflect largely the compensation for unsystematic risk.

Moreover, we show empirically that including even a large number of such observable factors

in a candidate factor model fails to fully capture the unsystematic SDF component.

Our work is related to several strands of the literature. First, we contribute to the

literature that uses a large cross-section of asset returns to examine the risk-return tradeoff

implied by factor models. To handle a large number of assets, Kozak, Nagel, and Santosh

(2020), Lettau and Pelger (2020), Pelger (2020), Giglio and Xiu (2021), and Giglio, Xiu,

and Zhang (2021b) develop methods based on PCA for estimating the SDF, identifying

factors that price the cross-section of expected returns, and estimating prices of these risk

factors even in the presence of model misspecification. Our approach, founded on the APT,

also allows for a large number of assets to estimate an admissible SDF. In contrast to these

papers, our approach explicitly allows compensation not only for factor risk but also for

asset-specific shocks.

Second, because we correct the misspecified SDF implied by a given candidate factor

model, we contribute to the literature that studies misspecification of the SDF and de-

velops methods to characterize the wedge between the misspecified and admissible SDFs.

Hansen and Jagannathan (1997) provide the smallest additive nonparametric adjustment

(in a least-squares sense) required to make a given SDF admissible. Almeida and Gar-

cia (2012) provide an additive correction term based on minimum-discrepancy projections.

Sandulescu and Schneider (2021) build on Almeida and Schneider (2021) to construct an

SDF that is a sum of a linear part, which is identical to that from Hansen and Jagannathan

(1997), and a nonlinear part, which ensures the positivity of the SDF and leads to an ad-
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missible SDF. Korsaye, Quaini, and Trojani (2021) construct a minimum-dispersion SDF

subject to a convex pricing constraint and study the tradeoff between the SDF’s pricing

accuracy and its comovement with standard proxies for systematic risk. Ghosh, Julliard,

and Taylor (2017) provide a multiplicative SDF correction using a Kullback-Leibler entropy-

minimization approach. Just like Ghosh et al. (2017), we ensure the positivity of the SDF

by specifying it in an exponential form. Complementary to the previous approaches, our

method allows for unsystematic risk, in addition to omitted sources of systematic risk, to

explain the wedge between the misspecified SDF and admissible SDF.

Third, we contribute to the factor-zoo literature (see, e.g., Cochrane, 2011; Harvey, Liu,

and Zhu, 2015; Kogan and Tian, 2015), which has proposed hundreds of variables that can

potentially proxy for systematic risk priced in the cross-section of asset returns. Our contri-

bution is in identifying that what asset-pricing factor models are missing is compensation

for unsystematic risk rather than a yet-undiscovered proxy for systematic risk.

Furthermore, our paper complements methodological advances aimed at taming the fac-

tor zoo. Feng, Giglio, and Xiu (2020), Freyberger, Neuhierl, and Weber (2020), Giglio, Liao,

and Xiu (2021a), and Bryzgalova et al. (2023) propose model-selection methods to disci-

pline the proliferation of factors, and account for data snooping when performing multiple-

hypothesis testing in linear asset-pricing models. Our focus is different: as a by-product of

our analysis, we provide a method that establishes whether an arbitrary variable is a proxy

for a systematic or weak factor and quantifies the price of this factor risk.

Clearly, our work is also related to the literature on the idiosyncratic-volatility puzzle,

which studies the relation between the compensation for asset-specific risk and the volatil-

ity of asset-specific shocks; see, for example, Fama and MacBeth (1973) and Ang, Hodrick,

Xing, and Zhang (2006), with a comprehensive review provided by Bali, Engle, and Murray

(2016). Complementary to this empirical literature, we construct an SDF, where the com-

pensation for unsystematic risk represents the negative covariance between this SDF and

unsystematic shocks (rather than their volatility). Furthermore, we find that the returns

of the idiosyncratic-volatility factors of Ali, Hwang, and Trombley (2003) and Ang et al.

(2006) explain less than 10% of the variation in the unsystematic SDF component. Thus,

what is missing in asset-pricing factor models is not just the idiosyncratic-volatility factor.

The rest of the paper is organized as follows. Section 2 presents our theoretical results

for constructing an admissible SDF. Section 3 explains how to estimate an admissible SDF.

Section 4 describes the data we use to illustrate our approach. Section 5 presents the
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empirical findings from applying our approach to this data. Section 6 provides an example

of an equilibrium model in which unsystematic risk is priced. We conclude in Section 7.

The Internet Appendix reports proofs, the estimation algorithm, and additional results.

2 Constructing an Admissible SDF

In this section, we first derive the SDF under the classical APT. Then, we explain how to

ensure the positivity and empirical feasibility of this SDF. Next, we show how to correct the

SDF implied by an arbitrary candidate linear factor model for misspecification caused by

omitted (i) sources of systematic risk, (ii) compensation for unsystematic risk, and (iii) time

variation in risk premia.

Throughout the manuscript, we use the following notation. Let an N -dimensional vector

Rt+1 = (R1,t+1, R2,t+1, . . . , RN,t+1)′ denote the vector of gross returns of N risky assets

between t and t+ 1. Let Rf be the gross return on a risk-free asset over the same period.4

Let E(·) denote the expectation operator and 1N indicate an N × 1 vector of ones, so that

E(Rt+1 − Rf1N ) represents the vector of expected excess returns on the N assets. Let

ft+1 be a K × 1 vector of systematic risk factors, with K < N and a K × K positive

definite covariance matrix Vf > 0.5 Let β = (β1, β2, . . . , βN )′ be an N ×K full-rank matrix

of loadings of asset returns on the systematic factors ft+1. The notation 0N indicates an

N×1 vector of zeros. For deterministic sequences {aN} and {bN} the notation aN = O(bN )

means that, as N → ∞, |aN |/bN < δ, where δ > 0 is some finite number, and aN = o(bN )

means that |aN |/bN → 0.

2.1 The SDF under the Arbitrage Pricing Theory (APT)

The APT of Ross (1976, 1977), Chamberlain (1983), and Chamberlain and Rothschild

(1983) is our working assumption about the true data-generating process for asset returns.

There are several advantages to choosing the APT as the null model. First, the APT is

a flexible model that does not take a stand on systematic risk factors. Second, it is a no-

arbitrage model; the absence of arbitrage opportunities implies the existence of an SDF.

Third, and more importantly for our purpose, the APT allows for asset-specific components

in expected excess returns unrelated to systematic risk.

4If a risk-free asset does not exist, one can use the return on the minimum-variance portfolio or the return
on a zero-beta portfolio instead.

5Note that, for an arbitrary matrix A, the expression A > 0 means that A is positive-definite.
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The classical APT builds on the following two assumptions.

Assumption 2.1 (Linear Factor Model). The vector Rt+1 of gross asset returns satisfies

Rt+1 = E(Rt+1) + β
(
ft+1 − E(ft+1)

)
+ et+1, (1)

where the vector et+1 has E(et+1) = 0N and an N × N covariance matrix Ve > 0, whose

eigenvalues are uniformly bounded and bounded away from zero. The shocks et+1 are un-

correlated with the K systematic factors ft+1, implying the covariance matrix of returns

is

VR = βVfβ
′ + Ve. (2)

Recall that in the APT of Chamberlain (1983) and Chamberlain and Rothschild (1983),

asset returns satisfy an approximate factor structure; that is, the covariance matrix Ve is not

restricted to be diagonal. The case of a non-diagonal matrix Ve with uniformly bounded

eigenvalues can accommodate the presence of weak factors fweak
t+1 in the shocks et+1, or

equivalently, in returns Rt+1. We define weak factors similarly to Lettau and Pelger (2020)

as factors that affect only a subset of the underlying assets or all assets but marginally.

Mathematically, if βweak is a matrix of loadings of returns Rt+1 on weak factors fweak
t+1 , then,

as N →∞, this matrix satisfies βweak ′βweak → E > 0, where E is some symmetric matrix.

Assumption 2.2 (Asymptotic No Arbitrage). There is no sequence of portfolios containing

N risky assets with weights w = (w1, w2, . . . , wN )′, for which, as N →∞:

var(R′t+1w)→ 0 and (E(Rt+1)−Rf1N )′w ≥ δ > 0,

where δ denotes an arbitrary positive scalar.

Assumptions 2.1 and 2.2 imply that, under the APT, asset excess returns are

Rt+1 −Rf1N = a+ βλ+ β(ft+1 − E(ft+1)) + et+1, (3)

with expected excess returns

E(Rt+1 −Rf1N ) = a+ βλ (4)

containing two components: a and βλ. The K × 1 vector of risk premia λ represents the

compensations for a unit of assets’ exposures to the factors ft+1. Ingersoll (1984) derives the

precise condition for λ to exist and shows that λ = limN→∞
(
β′V −1

e β
)−1

β′V −1
e (E(Rt+1)−
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Rf1N ). Ross (1976), Huberman (1982), Chamberlain (1983), Chamberlain and Rothschild

(1983), and Ingersoll (1984) show that the N×1 vector a = (E(Rt+1)−Rf1N )−βλ, typically

referred to as the vector of pricing errors, satisfies the following no-arbitrage restriction

a′V −1
e a ≤ δapt <∞, (5)

where δapt is some arbitrary positive scalar.

We now provide the SDF under the classical APT.

Proposition 1 (An Admissible SDF). The SDF Mt+1 implied by the APT model of asset

returns is

Mt+1 = Mβ
t+1 +Ma

t+1, where (6)

Mβ
t+1 =

1

Rf
−
λ′V −1

f

Rf
(ft+1 − E(ft+1)) and Ma

t+1 = −a
′V −1
e

Rf
et+1,

with cov(Mβ
t+1,M

a
t+1) = 0.

The term Mβ
t+1 is a linear function of the systematic risk factors ft+1, and therefore we

refer to Mβ
t+1 as the systematic SDF component. The term Ma

t+1 is a linear function of

the asset-return shocks et+1 that are orthogonal to systematic risk, and therefore we refer

to Ma
t+1 as the unsystematic SDF component. The unsystematic SDF component captures

the pricing implications of both asset-specific risk and weak factors if they are present in

the asset-return shocks et+1.

The presence of the unsystematic component Ma
t+1 in the admissible SDF Mt+1 leads

to the main insight underlying our approach, which is the interpretation of the vector a.

When viewed through the lens of the systematic SDF component, Mβ
t+1, the vector a is

typically interpreted as a pricing error:

a = E(Mβ
t+1(Rt+1 −Rf1N ))×Rf .

However, when viewed through the lens of the admissible SDF, the expression

a = − cov(Mt+1, et+1)×Rf = − cov(Ma
t+1, Rt+1)×Rf ,

indicates that the vector a should be interpreted as the risk premium for unsystematic

shocks et+1, rather than pricing errors. This novel interpretation paves the way for a

quantitative assessment of priced unsystematic risk in financial markets that we undertake

in our empirical analysis.
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2.2 Constructing an Admissible SDF in Practice

In practice, there are two challenges in constructing the admissible SDF (6). First, this

linear SDF may not always be strictly positive, which could result in negative asset prices

leading to arbitrage opportunities. Second, the admissible SDF (6) is not feasible empirically

because it depends on the unobserved factors ft+1 and shocks et+1. We address both

challenges. To construct a feasible positive SDF, we rely on an exponential function of the

linear projections of Ma
t+1 and Mβ

t+1 on the set of the risk-free and risky assets to obtain6

M̂exp,t+1 = M̂β
exp,t+1 × M̂

a
exp,t+1, where (7)

M̂β
exp,t+1 =

1

Rf
× exp

(
− (βλ)′V −1

R (Rt+1 − E(Rt+1))− 1

2
(βλ)′V −1

R βλ
)

and (8)

M̂a
exp,t+1 = exp

(
− a′V −1

R (Rt+1 − E(Rt+1))− 1

2
a′V −1

R a
)
. (9)

In expressions (8) and (9), the covariance matrix of asset returns VR satisfies equation (2)

and the expected excess returns E(Rt+1)−Rf1N satisfy equation (4).

The next proposition shows that, as N →∞, our feasible SDF in equation (7) recovers

the admissible SDF formulated as an exponential function of payoffs:7

Mexp,t+1 = Mβ
exp,t+1 ×M

a
exp,t+1, where (10)

Mβ
exp,t+1 =

1

Rf
× exp

(
− λ′V −1

f (ft+1 − E(ft+1))− 1

2
λ′V −1

f λ
)

and

Ma
exp,t+1 = exp

(
− a′V −1

e et+1 −
1

2
a′V −1

e a
)
.

Proposition 2 (Asymptotic Properties of the Feasible SDF). Under Assumptions 2.1 and

2.2 of the APT and the assumption that the factors ft+1 and unsystematic shocks et+1 are

jointly Gaussian, the SDF in equation (10) is admissible. Furthermore, if the following two

conditions—(i) N−1β′Ve
−1β −→ E > 0, as N →∞, where E is some arbitrary symmetric

K × K matrix, and (ii) β′Ve
−1a = o(N

1
2 )—are satisfied, then as N → ∞, the following

results hold

M̂a
exp,t+1 −Ma

exp,t+1
p−→ 0, M̂β

exp,t+1 −M
β
exp,t+1

p−→ 0, cov(M̂β
exp,t+1, M̂

a
exp,t+1)→ 0.

The proof of Proposition 2 does not rely on Ve being diagonal and, therefore, allows for

the presence of weak factors in asset-return shocks et+1. Internet Appendix IA.5 discusses

6In what follows, the symbol ·̂ denotes a projection.
7See, for example, Gourieroux and Monfort (2007) and Ghosh et al. (2017) for modeling an SDF as an

exponential function of payoffs to guarantee the SDF’s positivity.
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explicitly the case of weak factors in shocks et+1 and shows that we can construct the

unsystematic SDF component even in the presence of weak factors.

2.3 What is Missing in Popular SDF Models

In this section, we discuss how to identify what is missing in an arbitrary candidate linear

factor model and correct this model for misspecification. We use the superscript “can” for

variables related to a candidate model.

A standard candidate factor model has Kcan observable risk factors f can
t+1 implying that

the assets’ expected excess returns reflect compensation for exposures to these risk factors.

A classic example of a candidate factor model is the CAPM with Kcan = 1 systematic

risk factor represented by the market excess return and compensation for unsystematic risk

acan = 0N . Viewed through the lenses of the APT, candidate factor models suffer from

possibly three sources of misspecification. First, these models may omit systematic risk

factors. Second, these models may omit compensation for unsystematic risk. Of course,

candidate models may also be misspecified because they do not account for time variation

in prices of risk or risk exposures. We address the first two sources of misspecification in

Section 2.3.1 and the third source of misspecification in Section 2.3.2.

2.3.1 Accounting for omitted systematic risk factors or omitted compensation

for unsystematic risk

Let βcan denote an N ×Kcan matrix of loadings of asset returns on the candidate factors

f can
t+1 and λcan denote a Kcan × 1 vector of risk premia for unit exposures to these factors.

The candidate factor model implies

Rt+1 −Rf1N = α+ βcanλcan + βcan(f can
t+1 − E(f can

t+1)) + εt+1, (11)

where the vector α = (E(Rt+1)−Rf1N )− βcanλcan captures the cross-sectional variation in

expected excess returns left unexplained by compensation for asset exposures to systematic

risk factors f can
t+1, and the vector εt+1 with the covariance matrix Vε captures the returns’

variation that is not explained by the set of candidate factors f can
t+1.

The candidate factor model implies a linear SDF

Mβ,can
t+1 =

1

Rf
−

(λcan)′V −1
fcan

Rf
(f can
t+1 − E(f can

t+1)),
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which values asset returns with pricing errors α = E(Mβ,can
t+1 (Rt+1 −Rf1N )).

The proposition below shows that even if the candidate factor model omits systematic

risk factors, that is, Kmis > 0, asymptotic no-arbitrage implies that the vector α satisfies

a similar restriction to that in expression (5) on the vector a in the classical APT. This

implication of no-arbitrage allows us to work with misspecified candidate factor models and

correct their implied SDFs to obtain the admissible SDF.

Proposition 3 (No-arbitrage Restriction in the Presence of Model Misspecification). Sup-

pose that the vector of asset returns Rt+1 satisfies Assumptions 2.1 and 2.2 of the APT.

Given a candidate factor model with Kcan factors f can
t+1, suppose the first Kmis eigenvalues

of the covariance matrix Vε are unbounded when N → ∞, the remaining eigenvalues are

uniformly bounded, and the smallest eigenvalue is strictly positive. Then, by no arbitrage,

there exist an N × 1 vector a, N ×Kmis matrix βmis, and Kmis × 1 vector λmis, such that

α = βmisλmis + a and Vε = βmisVfmisβmis′ + Ve, (12)

and the candidate model’s vector of pricing errors α satisfies

α′Vε
−1α ≤ δ̃apt, (13)

for some constant δ̃apt = δapt + λmis ′V −1
fmisλ

mis + o(1), with δapt defined in equation (5).

The no-arbitrage restriction specified in equation (13) is asymptotically equivalent to that in

equation (5), in the sense that when δ̃apt is finite, then δapt is finite, and vice versa.

Equations (12) delivers two messages. First, if Kmis eigenvalues of Vε are unbounded,

then the vector εt+1 has a factor structure, that is, shocks εt+1 include Kmis latent factors

fmis
t+1 with βmis denoting the matrix of exposures of asset returns to these factors fmis

t+1, that

is,

εt+1 = βmis(fmis
t+1 − E(fmis

t+1)) + et+1. (14)

Without loss of generality, we assume that these latent factors are orthogonal to the candi-

date factors.8 Second, the vector α in equation (12) includes compensation for unsystematic

risk, a, and compensation for the exposures of asset returns to the missing systematic risk

factors fmis
t+1, that is, βmisλmis, where λmis is a vector of compensations for a unit of asset

exposures to the factors fmis
t+1.

8Internet Appendix IA.7 shows that the admissible SDF is invariant to our assumption about the corre-
lation structure between candidate and missing factors.
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Next, we show how to correct the linear SDF Mβ,can
t+1 implied by the misspecified can-

didate factor model of asset returns to obtain the admissible SDF Mt+1, which is the SDF

implied by the APT model of asset returns.

Proposition 4 (SDF: Correcting a Misspecified Linear SDF). Under the assumptions of

Proposition 3, given the candidate SDF Mβ,can
t+1 , there exists an admissible SDF Mt+1, such

that

Mt+1 = Mβ,can
t+1 +Mα

t+1 = Mβ,can
t+1 + (Mβ,mis

t+1 +Ma
t+1)︸ ︷︷ ︸

=Mα
t+1

, where

Mβ,mis
t+1 = −

(λmis)′V −1
fmis

Rf
(fmis
t+1 − E(fmis

t+1)) and Ma
t+1 = −a

′V −1
e

Rf
et+1,

with cov(Mβ,can
t+1 ,Ma

t+1) = 0, cov(Ma
t+1,M

β,mis
t+1 ) = 0, and cov(Mβ,can

t+1 ,Mβ,mis
t+1 ) = 0.

The wedge between the admissible SDF and the candidate SDF is a correction term

labeled Mα
t+1 that includes two components: Mβ,mis

t+1 and Ma
t+1. The first component Mβ,mis

t+1

captures pricing of the systematic risk factors fmis
t+1 omitted in the candidate factor model.

The second component Ma
t+1 captures pricing of unsystematic sources of risk et+1.

Given the growing interest in the role of weak factors in asset pricing (e.g., Lettau and

Pelger, 2020; Giglio, Xiu, and Zhang, 2021b), we highlight the following result.

Proposition 5 (Unsystematic SDF Component is a Weak Factor for Basis Assets). If the

no-arbitrage bound δapt is bounded away from zero, then the unsystematic SDF component

Ma
t+1 satisfies the definition of a weak factor (Lettau and Pelger, 2020) in the cross-section

of basis assets, regardless of whether or not Ve is diagonal.

Observe that the exposures of asset returns to the unsystematic SDF component Ma
t+1

are equal to

βa =
cov(Ma

t+1, Rt+1 −Rf1N )

var(Ma
t+1)

=
cov

(
−a′V −1

e
Rf

et+1, Rt+1 −Rf1N

)
var(Ma

t+1)
= −

a′Rf

a′V −1
e a

.

Thus, βa′βa = R2
f (a′a)/(a′V −1

e a)2, which together with the no-arbitrage restriction (5),

the boundedness of δapt away from zero, and the boundedness of the eigenvalues of the

covariance matrix Ve, implies that βa′βa = O(1), that is, βa′βa is bounded. As a result,

Ma
t+1 satisfies the definition of a weak factor in the cross-section of returns on basis assets.
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Note that Ma
t+1 = −a′V −1

e et+1/Rf satisfies the definition of a weak factor even if Ve is

diagonal becauseMa
t+1 loads on a combination of asset-specific shocks et+1. By construction,

et+1 are orthogonal to all systematic factors. Therefore, the factor Ma
t+1 consisting of et+1

can only be a weak factor. Thus, conventional methods of factor analysis, e.g., PCA, cannot

identifyMa
t+1 in the data. The only way to identify the unsystematic SDF component, as can

be seen from the definition of Ma
t+1, is by measuring the compensation a for unsystematic

risk et+1.

The presence of the unsystematic SDF component Ma
t+1 in the correction term Mα

t+1

changes the direction of the quest for an asset-pricing model that explains the cross-section

of expected excess returns. Candidate factor models may be misspecified because of missing

systematic risk, the search for which has been the focus of the existing literature. But these

models may be misspecified also because they omit compensation for unsystematic risk.

What matters most—omitted systematic risk or nonzero compensation for unsystematic

risk—is an empirical question we answer in this paper.

In practice, for the same reasons as explained in Section 2.2, recovering the positive

admissible feasible SDF after correcting a misspecified candidate SDF requires (i) using the

exponential function of the linear projection of Ma
t+1 and Mβ,mis

t+1 on the set of the risk-free

and risky assets and (ii) specifying Mβ,can
exp,t+1 in exponential form. Thus, the feasible SDF

takes the following form:

M̂exp,t+1 = Mβ,can
exp,t+1 × M̂

β,mis
exp,t+1 × M̂

a
exp,t+1 with (15)

Mβ,can
exp,t+1 =

1

Rf
× exp

(
− λcan ′V −1

fcan(f can
t+1 − E(f can

t+1))− 1

2
λcan ′V −1

fcanλ
can
)
, (16)

M̂β,mis
exp,t+1 = exp

(
− (βmisλmis)′V −1

R (Rt+1 − E(Rt+1))− 1

2
(βmisλmis)′V −1

R βmisλmis
)
, (17)

M̂a
exp,t+1 = exp

(
− a′V −1

R (Rt+1 − E(Rt+1))− 1

2
a′V −1

R a
)
, (18)

and where, from Proposition 3,

E(Rt+1 −Rf1N ) = a+ βmisλmis + βcanλcan,

and VR = βcanVfcanβcan′ + βmisVfmisβmis ′ + Ve.

In Internet Appendix IA.4, we extend Proposition 2 to the case in which we start with a

misspecified candidate factor model that we correct in order to build an admissible SDF

implied by the APT. We show that as N →∞, the projection version of the corrected SDF

specified in equation (15) recovers the admissible SDF specified in exponential form, similar
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to that in equation (10). This result implies that when constructing an admissible SDF

from a misspecified SDF, we do not need to pre-estimate the shocks et+1 or the missing

systematic factors fmis
t+1 that may be omitted in the candidate factor model.

2.3.2 Accounting for Time-Variation in Risk Premia

In Section 2.1, to identify an admissible SDF, we use the classical APT in which the prices

of risk and the asset exposures to systematic risk factors are constant, and the vector a

represents the compensation for unsystematic risk. Similarly, so far we considered candidate

factor models with constant prices of risk and risk exposures. However, in practice one may

wonder whether the vector a is a consequence of time variation in asset factor exposures

or prices of risk. Below, we demonstrate that an arbitrary model of asset returns that

has time-varying prices of risk or risk exposures is nested in the classical APT and that

the interpretation of a as compensation for unsystematic risk is preserved. To distinguish

models with constant parameters from those with time-varying parameters, we use a tilde

·̃ to denote the elements of the models with time variation. To facilitate our discussion,

we consider a model with only time-varying risk exposures β̃t; the analysis of a model with

time-varying prices of risk is similar and is omitted for brevity.

