Carbon Policy Surprises and Stock Returns Signals from Financial Markets

Martina Hengge^a Ugo Panizza^b Richard Varghese^a

^aInternational Monetary Fund ^bGeneva Graduate Institute & CEPR

The views expressed in this presentation are those of the authors and do not necessarily represent the views of the IMF, its Executive Board, or IMF management.

Outline

Motivation & research question

Conceptual framework & data

Empirical strategy

Results

Conclusions

Motivation

Many countries have committed to reaching net-zero emissions

- Carbon pricing tools are key to reach emission reduction goals
- \blacktriangleright EU set up the Emissions Trading System (EU ETS) in 2005 \rightarrow world's first international emissions trading scheme
- Carbon pricing tools, if effective, could raise the cost of capital for emission-intensive firms relative to their low-emission counterparts

This paper

We use features of the EU ETS and firm-level data to examine whether:

- 1. Carbon policies affect stock returns
- 2. Transition risk plays a role
- 3. There are asymmetric effects: tighter vs. looser-than-anticipated policies

Key findings:

- 1. Regulatory announcements that increase carbon prices have a negative impact on stock returns for carbon-intensive firms
- 2. Investors price in transition risk
- 3. The impact is larger when regulatory announcements result in an increase in carbon prices (but the difference is not statistically significant)

Related literature (selective)

Climate risk and financial markets:

- Carbon premium: investors demand a risk premium for exposure to carbon emissions in cross-section of firms (Bolton and Kacperczyk, 2021a, 2022)
- Pollution premium: cross-sectional variation in stock returns is linked to industrial pollution (Hsu et al., 2022)

Climate policy and financial markets:

- Correlation between stock returns and carbon price for EU ETS firms depends on free allowances (Bolton et al., 2022; Millischer et al., 2022)
- Climate risk associated with government interventions is priced into stocks (Faccini et al., 2021)
- Paris Agreement (Dec 2015) increased credit risk of listed companies with high carbon footprints (Seltzer et al., 2022)

Outline

Motivation & research question

Conceptual framework & data

Empirical strategy

Results

Conclusions

Cross-sectional returns vs. policy shock: three scenarios

- Evidence that carbon emissions affect the cross section of stock returns both in the US and globally (Bolton and Kacperczyk, 2021b, 2022)
- ▶ Two firms produce at no cost one asset which will have value C at time T
 - ► A produces a "green" asset and B a "brown" asset
 - Rate of return for both firms is r; firm value at time t is then

$$V_t^A = V_t^B = \frac{C}{(1+r)^{T-t}}$$

At time t' > t there is a policy shock which affects the value of the asset produced by firm B

Three scenarios:

- 1. Value of asset is still C; however, value is no longer certain (risk premium $\rho > 0$)
- 2. Value of asset is δC ($\delta < 1$) with certainty
- 3. Value of asset is δC ($\delta < 1$) and no longer certain ($\rho > 0$)

Cross-sectional returns vs. policy shock: illustration

Data

- Scope 1 and 2 emission intensity: Urgentem
- Stock returns and EUA futures price: Datastream
- EU ETS regulatory events: Känzig (2022) + hand-collected

Sample: 2,149 firms across 38 sectors in 23 EU countries over January 2011–December 2021.

Carbon emission intensity

EU ETS: identifying regulatory events

EU ETS:

- Launched in 2005 as the first international emission trading scheme
- ► Operates under cap and trade principle → emission allowances (EUAs) can be traded in spot and futures markets
- Most liquid markets to trade EUAs are futures markets

Regulatory updates on the supply of emission allowances:

- 83 events over Jan 2011–Dec 2018 from Känzig (2022)
- Extend with 15 events over Jan 2019–Dec 2021

Carbon policy surprises

 High-frequency identification of carbon policy surprises based on unexpected changes in carbon prices following Känzig (2022)

$$CPS_d = \Delta CP_d \times EV_d \tag{1}$$

 $\blacktriangleright \Delta CP_d$ is the daily change in EUA futures price (from ICE London)

- EV_d is a dummy that takes value 1 on event days and 0 otherwise
- ▶ Positive values → tighter-than-anticipated policy announcement

