What is Missing in Asset-Pricing Factor Models?

Massimo Dello Preite
Imperial College London
Paolo Zaffaroni
Imperial College London

Raman Uppal
Edhec Business School, CEPR
Irina Zviadadze
HEC Paris, CEPR

Turin - Collegio Carlo Alberto 26 June 2023

Objective and Motivation

- Major challenge in finance is to price cross-section of stock returns.
- That is, explain why do stocks differ in their expected returns?
- The first model proposed to address this challenge was the CAPM
- When the CAPM failed, researchers then explored other candidate models with hundreds of systematic risk factors (factor zoo)
- However, there is still a sizable pricing error in returns, called alpha.
- In this paper we ask:

What is missing in asse t-pricing factor models?

Objective and Motivation

- Major challenge in finance is to price cross-section of stock returns.
- That is, explain why do stocks differ in their expected returns?
- The first model proposed to address this challenge was the CAPM.
- When the CAPM failed, researchers then explored other candidate models with hundreds of systematic risk factors (factor zoo).
- However, there is still a sizable pricing error in returns, called alpha.
- In this paper we ask:

What is missing in asset-pricing factor models?

Objective and Motivation

- Major challenge in finance is to price cross-section of stock returns.
- That is, explain why do stocks differ in their expected returns?
- The first model proposed to address this challenge was the CAPM.
- When the CAPM failed, researchers then explored other candidate models with hundreds of systematic risk factors (factor zoo).
- However, there is still a sizable pricing error in returns, called alpha.
- In this paper we ask:

What is missing in asset-pricing factor models?

Where we deviate from existing models

- Existing models typically assume that only systematic (common) risk is compensated in financial markets.

$$
\mathbb{E}\left(R_{t+1}-R_{f t} 1_{N}\right)-\beta \lambda=a=0
$$

- β is a vector of assets' exposures to systematic risk
- λ is a vector of prices of unit of systematic risk
- Under the Arbitrage Pricing Theory (APT) setting of Ross (1976, 1977), we explore the possibility that unsystematic risk is also
compensated

Where we deviate from existing models

- Existing models typically assume that only systematic (common) risk is compensated in financial markets.

$$
\mathbb{E}\left(R_{t+1}-R_{f t} 1_{N}\right)-\beta \lambda=a=0
$$

- β is a vector of assets' exposures to systematic risk
- λ is a vector of prices of unit of systematic risk
- Under the Arbitrage Pricing Theory (APT) setting of Ross (1976, 1977), we explore the possibility that unsystematic risk is also compensated.

$$
\mathbb{E}\left(R_{t+1}-R_{f t} 1_{N}\right)-\beta \lambda=a \neq 0
$$

Our line of attack ... use the SDF

- Each asset-pricing model implies a stochastic discount factor (SDF).
- The SDF adjusts cashflows for time and risk.

$$
\begin{array}{rlr}
\text { price }_{t}^{n} & =\mathbb{E}\left[M_{t+1} \times \text { cashflow }_{t+1}^{n}\right] & \ldots \text { cashflows } \\
1 & =\mathbb{E}\left[M_{t+1} \times R_{t+1}^{n}\right] & \ldots \text { returns } \\
0 & =\mathbb{E}\left[M_{t+1} \times\left(R_{t+1}^{n}-R_{f}\right)\right] & \ldots \text { excess returns } \\
\mathbb{E}[\underbrace{R_{t+1}^{n}-R_{f}}_{\text {risk premium }}] & =-\underbrace{\operatorname{cov}\left(M_{t+1}, R_{t+1}^{n}\right)}_{\text {risk }} \times R_{f} & \ldots \text { covariances }
\end{array}
$$

- We examine misspecification in factor models through lens of SDF.

What we do: both Theory and Empirics

1. Under the APT setting

- Identify the admissible SDF implied by the APT (in which $a \neq 0$);
- Quantify the importance of unsystematic risk, a, by estimating the SDF.

2. Given some candidate factor model

- Develon a methodologv to identify what is missing in the candidate model;
- Characterize what is missing in some popular models.

What we do: both Theory and Empirics

1. Under the APT setting

- Identify the admissible SDF implied by the APT (in which $a \neq 0$);
- Quantify the importance of unsystematic risk, a, by estimating the SDF.

2. Given some candidate factor model

- Develop a methodology to identify what is missing in the candidate model;
- Characterize what is missing in some popular models.

What we find: Empirical findings (first part)

- Unsystematic risk is priced in financial markets.
- The unsystematic SDF component explains more than 72% of variation in the admissible SDF;
- Several successful factors correlate with unsystematic SDF component, such as
- Value (Fama and French, 2015),
- Momentum (Jegadeesh and Titman, 1993).
- Systematic component of SDF is driven by Market factor.
- The Market factor explains 95% of the variation in the systematic component of the SDF
- What is missing in popular candidate models is, largely, comnancation for uncystematic rick.