Without loss of generality, assume that the true model for asset returns is a conditional

model with a single factor f̃t+1 and zero compensation for unsystematic risk ẽt+1

Rt+1 − Et(Rt+1) = β̃tf̃t+1 + ẽt+1, (19)

where f̃t+1 is a factor with unconditional risk premium λ̃, Et(f̃t+1) = 0, β̃t is an N × 1

vector of risk exposures of asset returns Rt+1 to the factor f̃t+1, and ẽt+1 is an N ×1 vector

of unsystematic shocks with a covariance matrix Vẽ. We consider two cases.

Case 1: Common source of variation in risk exposures. Assume that

β̃t = β̃0 + β̃1g̃t,

where g̃t is a common source of time-variation in assets’ exposures β̃t to the risk factor

f̃t+1. Without loss of generality, assume that E(g̃t) = 0. Given these assumptions, the true

data-generating process for asset returns is

Rt+1 −Rf1N = β̃0λ̃+ β̃1λ̃g̃t + β̃0f̃t+1 + β̃1g̃tf̃t+1 + ẽt+1,

or equivalently

Rt+1 − E(Rt+1) = β̃0f̃t+1 + β̃1λ̃g̃t + β̃1(g̃tf̃t+1 − E(g̃tf̃t+1)) + ẽt+1.
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Thus, the true factor model (19) with the single factor f̃t+1, time variation in risk

premia driven by one common variable g̃t, and zero compensation for unsystematic risk

ẽt+1, is observationally equivalent to the APT model of asset returns with a = 0N and

three systematic factors, ft+1 = (f̃t+1, g̃t, g̃tf̃t+1)′.9 Therefore, if one assumes a candidate

model with the single factor f can
t+1 = f̃t+1 and constant risk exposures βcan = β̃0 and uses

our approach to correct this candidate model, one obtains the admissible SDF, in which the

component Mβ,mis
t+1 is a function of the omitted factors fmis

t+1 = (g̃t, g̃tf̃t+1)′. Furthermore,

Mβ,mis
t+1 captures completely the wedge between the admissible SDF and the SDF implied

by the candidate factor model, so that, Ma
t+1 = 0.

Case 2: Asset-specific source of time-variation in risk exposures. Now, assume that

β̃t = β̃0 + β̃1 � G̃t,

where G̃t = (g̃1t, g̃2t, · · · , g̃Nt)′ is a vector of asset-specific sources of time-variation in risk

exposures β̃t to the risk factor f̃t+1, and the symbol � denotes the Hadamard element-wise

product. Without loss of generality, assume that E(g̃it) = 0 for each 1 ≤ i ≤ N . Given

these assumptions, the true data-generating process for asset returns is

Rt+1 −Rf1N = (β̃0 + β̃1 � G̃t)λ̃+ (β̃0 + β̃1 � G̃t)f̃t+1 + ẽt+1

or equivalently

Rt+1 − E(Rt+1) = β̃0f̃t+1 + λ̃β̃1 � G̃t + β̃1 � (G̃tf̃t+1 − E(G̃tf̃t+1)) + ẽt+1︸ ︷︷ ︸
η̃t+1

.

Thus, the true factor model (19) with the single factor f̃t+1, time variation in risk premia

driven by asset-specific variables G̃t, and zero compensation for unsystematic risk ẽt+1, is

observationally equivalent to the APT model of asset returns with the single systematic

factor ft+1 = f̃t+1 and unsystematic shocks η̃t+1. In the APT, unsystematic shocks ẽt+1

have zero compensation, exactly as in the true factor model, while unsystematic shocks

et+1 = η̃t+1 − ẽt+1 are compensated if E(G̃tf̃t+1) 6= 0N .10 Therefore, if one assumes a

candidate model with the single factor f can
t+1 = f̃t+1 and constant risk exposures βcan = β̃0

and uses our approach to correct this candidate model, one obtains the admissible SDF

with the component Ma
t+1, which is a function of unsystematic shocks et+1 instead of the

shocks ẽt+1. Furthermore, Ma
t+1 captures completely the wedge between the admissible

9Note that g̃tf̃t+1 can be interpreted as a scale factor of Gagliardini, Ossola, and Scaillet (2016).
10This example illustrates that priced unsystematic shocks may represent the product of a systematic risk

factor with asset-specific drivers of risk premia.
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SDF implied by the APT and the SDF implied by the candidate factor model, so that

Mβ,mis
t+1 = 0.

Thus, the misspecification of a candidate factor model due to omitted variation in risk

premia is observationally equivalent, in the context of unconditional pricing, to misspecifi-

cation arising from omitted systematic risk factors or compensation for unsystematic risk.

3 Estimation Details

In this section, we describe our approach for estimating the model of asset returns, which is

a prerequisite for constructing an admissible SDF, and the role played by the no-arbitrage

restriction. We explain how to identify the number of latent factors K in the APT model of

asset returns and how to identify the corresponding no-arbitrage bound δapt in equation (5).

Similarly, for the case in which we start with a candidate model with Kcan observable

factors, we explain how to identify the number of missing factors Kmis and choose the

corresponding no-arbitrage bound δapt. We also explain how to estimate Ve, the covariance

matrix for unsystematic shocks.

3.1 Our Estimation Approach

We recover the admissible SDF implied by the APT in two steps. In the first step, we use a

Gaussian maximum-likelihood estimator to estimate the APT model of asset returns given

in (3), subject to the no-arbitrage restriction (5). At the estimation stage, we impose the

necessary and sufficient conditions to identify the latent factors ft+1. We adopt a standard

identification scheme described in Internet Appendix IA.6. In the second step, we recover

the positive feasible admissible SDF using formulas (7), (8), and (9), where the covariance

matrix of unsystematic risk satisfies equation (2) and the expected excess returns satisfy

equation (4).

Alternatively, if we are correcting an arbitrary candidate factor model with Kcan ob-

servable factors, we use a Gaussian maximum-likelihood estimator to estimate the model of

asset returns given in expression (11), where α and Vε are defined in (12) and impose the

no-arbitrage restriction specified in expression (5).11 Without loss of generality, we consider

candidate models with tradable factors that represent either factor returns (for example,

11We use asymptotic equivalence of the no-arbitrage restrictions in equations (5) and (13).
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the market factor and returns on long-minus-short strategies) or excess returns on factor-

mimicking portfolios.12 Similar to the case of the APT model, we impose the necessary and

sufficient conditions to identify the latent factors fmis
t+1 (see Internet Appendix IA.6). In the

second step, we use the extended version of Proposition 2, which is formally presented and

proved in Internet Appendix IA.4, and formulas (15), (16), (17), and (18) to recover the

positive feasible admissible SDF.

3.2 The No-Arbitrage Restriction

The no-arbitrage restriction in (5) on the vector a serves several purposes. First, econom-

ically, it rules out asymptotic arbitrage. Also, the no-arbitrage restriction constrains the

Sharpe ratio of the so-called alpha portfolio of Raponi, Uppal, and Zaffaroni (2022). In our

setting, a′V −1
e a is approximately equal to the square of the Sharpe ratio associated with

investing in a portfolio that represents the unsystematic SDF component Ma
exp,t+1, that is,

δapt ≈ var(log(Ma
exp,t+1)).13

Statistically, when estimating a candidate factor model, the no-arbitrage restriction

(when binding) leads to the identification of the vectors λmis and a.14 Specifically, at

the estimation stage, the no-arbitrage restriction provides the N conditions that allow us

to identify separately the estimates of βmisλmis and a. Identification of βmisλmis and a

is necessary for constructing the missing systematic and unsystematic components of the

admissible SDF, M̂β,mis
exp,t+1 and M̂a

exp,t+1, respectively. When estimating the APT, the no-

arbitrage condition similarly leads to the identification of βλ and a, and therefore the

systematic and unsystematic SDF components M̂β
exp,t+1 and M̂a

exp,t+1.

Finally, under the no-arbitrage restriction, the estimator of a has the form of a ridge

estimator, as shown in Proposition IA.6.5 of Internet Appendix IA.6. The ridge estimator

has the appealing property of mitigating estimation noise. In our case, this property is

especially valuable given that the vector a represents a component of expected returns,

which, as is well known (Merton, 1980), are difficult to estimate.

12It is straightforward to extend the estimation algorithm to the case of candidate factor models with
nontradable systematic risk factors.

13In the same spirit, Kozak, Nagel, and Santosh (2018, 2020) rule out near-arbitrage opportunities by
restricting the maximum squared Sharpe ratio implied by the overall SDF.

14Even in population, the no-arbitrage restriction can be influenced by the presence of financial frictions
(Korsaye et al., 2021, sec. 2).
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3.3 Identifying the Number of Systematic Factors and No-arbitrage Bound

To estimate the APT model of asset returns, we need to determine the number of systematic

risk factors K and the bound δapt on the no-arbitrage restriction specified in equation (5).

The APT theory, however, is silent about the value of δapt; Ross (1977) suggests using a

bound that is a multiple of the Sharpe ratio for the market portfolio, which is about 0.12

per month. Similarly, when correcting a candidate factor model of asset returns, we need

to determine the number Kmis of missing systematic risk factors fmis
t+1 and the bound δapt

on the no-arbitrage restriction. In both cases, we estimate the number of latent risk factors

and the no-arbitrage bound using cross-validation with the Hansen and Jagannathan (1997)

(HJ) distance as a selection metric.

Our cross-validation procedure uses ten folds.15 We split the sample into ten folds and

estimate the model on all but one fold, which we use for validation. We repeat this procedure

ten times and compute the HJ distance on the validation folds. We fix a grid for δapt from

0 to 0.25 that corresponds to Sharpe ratios ranging from 0 to
√

0.25 = 0.5 per month for

the portfolio associated with unsystematic risk. We vary the number of systematic factors

in the APT model from 1 to 10 and the number of missing factors, when evaluating a

particular candidate model, from 0 to 5. We then choose K or Kmis and the value of δapt

that deliver the smallest HJ distance in the validation folds. Finally, we re-estimate the

model on the entire sample using the optimal number of systematic risk factors and the

optimal no-arbitrage bound.

To guide our model selection, we choose the HJ distance, a widely recognized econom-

ically meaningful metric of pricing performance. Being a function of the SDF, the HJ

distance summarizes how competing asset-pricing models fit the first and second moments

of the return distribution. This is in contrast to other metrics, for example, the cross-

sectional R2, that assess how competing models fit only average excess returns.16 Thus,

as a model-diagnostic measure, the HJ distance sets a higher hurdle for competing models.

Furthermore, a suitable diagnostic metric for models featuring compensation for unsystem-

atic risk must embed the correct interpretation of the vector a, which is only possible if the

diagnostic metric depends on the SDF, as the HJ distance does.

15Our results are similar if we use twenty folds.
16Given that for tractability we assume that asset returns are Gaussian, the SDF and HJ distance depend

only on the mean and variance of excess returns. Notice that formulas (8)–(9) and (17)–(18) contain the
model-implied quantities for E(Rt+1 −Rf1N ) and VR.
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The prior literature has used other methods for selecting the number of systematic risk

factors in SDF models. For example, Giglio and Xiu (2021) use a statistical information

criterion similar to Bai and Ng (2002). Lettau and Pelger (2020) and Kozak et al. (2020)

use economic restrictions relating expected returns to the covariance of returns with factors,

in addition to time-series information on the variation in asset returns.17 Because none of

these approaches applies directly to a model with nonzero compensation for unsystematic

risk, a, we face a choice: either to use a two-stage estimation approach that pins down K or

Kmis in the first step and δapt in the second step or to design our own method. We choose

the latter and optimize an objective function that explicitly incorporates the no-arbitrage

restriction while selecting simultaneously the number of systematic risk factors and the

no-arbitrage bound to minimize the HJ distance.

3.4 Estimating the Covariance Matrix of Unsystematic Shocks

As pointed out earlier, the covariance matrix Ve of unsystematic shocks et+1 in equations (1)

or (14) does not have to be diagonal but must have bounded eigenvalues. That is, the shocks

et+1 do not have to be uncorrelated across basis assets but may include weak latent factors.

Because it is not possible to obtain consistent estimates of weak factors (Lettau and Pelger,

2020, prop. 2), estimating Ve in the presence of weak factors is challenging.

Motivated by the shrinkage approach of Ledoit and Wolf (2004a,b), we develop the

following two-step estimator for the matrix Ve. In the first step, we assume that Ve is a

diagonal matrix. Given this assumption, for each K (if estimating the APT model of asset

returns) or Kmis (if correcting a candidate factor model) and each value of δapt, we optimize

the log-likelihood of asset returns subject to the no-arbitrage restriction. As a result, we

obtain the first-step estimate V
(1)
e of Ve. Next, we check whether the covariance matrix Vefit

of the fitted residuals efit of the asset-return model, is diagonal. If it is not, we proceed to

the second step, in which we estimate Ve = V
(2)
e as a linear combination of V

(1)
e and Vefit ,

V (2)
e = θV (1)

e + (1− θ)Vefit ,

17Even though our objective function is similar to that of Lettau and Pelger (2020), our approach has
two crucial differences. First, as explained above, from the perspective of the corrected model, α is not
a pricing error; rather, it represents a crucial component of the SDF. Thus, α does not need to be the
null vector, and therefore, our aim is not to compress it as much as possible but only to ensure that the
no-arbitrage restriction holds. Second, our objective function does not explicitly include a pricing metric
measuring goodness of fit. If we included such a pricing metric in the objective function, we would have
had to augment our log-likelihood function with an additional penalty term represented by the HJ distance.
Instead, we use the HJ distance only in the cross-validation procedure to determine the number of systematic
risk factors in the cross-section of asset returns and the bound of the no-arbitrage restriction.
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where we choose θ so that δapt ≈ var(log(M̂a
exp,t+1)). Effectively, we shrink the empirical

covariance matrix of shocks et+1 towards a diagonal matrix V
(1)
e , and we choose the degree

of shrinkage, 1 − θ, to preserve the economic interpretation of δapt as the squared Sharpe

ratio of the portfolio that loads only on unsystematic risk.

4 Data

This section describes the data we use for our empirical analysis. First, we describe the

basis assets we use to estimate the SDF. Then, we describe variables that could potentially

span the estimated SDF and its components.

4.1 Basis Assets

We construct a projection of the SDF on a large set of standard characteristics-based port-

folios of U.S. stocks. As in Giglio and Xiu (2017), we use monthly returns data for 202

portfolios from Kenneth French’s website, which we label Dataset 1. The data includes

returns on 25 portfolios sorted by size and book-to-market ratio (ME & BM), 17 industry

portfolios (Ind), 25 portfolios sorted by operating profitability and investment (OP & INV),

25 portfolios sorted by size and variance (ME & VAR), 35 portfolios sorted by size and net

issuance (ME & NetISS), 25 portfolios sorted by size and accruals (ME & ACCR), 25 portfo-

lios sorted by size and beta (ME & BETA), and 25 portfolios sorted by size and momentum

(ME & MOM). We use portfolios rather than individual assets because portfolios exhibit a

more stable factor structure (Lettau and Pelger, 2020; Giglio and Xiu, 2021).

We also consider two other sets of assets, labeled Dataset 2 and Dataset 3, in the cross-

sectional out-of-sample analysis we undertake in Section 5.3 below. Dataset 2, used in

Korsaye et al. (2021), has a total of 199 assets consisting of 100 portfolios sorted by size and

book-to-market, 25 portfolios sorted by size and long-term reversal, 25 portfolios sorted

by size and short-term reversal, and 49 industry portfolios.18 Dataset 3 has 349 assets,

consisting of 100 portfolios sorted by size and book-to-market, 100 by size and operating

profitability, 100 by size and investment, and 49 industry portfolios. For all three datasets,

our sample runs from July 1963 to August 2019.

18The dataset of Korsaye et al. (2021) also includes twenty-five momentum portfolios that we exclude
because they are present in our Dataset 1.

21



4.2 Variables Potentially Spanning the SDF

To examine which economic variables may explain the admissible SDF’s variation, we collect

a comprehensive set of variables available at a monthly frequency. Our dataset includes

both macroeconomic and financial indicators and returns on trading strategies. In the

factor-zoo literature, the returns on these trading strategies are also known as factors or

anomalies. We briefly describe these variables below, with details regarding the data sources

and construction of these variables provided in Internet Appendix IA.8.

We consider returns on 457 trading strategies studied in Novy-Marx (2013), Kozak et al.

(2020), Chen and Zimmermann (2022), Jensen, Kelly, and Pedersen (2022), Hou, Mo, Xue,

and Zhang (2021), and Bryzgalova et al. (2023).

Furthermore, we consider 103 macroeconomic and financial indicators. We include those

analyzed in Bryzgalova et al. (2023), augment them with the first three principal compo-

nents (PCs) of 279 macro variables from Jurado, Ludvigson, and Ng (2015), and the first

eight PCs of 128 macro variables from the FRED-MD dataset of McCracken and Ng (2015).

In addition, we include consumption growth and inflation constructed from real per capita

consumption data on nondurables and services and the corresponding price index from

the Bureau of Economic Analysis. We also include the market-dislocation index (Pasquar-

iello, 2014), the disagreement index (Huang, Li, and Wang, 2021), the Chicago Board

Options Exchange volatility index (VIX), the U.S. economic-policy-uncertainty (EPU) in-

dex (Baker, Bloom, and Davis, 2016), the equity-market-volatility (EMV) tracker (Baker,

Bloom, Davis, and Kost, 2019), the credit-spread index (Gilchrist and Zakraǰsek, 2012),

the Chicago Fed National Financial Condition Index from FRED, the consumer-sentiment

index, the U.S. business-confidence index, the U.S. consumer-confidence index, the U.S.

composite-leading indicator, the coincident-economic-activity index, the NBER recession

index, the TED spread, the effective federal-funds rate, and the real federal-funds rate. For

persistent variables, we include their levels and first-order differences and, where appropri-

ate, the AR(1) or VAR(1) innovations.

5 Empirical Analysis

In this section, first, we analyze the estimated admissible SDF implied by the APT model of

asset returns and characterize its components, thereby establishing the relative importance

22



of systematic versus unsystematic risk. Then, we examine three commonly used candidate

factor models of asset returns: the market model, the model with consumption growth as

the sole factor, and the FF3 model. For each candidate model, we characterize the missing

systematic and unsystematic components of the corresponding SDFs. Next, we provide

results of time-series and cross-sectional out-of-sample analyses. Finally, we explain that

our conclusion regarding what is missing in the three analyzed candidate factor models

applies to virtually any other asset-pricing model with only systematic risk factors.

5.1 The SDF under the APT Model of Asset Returns

To analyze the SDF implied by the APT, we first estimate the APT model of asset returns

specified in equations (3) and (5). As mentioned earlier, we use a cross-validation procedure

to determine the number of latent systematic factors K and the no-arbitrage bound, δapt.

5.1.1 Number of Latent Systematic Risk Factors and the No-Arbitrage Bound

The top panel of Figure 1 illustrates how the HJ distance changes in the cross-validation

procedure as we vary K and δapt. We see that the combination of K = 2 latent factors

and δapt = 0.0529 achieves the smallest HJ distance of 0.41, consistent with the evidence on

low-dimensional latent factor models in Kozak et al. (2018) and Lettau and Pelger (2020).

The nonzero value of the optimal δapt indicates that unsystematic risk is priced in the stock

market, that is, a 6= 0N . Figure 2 illustrates the estimated elements of the vector a for the

202 basis assets. Our finding that unsystematic risk is priced challenges the conventional

view that expected asset returns compensate only for exposures to systematic risk factors.

The bottom panel of Figure 1 shows that if we were to naively choose K and δapt based

on an in-sample analysis, we would have selected much larger values for these parameters.

This is because the larger number of factors K fits the in-sample covariance matrix of returns

better, while the larger δapt fits the in-sample cross-sectional variation in expected excess

returns better. However, choosing K and δapt based on in-sample fit leads to overfitting and,

consequently, an inferior fit of asset returns out-of-sample. The top panel shows the result

of this overfitting—as we pick larger K or δapt, the cross-validation HJ distance increases.

To assess further the importance of nonzero compensation for unsystematic risk, one

may wonder whether increasing the number of systematic factors would reduce the optimal

δapt to zero. The top panel in Figure 1 shows that even if we were to assume that the APT
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Figure 1: Model selection using the HJ distance
This figure illustrates how the HJ distance changes with K and δapt. The top panel shows the
estimation results based on cross-validation with ten folds. The bottom panel shows the in-sample
results. The numbers reported in the two plots are (δapt,HJ distance).
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model had a much larger number of factors than the optimal K = 2, the compensation for

unsystematic risk would remain sizable. For example, if we set the number of systematic

factors to be K = 10 and then choose only δapt in a cross-validation exercise, the HJ distance

is minimized at δapt = 0.0361 rather than 0.

To understand the economic importance of accounting for compensation for unsystem-

atic risk, we explore how the HJ distance changes in a model with K = 2 latent systematic

factors if we set a = 0N . From the bottom panel of Figure 1, we see that the HJ distance
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Figure 2: Estimated compensation for unsystematic risk
This figure illustrates the estimated elements of the vector a (annualized and in percent) for the 202
basis assets, which we split into eight groups based on characteristics by which stocks are sorted
into portfolios.
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Figure 3: Pricing errors in the APT model with two latent factors with and
without compensation for unsystematic risk
We split the 202 basis assets into eight groups based on characteristics by which stocks are sorted
into portfolios. Red dots indicate the pricing errors for the 202 basis assets in a model with two
latent factors and no compensation for unsystematic risk, K = 2 and a = 0N . Blue dots indicate
the pricing errors in a model with two latent factors and nonzero compensation for unsystematic
risk, K = 2 and a 6= 0N .
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Figure 4: Time-series behavior of the SDF and its components
This figure has three panels. The top, middle, and bottom panels show the dynamics of the esti-
mated SDF M̂exp,t+1, its unsystematic component M̂a

exp,t+1, and its systematic component M̂β
exp,t+1,

respectively. Gray bars indicate the NBER recession periods.
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increases by a lot—about 81.81% = (0.60/0.33−1). In Figure 3, we report the pricing errors

across the 202 basis assets. We find that the largest increase in pricing errors from setting

a = 0N is for the portfolios sorted by size and variance (ME&VAR), size and momentum

(ME&MOM), and size and net issuance (ME&NetISS).

5.1.2 Time-Series and Business-Cycle Properties of SDF and its Components

Having estimated the APT model of asset returns, we study the time-series properties of

the implied SDF, M̂exp,t+1 specified in (7), and its components, M̂β
exp,t+1 and M̂a

exp,t+1,

specified in (8) and (9), respectively. Figure 4 shows that both M̂β
exp,t+1 and M̂a

exp,t+1,

exhibit sizable volatility during recessions and also during normal times. Furthermore, we

see that different components of the SDF dominate its variation in different periods. For

example, the increase in M̂β
exp,t+1 in October 1987 shows that systematic risk factors were

responsible for the dramatic increase in the level and volatility of the SDF. On the other

hand, in the early 2000s (following the dot-com bubble), the increase in the unsystematic

component M̂a
exp,t+1 generated the spike in the volatility of the SDF. Thus, both systematic

and unsystematic risk contribute to explaining asset valuations.
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Next, we explore the business-cycle properties of the estimated SDF and its compo-

nents. To this end, we run a regression analysis of the log SDF and its components on

macroeconomic and financial indicators; we do the log transformation because our SDF is

in exponential form. We find that log(M̂a
exp,t+1) is largely acyclical: it does not significantly

correlate with the NBER recession indicator.19 The macroeconomic and financial indica-

tors it correlates most with are intermediate constraints (He, Kelly, and Manela, 2017), the

sentiment indices (Baker and Wurgler, 2006; Huang, Jiang, Tu, and Zhou, 2015), shocks in

VIX, and shocks in credit spread (Gilchrist and Zakraǰsek, 2012); individually, each of these

variables explain less than 3.5% of the variation in log(M̂a
exp,t+1). Panel A of Table IA.1 in

Internet Appendix IA.9 provides these results.