EU ETS carbon price

Carbon policy surprises

Outline

Motivation & research question

Conceptual framework & data

Empirical strategy

Results

Conclusions

Empirical strategy I

Baseline:

$$R_{i,d(y)} = CE_{i,y-1} \left(\alpha + \beta_1 \Delta CP_{d(y)} + \beta_2 EV_{d(y)} + \beta_3 \Delta CP_{d(y)} \times EV_{d(y)} \right) + \phi_i + \tau_{c,s,d(y)} + \varepsilon_{i,d(y)}$$
(2)

where:

- \triangleright $R_{i,d(y)}$ measures stock return of company *i* on day *d* in year *y*
- \triangleright CE_{*i*,*y*} measures carbon intensity of company *i* in year *y*
- $\Delta CP_{d(y)}$ measures daily change in carbon price
- \blacktriangleright $EV_{d(y)}$ is dummy variable that takes value one on days of regulatory events
- $\blacktriangleright \phi_i$ are firm fixed effects, $\tau_{c,s,d(y)}$ are country-sector-time fixed effects

One key parameter of interest is β_3 .

However, β_3 alone is not enough to estimate the causal effect of carbon policy on stock return for emission intensive firms.

Empirical strategy II

Two potential concerns:

- Proxy for the policy shock, CPS, potentially contaminated by other shocks
- Proxy for the policy suprise only captures indirect effect

Assume that carbon price depends on three *uncorrelated* shocks: $\Delta CP = D + P + U$

- * D is a demand shock
- * P is the policy shock we care about
- * U is a residual shock

Empirical strategy III

- β₃ in equation 2 does not measure the effect of a regulatory policy shock on stock returns
- ▶ It is the difference between the correlation between $\triangle CP$ and R on event days and the correlation between $\triangle CP$ and R on non-event days
- Recover the total impact of carbon policy on stock returns (\hat{g} henceforth) from the the parameters of equation 2. Specifically:

$$\hat{g} = \hat{\beta}_1 + \hat{\beta}_3 \frac{k}{k-1} \tag{3}$$

where $k \ge 1$ is the ratio between the variance of ΔCP_t on event days and the variance of ΔCP_t on non-event days. Proof

- $\hat{\beta}_3$ is smaller (in absolute value) than \hat{g} as long as $\hat{\beta}_1(k-1) < -\hat{\beta}_3$
 - \Rightarrow In our baseline estimates: $\hat{g} \approx 2.3 \hat{\beta}_3$.

Outline

Motivation & research question

Conceptual framework & data

Empirical strategy

Results

Conclusions

	(1)	(2)	(3)	(4)	(5)	(6)	
CE	2.27***	1.27**	1.17**	1.36***	1.27**	1.25**	
	[0.606]	[0.501]	[0.507]	[0.504]	[0.502]	[0.510]	
$CE \times \Delta CP$			0.58***			0.63***	
			[0.213]			[0.220]	
$CE \times EV$				-3.71*		-3.96*	
				[2.212]		[2.198]	
$CE\times \DeltaCP\timesEV$					-1.08*	-1.81***	
					[0.621]	[0.645]	
$\hat{g} = \hat{\beta}_1 + \hat{\beta}_3 \times \frac{k}{k-1}$						-4.13**	
						[1.645]	
Observations	1,247,870	1,247,870	1,247,870	1,247,870	1,247,870	1,247,870	
R-squared	0.16	0.4	0.4	0.4	0.4	0.4	
Firm FE	Yes	Yes	Yes	Yes	Yes	Yes	
Time FE	Yes	No	No	No	No	No	
Country-Sector-Time FE	No	Yes	Yes	Yes	Yes	Yes	
Define the second summer in the electric $***$ is < 0.01 $**$ is < 0.05 $*$ is < 0.1							

Robust standard errors in brackets, *** p<0.01, ** p<0.05, * p<0.1

Carbon policy surprises negatively correlated with stock returns → a positive (tighter) surprise negatively impacts stocks returns

Stock returns and carbon prices on non-event and event days

Note: The figure is based on column 6 of the baseline estimations.