What we find: Empirical findings (first part)

- Unsystematic risk is priced in financial markets.
- The unsystematic SDF component explains more than 72% of variation in the admissible SDF;
- Several successful factors correlate with unsystematic SDF component, such as
- Value (Fama and French, 2015),
- Momentum (Jegadeesh and Titman, 1993).
- Systematic component of SDF is driven by Market factor.
- The Market factor explains 95% of the variation in the systematic component of the SDF.
- What is missing in popular candidate models is, largely,
comnencation for unsystematic rick

What we find: Empirical findings (first part)

- Unsystematic risk is priced in financial markets.
- The unsystematic SDF component explains more than 72% of variation in the admissible SDF;
- Several successful factors correlate with unsystematic SDF component, such as
- Value (Fama and French, 2015),
- Momentum (Jegadeesh and Titman, 1993).
- Systematic component of SDF is driven by Market factor.
- The Market factor explains 95% of the variation in the systematic component of the SDF.
- What is missing in popular candidate models is, largely, compensation for unsystematic risk.

Theory: Our methodology

Arbitrage Pricing Theory (APT) ... our starting point

- Gross returns are described by a latent linear factor model

$$
R_{t+1}-\mathbb{E}\left(R_{t+1}\right)=\beta\left(f_{t+1}-\mathbb{E}\left(f_{t+1}\right)\right)+e_{t+1},
$$

- Expected excess returns are, for some a,

- By asymptotic no-arbitrage, the vector a satisfies the no-arbitrage restriction
- f_{t+1} be the $K \times 1$ vector of common (latent) risk factors with risk premia λ and a $K \times K$ positive definite covariance matrix $V_{f}>0$,
- $\beta=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{N}\right)^{\prime}$ is the $N \times K$ full-rank matrix of loadings,
- e_{t+1} is the vector of unsystematic shocks with zero mean and the $N \times N$ positive definite covariance matrix $V_{e}>0$.

Arbitrage Pricing Theory (APT) ... our starting point

- Gross returns are described by a latent linear factor model

$$
R_{t+1}-\mathbb{E}\left(R_{t+1}\right)=\beta\left(f_{t+1}-\mathbb{E}\left(f_{t+1}\right)\right)+e_{t+1},
$$

- Expected excess returns are, for some a,

$$
\mathbb{E}\left(R_{t+1}-R_{f} 1_{N}\right)=a+\beta \lambda,
$$

- By asymptotic no-arbitrage, the vector a satisfies the no-arbitrage restriction
- f_{t+1} be the $K \times 1$ vector of common (latent) risk factors with risk premia λ and a $K \times K$ positive definite covariance matrix $V_{f}>0$,
- $\beta=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{N}\right)^{\prime}$ is the $N \times K$ full-rank matrix of loadings,
- e_{t+1} is the vector of unsystematic shocks with zero mean and the $N \times N$ positive definite covariance matrix $V_{e}>0$.

Arbitrage Pricing Theory (APT) ... our starting point

- Gross returns are described by a latent linear factor model

$$
R_{t+1}-\mathbb{E}\left(R_{t+1}\right)=\beta\left(f_{t+1}-\mathbb{E}\left(f_{t+1}\right)\right)+e_{t+1},
$$

- Expected excess returns are, for some a,

$$
\mathbb{E}\left(R_{t+1}-R_{f} 1_{N}\right)=a+\beta \lambda,
$$

- By asymptotic no-arbitrage, the vector a satisfies the no-arbitrage restriction

$$
\forall N, \quad a^{\prime} V_{e}^{-1} a \leq \delta_{\mathrm{apt}}<\infty .
$$

- f_{t+1} be the $K \times 1$ vector of common (latent) risk factors with risk premia λ and a $K \times K$ positive definite covariance matrix $V_{f}>0$,
- $\beta=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{N}\right)^{\prime}$ is the $N \times K$ full-rank matrix of loadings,
- e_{t+1} is the vector of unsystematic shocks with zero mean and the $N \times N$ positive definite covariance matrix $V_{e}>0$.

Proposition 1: The SDF under the APT

- The SDF implied by the APT-model of asset returns is

$$
\begin{aligned}
& M_{t+1}=M_{t+1}^{\beta}+M_{t+1}^{a}, \quad \text { where } \\
& M_{t+1}^{\beta}=\frac{1}{R_{f}}-\frac{\lambda V_{f}^{-1}}{R_{f}}\left(f_{t+1}-\mathbb{E}\left(f_{t+1}\right)\right) \\
& \\
& M_{t+1}^{a}=-\frac{a^{\prime} V_{e}^{-1}}{R_{f}} e_{t+1} \\
& \text { systematic component } \\
&
\end{aligned}
$$

Implementation challenges: Non-negative and feasible SDF

- There are two challenges in implementing our SDF.

1. The SDF may not always be strictly positive, thus possibly leading to negative asset prices.
2. $M_{t+1}^{\beta \text { mis }}$ and M_{t+1}^{a} depend on unobservable quantities, such as, $f_{t+1}^{\text {mis }}$ and e_{t+1}, respectively.

- We address both of them

1 We snecify the admissible SDF in exponential form
2. We use the exponential function of linear projections of the SDF on the set of assets.

- Proposition 2: our feasible SDF is asymptotically admissible.

Implementation challenges: Non-negative and feasible SDF

- There are two challenges in implementing our SDF.

1. The SDF may not always be strictly positive, thus possibly leading to negative asset prices.
2. $M_{t+1}^{\beta \text { mis }}$ and M_{t+1}^{a} depend on unobservable quantities, such as, $f_{t+1}^{\text {mis }}$ and e_{t+1}, respectively.

- We address both of them

1. We specify the admissible SDF in exponential form.
2. We use the exponential function of linear projections of the SDF on the set of assets.