In contrast to log(M̂a
exp,t+1), the systematic component log(M̂β

exp,t+1) significantly corre-

lates with the NBER recession indicator. In addition, the systematic SDF component cor-

relates with the Chicago Fed National Financial Condition index, intermediary constraints

(He et al., 2017), shocks in aggregate liquidity (Pástor and Stambaugh, 2003), shocks in

credit spread (Gilchrist and Zakraǰsek, 2012), shocks in dividend yield, shocks in financial

uncertainty (Jurado et al., 2015), shocks in VIX, and shocks in the TED spread. Among

these variables, shocks in intermediary constraints have the largest explanatory power for

log(M̂β
exp,t+1): R2 = 55%; see Panel B of Table IA.1 in Internet Appendix IA.9.

We conclude the time-series analysis of the SDF by analyzing the relative importance of

the two SDF components for the admissible SDF’s variance. Table 1 reports the standard

deviation of the SDF and its components for the APT model of asset returns. These

standard deviations correspond to annual Sharpe ratios associated with exposure to the

overall SDF and its unsystematic and systematic components, and are 0.89, 0.79, and

0.51, respectively.20 Thus, strikingly, a unit exposure to unsystematic risk is compensated

more prominently in financial markets than a unit exposure to systematic risk. Similarly,

we find that of the total variation of the SDF, the unsystematic component contributes

72.60%, while the systematic component contributes only 27.40%. Thus, any model based

on only systematic risk factors implies an SDF that is too smooth. The dominant role of

unsystematic risk in the admissible SDF’s variation that we document is consistent also

with the puzzling evidence in Daniel and Titman (1997), Herskovic, Moreira, and Muir

19Throughout the manuscript, we use the 5% statistical significance level.
20In population, the sum of the squares of the standard deviations of the components of the log SDF

must add up to the square of the standard deviation of the log SDF itself. But, in a finite sample, the
components of the log SDF are not perfectly orthogonal to one another. Therefore, the sum of the squares
of their standard deviations deviates slightly from the square of the standard deviation of the SDF.
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Table 1: Analysis of APT model
This table reports two sets of quantities for the APT model: (1) The Sharpe ratio of the SDF along
with its components, where the Sharpe ratios are approximated by the standard deviation of the
SDF and its components in log; and (2) the variance decomposition of the log SDF.

Std Dev or Sharpe ratio (p.a.) Variance decomp. (%)

log of log of

Model M̂exp,t+1 M̂a
exp,t+1 M̂β

exp,t+1 M̂a
exp,t+1 M̂β

exp,t+1

APT 0.89 0.79 0.51 72.60 27.40

(2019), Chaieb, Langlois, and Scaillet (2021), and Lopez-Lira and Roussanov (2022) that

a substantial portion of expected excess returns is left unexplained by factor risk premia.

Our work shows that expected excess returns are explained largely by compensation for

unsystematic risk.

5.1.3 The Unsystematic SDF Component

Given the dominance of unsystematic risk in explaining variation in the SDF, it is natural

to ask whether weak factors or shocks specific to individual basis assets, which in our

exercise are characteristic-sorted portfolios, play a major role in the unsystematic SDF

component. Unfortunately, answering this question is not straightforward because weak

factors cannot be estimated consistently (Lettau and Pelger, 2020). To circumvent this

problem, we assume that the returns on the trading strategies described in Section 4.2

represent an exhaustive set of potential weak factors in the cross-section of our basis assets.

Armed with this assumption, we split the fitted residuals efit
t+1 from the estimated APT

model specified in equations (3) and (5) into two parts: one representing weak factors and

the other characteristic-sorted portfolio-specific shocks (CSP-specific shocks). To identify

the CSP-specific shocks, we use the key property of these shocks that, by definition, they

have a diagonal covariance matrix.

In practice, we regress the fitted residuals efit
t+1 of the APT model on the returns of all

trading strategies (orthogonalized with respect to the two latent factors of the APT) that

substantially reduce the cross-sectional dependence in these residuals:

efit
t+1 = γ0 + γ′fweak

t+1 + ξt+1, (20)

where fweak
t+1 are observable proxies for weak factors represented by the returns on the above-

mentioned trading strategies after being orthogonalized with respect to the two latent factors
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of the APT. We find that out of 325 trading strategies available for the entire sample, 35

reduce the number of the significant off-diagonal terms in the covariance matrix of efit
t+1 by

68%, leaving only 21% of the off-diagonal elements in the 202×202 covariance matrix of the

fitted residuals ξfit
t+1 statistically significantly different from zero.21 We use this regression

to split the fitted residuals efit
t+1 in equation (20) into two parts: one explained by 35 trading

strategies, or weak factors eweak
t+1 , and the other representing CSP-specific shocks ecsp

t+1, where

the vectors eweak
t+1 and ecsp

t+1 are the estimated values of γ0 + γ′fweak
t+1 and ξt+1, respectively.

Next, we decompose Ma
exp,t+1 as

Ma
exp,t+1 = exp

(
−a′V −1

e eweak
t+1 − a′V −1

e ecsp
t+1 −

1

2
a′V −1

e a

)
and compute the standard deviations of −a′V −1

e eweak
t+1 and −a′V −1

e ecsp
t+1, that approximately

equal the Sharpe ratios of the investment strategies that include weak factors and CSP-

specific shocks, respectively. We obtain the values 0.55 and 0.56 per annum, respectively.

This result has the following implications. First, an investor earns sizable compensation for

exposure to both types of unsystematic risk. Second, CSP-specific risk and weak factors

contribute almost equally to the overall variation in the unsystematic SDF component.22

Having established the quantitative importance of the unsystematic SDF component,

we look for the trading strategies whose returns reflect compensation for exposures to un-

systematic risk. First, we run individual regressions of log(M̂a
exp,t+1) on the excess returns of

the 457 strategies described in Section 4.2. We find that a large number—335 out of 457—

correlate statistically significantly with the unsystematic SDF component. The returns on

the five trading strategies that have the highest explanatory power for log(M̂a
exp,t+1) and are

available for the entire sample are: one-year share issuance (Pontiff and Woodgate, 2008)

with R2 = 17.82%, one-year momentum (Jegadeesh and Titman, 1993) with R2 = 14.08%,

residual momentum (Blitz, Huij, and Martens, 2011) with R2 = 13.22, betting-against-beta

(Frazzini and Pedersen, 2014) with R2 = 13.19%, and net payout yield (Richardson, Sloan,

Soliman, and Tuna, 2005) with R2 = 13.03%.

We also check the explanatory power of returns of the idiosyncratic-volatility factors of

Ali et al. (2003) and Ang et al. (2006) for the unsystematic SDF component and find it

21Here, we are working with the sample covariance matrix of the fitted residuals. A sample estimator
of the covariance matrix is known to be noisy, and therefore we consider a matrix with 21% significantly
different from zero off-diagonal elements close to being diagonal.

22Weak factors contribute 0.552/(0.552 + 0.562) = 49.10%, while CSP-specific shocks contribute
0.562/(0.552 + 0.562) = 50.90%. Given that the unsystematic SDF component explains 72.60% of the
variation in the estimated SDF, we obtain that of the total variation of the SDF, weak factors contribute
49.10%× 72.60% = 35.65%, and CSP-specific shocks contribute 50.90%× 72.60% = 36.95%.
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Table 2: Strategies with high unsystematic risk premium RPa

This table reports 25 selected trading strategies whose returns reflect large premia for unsystematic
risk. The first column, using the classification scheme in Jensen et al. (2022), gives the name of
the cluster to which the strategy belongs. If a strategy is not in the list of Jensen et al. (2022), we
assign it to the cluster Unclassified. The second column gives the source. The third column shows
the name of the variable, as in Chen and Zimmermann (2022), Jensen et al. (2022), or Bryzgalova
et al. (2023). The last column reports the risk premium per annum in %. The clusters, and within
each cluster, the sources, are listed in alphabetical order.

Cluster name Source Variable name RPa (%)

Low risk Ang, Hodrick, Xing, and Zhang (2006) IdioVol3F 6.07
Bali, Cakici, and Whitelaw (2010) MaxRet 6.45
Bradshaw, Richardson, and Sloan (2006) XFIN 5.95
Bradshaw, Richardson, and Sloan (2006) NetEquityFinance 4.98
Frazzini and Pedersen (2014) BAB 3.34

Momentum Avramov, Chordia, Jostova, and Philipov (2007) Mom6mJunk 5.43
Jegadeesh and Titman (1993) Mom12m 8.27
Jegadeesh and Titman (1993) Mom6m 7.21
Moskowitz and Grinblatt (1999) indmom 4.07

Profit Growth Heston and Sadka (2008) Mom12mOffSeason 7.24
Novy-Marx (2013) valmom 4.87
Novy-Marx (2013) valmomprof 4.62

Profitability Chordia, Subrahmanyam, and Anshuman (2001) std turn 4.65

Quality Haugen and Baker (1996) VolMkt 4.32
Stambaugh and Yuan (2017) PERF 4.10

Value Boudoukh, Michaely, Richardson, and Roberts (2007) NetPayoutYield 4.24

Unclassified Campbell, Hilscher, and Szilagyi (2008) DISSTR 6.27
Cooper, Gulen, and Schill (2008) betaarb 4.82
Daniel, Hirshleifer, Sun (2019) BEH FIN 4.38
Dichev and Piotroski (2001) CredRatDG 4.33
Diether, Malloy, and Scherbina (2002) ForecastDispersion 4.85
Easley, Hvidkjaer, and O’Hara (2002) ProbInformedTrading 5.91
La Porta (1996) fgr5yrLag 5.36
Prakash and Sinha (2012) DelDRC 4.95
Ritter (1991) AgeIPO 4.56

to be low: 6.44% and 9.57%, respectively. This quantitative result is important because

if one relied on the insights of the idiosyncratic-volatility literature, one would expect an

idiosyncratic-volatility factor to span the unsystematic SDF component completely. Thus,

what is missing in asset-pricing factor models is not just the idiosyncratic-volatility factor.

Second, instead of looking at individual trading strategies, we ask whether returns on the

universe of available trading strategies can span the variation in log(M̂a
exp,t+1).23 To answer

this question, we run 325 regressions, as many as trading strategies with returns available

over the entire sample. In each regression, the dependent variable is log(M̂a
exp,t+1), whereas

the number of independent variables grows from 1 to 325. The first regression includes

23See Internet Appendix IA.4 for a formal result justifying the spanning exercise for the unsystematic
SDF component.
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the return on a trading strategy that explains most of the unsystematic SDF component.

Each subsequent regression includes an extra trading strategy whose return adds the most in

explaining the dependent variable. Next, we select a linear model with the smallest Bayesian

information criterion (BIC). We find that 39 trading strategies must be included to explain

66.45% of variation in the unsystematic SDF component. Any further increase in R2 leads

to overfitting because then BIC deteriorates.24 We find that these 39 trading strategies

explain 80.22% of the variation in the component of log(M̂a
exp,t+1) driven by the weak factors,

a′V −1
e eweak

t+1 , but only 28.28% of the variation in the component of log(M̂a
exp,t+1) driven by

the CSP-specific shocks, a′V −1
e ecsp

t+1. Because the CSP-specific shocks drive about half of

the variation in the unsystematic SDF component, a large proportion of its variation is

left unexplained by these trading strategies, implying that log(M̂a
exp,t+1) cannot be spanned

even by a large number of trading strategies.

Finally, we compute the risk premia associated with compensation for the exposures of

the trading strategies to the unsystematic SDF component as the negative covariance of

the return on the strategy and M̂a
exp,t+1:25

RPastrategy = − cov(Rstrategy,t+1, M̂
a
exp,t+1)× E(Mβ,can

exp,t+1M̂
β,mis
exp,t+1)/E(M̂exp,t+1).

Table 2 lists 25 selected strategies with high compensation for unsystematic risk. In the

literature, some of these 25 strategies have been interpreted as being behavioral—for exam-

ple, the performance factor (Stambaugh and Yuan, 2017), the long-horizon financial factor

(Daniel et al., 2020a), the factor reflecting expectations about future earnings in growth

(La Porta, 1996), and the momentum factor (Jegadeesh and Titman, 1993)—while others

as reflecting market frictions—for example, the betting-against-beta factor (Frazzini and

Pedersen, 2014) and distress risk (Campbell et al., 2008).

Summarizing our analysis of the unsystematic SDF component, we emphasize four novel

findings about unsystematic risk, which is priced in the stock market. First, many trading

24Figure IA.1 in Internet Appendix IA.10 shows how the R2 and BIC change as we increase the number
of trading strategies in the regression for the unsystematic SDF component.

25We use the definition of risk premia and the result in Brillinger (2001, thm. 2.3.2) to obtain the risk
premium decomposition on an asset i as compensation for candidate systematic risk, missing systematic risk
(in a candidate factor model), and unsystematic risk, as follows

E(Rit+1 −Rf ) = − cov(Mexp,t+1, (Rit+1 −Rf ))

= −E(Ma
exp,t+1M

β,mis
exp,t+1)× cov(Mβ,can

exp,t+1, Rit+1 −Rf )/E(Mexp,t+1)

− E(Ma
exp,t+1M

β,can
exp,t+1)× cov(Mβ,mis

exp,t+1, Rit+1 −Rf )/E(Mexp,t+1)

− E(Mβ,can
exp,t+1M

β,mis
exp,t+1)× cov(Ma

exp,t+1, Rit+1 −Rf )/E(M̂exp,t+1).
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strategies featured in the existing literature correlate with the unsystematic SDF compo-

nent. Second, the strategies correlated with the unsystematic SDF component that earn

high-risk premia are related to market frictions and behavioral biases. Third, weak factors

and purely CSP-specific shocks contribute almost equally to the unsystematic SDF compo-

nent. And fourth, the strategies with the highest explanatory power for the unsystematic

SDF component are primarily related to weak factors as opposed to CSP-specific shocks.

Given these insights, it is clear why the prior literature that only investigated pricing of

systematic risk could not explain the cross-section of expected returns.

5.1.4 The Systematic SDF Component

We now turn our attention to the systematic SDF component. We find that the strategy

exhibiting the highest explanatory power for log(M̂β
exp,t+1) is the return on the market

portfolio exhibits, with an R2 = 95.22%. It is remarkable that, despite all the criticism of

the CAPM, when we consider only the systematic component of the SDF, the market return

explains a large proportion of its time-series variation. We discover that four other trading

strategies—sales-to-market (Barbee Jr, Mukherji, and Raines, 1996), dollar trading volume

(Brennan, Chordia, and Subrahmanyam, 1998), bid-ask spread (Amihud and Mendelson,

1986), and days with zero trades (Liu, 2006)—explain an additional 4% of the variation in

log(M̂β
exp,t+1), bringing the overall R2 to 99.05%; see Table IA.2 in Internet Appendix IA.9

for further details. Any further increase in R2 requires a large number of trading strategies

to be used as factors.

We run a spanning exercise for the systematic SDF component similar to that when

analyzing the explanatory power of returns on trading strategies for the unsystematic SDF

component.26 Figure IA.2 in Internet Appendix IA.10 shows that we need 54 strategies to

explain 99.73% of the systematic SDF. These results are in line with the findings of Feng

et al. (2020), Kozak et al. (2020), Lewellen (2022), and Bryzgalova et al. (2023) about the

nonsparsity of the SDF in characteristics.

Next, we explore how sixteen variables often used as systematic tradable factors in

popular asset-pricing models correlate with our SDF components. Table 3 reports these

correlations. Four factors stand out: the market factor is almost perfectly negatively cor-

related with the systematic SDF component, the adjusted profitability factor (RMW*) of

26See Internet Appendix IA.4 for a formal result justifying the spanning exercise for the systematic SDF
component.
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Table 3: Correlations of tradable factors with SDF components
This table reports correlations of 16 selected tradable factors with the unsystematic and systematic
SDF components.

Variable name Correlation with Correlation with Source

log(M̂a
exp,t+1) log(M̂β

exp,t+1)

Market 0.15 −0.98 Sharpe (1964), Lintner (1965)
Size 0.00 −0.36 Fama and French (1992)
Value −0.23 0.14 Fama and French (1992)
Momentum −0.36 0.18 Jegadeesh and Titman (1993)
Illiquidity 0.00 −0.27 Amihud (2002)
Operating profitability (RMW) −0.25 0.17 Fama and French (2015)
Investment (CMA) −0.32 0.31 Fama and French (2015)
Management (MGMT) −0.37 0.48 Stambaugh and Yuan (2016)
Performance (PERF) −0.37 0.27 Stambaugh and Yuan (2016)
Short-horizon underreaction (PEAD) −0.23 0.14 Daniel, Hirshleifer, and Sun (2019)
Financing (FIN) −0.41 0.42 Daniel, Hirshleifer, and Sun (2019)
Market* −0.10 −0.56 Daniel, Mota, Rottke, and Santos (2020)
Size* −0.13 −0.12 Daniel, Mota, Rottke, and Santos (2020)
Value* −0.14 0.09 Daniel, Mota, Rottke, and Santos (2020)
RMW* −0.13 0.02 Daniel, Mota, Rottke, and Santos (2020)
CMA* −0.10 0.21 Daniel, Mota, Rottke, and Santos (2020)

Daniel, Mota, Rottke, and Santos (2020b) has nearly zero correlation with the system-

atic SDF component, while the size factor (Fama and French, 1992) and illiquidity factor

(Amihud, 2002) have zero correlation with the unsystematic SDF component. The other

tradable factors correlate sizably with both SDF components. These findings are consistent

with the results of Holcblat, Lioui, and Weber (2022) that the market and size factors seem

to represent risk in a frictionless economy, whereas most of the other tradable factors reflect

frictions.

5.2 Candidate Factor Models

To illustrate what is missing in popular asset-pricing factor models, we consider three tradi-

tional candidate models—those implied by the CAPM of Sharpe (1964), the Consumption-

CAPM (C-CAPM) of Breeden (1979), and the three-factor model of Fama and French

(1993). For the SDFs Mβ,can
exp,t+1 implied by each of these candidate factor models, we esti-

mate the correction terms M̂a
exp,t+1 and M̂β,mis

exp,t+1 that are required to obtain the admissible

SDFs. We limit our analysis to only three candidate factor models because we find that

the primary source of misspecification is omitted compensation for unsystematic risk, and,

therefore, other candidate factor models with only systematic risk factors would be subject

to the same misspecification.
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Table 4: Analysis of models before and after correction for misspecification
The first column of the table lists the candidate factor models considered: CAPM, C-CAPM, and
FF3. Then, the table reports three sets of quantities: (1) The HJ distances of alternative models,
relative to the HJ distance of the APT model, (HJmodel/HJAPT − 1) × 100%, before and after
the model is corrected for misspecification; (2) the Sharpe ratio of the corrected SDF for each of
the models along with its components, where the Sharpe ratios are approximated by the standard
deviation of the SDF and its components in log; and (3) the variance decomposition of the log SDF.

Relative HJ (%) Std. Dev. or Sharpe ratio (p.a.) Variance decomposition (%)

Before
correction

After
correction

log of log of

Model M̂exp,t+1 M̂a
exp,t+1 M̂β,can

exp,t+1 M̂β,mis
exp,t+1 M̂a

exp,t+1 M̂β,can
exp,t+1 M̂β,mis

exp,t+1

CAPM 82.96 4.09 0.89 0.80 0.42 0.27 74.14 18.48 7.38
C-CAPM 83.12 0.90 0.92 0.79 0.36 0.42 66.05 15.92 18.03
FF3 84.11 0.16 0.99 0.80 0.67 0.27 55.49 38.30 6.21

5.2.1 The CAPM

We consider a candidate model with the market return as its sole factor (Kcan = 1) and the

vector acan = 0N , which we refer to as the CAPM. When the candidate model is the CAPM,

our estimation procedure selects Kmis = 1 and δapt = 0.0529 (see Figure IA.3 in Internet

Appendix IA.10). The obtained number of missing factors to correct the market model is

consistent with our earlier finding that two latent factors summarize the common variation

in asset returns, with one factor being a proxy for the market factor. The nonzero value

of δapt indicates that the CAPM is misspecified not only because of missing systematic

risk factors but also because it omits compensation for unsystematic risk. The value of

δapt = 0.0529, which is the same as for the APT model, implies an annual Sharpe ratio

associated with the exposure to the unsystematic SDF component equal to 0.80.

The importance of allowing nonzero compensation for unsystematic risk and accounting

for an additional source of systematic risk when correcting the CAPM is evident from

Table 4. This table’s second and third columns show that after we correct the CAPM for

misspecification, the relative HJ distance drops by 78.87 percentage points (= 82.96% −

4.09%). The last three columns of this table show that the lion’s share of the reduction in

the HJ distance is attributable to nonzero compensation for unsystematic risk. Specifically,

of the variation in log(M̂exp,t+1), 74.14% is due to the unsystematic component, while only

18.48% is due to market risk and 7.38% to missing systematic risk in the CAPM.27

27Figure IA.4 in Internet Appendix IA.10 shows the estimated time-series of the admissible SDF and its
components obtained after correcting the candidate CAPM model. Figure IA.5 in Internet Appendix IA.10
shows the pricing errors before and after correcting the CAPM. We find that the correction brings the largest
improvement in pricing for the portfolios consisting of small-cap stocks with low beta, small-cap stocks with
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Table 5: The missing systematic SDF component in the candidate factor models
and observable variables
This table reports the explanatory power of selected variables for the missing systematic SDF com-
ponent, log(Mβ,mis

exp,t+1), for the three candidate factor models: CAPM, C-CAPM, and FF3.

Variable R2(%) p-value

Panel A: CAPM
NBER recession indicator 0.18 0.27
Illiquidity (Amihud, 2002) 88.29 0.00
Shocks in the credit spread (Gilchrist and Zakraǰsek, 2012) 4.41 0.00
Size factor (Fama and French, 2015) 87.65 0.00

Panel B: C-CAPM
NBER recession indicator 0.46 0.08
Market factor 92.36 0.00
Shocks in intermediary constraints (He et al., 2017) 55.08 0.00
Shocks in VIX 55.24 0.00

Panel C: FF3
NBER recession indicator 0.34 0.13
Operating profitability (Fama and French, 2006) 31.20 0.00
Return on equity (Haugen and Baker, 1996) 30.24 0.00
Total accruals (Richardson et al., 2005) 28.22 0.00

Next, we analyze which variables can explain the variation in the missing systematic

SDF component. Panel A of Table 5 shows that the variables known in the literature as

the size factor (Fama and French, 1993) and illiquidity factor (Amihud, 2002) explain most

of the variation in log(M̂β,mis
exp,t+1): the R2 of a linear regression of log(M̂β,mis

exp,t+1) on the size

factor or the illiquidity factor is 88%. Such a prominent role of the size factor in M̂β,mis
exp,t+1

explains the success of the models developed in Fama and French (1993, 2015) relative

to the CAPM of Sharpe (1964).28 Among business-cycle indicators, shocks in the credit

spread (Gilchrist and Zakraǰsek, 2012) have the largest, yet very small, explanatory power

for the missing systematic SDF component, while the NBER recession indicator does not

significantly correlate with it (because the CAPM already includes the market factor).

The properties of the unsystematic SDF component M̂a
exp,t+1 are similar to those ob-

tained when analyzing the SDF implied by the APT model of asset returns, as evident from

low net issuances, big-cap stocks with high beta, big-cap stocks with high net issuances, and portfolios
formed by sorting stocks by size and momentum (ME&MOM) and size and variance (ME&VAR).