Controlling for time-varying firm characteristics

	(1)	(2)	(3)	(4)	
$CE \times \Delta CP$	0.58***			0.63***	
	[0.210]			[0.217]	
$CE \times EV$		-3.64*		-3.88*	
		[2.171]		[2.199]	
$CE \times \Delta CP \times EV$			-1.06*	-1.80***	
			[0.560]	[0.589]	
$\hat{g} = \hat{\beta}_1 + \hat{\beta}_3 \times \frac{k}{k-1}$				-4.09***	
				[1.496]	
Observations	1,247,870	1,247,870	1,247,870	1,247,870	
R-squared	0.41	0.41	0.41	0.41	
Country-Sector-Time FE	Yes	Yes	Yes	Yes	
Firm-Year-Quarter FE	Yes	Yes	Yes	Yes	
Robust standard errors in brackets. *** $p < 0.01$. ** $p < 0.05$. * $p < 0.1$					

*** p<0.01, p < 0.1

 \blacktriangleright Results unchanged when controlling for firm-year-quarter fixed effects \rightarrow not driven by time-varying firm-level unobserved heterogeneity

Excluding EU ETS sectors

	(1)	(2)				
CE	0.94					
	[0.747]					
$CE \times \Delta CP$	0.44*	0.45*				
	[0.246]	[0.249]				
$CE \times EV$	-5.43***	-5.37***				
	[1.878]	[1.856]				
$CE \times \Delta CP \times EV$	-2.39***	-2.41***				
	[0.833]	[0.772]				
$\hat{g} = \hat{\beta}_1 + \hat{\beta}_3 \times \frac{k}{k-1}$	-5.81***	-5.86***				
	[2.190]	[2.026]				
Observations	1,025,509	1,025,509				
R-squared	0.38	0.39				
Firm FE	Yes	No				
Country-Sector-Time FE	Yes	Yes				
Firm-Year-Quarter FE	No	Yes				

Robust standard errors in brackets, *** p<0.01, ** p<0.05, * p<0.1

 \blacktriangleright Results hold when firms in EU ETS sectors are excluded \rightarrow investors price in transition risk

Testing for asymmetries

	(1)	(2)
CE	2.39***	
	[0.697]	
$CE \times \Delta CP$	1.19***	1.23***
	[0.396]	[0.415]
$CE \times EV$	-3.79	-3.57
	[3.482]	[3.559]
$CE \times \Delta CP \times EV$	-1.98**	-1.92**
	[0.920]	[0.851]
$CE \times \Delta CP \times D$	-1.10**	-1.17*
	[0.552]	[0.603]
$CE \times \Delta CP \times EV \times D$	-0.16	-0.26
	[2.392]	[2.400]
Observations	1,247,870	1,247,870
R-squared	0.40	0.41
Firm FE	Yes	No
Country-Sector-Time FE	Yes	Yes
Firm-Year-Quarter FE	No	Yes

Robust standard errors in brackets, *** p<0.01, ** p<0.05, * p<0.1

► No asymmetric effects between positive and negative carbon policy surprises but magnitudes differ → positive surprises have larger effects

Robustness checks

- Placebo carbon policy surprises
- Dropping one country at a time
- Advanced Europe only
- Continental Europe plus UK
- Emerging Europe only X
- \blacktriangleright Excluding financial institutions \checkmark

Outline

Motivation & research question

Conceptual framework & data

Empirical strategy

Results

Conclusions

Key takeaways

We combine EU ETS and firm-level data for over 2,000 European listed firms to explore whether carbon policy affects stock returns and find that:

 Regulatory events which result in an increase in carbon prices lower relative stock returns for firms with high carbon intensity
 ⇒ Policies that lead to an increase in carbon price are effective in raising

the cost of equity capital for emission-intensive firms

The effect extends to firms in sectors that *do not* participate in the EU ETS

 \Rightarrow The effect does not only go through higher costs

 \Rightarrow Investors seem to price in transition risk

The response is larger when regulatory event results in an increase in carbon prices

 \Rightarrow Investors react more to tightening policy surprises

Additional slides

Summary statistics

	Variable	Mean	Median	SD
Daily stock return (percent)	R	0.048	0.000	2.364
Scope 1 + 2 carbon emissions intensity (tCO2e/\$m revenue)	CE	169.24	26.26	503.96
Daily change in EUA futures price (percent)	ΔCP	0.11	0.00	3.21
Daily change in EUA futures price on event days only (percent)	$\Delta CP imes EV$	-1.12	-0.72	5.24