- Proposition 2: our feasible SDF is asymptotically admissible.

Implementation challenges: Non-negative and feasible SDF

- There are two challenges in implementing our SDF.

1. The SDF may not always be strictly positive, thus possibly leading to negative asset prices.
2. $M_{t+1}^{\beta \text { mis }}$ and M_{t+1}^{a} depend on unobservable quantities, such as, $f_{t+1}^{\text {mis }}$ and e_{t+1}, respectively.

- We address both of them

1. We specify the admissible SDF in exponential form.
2. We use the exponential function of linear projections of the SDF on the set of assets.

- Proposition 2: our feasible SDF is asymptotically admissible.

Now, develop results for second question:
What is missing in asset-pricing factor models?

Correcting a candidate factor model

- Let's consider a candidate model with $K^{\text {can }}$ observable risk factors $f_{t+1}^{c a n}$.

$$
R_{t+1}-R_{f} 1_{N}=\alpha+\beta^{c a n} \lambda^{c a n}+\beta^{c a n}\left(f_{t+1}^{c a n}-\mathbb{E}\left[f_{t+1}^{c a n}\right]\right)+\varepsilon_{t+1}
$$

- The candidate model may omit

1. Systematic risk factors $f_{t+1}^{\text {mis }}$
2. Compensation for unsystematic risk a.

- We can rewrite α and ε_{t+1} as follows

Correcting a candidate factor model

- Let's consider a candidate model with $K^{\text {can }}$ observable risk factors $f_{t+1}^{c a n}$.

$$
R_{t+1}-R_{f} 1_{N}=\alpha+\beta^{c a n} \lambda^{c a n}+\beta^{c a n}\left(f_{t+1}^{c a n}-\mathbb{E}\left[f_{t+1}^{c a n}\right]\right)+\varepsilon_{t+1}
$$

- The candidate model may omit

1. Systematic risk factors $f_{t+1}^{\text {mis }}$
2. Compensation for unsystematic risk a.

- We can rewrite α and ε_{t+1} as follows

Correcting a candidate factor model

- Let's consider a candidate model with $K^{\text {can }}$ observable risk factors $f_{t+1}^{c a n}$.

$$
R_{t+1}-R_{f} 1_{N}=\alpha+\beta^{c a n} \lambda^{c a n}+\beta^{c a n}\left(f_{t+1}^{c a n}-\mathbb{E}\left[f_{t+1}^{c a n}\right]\right)+\varepsilon_{t+1}
$$

- The candidate model may omit

1. Systematic risk factors $f_{t+1}^{\text {mis }}$
2. Compensation for unsystematic risk a.

- We can rewrite α and ε_{t+1} as follows

$$
\begin{aligned}
\alpha & =a+\beta^{m i s} \lambda^{\text {mis }} \\
\varepsilon_{t+1} & =\beta^{m i s}\left(f_{t+1}^{m i s}-\mathbb{E}\left[f_{t+1}^{m i s}\right]\right)+e_{t+1} \\
V_{\varepsilon} & =\operatorname{var}\left(\varepsilon_{t+1}\right)=\beta^{m i s} V_{f m^{m i s}} \beta^{m i s^{\prime}}+V_{e}
\end{aligned}
$$

Proposition 4: Correcting the candidate SDF

- Under the APT assumptions, there exists an admissible SDF M_{t+1}

$$
M_{t+1}=M_{t+1}^{\beta, c a n}+\underbrace{\left(M_{t+1}^{a}+M_{t+1}^{\beta, m i s}\right)}_{=M_{t+1}^{\alpha}},
$$

$$
\begin{aligned}
M_{t+1}^{\beta, c a n} & =\frac{1}{R_{f}}-\frac{\left(\lambda^{c a n}\right)^{\prime} V_{f}^{-1}}{R_{f}}\left(f_{t+1}^{c a n}-\mathbb{E}\left[f_{t+1}^{\text {can }}\right]\right) \\
M_{t+1}^{\beta, \text { mis }} & =-\frac{\left(\lambda^{\text {mis }}\right)^{\prime} V_{f \text { mis }}^{-1}}{R_{f}}\left(f_{t+1}^{\text {mis }}-\mathbb{E}\left[f_{t+1}^{\text {mis }}\right]\right) \\
M_{t+1}^{a} & =-\frac{a^{\prime} V_{e}^{-1}}{R_{f}} e_{t+1}
\end{aligned}
$$

Key insight of paper that follows from the proposition

- In the candidate model, α represents the pricing error:

$$
\alpha=\mathbb{E}\left[M_{t+1}^{\beta, c a n}\left(R_{t+1}-R_{f} 1_{N}\right)\right] \times R_{f}
$$

In the corrected model, α represents compensation for assets

 exnosures to the missing factors fmis and unsystematic risk et e_{1} a is compensation for unsystematic risk e_{t+1}

Key insight of paper that follows from the proposition

- In the candidate model, α represents the pricing error:

$$
\alpha=\mathbb{E}\left[M_{t+1}^{\beta, \operatorname{can}}\left(R_{t+1}-R_{f} 1_{N}\right)\right] \times R_{f}
$$