28Notice that the illiquidity factor of Amihud (2002) and size factor of Fama and French (1993) are highly
correlated, at about 92.63%. According to Jensen et al. (2022), these two variables belong to the same
cluster of trading strategies labeled “Risk.”
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Table 6: Correlation matrix of the corrected SDFs
This table reports the correlation matrix of admissible SDFs and their unsystematic components
either obtained under the APT or after correcting different candidate models: CAPM, C-CAPM,
and FF3.

log(M̂exp,t+1) log(M̂a
exp,t+1)

Corrected Corrected

APT CAPM C-CAPM FF3 APT CAPM C-CAPM FF3

APT 1.00 0.99 0.97 0.98 1.00 0.97 1.00 0.94

C
or

re
ct

ed CAPM 0.99 1.00 0.96 0.97 0.97 1.00 0.97 0.93

C-CAPM 0.97 0.96 1.00 0.94 1.00 0.97 1.00 0.93

FF3 0.98 0.97 0.94 1.00 0.94 0.93 0.93 1.00

the right panel of Table 6, which reports a correlation of 0.97 between the unsystematic SDF

components of the SDFs implied by the APT and the corrected candidate factor models.

We conclude our analysis of the CAPM by highlighting that our approach successfully

corrects this model’s SDF to obtain an admissible SDF. We see from the left panel of Table 6

that the corrected SDF is almost perfectly correlated with the admissible SDF implied by

the APT model.

5.2.2 The C-CAPM

We now consider a candidate model with the return on a consumption-mimicking portfolio

as its sole factor and the vector acan = 0N , which we refer to as the C-CAPM. We follow

the standard approach of Breeden, Gibbons, and Litzenberger (1989) for constructing the

consumption-mimicking portfolio.29

If the candidate factor model of asset returns is the C-CAPM, then the estimation

procedure selects Kmis = 2 latent factors and δapt = 0.0529 (see Figure IA.6 in Internet

Appendix IA.10). The consumption-mimicking portfolio does not correlate highly with

either of the latent factors of the APT model of asset returns (the correlations are 0.30

and −0.02), which explains why we still require two additional latent factors to capture the

common variation in asset returns. The value of δapt = 0.0529, which is the same as for the

29As outlined in Giglio and Xiu (2021), construction of factor-mimicking portfolios can be sensitive to
the choice of basis assets. They propose a three-stage procedure, insensitive to the choice of basis assets.
However, their procedure does not allow for compensation for unsystematic risk, which we document plays
a major role in the risk-return tradeoff.
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Figure 5: Pricing errors in the candidate and corrected C-CAPM
This plot displays the pricing errors in the candidate and corrected C-CAPM models. The red dots
indicate the pricing errors for the 202 basis assets using the candidate C-CAPM model. The blue
dots indicate the pricing errors using the corrected C-CAPM model.
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APT and CAPM models, implies an annual Sharpe ratio for exposure to the unsystematic

SDF component equal to 0.80.

The second and third columns of Table 4 show that augmenting the consumption-

mimicking-portfolio factor with two latent factors and allowing for compensation for un-

systematic risk lead to a large drop in the relative HJ distance by 82.22 percentage points

(= 83.12% − 0.90%). The last three columns of the table show that, just like for the cor-

rected CAPM, most of this drop is accounted for by the SDF’s unsystematic component:

missing systematic risk explains a much smaller proportion of the variation in the admis-

sible SDF, compared to its unsystematic component: 18.03% versus 66.05%.30 However,

compared to the CAPM, the missing systematic risk in the C-CAPM is larger.

When we analyze the pricing errors, we observe from Figure 5 that the C-CAPM is

missing a level factor: the pricing errors are centered around 6% in the candidate C-CAPM,

whereas they are centered around zero in the corrected model. Next, we explore which

observable variable explains most of the variation in log(M̂β,mis
exp,t+1) and find, not surprisingly,

30Figure IA.7 in Internet Appendix IA.10 shows the estimated time-series of the admissible SDF and its
components obtained after correcting the candidate C-CAPM.
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it is the market factor, with R2 = 92.36%. Panel B of Table 5 shows that among financial

and macroeconomic indicators, shocks to intermediary constraints (He et al., 2017) and

VIX innovations explain most of the variation in the missing systematic SDF component,

with R2 = 55.08% and R2 = 55.24%, respectively. The missing systematic SDF component

has only a modest correlation with the NBER recession indicator, which is unsurprising,

given that the candidate factor model already includes consumption growth.

The left-hand-side panel of Table 6 shows that our approach for correcting misspecifica-

tion in the C-CAPM model leads to an admissible SDF highly correlated with that implied

by the APT and the corrected-CAPM models. The right-hand-side panel shows that the

unsystematic SDF components obtained when correcting the C-CAPM for misspecification

and when estimating the APT model of asset returns are perfectly correlated.

5.2.3 The Three-Factor Model of Fama and French (1993)

We consider a candidate model with the three factors of Fama and French (1993), market,

size, and value, and the vector acan = 0N , and we refer to this model as FF3. When

FF3 is the candidate model for asset returns, our estimation method selects Kmis = 1

systematic missing latent factor and an optimal δapt = 0.0529 (see Figure IA.8 in Internet

Appendix IA.10). This value of δapt, which is the same as for the previously discussed

models, implies an annual Sharpe ratio associated with the exposure to the unsystematic

SDF component equal to 0.80.

The third row of Table 4 shows that augmenting the FF3 model with one latent

factor and nonzero compensation for unsystematic risk leads to a substantial improve-

ment in pricing performance: the relative HJ distance drops by 83.95 percentage points

(= 84.11% − 0.16%). The main improvement is attributable to the inclusion of nonzero

compensation for unsystematic risk, as suggested by the variance decomposition of the (log

of the) corrected SDF in the last three columns of Table 4. Thus, similar to Stambaugh

and Yuan (2017), Clarke (2022), and Bryzgalova et al. (2023), among others, we docu-

ment sizable misspecification in the FF3 model. In contrast to these papers, however, we

attribute the misspecification mainly to omitted compensation for unsystematic risk et+1,

i.e., assuming a = 0N , rather than missing systematic risk.

We analyze which observable variables can explain the variation in the missing sys-

tematic SDF component. Panel C of Table 5 shows that the operating profitability factor
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(Fama and French, 2006), return on equity (Haugen and Baker, 1996), and total accruals

(Richardson et al., 2005) explain most of the variation in log(M̂β,mis
exp,t+1): the R2 of a uni-

variate linear regression of log(M̂β,mis
exp,t+1) on one of these variables is about 30%. We find

no relation of log(M̂β,mis
exp,t+1) with the NBER recession indicator.31

The left-hand-side panel of Table 6 shows that our approach for correcting misspecifi-

cation in the original FF3 model leads to an admissible SDF highly correlated with that

implied by the APT model and also those obtained after correcting the CAPM and C-

CAPM candidate factor models. The right-hand-side panel of the table confirms that the

unsystematic SDF components obtained when correcting the FF3 for misspecification and

when estimating the APT model of asset returns are almost perfectly correlated.

5.3 Out-of-Sample Analysis

To illustrate the robustness of our conclusions, we undertake two out-of-sample exercises in

which we compare the performance of the SDF implied by the APT model of asset returns

to models based on PCs and the original and fully corrected candidate factor models. We

include models based on PCs in this analysis because they are agnostic about systematic

risk factors, and therefore, nest linear candidate factor models that feature different proxies

for systematic risk factors.

The first exercise is a time-series out-of-sample analysis. First, we split the sample into

two equal parts: one part includes all the odd-numbered observations, and the other all the

even-numbered observations. Next, we estimate each model of asset returns on one part of

the sample and use the corresponding parameter estimates to form the SDF on the other

part of the sample. We evaluate the performance of the SDF on the part of the sample

not used in the estimation. Then, we swap the subsamples that we use for estimation and

evaluation. Finally, we average the results from these two out-of-sample evaluations and

report them in the second column of Table 7.

The second exercise we undertake is to run a cross-sectional out-of-sample analysis

by evaluating how the set of models described above and estimated using the basis as-

sets (Dataset 1) price two different cross-sections of portfolio returns (Datasets 2 and 3).

31Figure IA.9 in Internet Appendix IA.10 displays the time-series behavior of the admissible SDF obtained
from correcting the original FF3 model. Figure IA.10 in Internet Appendix IA.10 displays the pricing errors
before and after correcting the FF3 model. We find that the correction brings the largest improvement in
pricing for the portfolios formed by sorting stocks by size and momentum (ME&MOM) and size and variance
(ME&VAR).
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Table 7: Time-Series and Cross-Sectional Out-Of-Sample Pricing Performance
This table reports the HJ distances of alternative models, relative to the HJ distance of the APT
model, (HJmodel/HJAPT − 1) × 100%. For the time-series out-of-sample analysis, we estimate the
models on half of the available observations (odd or even) and then evaluate them on the other
half. Then we swap the estimation and evaluation subsamples of the data and repeat our exercise.
Finally, we compute the average performance, which is reported in the second column. For the cross-
sectional out-of-sample analysis, we estimate all models on Dataset 1 consisting of 202 basis assets
described in Section 4.1. The performance of these models is then evaluated using two datasets
not used in the estimation (“Dataset 2” and “Dataset 3”). Any positive number indicates that the
corresponding model performs worse than our benchmark APT model of asset returns.

Relative HJ distance (%)

Model Time Series Cross section

Odd/Even Dataset 2 Dataset 3

Panel A: PC-based models
PC1 11.32 43.23 39.82
PC2 14.47 43.49 40.05
PC3 16.32 49.96 45.33
PC4 62.21 74.11 65.69
PC5 92.06 73.91 65.57

Panel B: Candidate models
CAPM 10.68 42.89 39.51
C-CAPM 10.72 43.40 39.06
FF3 13.52 45.36 42.21

Panel C: Candidate models after correction
CAPM 0.31 2.11 2.15
C-CAPM 1.30 1.53 0.97
FF3 1.71 1.25 1.37

Datasets 2 and 3 include portfolios formed by sorting stocks on the same or similar char-

acteristics as those used to form the set of basis assets, but these sorts have a different

level of granularity or the sorts are undertaken in a different order. Thus, the test assets in

Datasets 2 and 3 allow us to evaluate if the estimated SDF successfully captures the risks

associated with the characteristics on which the basis portfolios are formed.32 We report

the results of pricing the assets from Datasets 2 and 3 in the third and fourth columns of

Table 7, respectively.

Table 7 shows how much larger the HJ distance is for various models of asset returns

relative to that for the APT model. We see that the HJ distance implied by the APT

32Note that the SDF we estimate is a projection of the marginal utility on a set of basis assets rather than
the marginal utility per se. Thus, by construction, the estimated SDF would not price test assets whose
returns are orthogonal to those of the basis assets (Cochrane, 2005), and hence, we use test assets that are
not perfectly orthogonal to the basis assets in Dataset 1.
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model is the smallest in both time-series and cross-sectional out-of-sample exercises. Only

the candidate models fully corrected for missing sources of systematic risk and omitted com-

pensation for unsystematic risk exhibit pricing behavior at par with that of the APT model

of asset returns. This result showcases that our methodology is successful in correcting

alternative candidate factor models.

There is another interesting observation from Table 7. We see that including extra prin-

cipal components in a PC-based model leads to a deterioration in the fit out of sample. This

suggests that candidate factor models with alternative observable factors that necessarily

have to be correlated with higher-order PCs do not perform at par with the APT model.

If anything, these models are subject to in-sample overfitting. Also, and perhaps more im-

portantly, the out-of-sample performance of the PC-based models suggests that one cannot

substitute for the unsystematic SDF component with higher-order PCs.

5.4 Discussion: Compensation for Unsystematic Risk

So far, we have shown the importance of including compensation for unsystematic risk in

three popular asset-pricing factor models. Of course, we could repeat our empirical analysis

for other candidate factor models. However, our main conclusion will not change—the

unsystematic component in the SDF accounts for the lion’s share of pricing of the cross-

section of asset returns. It remains unspanned by virtually all known proxies for risk factors

proposed in the literature so far. This insight can be confirmed by looking at principal-

component-based models, which are agnostic about the choice of risk factors. Our main

conclusion is also consistent with the empirical finding in Bryzgalova et al. (2023), who

undertake a large-scale search for a factor model that prices a cross-section of asset returns

but find none.

We observe that the standard deviations of log(M̂a
exp,t+1), 0.80 per annum, which also

represents the Sharpe ratio of the strategy exposed to unsystematic risk, is stable across the

APT (Table 1) and the three corrected candidate models (Table 4).33 Given a candidate

asset-pricing model, we have also shown that adding extra systematic risk factors to this

33Looking at the variance decomposition of the SDF, the quantitative importance of the unsystematic
SDF component may appear to be different across admissible SDFs implied by alternative candidate models
of asset returns corrected for misspecification. However, this is misleading because if a candidate factor
model includes noisy proxies of the true systematic factors in a cross-section of asset returns, then the
admissible SDF inherits the noise that inflates the SDF’s variance and therefore biases down the proportional
contribution of the unsystematic SDF component to the overall variation in the SDF, as we can see from
the third-last column of Table 4.
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model, without including compensation for unsystematic risk, cannot proxy for the SDF’s

unsystematic component. This is because the unsystematic component of the SDF behaves

like a weak factor in the cross-section of asset returns.

6 Microfoundations for Priced Unsystematic Risk

In the previous section, we have presented strong empirical evidence that factor models need

to include compensation for unsystematic risk and that it is the unsystematic component

of the SDF that accounts for most of its variation. At this point, one may wonder in what

kind of economic environment will unsystematic risk be compensated. Below we present

an example of an equilibrium model that provides microfoundations for the notion that

unsystematic risk is priced. Our example relies on the well-known static model of Merton

(1987), which has a finite number of assets N . We show that, if N is asymptotically large,

then the equilibrium asset returns and SDF in this model have the same functional forms

as those we have in our APT model.

In Merton (1987), investors are aware of only a subset of the available securities in

which they invest. This type of “incomplete information” implies that not only systematic

risk factor but also shocks specific to each security are priced. The modeling framework of

Merton (1987) can be viewed as a reduced-form representation of different microfoundations,

such as market segmentation, institutional restrictions, transaction costs, illiquidity, or

imperfect divisibility of securities, that lead investors to invest in only a subset of available

securities. While the incomplete information of Merton (1987) may not be the only reason

why the unsystematic SDF component plays a dominant role in the pricing assets, it is

an appealing argument given the ample empirical evidence documenting that both retail

(Polkovnichenko, 2005; Campbell, 2006; Goetzmann and Kumar, 2008) and institutional

investors (Koijen and Yogo, 2019, table 2) invest in only a small number of available stocks.

In Merton (1987), and as shown in Internet Appendix IA.4, equilibrium asset returns

satisfy

Ri −Rf = ai − βiam + βi(E(Rm)−Rf ) +
bi
b

(Rm − E(Rm)) + ei,

where Rm representing the market return is the only systematic risk factor, βi denotes the

beta of asset i with respect to the market return, ei = σiεi are asset-specific shocks with

the diagonal covariance matrix containing the elements σ2
i on its diagonal, bi and σi are

functions of the parameters of the firm’s i production technology, b =
∑N

i=1 xibi with xi
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being the fraction of the market portfolio invested in asset i, ai = (1 − qi)(E(Ri) − Rf −

bi(E(RN+1−Rf )) with qi denoting the fraction of investors who know about the security i,

RN+1 being the return on the (N + 1)th security which is in zero net supply and which

combines the risk-free security and a forward contract with cash settlements on the only

systematic risk factor Rm, and am =
∑N

i=1 xiai.

We now derive the SDF in this economy when N →∞. We assume that xi, the fraction

of the market portfolio invested in asset i, is infinitesimally small.

Proposition 6. When the number of assets N →∞, equilibrium asset returns are

Ri −Rf = ai + βi(E(Rm)−Rf ) + βi(Rm − E(Rm)) + ei, (21)

= ai + βi(Rm −Rf ) + ei, (22)

with the market return asymptotically orthogonal to asset-specific shocks ei, and the equilib-

rium SDF is

M =
−a′V −1

e

Rf
e︸ ︷︷ ︸

Ma

+
1

Rf
−

E(Rm)−Rf
Rf × var(Rm)

(Rm − E(Rm))︸ ︷︷ ︸
Mβ

. (23)

Note that the model of asset returns (22) coincides with the APT model of asset returns

in equation (3) with K = 1 systematic factor, f = Rm. Similarly, the SDF in (23) coincides

with the SDF in (6), given that the price of market risk is λ = E(Rm) − Rf . Thus, in

the model of Merton (1987) with an infinite number of assets, the SDF consists of two

components: one representing unsystematic risk, Ma, and the other systematic risk, Mβ,

exactly as under the APT.

Note that ai in (21) represents the compensation for unsystematic risk, because

ai = − cov
(
Ri −Rf ,−

a′V −1
e

Rf
ei
))
×Rf ,

which coincides with the elements of the vector a in the APT. Naturally, the other part of

the risk premium in (21), βi(E(Rm)−Rf ), is compensation for exposure to systematic risk,

represented by market risk because of the assumption of a single systematic factor:

βi(E(Rm)−Rf ) = − cov
(
Ri −Rf ,−

E(Rm)−Rf
Rf × var(Rm)

(Rm − E(Rm))
)
×Rf .

If all investors are fully informed about all N assets, that is, qi = 1, then ai = 0, and

the results in (21) and (23) simplify to the expressions for security returns and the SDF
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under the CAPM, respectively. On the other hand, the no-arbitrage APT restriction in

expression (5) is equivalent to stating that in the Merton (1987) model when N →∞ there

are only a small number of assets that do not belong to the common information set of

investors, that is, qi < 1 for some of the assets but not all, or that there are only a small

number of investors who are unaware of each asset, that is, for each i, qi is approximately 1.

The above discussion shows that there are equilibrium models that support the notion

that unsystematic risk is priced. Moreover, Proposition 6 shows that this result is not

limited to an economy with a finite number of assets.

7 Conclusion

A fundamental challenge in finance is to price the cross-section of assets. The main difficulty

when pricing assets is to determine the relevant sources of risk and quantify how to adjust

assets’ returns for these risks. The literature has proposed many proxies for systematic risk

factors and developed factor models based on these proxies to explain the cross-sectional

risk-return tradeoff. However, despite the proliferation of systematic risk factors, referred

to as the factor zoo (Cochrane, 2011), there is still a sizable pricing error called alpha.

This conundrum leads to the question posed in the title of this paper: “What is missing in

asset-pricing factor models?”

We answer this question by challenging the conventional wisdom that only systematic

sources of risk receive compensation in financial markets by showing that also unsystematic

risk is compensated. That is, the pricing error alpha implied by factor models includes

compensation not only for missing systematic risk factors but also for unsystematic risk.

Theoretically, we demonstrate this key insight through the lens of the SDF under the

assumptions of the APT and support it by demonstrating that an equilibrium model such as

Merton (1987) is consistent with our insight. Empirically, we show that the component of the

admissible SDF reflecting unsystematic risk, which is a linear combination of unsystematic

shocks, accounts for more than 70% of the variation in the admissible SDF. Furthermore,

the Sharpe ratio associated with the investment strategy exposed to only unsystematic risk

is 0.8 per annum. Thus, what is missing in asset-pricing factor models is compensation for

this unsystematic risk. This insight is crucial both for empiricists wanting to resolve the

factor zoo and theorists wishing to develop microfounded asset-pricing models.
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Internet Appendix

In Section IA.1, we define the notation we will use in the Internet Appendix. Sec-

tion IA.2 lists the assumptions used to prove the lemmas in Section IA.3 and propositions

in Section IA.4. Section IA.5 presents the results for weak factors. Section IA.6 gives the

details of how we estimate the APT model of asset returns. Section IA.7 discusses the

case where the candidate factors are not assumed to be orthogonal to the missing sources

of systematic risk. Section IA.8 provides the details of the data we use in our analysis.

Section IA.9 collects additional tables and Section IA.10 additional figures that are related

to the results reported in the main text of the manuscript.

IA.1 Notation

We adopt the following notation in the manuscript and appendix. E(·) denotes the expec-

tation operator. Capital letters denote matrices, while lowercase letters denote scalars or

vectors. The notation 0N and 1N indicates an N × 1 vector of zeros and ones, respectively.

The notation IK and OK denotes the K ×K identity matrix and matrix of zeros, respec-

tively. For an arbitrary matrix A, the expression A > 0 means that A is a positive-definite

matrix, ‖A‖ denotes the Frobenius norm ‖A‖ = (tr(A′A))
1
2 , where tr(·) is the trace oper-

ator, and |A| is the determinant when A is a square matrix. For deterministic sequences

{aN} and {bN}, the notation aN = O(bN ) means that |aN |/bN < δ, where δ > 0 is a finite

constant, and aN = o(bN ) means that |aN |/bN → 0, as N →∞. The notation aN = O(bN )

and aN = o(bN ) is adopted for scalars and finite-dimensional vectors and matrices (whose

number of rows and columns are not a function of N). Finally, the notation aN = Op(bN )

and aN = op(bN ) means that the previous statements hold in probability. The notation

vec(A) for an arbitrary matrix A stands for an operator that transforms the matrix A into

a column vector by vertically stacking the columns of the matrix. The notation vech(A)

for an arbitrary symmetric matrix A indicates an operator that transforms the symmetric

matrix into a column vector that collects the elements in the lower triangular part of A.

We use ⊗ to denote the Kronecker product.

IA.2 Assumptions

This section provides a set of assumptions we use in the lemmas and propositions of Sec-

tions IA.3 and IA.4, respectively.
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Assumption IA.2.1 (Systematic candidate factors). We assume that a candidate model

contains Kcan systematic factors f can
t , that is, βcan ′Ve

−1βcan/N → D , where D > 0 is a

Kcan ×Kcan matrix.

Assumption IA.2.2 (Asymptotic orthogonality of βcan and a). We assume that βcan ′Ve
−1a =

o(N
1
2 ).

Assumption IA.2.3 (Systematic missing factors). We assume that a candidate factor

model is omiting Kmis systematic factors fmis
t , that is, βmis ′Ve

−1βmis/N → E, where E > 0

is some Kmis ×Kmis matrix.

Assumption IA.2.4 (Asymptotic orthogonality of βmis and a). We assume that βmis ′Ve
−1a =

o(N
1
2 ).

Remark. Assumptions IA.2.2 and IA.2.4 represent asymptotic orthogonality conditions

because they imply that as N →∞, βcan ′Ve
−1a/N → 0 and βmis ′Ve

−1a/N → 0.34

IA.3 Lemmas

We now provide a set of lemmas that will be useful for proving our propositions.

Lemma IA.3.1. For a normally-distributed vector z ∼ N(µz,Σz), and any constant vector

d:

E(zed
′z) = µ∗e

1
2

(µ∗′Σ−1
z µ∗−µ′zΣ−1

z µz), where µ∗ = (µz + Σzd).

Proof: Denote by nz the dimension of the vector z. Use the definition of the mathematical

expectation to obtain

E(zed
′z) =

1

(
√

2π)nz |Σz|
1
2

∫ ∞
−∞

zed
′ze−

1
2

(z−µz)′Σ−1
z (z−µz)dz.