• Without loss of generality, assume that $CE_i = 1$ for all firms

• Recall that
$$\Delta CP = D + P + U$$

If we could observe D and U we could estimate the effect of carbon prices on non-regulatory event days with the following equation:

$$R_t = a_1 + bD_t + cU_t + \varepsilon_t \tag{4}$$

where b is the effect of the demand shock and c is the effect of a carbon price shock on stock returns

Note that b is the total effect of the demand shock on returns

- This the sum of the direct effect $(D \rightarrow R)$ and the indirect effect through carbon price $(D \rightarrow \Delta CP \rightarrow R)$
- Instead, c measures the effect on returns of an independent shock U to carbon price

As we do not observe D and U, we cannot separately estimate b and c. However, we observe $\Delta CP = D + U$ and can estimate the following model:

$$R_t = a_2 + m_1 \Delta C P_t + \varepsilon_t \tag{5}$$

where $\hat{m_1}$ is a weighted average of b and c Specifically:

$$\hat{m}_{1} = b \frac{cov(D, \Delta CP_{t})}{V(\Delta CP_{t})} + c \frac{cov(U, \Delta CP_{t})}{V(\Delta CP_{t})}$$
(6)

As E(DU) = 0: $V(\Delta CP_t) = V(D) + V(U)$; $cov(D, \Delta CP_t) = V(D)$; $cov(U, \Delta CP_t) = V(U)$. Hence:

$$\hat{m}_1 = b \frac{V(D)}{V(D) + V(U)} + c \frac{V(U)}{V(D) + V(U)}$$
(7)

Let us now consider regulatory event days. If we observed D, U and P, we could estimate:

$$R_t = a_3 + bD_t + cU_t + gP_t + \varepsilon_t \tag{8}$$

- **b** is the total effect of the demand shock on returns $(D \rightarrow R \text{ plus})$ $D \rightarrow \Delta CP \rightarrow R$)
- ▶ g is the total effect of the policy on returns $(P \rightarrow R \text{ plus } P \rightarrow \Delta CP \rightarrow R)$ \rightarrow This is what we care about
- \triangleright c is effect of U on returns (not the total effect of carbon price on returns)
- As we only observe $\Delta CP_t = D_t + U_t + P_t$, we estimate:

$$R_t = a_4 + m_2 \Delta C P_t + \varepsilon_t \tag{9}$$

 \hat{m}_2 is a weighted average of b, c, and g, with:

$$\hat{m}_2 = b \frac{V(D)}{V(D+U+P)} + c \frac{V(U)}{V(D+U+P)} + g \frac{V(P)}{V(D+U+P)}$$
(10)

• We do not observe V(D) and V(U) separately, but we observe:

- ► $V(\Delta CP_{\tilde{E}}) = V(D+U)$ (the variance of ΔCP on non-event days) ► $V(\Delta CP_E) = V(D+U+P)$ (the variance of ΔCP on event days)

- Let us write $V(\Delta CP_E) = kV(\Delta CP_{\tilde{E}})$, with k > 1 if V(P) > 0.
- ► Using the fact that V(P) = V(∆CP_{˜E})(k 1), we can write Equation 10 as:

$$\hat{m}_2 = \left(b\frac{V(D)}{V(\Delta CP_{\tilde{E}})} + c\frac{V(U)}{V(\Delta CP_{\tilde{E}})}\right)\frac{1}{k} + g\frac{k-1}{k}$$
(11)

- Substituting Equation 7 into Equation 11, we get $\hat{m}_2 = \frac{\hat{m}_1}{k} + g \frac{k-1}{k}$
- Solving for g, we obtain:

$$g = \frac{\hat{m}_2 k - \hat{m}_1}{k - 1}$$
(12)

- Given that we can estimate \hat{m}_1 , \hat{m}_2 , and we know k, we can recover g
- ▶ In the set up of Equation 2, $\hat{m_1} = \hat{\beta_1}$ and $\hat{m_2} = \hat{\beta_1} + \hat{\beta_3}$
- Substituting into Equation 12, we can compute the total effect of P on R:

$$\hat{g} = \frac{(\hat{\beta}_1 + \hat{\beta}_3)k - \hat{\beta}_1}{k - 1} = \hat{\beta}_1 + \hat{\beta}_3 \frac{k}{k - 1}$$
(13)