- In the corrected model, α represents compensation for assets' exposures to the missing factors $f_{t+1}^{m i s}$ and unsystematic risk e_{t+1} :

$$
\begin{aligned}
\alpha & =-\operatorname{cov}\left(M_{t+1}^{\alpha},\left(R_{t+1}-R_{f} 1_{N}\right)\right) \times R_{f} \\
& =-\operatorname{cov}\left(M_{t+1}, \varepsilon_{t+1}\right) \times R_{f}
\end{aligned}
$$

Key insight of paper that follows from the proposition

- In the candidate model, α represents the pricing error:

$$
\alpha=\mathbb{E}\left[M_{t+1}^{\beta, \text { can }}\left(R_{t+1}-R_{f} 1_{N}\right)\right] \times R_{f}
$$

- In the corrected model, α represents compensation for assets' exposures to the missing factors $f_{t+1}^{m i s}$ and unsystematic risk e_{t+1} :

$$
\begin{aligned}
\alpha & =-\operatorname{cov}\left(M_{t+1}^{\alpha},\left(R_{t+1}-R_{f} 1_{N}\right)\right) \times R_{f} \\
& =-\operatorname{cov}\left(M_{t+1}, \varepsilon_{t+1}\right) \times R_{f}
\end{aligned}
$$

- In particular, a is compensation for unsystematic risk e_{t+1} :

$$
\begin{aligned}
a & =-\operatorname{cov}\left(M_{t+1}^{a},\left(R_{t+1}-R_{f} 1_{N}\right)\right) \times R_{f} \\
& =-\operatorname{cov}\left(M_{t+1}, e_{t+1}\right) \times R_{f} .
\end{aligned}
$$

Empirics: Apply methodology

Estimating the set of parameters

- Estimate the data-generating process of asset returns

$$
\begin{aligned}
R_{t+1}-R_{f} 1_{N} & =a+\beta^{\text {mis }} \lambda^{\text {mis }}+\beta^{c a n} \lambda^{\text {can }} \\
& +\beta^{c a n}\left(f_{t+1}^{c a n}-\mathbb{E}\left[f_{t+1}^{c a n}\right]\right)+\beta^{\text {mis }}\left(f_{t+1}^{\text {mis }}-\mathbb{E}\left[f_{t+1}^{\text {mis }}\right]\right)+e_{t+1}
\end{aligned}
$$

- We use Gaussian maximum-likelihood estimator under the no-arbitrage restriction

$$
\begin{aligned}
& \max _{\theta \in \Theta} \quad \ell(\theta ; K) \\
& \text { s.t. } a^{\prime} V_{e}^{-1} a \leq \delta_{a p t}
\end{aligned}
$$

- Determine the hyper-parameters $\left(K, \delta_{a p t}\right)$
- using cross-validation
- with HJ-distance as selection metric.

Data

- Basis assets: 202 characteristic-based portfolios with monthly returns: 1963:07 to 2019:08. . list
- To interpret our results, we collected a comprehensive set of variables at monthly frequency potentially spanning the SDF
- 457 traded strategies list
- 103 non-traded variables list

Data

- Basis assets: 202 characteristic-based portfolios with monthly returns: 1963:07 to 2019:08.
- To interpret our results, we collected a comprehensive set of variables at monthly frequency potentially spanning the SDF
- 457 traded strategies list
- 103 non-traded variables list

Model selection: determine hyper-parameters $\left(K, \delta_{a p t}\right)$

- $K=2$
- $\delta_{a p t}=0.0529$
- $S R^{a}=0.80$ p.a.
- Unsystematic risk is priced.

What is compensation for unsystematic risk

Time-series properties of SDF and its components

SDF: Systematic versus unsystematic risk

- Unsystematic risk accounts for 73% of variation in SDF
- Sharpe ratio for the aggregate measure of unsystematic risk is 0.79
- Latent systematic factors explain only 27% of variation in SDF

	std dev	\% $\operatorname{var}\left(\log \left(\hat{M}_{\text {exp }, t+1}\right)\right)$
$\log \left(\hat{M}_{\text {exp }, t+1}\right)$	0.89	100.00
$\log \left(\hat{M}_{\text {exp }, t+1}^{a}\right)$	0.79	72.60
$\log \left(\hat{M}_{\text {exp }, t+1}^{\beta}\right)$	0.51	27.40

Focus on the unsystematic SDF component

- Acyclical: no relation to the NBER recession indicator
- Idiosyncratic-volatility factor (Ang, Hodrick, Xing, and Zhang, 2006) exnlains no more than 10% of variation of $M^{a}-1$
- 307 out of 457 (about 70\%) of trading-strategy returns have significant correlations with the unsvstematic SDF component.
- Observed strategies do not fully span the unsystematic SDF component. graph

The strategies with highest compensation for unsystematic risk RP^{a} are attributegy to frictions and hehavioral hiases in the literature.

Focus on the unsystematic SDF component

- Acyclical: no relation to the NBER recession indicator
- Idiosyncratic-volatility factor (Ang, Hodrick, Xing, and Zhang, 2006) explains no more than 10% of variation of M_{t+1}^{a}.
- 307 out of 457 (about 70\%) of trading-strategy returns have significant correlations with the unsystematic SDF component.
- Observed strategies do not fully span the unsystematic SDF component. staph
- The strategies with highest compensation for unsystematic risk, RPa strateov, are attributed to frictions and behavioral biases in the literature.