Note that

ed
′ze−

1
2

(z−µz)′Σ−1
z (z−µz) = ed

′z− 1
2
z′Σ−1

z z− 1
2
µ′zΣ−1

z µz+µ′zΣ−1
z z

= e−
1
2
z′Σ−1

z z− 1
2
µ′zΣ−1

z µz+(Σzd+µz)′Σ−1
z z

= e−
1
2
z′Σ−1

z z− 1
2
µ′zΣ−1

z µz+µ∗′Σ−1
z z

= e−
1
2
µ′zΣ−1

z µz+ 1
2
µ∗′Σ−1

z µ∗e−
1
2
z′Σ−1

z z+µ∗′Σ−1
z z− 1

2
µ∗′Σ−1

z µ∗

= e−
1
2
µ′zΣ−1

z µz+ 1
2
µ∗′Σ−1

z µ∗e−
1
2

(z−µ∗)′Σ−1
z (z−µ∗),

34Assumptions IA.2.1 and IA.2.3, together with asymptotic no arbitrage, by the Cauchy-Schwarz inequal-
ity, imply that βcan ′V −1

e a = O(N1/2) and βmis ′V −1
e a = O(N1/2) but we need a slightly slower rate.
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implying that

E(zed
′z) = e−

1
2
µ′zΣ−1

z µz+ 1
2
µ∗′Σ−1

z µ∗ ×

(
1

(
√

2π)nz |Σz|
1
2

∫ ∞
−∞

ze−
1
2

(z−µ∗)′Σ−1
z (z−µ∗)dz

)

= e−
1
2
µ′zΣ−1

z µz+ 1
2
µ∗′Σ−1

z µ∗µ∗. �

Lemma IA.3.2. Under Assumptions IA.2.1 and IA.2.3:

βmis ′Ve
−1βcan = O(N).

Proof: We apply the Cauchy-Schwarz inequality for matrices and obtain

0 ≤ ||βmis ′Ve
−1βcan|| ≤ ||βmis ′Ve

−1βmis||
1
2 × ||βcan ′Ve

−1βcan||
1
2 = O(N). �

Lemma IA.3.3. Under Assumptions IA.2.1 and IA.2.3:

βcan ′Vε
−1βcan = O(N).

Proof: Recall that Vε = βmisVfmisβmis ′ + Ve and apply the Sherman-Morrison-Woodbury

formula to Vε
−1 to obtain

βcan ′Vε
−1βcan = βcan ′Ve

−1βcan − βcan ′Ve
−1βmis(V −1

fmis + βmis ′Ve
−1βmis)−1βmis ′Ve

−1βcan

= O(N) +O(N)× [O(1) +O(N)]−1 ×O(N) = O(N). �

Lemma IA.3.4. Under Assumption IA.2.3:

βmis ′Vε
−1βmis → V −1

fmis as N →∞,

implying βmis ′Vε
−1βmis = O(1).

Proof: Recall that Vε = βmisVfmisβmis ′ + Ve and apply the Sherman-Morrison-Woodbury

formula to Vε
−1 to obtain

βmis ′Vε
−1βmis = βmis ′Ve

−1βmis − βmis ′Ve
−1βmis(V −1

fmis + βmis ′Ve
−1βmis)−1βmis ′Ve

−1βmis

= V −1
fmis(V

−1
fmis + βmis ′Ve

−1βmis)−1βmis ′Ve
−1βmis

= V −1
fmis × [O(1) +O(N)]−1 ×O(N)→ V −1

fmis . �

Lemma IA.3.5. Under Assumptions IA.2.1 and IA.2.3:

βmis ′Vε
−1βcan = O(1).
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Proof: Recall that Vε = βmisVfmisβmis ′ + Ve and apply the Sherman-Morrison-Woodbury

formula to Vε
−1 to obtain

βmis ′Vε
−1βcan = βmis ′Ve

−1βcan − βmis ′Ve
−1βmis(V −1

fmis + βmis ′Ve
−1βmis)−1βmis ′Ve

−1βcan

= V −1
fmis(V

−1
fmis + βmis ′Ve

−1βmis)−1βmis ′Ve
−1βcan

= O(1)× [O(1) +O(N)]−1 ×O(N) = O(1). �

Lemma IA.3.6. Under Assumptions IA.2.3 and IA.2.4:

a′Vε
−1a− a′Ve−1a→ 0 as N →∞.

Proof: Recall that Vε = βmisVfmisβmis ′ + Ve and apply the Sherman-Morrison-Woodbury

formula to Vε
−1 to obtain

a′Vε
−1a = a′Ve

−1a− a′Ve−1βmis(V −1
fmis + βmis ′Ve

−1βmis)−1βmis ′Ve
−1a

= a′Ve
−1a+ o(N

1
2 )× [O(1) +O(N)]−1 × o(N

1
2 )

= a′Ve
−1a+ o(1),

where a′Ve
−1a = O(1). �

Lemma IA.3.7. Under Assumptions IA.2.1, IA.2.2, IA.2.3 and IA.2.4:

βcan ′Vε
−1a = o(N

1
2 ).

Proof: Recall that Vε = βmisVfmisβmis ′ + Ve and apply the Sherman-Morrison-Woodbury

formula to Vε
−1 to obtain

βcan ′Vε
−1a = βcan ′Ve

−1a− βcan ′Ve
−1βmis(V −1

fmis + βmis ′Ve
−1βmis)−1βmis ′Ve

−1a

= o(N
1
2 ) +O(N)× [O(1) +O(N)]−1 × o(N

1
2 )

= o(N
1
2 ). �

Lemma IA.3.8. Under Assumptions IA.2.3 and IA.2.4:

βmis ′Vε
−1a = o(N−

1
2 ).

Proof: Recall that Vε = βmisVfmisβmis ′ + Ve and apply the Sherman-Morrison-Woodbury

formula to Vε
−1 to obtain

βmis ′Vε
−1a = βmis ′Ve

−1a− βmis ′Ve
−1βmis(V −1

fmis + βmis ′Ve
−1βmis)−1βmis ′Ve

−1a

= V −1
fmis(V

−1
fmis + βmis ′Ve

−1βmis)−1βmis ′Ve
−1a

= O(1)× [O(1) +O(N)]−1 × o(N
1
2 ) = o(N−

1
2 ). �
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Lemma IA.3.9. Let e be an N × 1 random vector with zero mean and covariance matrix

Ve. Under Assumptions IA.2.1 and IA.2.3:

βcan ′Vε
−1e = Op(N

1
2 ).

Proof: For any random variable X with a finite second moment, we have that X =

Op((E(X2))
1
2 ). If X = βcan ′Ve

−1e, then

E(βcan ′Ve
−1ee′Ve

−1βcan) = βcan ′Ve
−1βcan = O(N),

and therefore, βcan ′Ve
−1e = Op(N

1
2 ). Similarly, we can show that βmis ′Ve

−1e = Op(N
1
2 ).

Apply the Sherman-Morrison-Woodbury formula to Vε
−1 and use Lemma IA.3.2 to obtain

βcan ′Vε
−1e = βcan ′Ve

−1e− βcan ′Ve
−1βmis(V −1

fmis + βmis ′Ve
−1βmis)−1βmis ′Ve

−1e

= Op(N
1
2 ) +O(N)× [O(1) +O(N)]−1 ×Op(N

1
2 ) = Op(N

1
2 ). �

Lemma IA.3.10. Under Assumption IA.2.3:

βmis ′Vε
−1e = Op(N

− 1
2 ).

Proof: From the proof of Lemma IA.3.9, βmis ′Ve
−1e = Op(N

1
2 ). Apply the Sherman-

Morrison-Woodbury formula to Vε
−1 and use Lemma IA.3.2 to obtain

βmis ′Vε
−1e = βmis ′Ve

−1e− βmis ′Ve
−1βmis(V −1

fmis + βmis ′Ve
−1βmis)−1βmis ′Ve

−1e

= V −1
fmis(V

−1
fmis + βmis ′Ve

−1βmis)−1βmis ′Ve
−1e

= O(1)× [O(1) +O(N)]−1 ×Op(N
1
2 ) = Op(N

− 1
2 ). �

IA.4 Proofs of Propositions

In this section, we provide the proofs for the propositions in the manuscript.

Proof of Proposition 1

We use a guess-and-verify method to derive the SDF. Specifically, we guess that the SDF

has the following functional form

Mt+1 = E(Mt+1) + b′(ft+1 − E(ft+1)) + c′et+1,

where b is a K × 1 vector and c is an N × 1 vector. We identify the unknown vector b

and c by using the Law of One Price. Specifically, because we assume the existence of the

risk-free asset, to determine the mean of the SDF we use the following condition:

E(Mt+1) =
1

Rf
.
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Next, because λ represents the vector of prices of risk of ft+1, we have that

− cov(Mt+1, ft+1)×Rf = λ.

These K conditions identify b:

b = −
V −1
f λ

Rf
.

Finally, it must be the case that the SDF Mt+1 prices the N assets:

E
(
Mt+1(Rt+1 −Rf1N )

)
= 0N .

These N equations identify c:

c = −V
−1
e a

Rf
.

Taken together

Mt+1 = Mβ
t+1 +Ma

t+1,

where

Mβ
t+1 =

1

Rf
−
λ′V −1

f

Rf
(ft+1 − E(ft+1)) and

Ma
t+1 = −a

′V −1
e

Rf
et+1.

Pairwise uncorrelatedness of ft and et implies that the covariance between Mβ
t+1 and Ma

t+1

is zero. �

Proof of Proposition 2

First, we prove that the exponential SDF specified in formula (10) is an admissible SDF.

We use a guess-and-verify method. We guess that the SDF has the following functional

form:

Mexp,t+1 = exp
[
µ+ + b′+(ft+1 − E(ft+1)) + c′+et+1

]
,

with unknown vectors b+ and c+, as well as an unknown scalar µ+.

To identify the unknowns and verify our guess we use the following K+N+1 equations,

which are implications of the Law of One Price:

−cov(Mexp,t+1, ft+1)×Rf = λ,

E(Mexp,t+1(Rt+1 −Rf1N )) = 0N ,

E(Mexp,t+1) =
1

Rf
.
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The first K equations imply that

−E(Mexp,t+1(ft+1 − E(ft+1))) = E(Mexp,t+1)× λ,

which, along with Lemma IA.3.1, gives

b+ = −V −1
f λ.

The next N equations and Lemma IA.3.1 imply that

0N = E(Mexp,t+1(Rt+1 −Rf1N )) = E(Mexp,t+1(a+ βλ+ β(ft+1 − E(ft+1)) + et+1))

= (a+ βλ)E(Mexp,t+1) + E(Mexp,t+1et+1) + E(Mexp,t+1β(ft+1 − E(ft+1)))

= (a+ βλ)E(Mexp,t+1) + Vec+E(Mexp,t+1)− βλE(Mexp,t+1) = (a+ Vec+)E(Mexp,t+1).

As a result,

c+ = −V −1
e a.

Finally, the last identifying condition implies

R−1
f = E(Mexp,t+1)

= E(exp[µ+ + b′+(ft+1 − E(ft+1)) + c′+et+1]) = exp [µ+ + b′+Vfb+/2 + c′+Vec+/2].

Thus,

exp (µ+) = R−1
f × exp

[
− λ′V −1

f λ/2− a′V −1
e a/2

]
.

Collecting all these results, we obtain

Mexp,t+1 = Mβ
exp,t+1 ×M

a
exp,t+1,

where

Mβ
exp,t+1 = R−1

f × exp [−λ′V −1
f (ft+1 − E(ft+1))− λ′V −1

f λ/2)],

Ma
exp,t+1 = exp [−a′V −1

e et+1 − a′V −1
e a/2].

Next, we prove that, as N → ∞, the feasible SDF given in equation (7) recovers the

exponential SDF (10). We start by analyzing the exponent of M̂a
exp,t+1:

−a′V −1
R (Rt+1 − E[Rt+1])− 1

2
a′V −1

R a = −a′V −1
R β(ft+1 − E(ft+1))− a′V −1

R et+1 −
1

2
a′V −1

R a.

We apply the Sherman-Morrison-Woodbury formula to V −1
R , use Assumptions IA.2.1 and

IA.2.2, and Lemma IA.3.9 to obtain35

a′V −1
R β = a′V −1

e β − a′V −1
e β(V −1

f + β′V −1
e β)−1β′V −1

e β

35The APT model contains K systematic factors ft+1, so it satisfies Assumptions IA.2.1 and IA.2.2, where
one replaces Kcan by K, fcan

t+1 by ft+1, and βcan by β.
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= a′V −1
e β(V −1

f + β′V −1
e β)−1V −1

f

= o(N
1
2 )× [O(1) +O(N)]−1 ×O(1)

= o(N−1/2),

a′V −1
R et+1 = a′V −1

e et+1 − a′V −1
e β(V −1

f + β′V −1
e β)−1β′V −1

e et+1

= a′V −1
e et+1 + o(N

1
2 )× [O(1) +O(N)]−1 ×Op(N

1
2 )

= a′V −1
e et+1 + op(1),

a′V −1
R a = a′V −1

e a− a′V −1
e β(V −1

f + β′V −1
e β)−1β′V −1

e a

= a′Ve
−1a+ o(N

1
2 )× [O(1) +O(N)]−1 × o(N

1
2 )

= a′V −1
e a+ o(1).

These three results imply that

− a′V −1
R (Rt+1 − E[Rt+1])− 1

2
a′V −1

R a = −a′V −1
e et+1 −

1

2
a′V −1

e a+ op(1),

and therefore, by Slutzky’s theorem,

M̂a
exp,t+1 −Ma

exp,t+1
p−→ 0 as N →∞.

Next, we analyze the exponent of M̂β
exp,t+1:

− (βλ)′V −1
R (Rt+1 − E(Rt+1))− 1

2
(βλ)′V −1

R βλ

= −(βλ)′V −1
R β(ft+1 − E(ft+1))− (βλ)′V −1

R et+1 −
1

2
(βλ)′V −1

R βλ.

We apply the Sherman-Morrison-Woodbury formula to V −1
R , use Assumptions IA.2.1 and

Lemma IA.3.9 to obtain

β′V −1
R β = β′V −1

e β − β′V −1
e β(V −1

f + β′V −1
e β)−1β′V −1

e β

= V −1
f + o(1),

β′V −1
R et+1 = β′V −1

e et+1 − β′V −1
e β(V −1

f + β′V −1
e β)−1β′V −1

e et+1

= Op(N
− 1

2 ) +O(1)× [O(1) +O(N)]−1 ×Op(N
1
2 )

= Op(N
− 1

2 ).

These two results imply that

− (βλ)′V −1
R (Rt+1 − E(Rt+1))− 1

2
(βλ)′V −1

R βλ

= −λ′V −1
f (ft+1 − E(ft+1))− 1

2
λ′V −1

f λ+ op(1)
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and therefore

M̂β
exp,t+1 −M

β
exp,t+1

p−→ 0 as N →∞.

Independence of ft and et implies that the covariance between Mβ
exp,t+1 and Ma

exp,t+1

is zero. The same remains true asymptotically for the projected versions, M̂a
exp,t+1 and

M̂β
exp,t+1, thanks to the asymptotic-in-N equivalences proven above. �

Proof of an extended version of Proposition 2

The following proposition extends Proposition 2 to the case in which we correct a misspec-

ified candidate factor model to obtain an admissible SDF under the assumptions of the

APT. The correction includes the systematic risk factors missing in the candidate factor

model and compensation for unsystematic risk. This case is described in Section 2.3 of the

manuscript.

Proposition IA.4.1 (Feasible Admissible SDF Constructed by Correcting a Candidate

Factor Model). Under Assumptions 2.1 and 2.2 of the APT, the assumptions of Proposi-

tion 3, and the assumption that the factors f can
t+1 and fmis

t+1 and unsystematic shocks et+1 are

jointly Gaussian, the SDF

Mexp,t+1 = Ma
exp,t+1 ×M

β,can
exp,t+1 ×M

β,mis
exp,t+1 with (IA1)

Ma
exp,t+1 = exp

(
−a′V −1

e et+1 −
1

2
a′V −1

e a

)
,

Mβ,can
exp,t+1 =

1

Rf
× exp

(
−λcan ′V −1

fcan(f can
t+1 − E(f can

t+1)− 1

2
λcan ′V −1

fcanλ
can

)
,

Mβ,mis
exp,t+1 = exp

(
−λmis ′V −1

fmis(f
mis
t+1 − E(fmis

t+1)− 1

2
λmis ′V −1

fmisλ
mis)

)
,

is admissible. Furthermore, under Assumptions IA.2.1, IA.2.2, IA.2.3, and IA.2.4, as

N →∞, the following results hold

M̂a
exp,t+1 −Ma

exp,t+1
p−→ 0, M̂β,mis

exp,t+1 −M
β,mis
exp,t+1

p−→ 0, cov(M̂β,mis
exp,t+1, M̂

a
exp,t+1)→ 0,

where

M̂a
exp,t+1 = exp

(
− a′V −1

R (Rt+1 − E[Rt+1])− 1

2
a′V −1

R a
)
,

M̂β,mis
exp,t+1 = exp

(
− (βmisλmis)′V −1

R (Rt+1 − E[Rt+1])− 1

2
(βmisλmis)′V −1

R βmisλmis
)
,

implying that

M̂exp,t+1 = Mβ,can
exp,t+1 × M̂

β,mis
exp,t+1 × M̂

a
exp,t+1 (IA2)

is a feasible positive admissible SDF, when N →∞.
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Proof: First, we prove that the exponential SDF specified in equation (IA1) is admissible.

To this end, we use a guess-and-verify method. We guess that the admissible exponential

SDF is

Mexp,t+1 = exp
[
µ+ + bcan ′

+ (f can
t+1 − E(f can

t+1)) + bmis ′
+ (fmis

t+1 − E(fmis
t+1)) + c′+et+1

]
(IA3)

with unknown vectors bcan
+ , bmis

+ , and c+, as well as an unknown scalar µ+.

To identify the unknowns and verify our guess we use the following Kcan +Kmis +N +1

equations, which are the implications of the Law of One Price:

−cov(Mexp,t+1, f
can
t+1)×Rf = λcan,

−cov(Mexp,t+1, f
mis
t+1)×Rf = λmis,

E(Mexp,t+1(Rt+1 −Rf1N )) = 0N ,

E(Mexp,t+1) =
1

Rf
.

The first Kcan equations imply that

−E(Mexp,t+1(f can
t+1 − E(f can

t+1))) = E(Mexp,t+1)× λcan,

which, along with Lemma IA.3.1, gives:

bcan
+ = −V −1

fcanλ
can.

Similarly, the next Kmis equations imply that

−E(Mexp,t+1(fmis
t+1 − E(fmis

t+1))) = E(Mexp,t+1)× λmis,

which, along with Lemma IA.3.1, leads to:

bmis
+ = −V −1

fmisλ
mis.

Then, we use the next N equations and Lemma IA.3.1 to obtain

0N = E(Mexp,t+1(Rt+1 −Rf1N ))

= E(Mexp,t+1(a+ βmisλmis + βcanλcan + βcan(f can
t+1 − E(f can

t+1))

+ βmis(fmis
t+1 − E(fmis

t+1)) + et+1))

= (a+ βmisλmis + βcanλcan)E(Mexp,t+1) + E(Mexp,t+1et+1)

+ E(Mexp,t+1β
can(f can

t+1 − E(f can
t+1))) + E(Mexp,t+1β

mis(fmis
t+1 − E(fmis

t+1)))

= (a+ βmisλmis + βcanλcan)E(Mexp,t+1) + Vec+E(Mexp,t+1)

− βcanλcanE(Mexp,t+1)− βmisλmisE(Mexp,t+1)

= (a+ Vec+)E(Mexp,t+1).
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As a result,

c+ = −V −1
e a.

Finally, the last identifying condition implies

R−1
f = E(Mexp,t+1)

= E(exp[µ+ + bcan ′
+ (f can

t+1 − E(f can
t+1)) + bmis ′

+ (fmis
t+1 − E(fmis

t+1)) + c′+et+1])

= exp [µ+ + bcan ′
+ Vfcanbcan

+ /2 + bmis ′
+ Vfmisbmis

+ /2 + c′+Vec+/2].

Thus,

exp (µ+) = R−1
f × exp

[
− λcan ′V −1

fcanλ
can/2− λmis ′V −1

fmisλ
mis/2− a′V −1

e a/2
]
.

We substitute bcan
+ , bmis

+ , c+, and µ+ in equation (IA3) and obtain the exponential SDF

given in equation (IA1). Thus, we have successfully verified our guess.

Next, we prove that, as N → ∞, the feasible SDF given in equation (IA2) recovers

the exponential SDF specified in equation (IA1). We start by analyzing the exponent of

Ma
exp,t+1. First, we note that

−a′V −1
R (Rt+1 − E[Rt+1])− 1

2
a′V −1

R a = −a′V −1
R βcan(f can

t+1 − E(f can
t+1))

− a′V −1
R βmis(fmis

t+1 − E(fmis
t+1))

− a′V −1
R et+1

− 1

2
a′V −1

R a.

We analyze the four right-hand-side terms one-by-one. We apply the Sherman-Morrison-

Woodbury formula to V −1
R and V −1

ε and use Lemmas IA.3.3, IA.3.5, IA.3.6, IA.3.7, IA.3.8,

IA.3.9, and the proof of Lemma IA.3.10 to obtain

a′V −1
R βcan = a′Vε

−1βcan − a′Vε−1βcan(V −1
fcan + βcan ′Vε

−1βcan)−1βcan ′Vε
−1βcan

= a′V −1
ε βcan(V −1

fcan + βcan ′V −1
ε βcan)−1V −1

fcan

= o(N
1
2 )× [O(1) +O(N)]−1 ×O(1)

= o(N−1/2),

a′V −1
R βmis = a′Vε

−1βmis − a′Vε−1βcan(V −1
fcan + βcan ′Vε

−1βcan)−1βcan ′Vε
−1βmis

= o(N−
1
2 ) + o(N

1
2 )× [O(1) +O(N)]−1 ×O(1) =

= o(N−1/2),

a′V −1
R et+1 = a′Vε

−1et+1 − a′Vε−1βcan(V −1
fcan + βcan ′Vε

−1βcan)−1βcan ′Vε
−1et+1

= a′Vε
−1et+1 + o(N

1
2 )× [O(1) +O(N)]−1 ×Op(N

1
2 )
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= a′Vε
−1et+1 + op(1)

= a′V −1
e et+1 − a′V −1

e βmis(V −1
fmis + βmis ′V −1

e βmis)−1βmis ′V −1
e et+1 + op(1)

= a′V −1
e et+1 + o(N

1
2 )× [O(1) +O(N)]−1 ×Op(N

1
2 ) + op(1)

= a′V −1
e et+1 + op(1),

a′V −1
R a = a′Vε

−1a− a′Vε−1βcan(V −1
fcan + βcan ′Vε

−1βcan)−1βcan ′Vε
−1a

= a′Ve
−1a+ o(N

1
2 )× [O(1) +O(N)]−1 × o(N

1
2 ) + o(1)

= a′V −1
e a+ o(1).

These four results imply that

− a′V −1
R (Rt+1 − E[Rt+1])− 1

2
a′V −1

R a = −a′V −1
e et+1 −

1

2
a′V −1

e a+ op(1),

and therefore we obtain

M̂a
exp,t+1 −Ma

exp,t+1
p−→ 0 as N →∞.

Next, we analyze the exponent of M̂β,mis
exp,t+1:

− (βmisλmis)′V −1
R (Rt+1 − E(Rt+1))− 1

2
(βmisλmis)′V −1

R βmisλmis

= −(βmisλmis)′V −1
R βcan(f can

t+1 − E(f can
t+1))

− (βmisλmis)′V −1
R βmis(fmis

t+1 − E(fmis
t+1))

− (βmisλmis)′V −1
R et+1

− 1

2
(βmisλmis)′V −1

R βmisλmis.

We apply the Sherman-Morrison-Woodbury formula and Lemmas IA.3.3, IA.3.4, IA.3.5,

IA.3.9, and IA.3.10 to the first three terms above:

βmis ′V −1
R βcan = βmis ′Vε

−1βcan − βmis ′Vε
−1βcan(V −1

fcan + βcan ′Vε
−1βcan)−1βcan ′Vε

−1βcan

= βmis ′Vε
−1βcan(V −1

fcan + βcan ′Vε
−1βcan)−1V −1

fcan

= O(1)× [O(1) +O(N)]−1 ×O(1)

= O(N−1),

βmis ′V −1
R βmis = βmis ′Vε

−1βmis − βmis ′Vε
−1βcan(V −1

fcan + βcan ′Vε
−1βcan)−1βcan ′Vε

−1βmis

= (V −1
fmis + o(1)) +O(1)× [O(1) +O(N)]−1 ×O(1)

= V −1
fmis + o(1), and

βmis ′V −1
R et+1 = βmis ′Vε

−1et+1 − βmis ′Vε
−1βcan(V −1

fcan + βcan ′Vε
−1βcan)−1βcan ′Vε

−1et+1
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= Op(N
− 1

2 ) +O(1)× [O(1) +O(N)]−1 ×Op(N
1
2 )

= Op(N
− 1

2 ).

These three results imply that

− (βmisλmis)′V −1
R (Rt+1 − E(Rt+1))− 1

2
(βmisλmis)′V −1

R βmisλmis

= −λmis ′V −1
fmis(f

mis
t+1 − E(fmis

t+1))− 1

2
λmis ′V −1

fmisλ
mis + op(1),

and therefore we obtain

M̂β,mis
exp,t+1 −M

β,mis
exp,t+1

p−→ 0 as N →∞.

Pairwise uncorrelatedness (and independence by Gaussianity) of f can
t+1, f

mis
t+1, and et+1

implies that the pairwise covariances between Mβ,can
exp,t+1,M

β,mis
exp,t+1, and Ma

exp,t+1 are all zero.

The same remains true asymptotically for the projected versions, M̂a
exp,t+1 and M̂β,mis

exp,t+1,

thanks to the asymptotic-in-N equivalences proven above. �

Proof of Proposition 3

By Chamberlain and Rothschild (1983, Theorem 4 and Corollary 2), the equations in ex-

pressions (12) hold, where Ve > 0 with all its eigenvalues being uniformly (i.e., as N →∞)

bounded by the (Kmis + 1)−th eigenvalue of Vε.

Finally, we need to show that α′V −1
ε α = O(1) and that the restrictions α′V −1

ε α ≤ δ̃apt

is asymptotically equivalent to a′V −1
e a ≤ δapt, in the sense that one implies the other and

vice versa, under Assumptions 2.1, 2.2, and IA.2.3.

We use the definition of α to express α′V −1
ε α as

α′V −1
ε α = (a+ βmisλmis)′V −1

ε (a+ βmisλmis)

= a′V −1
ε a+ λmis ′βmis ′V −1

ε βmisλmis + 2a′V −1
ε βmisλmis.

Then, from Lemmas IA.3.4, IA.3.6, and IA.3.8, we obtain

α′V −1
ε α = a′V −1

ε a+ λmis ′V −1
fmisλ

mis + o(1).

Therefore, α′V −1
ε α = O(1) whenever a′V −1

ε a = O(1) and vice versa.

Remark: Proposition 3 assumes the presence of at least one omitted systematic risk factor,

that is, Kmis > 0. If instead Kmis = 0, that is, all eigenvalues of Vε are bounded, then the

data-generating process of asset returns with Kcan factors given in expression (11) satisfies

the assumptions of the classical APT provided in Section 2.1.
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Proof of Proposition 4

We use a guess-and-verify method to derive the SDF. We guess that the SDF has the

following functional form

Mt+1 = E(Mt+1) + bcan ′(f can
t+1 − E(f can

t+1)) + bmis ′(fmis
t+1 − E(fmis

t+1)) + c′et+1,

where bcan is a Kcan × 1 vector , bmis is a Kmis × 1 vector, and c is an N × 1 vector. We

identify the unknown vectors bcan, bmis, and c by using the Law of One Price. Specifically,

because we assume the existence of the risk-free asset, to determine the mean of the SDF

we use the following condition:

E(Mt+1) =
1

Rf
.

Next, because λcan represents a vector of prices of risk of f can
t+1, we have that

− cov(Mt+1, f
can
t+1)×Rf = λcan.

These Kcan conditions identify bcan:

bcan = −
V −1
fcanλcan

Rf
.

Similarly, λmis is the price of risk associated with factors fmis
t+1, or equivalently,

− cov(Mt+1, f
mis
t+1)×Rf = λmis.

These Kmis conditions identify bmis:

bmis = −
V −1
fmisλ

mis

Rf
.

Finally, it must be the case that the SDF prices the N assets

E
(
Mt+1(Rt+1 −Rf1N )

)
= 0N .

These N equations identify c:

c = −V
−1
e a

Rf
.

Taken together

Mt+1 = Mβ,can
t+1 +Mβ,mis

t+1 +Ma
t+1,

where

Mβ,can
t+1 =

1

Rf
−
λcan ′V −1

fcan

Rf
(f can
t+1 − E(f can

t+1)),
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Mβ,mis
t+1 = −

λmis ′V −1
fmis

Rf
(fmis
t+1 − E(fmis

t+1)),

Ma
t+1 = −a

′V −1
e

Rf
et+1.

Pairwise uncorrelatedness of f can
t+1, f

mis
t+1, and et+1 implies that the pairwise covariances be-

tween Mβ,can
t+1 ,Mβ,mis

t+1 , and Ma
t+1 are all zero. �

Proof of Proposition 5

Observe that the exposures of asset returns to the unsystematic SDF component Ma
t+1 are

equal to

βa =
cov(Ma

t+1, Rt+1 −Rf1N )

var(Ma
t+1)

=
cov

(
−a′V −1

e
Rf

et+1, Rt+1 −Rf1N

)
var(Ma

t+1)
= −

a′Rf

a′V −1
e a

.

Thus, βa′βa = R2
f (a′a)/(a′V −1

e a)2, which together with the no-arbitrage restriction (5), the

boundness of δapt away from zero, and the boundedness of the eigenvalues of the covariance

matrix Ve, implies that βa′βa = O(1), that is, βa′βa is bounded. As a result, Ma
t+1 satisfies

the definition of a weak factor in the cross-section of returns on basis assets. �

Proof of Proposition 6

Below we summarize the main assumptions of the model in Merton (1987) and then analyze

its equilibrium implications for the SDF and expected excess returns. For details of the

model, we refer the reader to Merton (1987).

Assume that there are N firms in the economy whose end-of-period cash flows are:

Ci = Ii [µi + ηiY + siεi] ,

where, for simplicity, it is assumed that there is a single random systematic factor Y with

E(Y ) = 0 and E(Y 2) = 1, with E(εi) = E (εi | ε1, . . . , εi−1, εi+1, . . . , εN , Y ) = 0, for

i = {1, . . . , N}, where εi are asset-specific shocks.36 Here, Ii is the amount of physical in-

vestment in firm i and µi, ηi, and si represent parameters of firm i ’s production technology.

Let Vi denote the equilibrium value of firm i at the beginning of the period. If Ri is the

equilibrium return per dollar from investing in firm i over the period, then Ri = Ci/Vi, and

Ri = E(Ri) + biY + σiεi, (IA4)

36We have made the following changes to the notation used in Merton (1987) so that it is consistent
with the notation in our paper. We denote an investor’s risk aversion by γ instead of δ; we denote the
total number of assets by N instead of n; we index individual assets by i instead of k; and we denote the
unsystematic risk premium by ai instead of λk.
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where bi and σi are functions of the parameters of firm i’s production technology.

There are two additional securities in the economy, both in zero net supply: a security

that is risk-free with return Rf and the (N + 1)-th risky security, which combines the risk-

free security and a forward contract with cash settlements on the factor Y . Without loss

of generality, the forward price of the contract is assumed to be such that the standard

deviation of the equilibrium returns on the security is unity. As a result, its return is

RN+1 = E(RN+1) + Y. (IA5)

There is a sufficiently large number of investors with a sufficiently dispersed distribution

of wealth so that each investor acts as a price taker. Each investor is risk averse and has

mean-variance preferences over the end-of-period wealth:

U j = E(RjW j)− γj

2W j
var(RjW j),

where W j denotes the value of the initial endowment of investor j evaluated at equilibrium

prices, Rj denotes the return per dollar on investor j’s optimal portfolio, and γj > 0 is the

risk-aversion of investor j.

Investors differ in their information sets. The common part of investors’ information

sets includes: (i) the return on the risk-free security, (ii) the structure of securities’ return

given in expression (IA4), and (iii) the expected return and variance of the forward-contract

security given in (IA5). However, different investors have knowledge about the parameters

bi and σi for different subsets of securities. The investors who know about security i agree

on its characteristics. To simplify the analysis, investors are assumed to have identical risk

aversion γj = γ and identical initial wealth W j = W .

The optimal solution to each investor’s portfolio problem allows us to obtain the aggre-

gate demand for every security. Equating this to the aggregate supply for every security

leads to the equilibrium expected return for asset i (Merton, 1987, eq. (16)):

E(Ri) = Rf + γbib+ γxiσ
2
i /qi, for i = {1, . . . , N}, (IA6)

where xi is the fraction of the market portfolio invested in asset i,

b =
N∑
i=1

xibi,

and qi is the fraction of investors who know about security i.

Denoting the return on the market as Rm =
∑N

i=1 xiRi, Merton (1987, eq. (24)) obtains

the equilibrium expected excess return on the market:

E(Rm)−Rf = γ var(Rm) + am, (IA7)
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where am =
∑N

i=1 xiai,

ai = (1− qi)∆i,

∆i = E(Ri)−Rf − bi(E(RN+1)−Rf ).

Equations (IA4) and (IA7) then imply

Ri −Rf = βi(E(Rm)−Rf ) + ai − βiam + biY + σiεi, (IA8)

where βi denotes the covariance of the return on security i with the return on the market

portfolio, divided by the variance of the market return. Equation (IA8) contains Y on the

right-hand side. We substitute out Y by using the definition of the market portfolio return

along with equations (IA4) and (IA6), to obtain

Ri −Rf = ai − βiam + βi(E(Rm)−Rf ) +
bi
b

(Rm − E(Rm)) + σiεi.

The equilibrium process for asset returns, given by equations (2) and (25) in Merton

(1987), is

Ri −Rf = βi(E(Rm)−Rf ) + ai − βiam + biY + σiεi. (IA9)

We posit that the SDF M has the following form,

M = ξ + χY +
N∑
i=1

ζiεi,

where ξ, χ, and ζi, i = {1, . . . , N}, are determined using the N + 2 equations for the Law

of One Price:

E[M ] =
1

Rf
, (IA10)

E[M(RN+1 −Rf )] = 0 (IA11)

E[M(Ri −Rf )] = 0, for i = {1, . . . , N}, (IA12)

where, from (3) and (11) in Merton (1987),

RN+1 = Rf + γb+ Y.

From expression (IA10), we get

ξ =
1

Rf
.

From expression (IA11), we get

χ = − γb
Rf

.
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From expression (IA12), for each i = {1, . . . , N} we have

ξβi(E(Rm)−Rf ) + ξ(ai − βiam) + χβi + ζσi = 0.

As a result,

ζ = − 1

Rf

βi(E(Rm)−Rf ) + ai − βiam − biγb
σi

.

Recalling that

Rm =
N∑
i=1

xiRi

and using (2) and (16) from Merton (1987), we have

Rm −Rf =
N∑
i=1

xi(γbib+ γxiσ
2
i /qi) +

N∑
i=1

xibiY +
N∑
i=1

xiσiεi

= γb2 + γ
N∑
i=1

x2
iσ

2
i /qi + bY +

N∑
i=1

xiσiεi.

From the last expression, we obtain

bY = (Rm −Rf )− γb2 − γ
N∑
i=1

x2
iσ

2
i /qi −

N∑
i=1

xiσiεi.

As a result, the SDF is

M =
1

Rf
− γ

Rf

(
(Rm −Rf )− b2γ − γ

N∑
i=1

x2
iσ

2
i /qi −

N∑
i=1

xiσiεi

)

− 1

Rf

N∑
t=1

βi(E(Rm)−Rf ) + ai − βiam − biγb
σi

εi.

Grouping together similar terms, we obtain

M =
1

Rf
+
γ2b2

Rf
+
γ2
∑N

i=1 x
2
iσ

2
i /qi

Rf
− γ

Rf
(Rm −Rf )

− 1

Rf

N∑
i=1

(
βi(E(Rm)−Rf ) + ai − βiam − biγb− γxiσ2

i

σi
εi

)
.

Finally, we use expressions (22) and (24) in Merton (1987) to simplify the loading of M

on εi and obtain

− 1

Rf

N∑
i=1

(
βi(E(Rm)−Rf ) + ai − βiam − biγb− γxiσ2

i

σi

)
= − 1

Rf

N∑
i=1

ai
σi
.
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Using the demeaned return on the market portfolio as a factor in the SDF, along with

expressions (15), (19), and (24) in Merton (1987), we obtain

M = − 1

Rf

N∑
i=1

(
ai
σi
εi

)
+

1

Rf
−

(E(Rm)−Rf )

Rf var(Rm)
(Rm − E(Rm))

= −a
′V −1
e

Rf
et+1︸ ︷︷ ︸

Ma

+
1

Rf
−

(E(Rm)−Rf )

Rf var(Rm)
(Rm − E(Rm))︸ ︷︷ ︸

Mβ

, (IA13)

where ei = σiεi and Ve is the covariance matrix of e with σ2
i on its diagonal.

To characterize the limiting behavior of this economy, as N →∞, assume that xi → 0,

that is the fraction of market portfolio invested in each asset i is infinitesimally small. Then,

as N →∞, we have

βi =
bib+ xiσ

2
i

b2 +
∑N

i=1 x
2
iσ

2
i

→ bi
b∗
, where b→ b∗,

am =
N∑
i=1

xiai =
N∑
i=1

xi(1− qi)∆i =
N∑
i=1

γx2
iσ

2
i

(1− qi)
qi

→ 0,

cov
( N∑
i=1

xiσiεi, εi

)
=

N∑
i=1

xiσi → 0.

Thus, given N → ∞, we have: (i) βi → bi/b
∗, (ii) am → 0, and (iii) the market return

is asymptotically orthogonal to all unsystematic shocks, ei. Making these substitutions in

equations (IA9) and (IA13) gives the results in (21) and (23). �

Spanning of the SDF Components

Proposition IA.4.1 implies that, as N → ∞, the log of the estimated SDF component

log(M̂β,mis
exp,t+1) converges to a linear function of the missing systematic factors. Proposi-

tion IA.4.2 below shows how to determine whether a vector of observable variables gt rep-

resents missing sources of systematic risk in the candidate factor model, and if so, how to

estimate the prices of risk associated with these missing risk factors.

Let fmis
t be the vector of true systematic risk factors that are missing in the candidate

factor model. Consider the regression of log(M̂β,mis
exp,t ) on an intercept and the vector gt,

log(M̂β,mis
exp,t ) = γ0 + γ′1gt + ut.

Denote by γols
1 the OLS-estimator of γ1 and by R2

g the coefficient of determination in the

corresponding regression.
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Proposition IA.4.2 (Detecting Missing Systematic Factors). Under the assumptions of

the extended Proposition IA.4.1 and if gt = Qfmis
t , for some nonsingular Q, as N →∞ we

have

γols
1

p−→ −(Q′)−1V −1
fmisλ

mis and R2
g

p−→ 1.

On the other hand, if gt is orthogonal to fmis
t then

γols
1

p−→ 0Kmis and R2
g

p−→ 0.

Proof: Collect the values of the vector gt for each t in a matrix G = (g1 · · · gT )′. Likewise,

collect the values of the vector fmis
t for each t in a matrix Fmis = (fmis

1 · · · fmis
T )′. For each

t, collect the values of the systematic component log(M̂β,mis
exp,t+1) of the admissible SDF in

a vector log(M̂β,mis
exp ) = (log(M̂β,mis

exp,1 ) · · · log(M̂β,mis
exp,T ))′. Then, the R2 of the regression of

log(M̂β,mis
exp,t ) on an intercept and the vector gt,

log(M̂β,mis
exp,t ) = γ0 + γ′1gt + ut,

is

R2
g =

γols ′
1 G′(IT − 1T 1

′
T /T )Gγols

1

log(M̂β,mis
exp )′(IT − 1T 1

′
T /T ) log(M̂β,mis

exp )
,

where γols
1 = (G′(IT − 1T 1

′
T /T )G)−1G′(IT − 1T 1

′
T /T ) log(M̂β,mis

exp ).

In Proposition IA.4.1, we have showen that

log(M̂β,mis
exp,t+1)

p−→ −λmis ′V −1
fmis(f

mis
t+1 − E(fmis

t+1))− 1

2
λmis ′V −1

fmisλ
mis.

For simplicity, we set M1T = IT − 1T 1′T /T and, given that M1T 1T = 0T , we obtain

γols
1

p−→ −(G′M1TG)−1G′M1T (Fmis − 1TE(fmis ′
t+1 ))V −1

fmisλ
mis

= −(QFmis ′M1TF
misQ′)−1QFmis ′M1TF

misV −1
fmisλ

mis

= −(Q′)−1V −1
fmisλ

mis.

The limiting behavior of the numerator of R2
g is as follows

γols ′
1 (G′M1TG)γols

1
p−→ λmis ′V −1

fmisQ
−1Q(Fmis ′M1TF

mis)Q′(Q′)−1V −1
fmisλ

mis

= λmis ′V −1
fmis(F

mis ′M1TF
mis)V −1

fmisλ
mis.

The limiting behavior of the denominator of R2
g is as follows

log(M̂β,mis
exp )′(IT − 1T 1

′
T /T ) log(M̂β,mis

exp )
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p−→ λmis ′V −1
fmis(F

mis − 1TE(fmis ′
t+1 ))′M1T (Fmis − 1TE(fmis ′

t+1 ))V −1
fmisλ

mis

= λmis ′V −1
fmis(F

mis ′M1TF
mis)V −1

fmisλ
mis.

Given that the limit of the numerator equals the limit of the denominator, R2
g

p−→ 1.

The proof of the case ofG being orthogonal to Fmis, that is, whenG′(IT−1T 1′T /T )Fmis =

OKmis , is straightforward, and therefore, omitted. �

Along the same lines, if weak factors span the unsystematic component of the SDF

Ma
exp,t+1, Proposition IA.4.3 below shows how to determine whether a vector of observable

variables ht is a linear combination of these weak factors and if so how to estimate their

prices of risk. Assume that log(Ma
exp,t+1) = −a′V −1

e et − a′V −1
e a/2 = γ′weakf

weak
t , where

fweak
t is a vector of true latent Kweak weak factors with the identity covariance matrix

Vfweak = IKweak .

Proposition IA.4.3 (Detecting Missing Weak Factors). Consider the regression of log(M̂a
exp,t)

on an intercept and the vector ht,

log(M̂a
exp,t) = γ0 + γ′1ht + ut.

Denote by γols
1 an OLS estimator of γ1 and R2

h the coefficient of determination in the

corresponding regression.

Under the assumptions of Proposition IA.4.1 and if ht = Qfweak
t for some nonsingu-

lar Q, as N →∞ we have

γ̂1
p−→ −(Q′)−1γweak and R2

h
p−→ 1.

On the other hand, if ht is orthogonal to fweak
t then

γ̂1
p−→ 0Kweak and R2

h
p−→ 0.

Proof: Collect the values of the vector ht for each t in a matrix H = (h1 · · ·hT )′. Likewise,

collect the values of the vector fweak
t for each t in a matrix Fweak = (fweak

1 · · · fweak
T )′. For

each t, collect the values of log(M̂a
exp,t) of the admissible SDF in a vector log(M̂a

exp) =

(log(M̂a
exp,1) · · · log(M̂a

exp,T ))′. Then, the R2 of the regression of log(M̂a
exp,t) on an intercept

and the vector ht,

log(M̂a
exp,t) = γ0 + γ′1ht + ut,

is given by

R2
h =

γols ′
1 H ′(IT − 1T 1

′
T /T )Hγols

1

log(M̂a
exp)′(IT − 1T 1

′
T /T ) log(M̂a

exp)
,
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where γols
1 = (H ′(IT − 1T 1

′
T /T )H)−1H ′(IT − 1T 1

′
T /T ) log(M̂a

exp).

In Proposition IA.4.1, we showed that, as N →∞,

log(M̂a
exp,t+1)− aV −1

e et+1 −
1

2
a′V −1

e a
p−→ 0.

For simplicity, we set M1T = IT − 1T 1′T /T . Given that M1T 1T = 0T , we obtain

γols
1

p−→ −(H ′M1TH)−1H ′M1T (Fweak − 1TE(fweak ′
t+1 ))γweak

= −(QFweak ′M1TF
weakQ′)−1QFweak ′M1TF

weakγweak

= −(Q′)−1γweak, when N →∞.

The limiting behavior of the numerator of R2
h is as follows

γols ′
1 (H ′M1TH)γols

1
p−→ γ′weakQ

−1Q(Fweak ′M1TF
weak)Q′(Q′)−1γweak

= γ′weak(Fweak ′M1TF
weak)γweak, when N →∞.

The limiting behavior of the denominator of R2
h is as follows

log(M̂a
exp)′(IT − 1T 1

′
T /T ) log(M̂a

exp)

p−→ γ′weak(Fweak − 1TE(fweak ′
t+1 ))′M1T (Fweak − 1TE(fweak ′

t+1 ))γweak

= γ′weak(Fweak ′M1TF
mis)γweak, when N →∞.

Given that the limit of the numerator equals the limit of the denominator, R2
h

p−→ 1.

The proof when H is orthogonal to Fweak, that is, when H ′(IT − 1T 1′T /T )Fweak =

OKweak , is straightforward, and therefore, omitted. �

A major strength of our approach is that we do not need to estimate the exposures of

asset returns to an observable variable in order to define whether this variable represents a

systematic or weak factor in the given cross-section of asset returns and quantify its price

of risk. Thus, Propositions IA.4.2 and IA.4.3 complement the three-pass method of Giglio

and Xiu (2021) and the supervised PCA of Giglio et al. (2021b) for describing the role of

systematic and weak factors in pricing a cross-section of asset returns, and estimating the

corresponding risk premia.37

IA.5 Weak Factors

Thanks to the assumption of the approximate factor structure of asset returns, our method-

ology accommodates weak factors in the unsystematic shocks et+1. The approximate factor

37The large-N results of Propositions IA.4.2 and IA.4.3 abstract from estimation uncertainty, unlike Giglio
and Xiu (2021) and Giglio et al. (2021b), who allow for sampling variability by developing their analysis
under both large N and large T .
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structure implies that Ve can be non-diagonal, with the only constraint being that the max-

imum eigenvalue of Ve is uniformly bounded. Even though we have already mentioned that

our theoretical results hold regardless of the presence of weak factors in et+1, we now prove

Proposition IA.4.1 where we explicitly allow for weak factors in et+1. This proof strength-

ens the relevance of our methodology for identifying the importance of compensation for

unsystematic risk, in particular, including that arising from weak factors.

Specifically, we assume now that

et+1 = βweakfweak
t+1 + eas

t+1, (IA14)

where eas
t+1 is a vector of asset-specific shocks with a diagonal covariance matrix Veas that

has the bounded maximum eigenvalue, fweak
t+1 is a vector of Kweak latent weak factors with

the covariance matrix V weak
f , and βweak is the matrix of assets’ exposures to the weak factors

fweak
t+1 . We define weak factors in accordance with the definition of Lettau and Pelger (2020):

fweak
t+1 is a weak factor, if the following condition holds βweak ′βweak → A > 0, if N → ∞,

where A is some constant matrix. This condition can be written as βweak ′βweak = O(1),

in contrast to the condition for systematic factors βcan ′V −1
e βcan/N = O(1), as indicated in

Assumption IA.2.1. In practice, the condition βweak ′βweak = O(1) holds when either the

factors fweak
t+1 affect only a subset of the asset returns or the factors fweak

t+1 affect all asset

returns but only marginally.

Without loss of generality, we assume that the weak factors fweak
t+1 are orthogonal to the

asset-specific shocks eas
t+1 and Vfweak = IKweak , thus Ve = βweakβweak ′ + Veas .

Denote the vector of prices of unit assets’ exposures to weak factors by λweak, thus

compensation for the unsystematic risk includes compensation for exposure to weak factors

and compensation for asset-specific shocks, a = aas +βweakλweak, such that the no-arbitrage

constraint holds, that is, aas ′V −1
eas aas < δas

apt <∞, for some constant δas
apt > 0.