Focus on the unsystematic SDF component

- Acyclical: no relation to the NBER recession indicator
- Idiosyncratic-volatility factor (Ang, Hodrick, Xing, and Zhang, 2006) explains no more than 10% of variation of M_{t+1}^{a}.
- 307 out of 457 (about 70\%) of trading-strategy returns have significant correlations with the unsystematic SDF component.
- Observed strategies do not fully span the unsystematic SDF component. graph
- The strategies with highest compensation for unsystematic risk $R P_{\text {strategy }}^{a}$, are attributed to frictions and behavioral biases in the literature.

Focus on the unsystematic SDF component

- Acyclical: no relation to the NBER recession indicator
- Idiosyncratic-volatility factor (Ang, Hodrick, Xing, and Zhang, 2006) explains no more than 10% of variation of M_{t+1}^{a}.
- 307 out of 457 (about 70%) of trading-strategy returns have significant correlations with the unsystematic SDF component.
- Observed strategies do not fully span the unsystematic SDF component. graph
- The strategies with highest compensation for unsystematic risk, $\mathrm{RP}_{\text {strategy }}^{a}$, are attributed to frictions and behavioral biases in the literature.

$$
\mathrm{RP}_{\text {strategy }}^{a}=-\operatorname{cov}\left(M_{t+1}^{a}, R_{\text {strategy }, t+1}\right) \times R_{f}
$$

Focus on the systematic SDF component

- Cyclical: related to the NBER recession indicator
- Market factor explains 95.22% of variation in systematic SDF component.
- To explain 99\% of variation in the systematic SDF-component, need to add to the Market factor:
- Sales-to-market
- Dollar trading volume, (. . . highly correlated with the Size factor)
- Bid ask spread
- Days with zero trades.
- To explain 99.5% of variation in the systematic SDF-component, we need to use 17 ohsemable tradahle factors aranh

Focus on the systematic SDF component

- Cyclical: related to the NBER recession indicator
- Market factor explains 95.22 \% of variation in systematic SDF component.

```
- To explain 99% of variation in the systematic SDF-component,
    need to add to the Market factor:
    - Sales-to-market
    - Dollar trading volume, (... highly correlated with the Size factor)
    - Bid-ask spread
    - Days with zero trades.
- To explain 99.5% of variation in the systematic SDF-component,
    we need to use 17 shsemable tradable factors. araob
```


Focus on the systematic SDF component

- Cyclical: related to the NBER recession indicator
- Market factor explains 95.22 \% of variation in systematic SDF component.
- To explain 99% of variation in the systematic SDF-component, need to add to the Market factor:
- Sales-to-market,
- Dollar trading volume, (. . . highly correlated with the Size factor)
- Bid-ask spread,
- Days with zero trades.
- To explain 99.5\% of variation in the systematic SDF-component, we need to use 17 observable tradable factors graph

Focus on the systematic SDF component

- Cyclical: related to the NBER recession indicator
- Market factor explains 95.22 \% of variation in systematic SDF component.
- To explain 99% of variation in the systematic SDF-component, need to add to the Market factor:
- Sales-to-market,
- Dollar trading volume, (. . . highly correlated with the Size factor)
- Bid-ask spread,
- Days with zero trades.
- To explain 99.5% of variation in the systematic SDF-component, we need to use 17 observable tradable factors. graph

Empirical results for second question:
 What is missing in candidate models?

What is missing in CAPM, C-CAPM, and FF3?

- systematic risk factors and compensation for unsystematic risk.
- The main source of misspecification (by far) is compensation for unsystematic risk.

Model	Std Dev or Sharpe ratio (p.a.)				Variance decomp. (\%)		
	log of				log of		
	$\hat{M}_{\text {exp }, t+1}$	\hat{M}_{t+1}^{a}	$\hat{M}_{t+1}^{\beta, \text { can }}$	$\hat{M}_{t+1}^{\beta, m i s}$	\hat{M}_{t+1}^{a}	$\hat{M}_{t+1}^{\beta, \text { can }}$	$\hat{M}_{t+1}^{\beta, m i s}$
APT	0.89	0.79	0.51		72.60	27.40	
CAPM	0.89	0.80	0.42	0.27	74.14	18.48	7.38
C-CAPM	0.92	0.79	0.36	0.42	66.05	15.92	18.03
FF3	0.99	0.80	0.67	0.27	55.49	38.30	6.21

What is missing in CAPM, C-CAPM, and FF3?

- All three models omit
- systematic risk factors and compensation for unsystematic risk.
- The main source of misspecification (by far) is compensation for unsystematic risk.

Model	Std Dev or Sharpe ratio (p.a.)				Variance decomp. (\%)		
	\log of				log of		
	$\hat{M}_{\text {exp }, t+1}$	\hat{M}_{t+1}^{a}	$\hat{M}_{t+1}^{\beta, \text { can }}$	$\hat{M}_{t+1}^{\beta, \text { mis }}$	\hat{M}_{t+1}^{a}	$\hat{M}_{t+1}^{\beta, \text { can }}$	$\hat{M}_{t+1}^{\beta, m i s}$
APT	0.89	0.79	0.51		72.60	27.40	
CAPM	0.89	0.80	0.42	0.27	74.14	18.48	7.38
C-CAPM	0.92	0.79	0.36	0.42	66.05	15.92	18.03
FF3	0.99	0.80	0.67	0.27	55.49	38.30	6.21

What is missing in CAPM, C-CAPM, and FF3?