For simplicity, assume that the candidate factor model includes all systematic risk fac-

tors, that is, Kmis = 0, implying that Vε = Ve.

Assumption IA.5.1. The following assumptions explicitly incorporate weak factors in the

unsystematic shocks, imposing more structure on the covariance matrix Ve:
38

N−1βcan ′V −1
eas βcan −→ D > 0, as N →∞,

βweak ′V −1
eas βweak −→ E > 0, as N →∞,

βcan ′V −1
eas βweak = o(N

1
2 ),

βcan ′V −1
eas aas = o(N

1
2 ).

38Because the matrix V −1
eas has uniformly bounded eigenvalues, the definition of a weak factor of Lettau

and Pelger (2020) can be equivalently written as βweak ′V −1
eas β

weak −→ E > 0, as N →∞.
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Lemma IA.5.1.

βcan ′Ve
−1βcan = O(N).

Proof: The Sherman-Morrison-Woodbury formula applied to Ve
−1 leads to

βcan ′Ve
−1βcan = βcan ′V −1

eas βcan − βcan ′V −1
eas βweak(V −1

fweak + βweak ′V −1
eas βweak)−1βweak ′V −1

eas βcan

= O(N) + o(N
1
2 )× [O(1) +O(1)]−1 × o(N

1
2 )

= O(N) + o(N) = O(N). �

Lemma IA.5.2.

βweak ′Ve
−1βcan = o(N

1
2 ).

Proof: The Sherman-Morrison-Woodbury formula applied to Ve
−1, leads to

βweak ′Ve
−1βcan = βweak ′V −1

eas βcan − βweak ′V −1
eas βweak(V −1

fweak + βweak ′V −1
eas βweak)−1βweak ′V −1

eas βcan

= V −1
fweak(V −1

fweak + βweak ′V −1
eas βweak)−1βweak ′V −1

eas βcan

= O(1)× [O(1) +O(1)]−1 × o(N
1
2 ) = o(N

1
2 ). �

Lemma IA.5.3.

βcan ′Ve
−1a = o(N

1
2 ).

Proof: The Sherman-Morrison-Woodbury formula applied to Ve
−1, given a = aas+βweakλweak,

leads to

βcan ′Ve
−1aas = βcan ′V −1

eas aas − βcan ′V −1
eas βweak(V −1

fmis + βweak ′V −1
eas βweak)−1βweak ′V −1

eas aas

= o(N
1
2 ) + o(N

1
2 )× [O(1) +O(1)]−1 ×O(1)

= o(N
1
2 ).

Thus, βcan ′Ve
−1βweakλweak = o(N

1
2 ) by Lemma IA.5.2. �

Lemma IA.5.4. Let eas be an N × 1 random vector with zero mean and covariance matrix

Veas.

βcan ′Ve
−1eas = Op(N

1
2 ).
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Proof: For any random variable X with a finite second moment, we have that X =

Op((E(X2))
1
2 ). If X = βcan ′V −1

eas eas, then

E(βcan ′V −1
eas easeas ′V −1

eas βcan) = βcan ′V −1
eas βcan = O(N),

and therefore, βcan ′V −1
eas eas = Op(N

1
2 ). Similarly, we can show that βweak ′V −1

eas eas = Op(1).

Finally, we apply the Sherman-Morrison-Woodbury formula to Ve
−1 and obtain

βcan ′Ve
−1eas = βcan ′V −1

eas eas − βcan ′V −1
eas βweak(V −1

fweak + βweak ′V −1
eas βweak)−1βweak ′V −1

eas eas

= Op(N
1
2 ) + o(N

1
2 )× [O(1) +O(1)]−1 ×Op(1) = Op(N

1
2 ). �

We now generalize Proposition IA.4.1 for the case in which the unsystematic shocks

explicitly include weak factors, that is, when (IA14) holds. For this, the only result that

we need to prove is the presence of weak factors does not have implications for the limiting

behavior of M̂a
exp,t+1 and Ma

exp,t+1.

Proposition IA.5.4 (Properties of M̂a
exp,t+1, when Shocks et+1 Include Weak Factors).

Under Assumptions 2.1 and 2.2, the assumption that returns Rt+1 are Gaussian, Assump-

tions IA.5.1, and the assumption that Kmis = 0, we have

M̂a
exp,t+1 −Ma

exp,t+1
p−→ 0 as N →∞.

Proof: Recall that

M̂a
exp,t+1 = exp

[
− aV −1

R (Rt+1 − E(Rt+1))− 1

2
a′V −1

R a
]

and

Ma
exp,t+1 = exp

[
− a′V −1

e et+1 −
1

2
a′V −1

e a
]
.

The exponent of M̂a
exp,t+1, given that Kmis = 0, is

− a′V −1
R (Rt+1 − E[Rt+1])− 1

2
a′V −1

R a =

− a′V −1
R βcan(f can

t+1 − E(f can
t+1))− a′V −1

R et+1 −
1

2
a′V −1

R a.

We analyze the three terms of the exponent of M̂a
exp,t+1 one-by-one. We use Lemmas IA.5.1

and IA.5.3 and apply the Sherman-Morrison-Woodbury formula to V −1
R :

a′V −1
R βcan = a′V −1

e βcan − a′V −1
e βcan(V −1

fcan + βcan ′V −1
e βcan)−1βcan ′V −1

e βcan

= a′V −1
e βcan(V −1

fcan + βcan ′V −1
e βcan)−1V −1

fcan

= o(N
1
2 )× [O(1) +O(N)]−1 ×O(1)
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= o(N−
1
2 ).

Next, by Lemmas IA.5.1, IA.5.3, and IA.5.4, and by taking into account that et+1 =

βweakfweak
t+1 + eas

t and a = aas + βweakλweak, we obtain

a′V −1
R et+1 = a′V −1

e et+1 − a′V −1
e βcan(V −1

fcan + βcan ′V −1
e βcan)−1βcan ′V −1

e et+1

= a′V −1
e et+1 + op(N

1
2 )[O(1) +O(N)]−1Op(N

1
2 ) = a′V −1

e et+1 + op(1).

Finally, by Lemmas IA.5.1 and IA.5.3,

a′V −1
R a = a′V −1

e a− a′V −1
e βcan(V −1

fcan + βcan ′V −1
e βcan)−1βcan ′V −1

e a

= a′V −1
e a+ o(N

1
2 )× [O(1) +O(N)]−1 × o(N

1
2 )

= a′V −1
e a+ o(1).

Putting these results together, we obtain

−a′V −1
R (Rt+1 − E[Rt+1])− 1

2
a′V −1

R a = −a′V −1
e et+1 −

1

2
a′V −1

e a+ op(1),

implying that

M̂a
exp,t+1 −Ma

exp,t+1
p−→ 0 as N →∞. �

Remark: Proposition IA.5.4 shows that our methodology is still valid if expected excess

returns include compensation for exposure to weak factors that are present in unsystematic

shocks et+1. This is an important result because of the challenges associated with identi-

fying weak factors. For example, it is well known that weak factors cannot be estimated

consistently (Lettau and Pelger, 2020). Our methodology does not require estimating weak

factors but can accurately characterize the importance of unsystematic risk that includes

weak factors. This makes our approach compelling.

IA.6 Estimation

We start this section by discussing the identification conditions that fix the rotation of risk

factors. These identification conditions do not have any implications for the SDF but allow

us to estimate the model of asset returns. Next, we show how to estimate the model of asset

returns. In the empirical analysis, we use an observable time-varying risk-free rate Rft in

place of Rf .

IA.6.1 Identification conditions

In a candidate model, the loadings of asset returns on the missing factors, and the missing

factors themselves, are unique up to a rotation. Similarly, identifying the loadings of asset
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returns on the latent factors in the APT model is unique up to a rotation. Thus, at

the estimation stage, we need to impose identification conditions. These identification

conditions affect the interpretation of latent factors but not the estimated admissible SDF.

Below, we detail the identification strategy, which we use to correct a candidate model

of asset returns. The difference between identifying missing factors in the candidate factor

model and identifying latent factors of the APT model is only because of the presence of

observable factors in the candidate model. Thus, the identification strategy for the APT

model is equivalent to that described below but in which Kcan = 0 and Kmis = K.

We follow the identification strategy of Bai and Li (2012) and adapt it to the case in

which a model has Kcan observable and Kmis latent risk factors. Denote F can a matrix

T × Kcan that collects candidate factors column by column. Denote by Fmis a matrix

T × Kmis that collects missing factors column by column. Combine these matrices in a

T × (Kcan +Kmis) matrix F = [F can, Fmis]. Note that the rotation of this matrix is defined

by a squared invertible matrix of a dimension (Kcan +Kmis)×(Kcan +Kmis), and therefore,

the rotation is pinned down by (Kcan +Kmis)2 parameters.

At the estimation stage, we impose the following (Kcan+Kmis)2 identification conditions

to fix the rotation:

• The first Kcan columns of the rotation matrix are fixed because F can includes only

observable factors. This is equivalent to Kcan × (Kcan + Kmis) restrictions being

already imposed.

• Vfmis = IKmis introduces Kmis × (Kmis + 1)/2 restrictions.

• βmis ′V −1
e βmis is a diagonal matrix that is equivalent to imposing (Kmis− 1)×Kmis/2

restrictions. We also introduce an order restriction that requires that the diagonal

elements of the matrix βmis ′V −1
e βmis follow in descending order. In addition, we

require the eigenvectors of βmis ′V −1
e βmis to have positive means to identify the latent

factors uniquely, rather than up to a sign.

• Candidate factors f can
t+1 are uncorrelated with missing factors fmis

t+1. This requirement

is equivalent to imposing Kcan ×Kmis additional restrictions.

IA.6.2 Constrained Maximum-Likelihood (ML) Estimator

This section describes how to estimate the candidate factor model and its required correction

to obtain an admissible SDF. The underlying problem is described in Section 2.3.
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To simplify exposition, introduce the following notation

R̄ = T−1
T∑
t=1

Rt, R̄f = T−1
T∑
t=1

Rft, f̄ can = T−1
T∑
t=1

f can
t ,

Q̂fcan = T−1
T∑
t=1

f can
t f can ′

t , and Q̂Rfcan =
1

T

T∑
t=1

(Rt −Rft−11N )f can ′
t .

For this section only, we use the notation ·̂ to denote an estimator.

Without loss of generality, assume that the candidate factors f can
t+1 are tradable factors in

the form of excess returns on investment strategies (if any candidate factor is not tradable,

we use its factor-mimicking portfolio, as in Breeden et al. (1989)).

For a generic vector Θ that collects all the unknown parameters of the corrected model

of asset returns, Θ = (a′, vech(Ve)
′, vech(Vfcan)′, vec(βcan)′, λcan ′, vec(βmis)′, λmis ′),

denote L(Θ) the (up to a constant) Gaussian joint likelihood of the vector of asset returns

in excess of the risk-free rate, Rt+1 − Rft1N , and observable factors f can
t+1 scaled by the

number of time-series observations T

log(L(Θ)) = −1

2
log(|Vε|)−

1

2
log(|V can

f |)− 1

2T

T−1∑
t=0

ε′t+1V
−1
ε εt+1

− 1

2T

T−1∑
t=0

(f can
t+1 − E(f can

t+1))′V −1
fcan(f can

t+1 − E(f can
t+1)), (IA15)

where εt+1 = Rt+1−Rft1N − a−βmisλmis−βcanλcan−βcan(f can
t+1−E(f can

t+1)) and Vε is given

in (12).

We maximize this log-likelihood function (IA15) subject to the no-arbitrage restric-

tion (5). Without loss of generality, we replace the no-arbitrage restriction (5) with the

expression

a′V −1
ε a ≤ δapt

that is, replacing Ve with Vε, is more convenient when deriving the first-order conditions.

We use the Karush-Kuhn-Tucker (KKT) multiplier method to solve the resulting con-

strained optimization problem,

Θ̂ = argmax log(L(Θ)) subject to a′V −1
ε a ≤ δapt, (IA16)

and denote the KKT multiplier by κ/2.

The optimization problem for estimating the parameters of the admissible SDF implied

by the APT model of asset returns is identical to that formulated in expression (IA16), in
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which there are no candidate factors, Kcan = 0, and the missing factors fmis
t+1 are replaced

with latent factors ft+1. Correspondingly, the parameters characterizing the missing factors

fmis
t+1, such as βmis, λmis, and Kmis, are replaced with the parameters characterizing the latent

factors ft+1, which are β, λ, and K, respectively.

Proposition IA.6.5 (Constrained ML Estimator). Suppose that the assumptions of Propo-

sition IA.4.1 hold. Assume that the number Kmis of missing factors in the candidate model

and the no-arbitrage bound δapt are known and that the sample covariance matrix V̂fcan of

candidate factors is nonsingular. Then the estimators of λcan and Vfcan coincide with the

sample mean and sample covariance of the candidate factors f can
t :

λ̂can = f̄ can,

V̂ can
f = Q̂fcan − f̄ canf̄ can ′.

The estimators β̂mis and V̂e of βmis and Ve do not admit a closed-form solution.

(i) If the optimal value of the Karush-Kuhn-Tucker multiplier κ̂ is greater than zero, the

estimators of βcan, λmis, and a, are

vec(β̂can) =
(
Q̂fcan ⊗ IN − f̄ canf̄ can ′ ⊗ Ĝ

)−1

× vec
(
Q̂Rfcan − Ĝ(R̄− R̄f1N )f̄ can ′) (IA17)

λ̂mis = (β̂mis′ V̂ε
−1
β̂mis)−1β̂mis′ V̂ε

−1
(
R̄− R̄f1N − β̂canλ̂can

)
, and

â =
1

κ̂+ 1

(
R̄− R̄f1N − β̂canλ̂can − β̂misλ̂mis

)
,

where

κ̂ =

(
(R̄− R̄f1N − β̂canλ̂can − β̂misλ̂mis)′V −1

ε (R̄− R̄f1N − β̂canλ̂can − β̂misλ̂mis)

δapt
− 1

)1/2

,

Ĝ =
1

(κ̂+ 1)
IN +

κ̂

(κ̂+ 1)
β̂mis(β̂mis′ V̂ε

−1
β̂mis)−1β̂mis′ V̂ε

−1
, and

V̂ε = β̂misβ̂mis′ + V̂e.

(ii) If the optimal value of the Karush-Kuhn-Tucker multiplier satisfies κ̂ = 0, it is possible

to estimate the vector α

α̂ = R̄− R̄f1N − β̂canλ̂can

but not its components, a and βmisλmis. The estimator of vec(βcan) is given by ex-

pression (IA17) with κ̂ = 0.
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Proof: The Lagrangian for our optimization problem is

Lp(Θ) = −κ
2

(a′V −1
ε a− δapt)−

1

2
log(|Vε|)−

1

2
log(|Vfcan |)− 1

2T

T−1∑
t=0

ε′t+1V
−1
ε εt+1

− 1

2T

T−1∑
t=0

(f can
t+1 − E(f can

t ))′V −1
fcan(f can

t+1 − E(f can
t )). (IA18)

Recall that the candidate factors f can
t represent excess returns on tradable investment strate-

gies, that is, E(f can
t ) = λcan. The first-order condition for λcan results in

λ̂can =
1

T

T∑
t=1

f can
t .

Similarly, the first-order condition for V can
f gives

V̂fcan =
1

T

T∑
t=1

(f can
t − λ̂can)(f can

t − λ̂can)′.

Next, we consider two cases, κ̂ > 0 and κ̂ = 0.

First, suppose that κ̂ > 0, and therefore a′V −1
ε a = δapt. We differentiate the Lagrangian

in equation (IA18) with respect to λmis and a and obtain the following Kmis +N first-order

conditions:(
β̂mis ′V̂ −1

ε

IN

)(
R̄− R̄f1N − β̂canλ̂can

)
=
( β̂mis ′V̂ −1

ε β̂mis β̂mis ′V̂ −1
ε

β̂mis ′ (1 + κ̂)IN

)(
λ̂mis

â

)
.

The matrix premultiplying the vector (λ̂mis ′, â′)′ is nonsingular when the no-arbitrage re-

striction binds, implying that λ̂mis and â are identified separately :

λ̂mis = (β̂mis ′V̂ −1
ε β̂mis)−1β̂mis ′V̂ −1

ε

(
R̄− R̄f1N − β̂canλ̂can

)
, (IA19)

â =
1

κ̂+ 1

(
R̄− R̄f1N − β̂canλ̂can − β̂misλ̂mis

)
. (IA20)

Next, we use equation (IA20) and the binding no-arbitrage restriction a′V −1
ε a = δapt to

obtain

κ̂ =
((R̄− R̄f1N − β̂canλ̂can − β̂misλ̂mis)′V̂ −1

ε (R̄− R̄f1N − β̂canλ̂can − β̂misλ̂mis)

δapt
− 1
)1/2

.

(IA21)

Finally, we consider the first-order condition with respect to the generic (i, j)th element

of βcan, denoted by βcan
ij with 1 ≤ i ≤ N, 1 ≤ j ≤ Kcan, and obtain

− 1

T

T∑
t=1

(
Rt −Rft1N − β̂misλ̂mis − â− β̂canf can

t

)′
V̂ −1
ε

(
− ∂βcan

∂βcan
ij

|βcan=β̂can f
can
t

)
= 0,
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which can be rearranged by stacking together the first-order conditions as

Q̂Rfcan − (â+ β̂misλ̂mis)f̄ can ′ − β̂canQ̂fcan = 0N×Kcan . (IA22)

Next, we define

Ĝ =
1

(κ̂+ 1)
IN +

κ̂

(κ̂+ 1)
β̂mis(β̂mis ′V̂ −1

ε β̂mis)−1β̂mis ′V̂ −1
ε ,

and use the formulas (IA19) and (IA20) to rewrite equation (IA22) as follows

β̂canQ̂fcan − Ĝβ̂canf̄ canf̄ can ′ = Q̂Rfcan −G(R̄− R̄f1N )f̄ can ′.

Then, we take the vec operator and solve for β̂can to obtain

vec(β̂can) =
(
Q̂fcan ⊗ IN − f̄ canf̄ can ′ ⊗ Ĝ

)−1×vec
(
Q̂Rfcan −G(R̄− R̄f1N )f̄ can ′).(IA23)

The solution for β̂can exists because the matrix
(
Q̂fcan⊗IN−f̄ canf̄ can ′⊗Ĝ

)
is nonsingular.

We note that

Q̂fcan ⊗ IN − f̄ can f̄ can ′ ⊗ Ĝ = V̂fcan ⊗ IN + f̄ can f̄ can ′ ⊗ (IN − Ĝ),

where V̂fcan , being a covariance matrix, is positive-definite, and f̄ can f̄ can ′ ⊗ (IN − Ĝ) is

positive semi-definite, because

IN − Ĝ = IN −
1

(κ̂+ 1)
IN −

( κ̂

1 + κ̂

)
β̂mis(β̂mis ′V̂ −1

ε β̂mis)−1β̂mis ′V̂ −1
ε

=
( κ̂

1 + κ̂

)
(IN − β̂mis(β̂mis ′V̂ −1

ε β̂mis)−1β̂mis ′V̂ −1
ε )

=
( κ̂

1 + κ̂

)
V̂ε(V̂

−1
ε − V̂ −1

ε β̂mis(β̂mis ′V̂ −1
ε β̂mis)−1β̂mis ′V̂ −1

ε )

=
( κ̂

1 + κ̂

)
V̂ε(V̂

−1
ε )

1
2 (IN − (V̂ −1

ε )
1
2 β̂mis(β̂mis ′V̂ −1

ε β̂mis)−1β̂mis ′(V̂ −1
ε )

1
2 )(V̂ −1

ε )
1
2

is the product of the positive-definite matrices IN−(V̂ −1
ε )

1
2 β̂mis(β̂mis ′V̂ −1

ε β̂mis)−1β̂mis ′(V̂ −1
ε )

1
2

(projection matrix), V̂ε, and (V̂ −1
ε )

1
2 . Note that λ̂mis, â, κ̂ are functions of β̂mis, V̂e, and

β̂can:

λ̂mis = λ̂mis(β̂mis, β̂can, V̂e, ), â = â(β̂mis, β̂can, V̂e), κ̂ = κ̂(β̂mis, β̂can, V̂e). (IA24)

However, we cannot obtain the explicit representation of λ̂mis, â, and κ̂ in terms of fewer

parameters, for example, only β̂mis and V̂e. This is because substituting κ̂ into expression

(IA23) for β̂can creates a fixed-point problem for β̂can.

Because a fixed-point problem slows down substantially the optimization routine, we do

not use the closed-form solution (IA23) for β̂can and instead substitute expressions (IA24)
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into Lp(Θ) to obtain the concentrated log-likelihood function, which is a function of only

βmis, βcan, and Ve. We maximize the concentrated log-likelihood numerically, thereby ob-

taining the estimates of βmis, βcan, and Ve, which also imply the optimal values of the other

parameters. Finally, we verify if equation (IA23) holds, thereby checking convergence of

our optimization algorithm.

If equation (IA21) implies that κ̂ < 0 then we ignore all the obtained above results and

move to the next case of κ̂ = 0.

Consider the second case, in which the Karush-Kuhn-Tucker multiplier is zero: κ̂ = 0.

In this case, a feasible solution to the optimization problem satisfies a′V −1
ε a < δapt.

The first-order conditions with respect to λmis and a imply the following singular system

of Kmis +N equations

(
β̂mis ′V̂ −1

ε

IN

)(
R̄− R̄f1N − β̂canλ̂can)

)
=
( β̂mis ′V̂ −1

ε β̂mis β̂mis ′V̂ −1
ε

β̂mis IN

)(
λ̂mis

â

)
.

The matrix ( β̂mis ′V̂ −1
ε β̂mis β̂mis ′V̂ −1

ε

β̂mis IN

)
is of dimension (N+Kmis)×(N+Kmis) but of rank N , and therefore it is noninvertible. As a

result, we cannot identify separately a and λmis, implying that if κ̂ = 0, we can only identify

the sum a + βmisλmis but not its two components separately. All the other parameters of

the vector Θ are identified separately, and their expressions follow from differentiating the

Lagrangian (IA18) and solving the resulting first-order conditions. For instance, the formula

for β̂can follows by setting Ĝ = IN into (IA17).

When both cases, κ̂ > 0 and κ̂ = 0, are feasible, we choose the one under which the

log-likelihood Lp(Θ) is larger. �

IA.7 The SDF with Nonorthogonal Components

In the main text of the manuscript, we assumed that the candidate risk factors f can
t+1 are

orthogonal to the missing sources of systematic risk fmis
t+1 and unsystematic shocks et+1. This

assumption is without loss of generality because if the (observable) systematic risk factors

fmis
t+1 that the candidate model omits are correlated with f can

t+1, there exists an observationally

equivalent representation of the SDF Mt+1, such that the factors f can
t+1 are orthogonal to some

latent systematic risk factors (residuals from an orthogonal projection of omitted observable

risk factors onto the candidate factors). Thus, the assumption of orthogonality affects the

interpretation of the missing factors but not the admissibility of the pricing kernel.
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In particular,

Mt+1 =
1

Rf
+ bcan ′(f can

t+1 − E(f can
t+1)) + bmis ′(fmis

t+1 − E(fmis
t+1)) + c′et+1

=
1

Rf
+ b̃can ′(f can

t+1 − E(f can
t+1)) + bmis ′(f̃mis

t+1 − E(f̃mis
t+1)) + c′et+1,

where Q = cov(f can
t+1, f

mis ′
t+1 ) is a Kcan ×Kmis matrix of covariances and

b̃can = bcan + V −1
fcanQb

mis,

f̃mis
t+1 − E(f̃mis

t+1) = (fmis
t+1 − E(fmis

t+1))−Q′Vfcan(f can
t+1 − E(f can

t+1)).