- All three models omit
- systematic risk factors and compensation for unsystematic risk.
- The main source of misspecification (by far) is compensation for unsystematic risk.

Model	Std Dev or Sharpe ratio (p.a.)				Variance decomp. (\%)		
	\log of				\log of		
	$\hat{M}_{\text {exp }, t+1}$	\hat{M}_{t+1}^{a}	$\hat{M}_{t+1}^{\beta, \text { can }}$	$\hat{M}_{t+1}^{\beta, m i s}$	\hat{M}_{t+1}^{a}	$\hat{M}_{t+1}^{\beta, \text { can }}$	$\hat{M}_{t+1}^{\beta, m i s}$
APT	0.89	0.79	0.51		72.60	27.40	
CAPM	0.89	0.80	0.42	0.27	74.14	18.48	7.38
C-CAPM	0.92	0.79	0.36	0.42	66.05	15.92	18.03
FF3	0.99	0.80	0.67	0.27	55.49	38.30	6.21

Consistent correction of candidate factor models

- After correction, SDFs implied by these models are almost perfectly correlated to each other;

Correlations

	$\log \left(\hat{M}_{\text {exp }, t+1}\right)$				$\log \left(\hat{M}_{\text {exp }, t+1}^{a}\right)$			
		Corrected			APT	Corrected		
	APT	CAPM	C-CAPM	FF3		CAPM	C-CAPM	FF3
APT	1.00	0.99	0.97	0.98	1.00	0.97	1.00	0.94
CAPM	0.99	1.00	0.96	0.97	0.97	1.00	0.97	0.93
C-CAPM	0.97	0.96	1.00	0.94	1.00	0.97	1.00	0.93
FF3	0.98	0.97	0.94	1.00	0.94	0.93	0.93	1.00

- The pricing performances are aligned across the corrected models.

Consistent correction of candidate factor models

- After correction, SDFs implied by these models are almost perfectly correlated to each other;

Correlations

	$\log \left(\hat{M}_{\text {exp }, t+1}\right)$				$\log \left(\hat{M}_{\text {exp }, t+1}^{a}\right)$		
	Corrected				Corrected		
	APT	CAPM	C-CAPM	FF3	APT	CAPM	C-CAPM
APT		1.00	0.99	0.97	0.98	1.00	0.97
APT	1.00	0.94					
CAPM	0.99	1.00	0.96	0.97	0.97	1.00	0.97
C-CAPM	0.97	0.96	1.00	0.94	1.00	0.97	1.00
FF3	0.98	0.97	0.94	1.00	0.94	0.93	0.93

- The pricing performances are aligned across the corrected models.

Consistent correction of candidate factor models

- After correction, SDFs implied by these models are almost perfectly correlated to each other;

Correlations

	$\log \left(\hat{M}_{\text {exp }, t+1}\right)$				$\log \left(\hat{M}_{\text {exp }, t+1}^{a}\right)$			
	APT	Corrected			APT	Corrected		
		CAPM	C-CAPM	FF3		CAPM	C-CAPM	FF3
APT	1.00	0.99	0.97	0.98	1.00	0.97	1.00	0.94
CAPM	0.99	1.00	0.96	0.97	0.97	1.00	0.97	0.93
C-CAPM	0.97	0.96	1.00	0.94	1.00	0.97	1.00	0.93
FF3	0.98	0.97	0.94	1.00	0.94	0.93	0.93	1.00

- The pricing performances are aligned across the corrected models.

Consistent correction of candidate factor models

- After correction, SDFs implied by these models are almost perfectly correlated to each other;

Correlations

	$\log \left(\hat{M}_{\text {exp }, t+1}\right)$				$\log \left(\hat{M}_{\text {exp }, t+1}^{a}\right)$			
	Corrected				Corrected			
	APT	CAPM	C-CAPM	FF3	APT	CAPM	C-CAPM	FF3
APT	1.00	0.99	0.97	0.98	1.00	0.97	1.00	0.94
CAPM	0.99	1.00	0.96	0.97	0.97	1.00	0.97	0.93
C-CAPM	0.97	0.96	1.00	0.94	1.00	0.97	1.00	0.93
FF3	0.98	0.97	0.94	1.00	0.94	0.93	0.93	1.00

- The pricing performances are aligned across the corrected models.

Consistent correction of candidate factor models

- After correction, SDFs implied by these models are almost perfectly correlated to each other;

Correlations

	$\log \left(\hat{M}_{\text {exp }, t+1}\right)$				$\log \left(\hat{M}_{\text {exp }, t+1}^{a}\right)$			
	APT	Corrected			APT	Corrected		
		CAPM	C-CAPM	FF3		CAPM	C-CAPM	FF3
APT	1.00	0.99	0.97	0.98	$\int 1.00$	0.97	1.00	0.94
CAPM	0.99	1.00	0.96	0.97	0.97	1.00	0.97	0.93
C-CAPM	0.97	0.96	1.00	0.94	1.00	0.97	1.00	0.93
FF3	0.98	0.97	0.94	1.00	0.94	0.93	0.93	1.00

- The pricing performances are aligned across the corrected models

Consistent correction of candidate factor models

- After correction, SDFs implied by these models are almost perfectly correlated to each other;

Correlations

	$\log \left(\hat{M}_{\text {exp }, t+1}\right)$					$\log \left(\hat{M}_{\text {exp }, t+1}^{a}\right)$		
		Corrected				Corrected		
	APT	CAPM	C-CAPM	FF3	APT	CAPM	C-CAPM	FF3
APT	1.00	0.99	0.97	0.98	1.00	0.97	1.00	0.94
CAPM	0.99	1.00	0.96	0.97	0.97	1.00	0.97	0.93
C-CAPM	0.97	0.96	1.00	0.94	1.00	0.97	1.00	0.93
FF3	0.98	0.97	0.94	1.00	0.94	0.93	0.93	1.00

- The pricing performances are aligned across the corrected models.