Notice that by construction cov(f can
t+1, f̃

mis ′
t+1 ) is a Kcan ×Kmis matrix of zeros, because

f̃mis
t+1 represent the linear-projection residual from projecting fmis

t+1−E(fmis
t+1) on f can

t+1−E(f can
t+1).

We now show how, starting from a candidate factor model with factors f can
t+1 that are

correlated with the missing systematic factors fmis
t+1, we can construct an admissible SDF.

Proposition IA.7.6 (SDF: Correlated case). Under Assumptions 2.1 and 2.2 of the APT,

there exists an admissible SDF of the form

Mt+1 =
1

Rf
+ bcan ′(f can

t+1 − E(f can
t+1)) + bmis ′(fmis

t+1 − E(fmis
t+1)) + c′et+1, where

bcan ′ =

(
−
λcan ′V −1

fcan

Rf
+
λmis ′V −1

fmis

Rf
Q′V −1

fcan

)
×
(
IKcan −QV −1

fmisQ
′V −1
fcan

)−1
,

bmis ′ =

(
−
λmisV −1

fmis

Rf
+
λcan ′V −1

fcan

Rf
QV −1

fmis

)
×
(
IKmis −Q′V −1

fcanQV
−1
fmis

)−1
,

c′ = −aV
−1
e

Rf
.

Proof: We guess that the SDF has the following functional form

Mt+1 = E(Mt+1) + bcan ′(f can
t+1 − E(f can

t+1)) + bmis ′(fmis
t+1 − E(fmis

t+1)) + c′et+1,

where bcan is a Kcan × 1 vector, bmis is a Kmis × 1 vector, and c is an N × 1 vector. We

identify the unknown vectors bcan, bmis, and c by using the Law of One Price. Specifically,

because we assume the existence of the risk-free asset, to determine the mean of the SDF,

we use the condition

E(Mt+1) =
1

Rf
.

Next, because λcan represents a vector of prices of risk of f can
t+1 we have that

− cov(Mt+1, f
can
t+1)×Rf = λcan.
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These Kcan conditions identify bcan:

bcan ′ = − 1

Rf
λcan ′V −1

fcan − bmis ′Q′V −1
fcan . (IA25)

Similarly, λmis is the price of risk associated with factors fmis
t+1, or equivalently,

− cov(Mt+1, f
mis
t+1)×Rf = λmis.

These Kmis conditions identify bmis:

bmis ′ = −
λmis ′V −1

fmis

Rf
− bcan ′QV −1

fmis . (IA26)

Putting together expressions (IA25) and (IA26), we obtain

bcan ′ =

(
−
λcan ′V −1

fcan

Rf
+
λmis ′V −1

fmis

Rf
Q′V −1

fcan

)
×
(
IKcan −QV −1

fmisQ
′V −1
fcan

)−1
,

bmis ′ =

(
−
λmisV −1

fmis

Rf
+
λcan ′V −1

fcan

Rf
QV −1

fmis

)
×
(
IKmis −Q′V −1

fcanQV
−1
fmis

)−1
.

Finally, it must be the case that the SDF prices the N basis assets:

E(Mt+1(Rt+1 −Rf1N )) = 0N .

These N equations identify c. Given expressions (IA25) and (IA26), we obtain

c′ = −aV
−1
e

Rf
. �

Next, we provide a non-negative SDF.

Proposition IA.7.7 (Nonnegative SDF: Correlated case). Under Assumptions 2.1 and 2.2

of the APT and the assumption that returns Rt+1 are Gaussian, there exists an admissible

SDF Mexp,t+1

Mexp,t+1 = Mβ,can
exp,t+1 ×M

a
exp,t+1 ×M

β,mis
exp,t+1 where

Mβ,can
exp,t+1 =

1

Rf
exp

(
bcan ′
+ (f can

t+1 − E(f can
t+1))− 1

2
bcan ′
+ Vfcanbcan

+ − 1

2
bcan ′
+ Qbmis

+

)
Mβ,mis

exp,t+1 = exp

(
bmis ′
+ (fmis

t+1 − E(fmis
t+1))− 1

2
bmis ′
+ Vfmisbmis

+ − 1

2
bcan ′
+ Qbmis

+

)
Ma

exp,t+1 = exp

(
−a′V −1

e et+1 −
1

2
a′V −1

e a

)
, where

bcan ′
+ = (−λcan ′Vfcan + λmis ′V −1

fmisQ
′V −1
fcan)× (IKcan −QV −1

fmisQ
′V −1
fcan)−1,

bmis ′
+ = (−λmis ′Vfmis + λcan ′V −1

fcanQV
−1
fmis)× (IKmis −Q′V −1

fcanQV
−1
fmis)

−1.
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Proof: We use a guess-and-verify method to derive a nonnegative SDF. We guess that the

SDF has the following functional form

Mexp,t+1 = exp [µ+ + bcan ′
+ (f can

t+1 − E(f can
t+1)) + bmis ′

+ (fmis
t+1 − E(fmis

t+1)) + c′+et+1]

with unknown vectors bcan
+ , bmis

+ , and c+, as well as an unknown scalar µ+. To identify the

unknowns and verify our guess, we use the following Kcan +Kmis +N + 1 equations, which

are implications of the Law of One Price:

− cov(Mexp,t+1, f
can
t+1)×Rf = λcan,

− cov(Mexp,t+1, f
mis
t+1)×Rf = λmis,

E(Mexp,t+1(Rt+1 −Rf1N )) = 0N

E(Mexp,t+1) = R−1
f .

The first Kcan equations imply that

−E(Mexp,t+1(f can
t+1 − E(f can

t+1))) = E(Mexp,t+1)× λcan,

which. along with Lemma IA.3.1, give

Vfcan(bcan
+ + V −1

fcanQb
mis
+ ) = −λcan. (IA27)

Similarly, the next Kmis equations imply that

−E(Mexp,t+1(fmis
t+1 − E(fmis

t+1))) = E(Mexp,t+1)× λmis,

which, along with Lemma IA.3.1, lead to:

Vfmis(bmis
+ + V −1

fmisQ
′bmis

+ ) = −λmis. (IA28)

From expressions (IA27) and (IA28), we obtain

bcan ′
+ = (−λcan ′Vfcan + λmis ′V −1

fmisQ
′V −1
fcan)× (IKcan −QV −1

fmisQ
′V −1
fcan)−1,

bmis ′
+ = (−λmis ′Vfmis + λcan ′V −1

fcanQV
−1
fmis)× (IKmis −Q′V −1

fcanQV
−1
fmis)

−1.

Next, we use the condition that the SDF prices the N basis assets and Lemma IA.3.1

to derive:

c′+ = −a′V −1
e .

Finally, the last identification condition implies

1

Rf
= E(Mexp,t+1)

= E(exp(µ+ + bcan ′
+ (f can

t+1 − E(f can
t+1)) + bmis ′

+ (fmis
t+1 − E(fmis

t+1)) + c′+et+1))
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= exp (µ+ + (bcan
+ + V −1

fcanQb
mis
+ )′Vfcan(bcan

+ + V −1
fcanQb

mis
+ )/2 + bmis ′

+ Vfmisbmis
+ /2 + c′+Vec+/2)

= exp(µ+ + bcan ′
+ Vfcanbcan

+ /2 + bmis ′
+ Vfmisbmis

+ /2 + a′V −1
e a/2 + bcan ′

+ Qbmis
+ ).

In the last equation, we use Vfmis = Q′V −1
fcanQ+ Vf̃mis , where f can

t+1 and f̃mis
t+1 are orthogonal,

and c′ = −a′V −1
e . As a result,

exp(µ+) = R−1
f × exp(−bcan ′

+ Vfcanbcan
+ /2− bmis ′

+ Vfmisbmis
+ /2− a′V −1

e a/2− bcan ′
+ Qbmis

+ ). �

Next, let us introduce the projection version of the SDF Mexp,t+1. First, note that it is

convenient to express Mexp,t+1 as

Mexp,t+1 =
1

Rf
× exp (mt+1 −

1

2
m) (IA29)

=
1

Rf
× exp (mβ,can

t+1 +mβ,mis
t+1 +ma

t+1 −
1

2
mβ,can − 1

2
mβ,mis − 1

2
ma),

where

mt+1 = mβ,can
t+1 +mβ,mis

t+1 +ma
t+1,

m = mβ,can +mβ,mis +ma,

mβ,can
t+1 = bcan ′

+ (f can
t+1 − E(f can

t+1)),

mβ,mis
t+1 = bmis ′

+ (fmis
t+1 − E(fmis

t+1)),

ma
t+1 = −a′V −1

e et+1,

mβ,can = bcan ′
+ Vfcanbcan

+ + bcan ′
+ Qbmis

+ ,

mβ,mis = bmis ′
+ Vfmisbmis

+ + bcan ′
+ Qbmis

+ ,

ma = a′V −1
e a.

Second, set Xt+1 = Rt+1 − Rf1N − µ with µ = E(Rt+1 − Rf1N ), ft = (f can ′
t , fmis ′

t )′, and

β = (βcan, βmis) and notice that VR = βV β′ + Ve with V =

(
Vfcan Q
Q′ Vfmis

)
.

Finally, define the projected non-negative SDF as

M̂exp,t+1 =
1

Rf
× exp

(
m̂t+1 −

1

2
m̂

)
, where (IA30)

m̂t+1 = E(mt+1X
′
t+1)E(Xt+1X

′
t+1)−1Xt+1,

m̂ =
1

2
V ar(m̂t+1).

Thus,

m̂t+1 = m̂β,can
t+1 + m̂β,mis

t+1 + m̂a
t+1 and m̂ = m̂β,can + m̂β,mis + m̂a, where
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m̂β,can
t+1 = bcan ′

+ (Vfcanβcan ′ +Qβmis ′)V −1
R Xt+1 = bcan ′

+ (Vfcan , Q)β′V −1
R Xt+1,

m̂β,mis
t+1 = bmis ′

+ (Q′βcan ′ + Vfmisβmis ′)V −1
R Xt+1 = bmis ′

+ (Q′, V mis
f )β′V −1

R Xt+1,

m̂a
t+1 = c′+VeV

−1
R Xt+1,

m̂β,can = bcan ′
+ (Vfcan , Q)β′V −1

R β(Vfcan , Q)′bcan
+ + bcan ′

+ (Vfcan , Q)β′V −1
R β(Q′, Vfmis)′bmis

+ ,

m̂β,mis = bmis ′
+ (Q′, Vfmis)β′V −1

R β(Q′, Vfmis)′bmis
+ + bcan ′

+ (Vfcan , Q)β′V −1
R β(Q′, Vfmis)′bmis

+ ,

m̂a = c′+VeV
−1
R Vec+.

Proposition IA.7.8 (Asymptotic Properties of the SDF Projections: Correlated Case).

Under the assumptions of Proposition IA.4.1, as N →∞, Mexp,t+1 and M̂exp,t+1 of (IA29)

and (IA30) satisfy

M̂exp,t+1 −Mexp,t+1
p−→ 0.

Proof: We have, as N →∞,

c′+VeV
−1
R et+1 − c′+et+1

p−→ 0,

β′VeV
−1
R c+ −→ 0Kcan+Kmis ,

β′V −1
R et+1

p−→ 0Kcan+Kmis ,

β′V −1
R β −→ V −1

f ,

and therefore,

m̂β,can
t+1 = bcan ′

+ (Vfcan , Q)β′V −1
R Xt+1

p−→ bcan ′
+ (Vfcan , Q)V −1(ft+1 − E(ft+1))

= bcan ′
+ (IKcan , OKcan)(ft+1 − E(ft+1)) = bcan ′

+ (f can
t+1 − E(f can

t+1)), (IA31)

and

m̂β,mis
t+1 = bmis ′

+ (Q, Vfmis)β′V −1
R Xt+1

p−→ bmis ′
+ (Q′, Vfcan)V −1(ft+1 − E(ft+1))

= bmis ′
+ (OKmis , IKmis)(ft+1 − E(ft+1)) = bmis ′

+ (fmis
t+1 − E(fmis

t+1)). (IA32)

Given that β′VeV
−1
R c+ −→ 0Kcan+Kmis and c′+VeV

−1
R et+1 − c′+et+1

p−→ 0, as N →∞, then

c′+VeV
−1
R Xt+1 − c′+et+1

p−→ 0, as N →∞. (IA33)

As a result, expressions (IA31), (IA32), and (IA33) imply that

m̂t+1 −mt+1
p−→ 0, as N →∞, (IA34)

Similarly, the result that, as N →∞, β′V −1
R β −→ V −1

f , implies that

m̂β can−→bcan ′
+ Vfcanbcan

+ + bcan ′
+ Qbmis

+ = mβ,can, as N →∞, and (IA35)

m̂βmis−→bmis ′
+ Vfmisbmis

+ + bcan ′
+ Qbmis

+ = mβ,mis, as N →∞. (IA36)
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Notice that

m̂a = c′+VeV
−1
R Vec+ = a′V −1

e VeV
−1
R VeV

−1
e a = a′V −1

R a

and recall that the proof of Proposition IA.4.1 shows that a′V −1
R a − a′V −1

e a −→ 0, as

N →∞, which implies that

m̂a −ma −→ 0, as N →∞, (IA37)

Expressions (IA35), (IA36), and (IA37) imply that

m̂−m −→ 0, as N →∞. (IA38)

From the results in expressions (IA34) and (IA38), we obtain

M̂exp,t+1 −Mexp,t+1
p−→ 0, as N →∞. �

Remark: Note that because f can
t+1 are observable factors, in empirical work, we may use the

exact component mβ,can
t+1 +mβ,can rather than its projected counterpart m̂β,can

t+1 + m̂β,can.

IA.8 Data description

To examine which economic variables may explain variation in the SDF, we collect the

returns on a set of 457 trading strategies and 103 macroeconomic and financial indicators.

The set of trading strategies includes:

• 205 strategies from Chen and Zimmermann (2022).

• 153 strategies in the Global Factor Dataset from Jensen et al. (2022).

• 55 strategies from Kozak et al. (2020).

• 35 strategies from Bryzgalova et al. (2023). The sources of these strategies are specified

in their Internet Appendix. Their dataset includes 34 trading strategies, but we

consider two versions of the size strategy, one from Fama and French (1993) and the

other from Fama and French (2015).

• We add the following nine strategies:

– Industry-adjusted value, momentum, and profitability factors; intra-industry

value, momentum, and profitability factors; profitable-minus-unprofitable factor

from Novy-Marx (2013), available from http://rnm.simon.rochester.edu.

– Expected-growth factor of Hou et al. (2021), available from https://global-q.

org/index.html.
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– Up-minus-down (UMD) factor from the AQR data library, available from https:

//www.aqr.com/Insights/Datasets.

The set of macroeconomic and financial indicators includes:

• 53 variables constructed from 17 variables from Bryzgalova et al. (2023). Below we

explain how we get to 53 variables.

– For indices of financial uncertainty, real uncertainty, and macroeconomic uncer-

tainty, we consider time horizons of 1, 3, and 12 months. We use these variables

in levels and consider their AR(1) innovations, for a total of 18 variables.

– For the investor-sentiment measures of Baker and Wurgler (2006) and Huang

et al. (2015), labeled as BW INV SENT and HJTZ INV SENT, respectively, we

consider both the orthogonalized and non-orthogonalized versions. We use these

variables in levels and consider AR(1) innovations of these variables for a total

of 8 variables.

– For other persistent variables, such as the term spread (TERM), change in the

difference between a 10-year Treasury bond yield and a 3-month Treasury bill

yield (DELTA SLOPE), credit spread (CREDIT), dividend yield (DIV), price-

earnings ratio (PE), unemployment rate (UNRATE), the growth rate of indus-

trial production (IND PROD), the monthly growth rate of the Producer Price

Index for Crude Petroleum (OIL), we look at both levels and first-order differ-

ences, for a total of 16 variables.

– Real per capita consumption growth on nondurable goods and services separately

and jointly. We also include the 3-year consumption growth (nondurable goods

and services) and its AR(1) innovations, for a total of 5 variables.

– Inflation, computed as the log-difference in the price index for both nondurable

goods and services and its AR(1) innovations, for a total of 2 variables.

– The level of the intermediary-capital ratio and its innovations, for a total of 2

variables.

– The level of the aggregate liquidity factor and its innovations.

• The first 3 principal components and their VAR(1) innovations for the 279 macroeco-

nomic variables from Jurado et al. (2015), for a total of 6 variables.

• The first eight principal components and their VAR(1) innovations for the 128 macroe-

conomic variables from the FRED-MD dataset of McCracken and Ng (2015), gives a

total of 16 variables. We obtain these macro variables from https://research.

stlouisfed.org/econ/mccracken/fred-databases and use the data vintage for
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February 2021. We exclude four variables, ACOGNO, ANDENOx, TWEXAFEGSMTHx,

and UMCSENT, which have missing observations at the start of the sample.

• Consumer sentiment and its first-order differences.

• The market-dislocation index of Pasquariello (2014), its first-order differences, and

AR(1) innovations.

• The disagreement index of Huang et al. (2021) and its first-order differences.

• The Chicago Board Options Exchange (CBOE) volatility index (VIX) available on

the website of the CBOE, its first-order differences, and AR(1) innovations.

• The U.S. economic policy uncertainty index (EPU) of Baker et al. (2016) and the

equity market volatility (EMV) tracker of Baker et al. (2019), which are available

from www.policyuncertainty.com. For both indices, we also consider their first-

order differences and AR(1) innovations.

• The U.S. business-confidence index, the U.S. consumer-confidence index, and the U.S.

composite leading indicator from the OECD library.

• The coincident economic-activity index and its first-order differences from https:

//fred.stlouisfed.org/series/USPHCI.

• The NBER recession index from https://fred.stlouisfed.org/series/USREC.

• The TED spread from https://fred.stlouisfed.org/series/TEDRATE.

• The effective federal funds rate and the real federal funds rate from https://fred.

stlouisfed.org/series/FEDFUNDS.

• The credit-spread index (Gilchrist and Zakraǰsek, 2012) and its first order differences.

• The Chicago Fed National Financial Condition Index from https://fred.stlouisfed.

org/series/NFCI.
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IA.9 Additional Tables

This section contains additional tables supporting the interpretation of our empirical results

described in the manuscript.

Table IA.1: The Admissible SDF under the APT and observable variables
This table reports the explanatory power of the selected variables for the unsystematic (Panel A)
and systematic (Panel B) components of the SDF implied by the APT model of asset returns.

R2(%) p-value

Panel A: log(Ma
exp,t+1)

NBER recession indicator 0.18 0.27
Intermediary constraints (He et al., 2017) 2.71 0.00
Sentiment index (Baker and Wurgler, 2006) 2.60 0.00
Sentiment index (Huang et al., 2015) 3.41 0.00
Shocks in credit spread (Gilchrist and Zakraǰsek, 2012) 1.92 0.00
Shocks in VIX 2.24 0.00

Panel B: log(Mβ
exp,t+1)

NBER recession indicator 0.76 0.02
Chicago Fed National Financial Condition Index 2.64 0.00
Intermediary constraints (He et al., 2017) 55.15 0.00
Shocks in aggregate liquidity (Pástor and Stambaugh, 2003) 11.12 0.00
Shocks in credit spread (Gilchrist and Zakraǰsek, 2012) 13.79 0.00
Shocks in dividend yield (Campbell, 1996) 40.39 0.00
Shocks in financial uncertainty (Jurado et al., 2015) 11.09 0.00
Shocks in VIX 54.32 0.00
TED spread 4.39 0.00

Table IA.2: What explains the systematic SDF component?
This table shows the explanatory power of returns on five trading strategies for the systematic SDF
component, log(M̂β

exp,t+1), obtained when estimating the APT model of asset returns.

Estimate Std. error t-statistic p-value

Intercept 0.01 0.00 13.73 0.00
MKT −3.25 0.02 −171.09 0.00
Sales-to-Market −0.49 0.02 −24.62 0.00
Dollar Volume 0.77 0.03 26.27 0.00
Bid-Ask Spread 0.20 0.01 20.55 0.00
Zero Trade Days 0.21 0.02 9.18 0.00

R2 = 0.9905, R2
adj = 0.9904
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IA.10 Additional Figures

Figure IA.1: Spanning the unsystematic SDF component

The blue curve shows the R2 (left axis) of 325 regressions of log(M̂a
exp,t+1) on the returns of trad-

ing strategies that are available for the entire sample. The first regression includes the return on
the trading strategy that explains the most variation in log(M̂a

exp,t+1); each subsequent regression
includes the return on an extra trading strategy that adds the most to explain the variation in
log(M̂a

exp,t+1). The red curve shows the value of the Bayesian Information Criteria (BIC) (right
axis) associated with these regressions. The minimal BIC= −552.86 is for the regression with 39
explanatory variables; the associated R2 = 66.45%.
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Figure IA.2: Spanning the systematic SDF component

The blue curve shows the R2 (left axis) for 325 regressions of log(M̂β
exp,t+1) on returns of trading

strategies. The first regression includes the return on the trading strategy that explains the most
variation in log(M̂β

exp,t+1); each subsequent regression includes the return on another trading strategy

that adds the most to explain the variation in log(M̂β
exp,t+1). The red curve shows the BIC values

(right axis) associated with these regressions. The minimal BIC= −4285.57 is for the regression
with 54 explanatory variables; the associated R2 = 99.73%.
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Figure IA.3: Correcting the CAPM

This figure illustrates how the HJ distance changes with Kmis and δapt, when the candidate model
includes only the market return as a systematic factor. The top panel shows the estimation results
based on cross-validation with 10 folds. The bottom panel shows the in-sample results.
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Figure IA.4: Time-series of SDF and its components for the corrected CAPM

This figure has four panels, which show the dynamics of the admissible SDF, M̂exp,t+1 and its three

components: the unsystematic component M̂a
exp,t+1, the component M̂β,can

exp,t+1 corresponding to the

candidate model with the market factor, and the missing systematic component M̂β,mis
exp,t+1. Gray

bars indicate NBER recession periods.
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Figure IA.5: Pricing errors in the candidate and corrected CAPM
This plot displays the pricing errors in the candidate and corrected CAPM models. The red dots
indicate the pricing errors for the 202 basis assets using the candidate CAPM model. The blue dots
indicate the pricing errors using the corrected CAPM model.
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Figure IA.6: Correcting the C-CAPM

This figure illustrates how the HJ distance changes with Kmis and δapt, when the candidate model
includes only the return on the consumption-mimicking portfolio of Breeden et al. (1989). The top
panel shows the estimation results based on cross-validation with 10 folds. The bottom panel shows
the in-sample results.
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Figure IA.7: Time-series of SDF and its components for the corrected C-CAPM

This figure has four panels, which show the dynamics of the admissible SDF M̂exp,t+1 and its three

components: the unsystematic component M̂a
exp,t+1, the component M̂β,can

exp,t+1 corresponding to the
candidate model with the consumption mimicking portfolio as the sole factor, and the missing
systematic component M̂β,mis

exp,t+1. Gray bars indicate NBER recession periods.
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Figure IA.8: Correcting the FF3

This figure illustrates how the HJ distance changes with Kmis and δapt, when the candidate model
is the three-factor model of Fama and French (1993). The top panel shows the estimation results
based on cross-validation with 10 folds. The bottom panel shows the in-sample results.
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Figure IA.9: Time-series of SDF and its components for the corrected FF3
model
This figure has four panels, which show the dynamics of the admissible SDF, M̂exp,t+1 and its three

components: the unsystematic component M̂a
exp,t+1, the component M̂β,can

exp,t+1 corresponding to the

candidate FF3 model, and the missing systematic component M̂β,mis
exp,t+1. Gray bars indicate NBER

recession periods.
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Figure IA.10: Pricing errors in the candidate and corrected FF3 model
This plot shows the pricing errors in the candidate and corrected FF3 models. The red dots indicate
the pricing errors for the 202 basis assets using the candidate FF3 model. The blue dots indicate
the pricing errors using the corrected FF3 model.
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