Microfoundations
 for pricing of unsystematic risk

Micro-foundations for priced asset-specific risk

- Merton (1987) develops an equilibrium model in which
- only a proportion q_{i} of investors are informed about asset i;
- Returns, the SDF and its components have the same functional form as what we have specified in our APT-based model.
- Proposition 5: When $N \rightarrow \infty$
- Equilibrium asset returns are
- Equilibrium SDF is

Micro-foundations for priced asset-specific risk

- Merton (1987) develops an equilibrium model in which
- only a proportion q_{i} of investors are informed about asset i;
- Returns, the SDF and its components have the same functional form as what we have specified in our APT-based model.
- Proposition 5: When $N \rightarrow \infty$
- Equilibrium asset returns are

$$
R_{i}-R_{f}=a_{i}+\beta_{i}\left(R_{m}-R_{f}\right)+e_{i}, \quad \text { where } a_{i}=\gamma \sigma_{i}^{2}\left(\frac{1}{q_{i}}-1\right) \frac{V_{i}}{V_{m}}
$$

- Equilibrium SDF is

$$
M=\underbrace{-\frac{a^{\prime} V_{e}}{R_{f}} e}_{M^{a}}+\underbrace{\frac{1}{R_{f}}-\frac{\mathbb{E}\left(R_{m}-R_{f}\right)}{R_{f} \times \operatorname{var}\left(R_{m}\right)}\left(R_{m}-\mathbb{E}\left(R_{m}\right)\right)}_{M^{\beta}}
$$

Conclusion

Conclusion

- Develop a methodology
- to identify what is missing in factor models;
- use this to examine potential significance of unsystematic risk.
- Key insight: quantitative importance of unsystematic risk
- for theorists: vital for developing microfounded models;
- for empiricists: essential for resolving the factor zoo;
- for corporate finance: crucial for estimating cost of capital.

Thank you!

Please send comments to

m.dello-preite18@imperial.ac.uk
raman.uppal@edhec.edu
p.zaffaroni@imperial.ac.uk
zviadadze@hec.fr

References

References i

Almeida, C., and R. Garcia, 2012, "Assessing Misspecified Asset Pricing Models With Empirical Likelihood Estimators," Journal of Econometrics, 170, 519-537.

Ang, A., R. J. Hodrick, Y. Xing, and X. Zhang, 2006, "Cross-Section of Volatility and Expected Returns," Journal of Finance, 61.
Baker, S. R., N. Bloom, and S. J. Davis, 2016, "Measuring Economic Policy Uncertainty," Quarterly Journal of Economics, 131, 1593-1636.
Breeden, D. T., 1979, "An Intertemporal Asset Pricing Model with Stochastic Consumption and Investment Opportunities," Journal of Financial Economics, 7, 265-296.
Bryzgalova, S., J. Huang, and C. Julliard, 2023, "Bayesian Solutions for the Factor Zoo: We Just Ran Two Quadrillion Models," Journal of Finance, 78, 487-557.

Chen, A. Y., and T. Zimmermann, 2022, "Open Source Cross-Sectional Asset Pricing," Critical Finance Review, 11, 207-264.
Cochrane, J. H., 2011, "Presidential Address: Discount Rates," Journal of Finance, 66, 1047-1108.

Daniel, K., and S. Titman, 1997, "Evidence on the Characteristics of Cross Sectional Variation in Stock Returns," Journal of Finance, 52, 1-33.

References ii

Fama, E. F., and K. R. French, 1993, "Common Risk Factors in the Returns on Stocks and Bonds," Journal of Financial Economics, 33, 3-56.
Fama, E. F., and K. R. French, 2015, "A Five-Factor Asset Pricing Model," Journal of Financial Economics, 116.
Feng, G., S. Giglio, and D. Xiu, 2020, "Taming the Factor Zoo: A Test of New Factors," Journal of Finance, 75, 1327-1370.

Freyberger, J., A. Neuhierl, and M. Weber, 2020, "Dissecting Characteristics Nonparametrically," Review of Financial Studies, 33, 2326-2377.
Gabaix, X., 2011, "The Granular Origins of Aggregate Fluctuations," Econometrica, 79, 733-772.

Ghosh, A., C. Julliard, and A. P. Taylor, 2017, "What Is the Consumption-CAPM Missing? An Information-Theoretic Framework for the Analysis of Asset Pricing Models," Review of Financial Studies, 30, 442-504.
Giglio, S., Y. Liao, and D. Xiu, 2021, "Thousands of Alpha Tests," Review of Financial Studies, 34, 3456-3496.

References iii

Giglio, S., and D. Xiu, 2021, "Asset Pricing with Omitted Factors," Journal of Political Economy, 129, 1947-1990.
Goyal, A., and P. Santa-Clara, 2003, "Idiosyncratic risk matters!," Journal of Finance, 58, 975-1007.
Hansen, L. P., and R. Jagannathan, 1997, "Assessing Specification Errors in Stochastic Discount Factor Models," Journal of Finance, 52, 557-590.
Harvey, C. R., Y. Liu, and H. Zhu, 2015, ". . . and the Cross-Section of Expected Returns," Review of Financial Studies, 29, 5-68.

Herskovic, B., B. Kelly, H. Lustig, and S. Van Nieuwerburgh, 2016, "The Common Factor in ildiosyncratic Volatility: Quantitative Asset Pricing Implications," Journal of Financial Economics, 119, 249-283.
Hou, K., H. Mo, C. Xue, and L. Zhang, 2021, "An Augmented Q-Factor Model with Expected Growth," Review of Finance, 25, 1-41.
Hou, K., C. Xue, and L. Zhang, 2015, "Digesting Anomalies: An Investment Approach," Review of Financial Studies, 28, 650-705.

References iv

Huang, D., J. Li, and L. Wang, 2021, "Are Disagreements Agreeable? Evidence from Information Aggregation," Journal of Financial Economics, 141, 83-101.
Jegadeesh, N., and S. Titman, 1993, "Returns to Buying Winners and Selling Losers: Implications for Stock Market Efficiency," Journal of Finance, 48, 65-91.

Jensen, T. I., B. T. Kelly, and L. H. Pedersen, 2021, "Is There a Replication Crisis in Finance?," Working Paper.
Jurado, K., S. C. Ludvigson, and S. Ng, 2015, "Measuring Uncertainty," American Economic Review, 105, 1177-1216.

Korsaye, S., A. Quaini, and F. Trojani, 2019, "Smart SDFs," University of Geneva, Working Paper.
Kozak, S., S. Nagel, and S. Santosh, 2020, "Shrinking the Cross-section," Journal of Financial Economics, 135, 271-292.
Lettau, M., and M. Pelger, 2020, "Factors that Fit the Time-series and Cross-section of Stock Returns," Review of Financial Studies, 33, 2274-2325.
McCracken, M. W., and S. Ng, 2015, "FRED-MD: A Monthly Database for Macroeconomic Research," Working Paper.

References v

Mehra, R., S. Wahal, and D. Xie, 2021, "Is Idiosyncratic Risk Conditionally Priced?," Quantitative Economics, 12, 625-646.
Merton, R. C., 1987, "A Simple Model of Capital Market Equilibrium with Incomplete Information," Journal of Finance, 42, 483-510.

Novy-Marx, R., 2013, "The Other Side of Value: The Gross Profitability Premium," Journal of Financial Economics, 108, 1-28.
Pasquariello, P., 2014, "Financial Market Dislocations," Review of Financial Studies, 27, 1868-1914.
Raponi, V., R. Uppal, and P. Zaffaroni, 2022, "Robust Portfolio Choice," Working paper, Imperial College London.
Ross, S., 1976, "The Arbitrage Theory of Capital Asset Pricing," Journal of Economic Theory, 13, 341-360.
Ross, S. A., 1977, "Return, Risk, and Arbitrage," in Irwin Friend, and J.L. Bicksler (ed.), Risk and Return in Finance, Ballinger, Cambridge, MA.
Sharpe, W., 1964, "Capital Asset Prices: A Theory of Market Equilibrium Under Conditions of Risk," Journal of Finance, 1919, 425-442.

Basis assets

- Basis assets: 202 characteristic-based portfolios with monthly returns: 1963:07 to 2019:08:
- 25 size and book-to-market portfolios,
- 17 industry portfolios,
- 25 investment profitability and investment,
- 25 size and variance portfolios,
- 35 size and net issuance portfolios,
- 25 size and accruals portfolios,
- 25 size and beta portfolios,
- 25 size and momentum portfolios

Data on 457 tradable factors potentially spanning the SDF

- Factors used in Chen and Zimmermann (2022), Jensen, Kelly, and Pedersen (2021), and Kozak, Nagel, and Santosh (2020).
- Industry-adjusted value, momentum, and profitability factors (Novy-Marx, 2013).
- Intra-industry value, momentum, and profitability factors, and basic profitable-minus-unprofitable factor.
- Expected growth factor of Hou, Mo, Xue, and Zhang (2021) and the momentum Up minus Down (UMD) factor.
- Factors from Bryzgalova, Huang, and Julliard (2023).

Data on 103 macro factors potentially spanning the SDF

- Macroeconomic and business-cycle variables
- 3 principal components and their VAR residuals for 279 macro variables (Jurado, Ludvigson, and Ng, 2015).
- 8 principal components and their VAR residuals for 128 macro variables (McCracken and Ng, 2015).
- Consumption and inflation variables.
- Sentiment and confidence indexes.
- Volatility and uncertainty measures
- Market-dislocations index (Pasquariello, 2014)
- Disagreement index (Huang, Li, and Wang, 2021)
- Chicago Board Options Exchange volatility index (VIX, from CBOE)
- US econ. policy uncertainty index EPU (Baker, Bloom, and Davis, 2016)
- Equity-mkt vol. (EMV) tracker (Baker, Bloom, and Davis, 2016).

Spanning M_{t+1}^{a} with observed factors

Spanning $M_{t+1}^{\beta, \text { mis }}$ with observed factors

