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1 Introduction

Recursive preferences are of central importance in many economic settings. They
play a key role in models of consumption-based asset pricing (Epstein and Zin (1989),
Epstein and Zin (1991)), precautionary savings (Weil (1989), Hansen et al. (1999)),
business cycles (Tallarini (2000)), risk-sharing (Epstein (2001), Anderson (2005)) and
more recently have been applied to climate change (Bansal et al. (2017), Cai and
Lontzek (2019)), optimal fiscal policy (Karantounias (2018)), and repeated games
Kochov and Song (2021), among many others. Part of their success is due to their
ability to disentangle risk aversion from intertemporal substitution. This property is
relevant in many settings to quantify the impact of these two different features on
quantities of interest, such as asset prices or precautionary savings. Recall that the
standard model of discounted expected utility in its recursive form can be written as

Vt = u(ct) + βEpVt+1.

In this model, risk aversion and attitudes toward consumption smoothing are both
captured by the curvature of u and therefore they cannot be separately identified from
each another. In contrast, recursive preferences allow for a more general recursive
formulation

Vt = u(ct) + βφ−1 (Epφ (Vt+1)) , (1)

where the curvature of u reflects intertemporal substitution and φ reflects attitudes
toward risk, hence obtaining the desired separation between the two.1

The present paper introduces a new axiom called correlation aversion, as it re-
quires aversion to persistent consumption shocks. In the dynamic setting I con-
sider, this axiom imposes restrictions on an individual’s willingness to pay for non-
instrumental information about future consumption. I provide bounds—based on risk
attitudes—on attitudes toward non-instrumental information that are necessary and
sufficient for recursive preferences to satisfy correlation aversion. Recall that since the
work of Kreps and Porteus (1978), recursive utility has been understood to entail a
preference for non-instrumental information, also referred to as a preference for early
resolution of uncertainty. To illustrate, consider a gamble in which consumption is
fixed at 0 for every t = 1, . . . , T − 1 and pays either 1 or 0 at t = T depending on
the outcome of a coin toss. A strict preference for tossing the coin at t = 1 over

1See Cochrane (2009), Chapter 21.3 or Campbell (2017), Chapter 6.4 for a textbook treatment.

2



t = 2 indicates a preference for non-instrumental information. There is no planning
advantage to tossing the coin early; in this sense choosing to toss the coin at t = 1
reveals a preference for useless information. The standard additive expected utility
model is indifferent between tossing the coin at t = 1 and t = 2, while models of
recursive utility typically prefer early resolution of uncertainty. A strict preference
for information that is useless is seen as puzzling, and in this sense it is seen as a cost
of separating risk aversion from intertemporal substitution (see for example Epstein
et al. (2014)). For example, it would be concerning if the implications of asset pricing
models or estimates of the social cost of carbon depended on the demand for irrele-
vant information. In contrast, correlation aversion can be illustrated with a different
thought example. Consider two gambles: A and B.2 In gamble A a fair coin is tossed
at t = 1. If the outcome is heads, then consumption is constant at the level 1 for every
period t = 1, . . . , T . Otherwise, it is constant at the level 0 at every period. In gamble
B, consumption is determined by tossing a fair coin at every time period t, giving a
level of consumption equal to 1 if heads and 0 otherwise. A hedging motive suggests
that B should be preferred to A. But at the same time B resolves gradually while
for A all uncertainty resolves at t = 1. In other words, A features early resolution of
uncertainty, making the comparison between these two gambles non-obvious: A has
the advantage of resolving all uncertainty at t = 1, while B is more desirable because
of its hedging value. Correlation aversion requires the hedging motive to dominate
the preference for non-instrumental information so that B is preferred to A.

I consider a risk setting, where preferences are defined over temporal lotteries. A
novel and general notion of increasing autocorrelation between consumption at two
different time periods is introduced. As discussed when comparing gambles A and B,
the total effect of increasing correlation is determined by the relative strength of the
hedging motive described earlier and preferences for non-instrumental information.
The first main result, Theorem 2, shows that the hedging motive is stronger if and
only if φ satisfies increasing relative risk aversion (IRRA). I illustrate how increasing
relative risk aversion limits preferences for non-instrumental information. Notably,
IRRA is one of the most common classes of functions in applications (e.g., see Arrow
(1971), p. 96), including the Epstein-Zin and Hansen-Sargent as special cases. This
result implies that under reasonable conditions the value of non-instrumental informa-
tion is dominated by the value of intertemporal hedging. When one further restricts

2The example is a modified version of the example in Duffie and Epstein (1992), p. 355.
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preferences for non-instrumental information, the second main result (Theorem 3)
shows that recursive preferences admit a variational of representation

Vt = u(ct) + β
[
min
q

EqVt+1 + I tφ,u,β(q||p)
]
, (2)

where I tφ,u,β is a cost function. Such a representation provides a connection between
correlation aversion and robustness to model misspecification. An interpretation of
equation (2) is that the decision maker does not fully trust the distribution of future
consumption given by the reference probability p. Instead, other possible distributions
q are considered plausible depending on their dissimilarity from p as measured by
I tφ,u,β. It is known that when φ has an exponential form, the cost function I tφ,u,β is
given by relative entropy; the result shows that this fear of model misspecification
is true for a much larger class of models that satisfy correlation aversion, including
Epstein-Zin preferences. In particular, in the Epstein-Zin case the cost function I tφ,u,β
is defined in terms of the Rényi divergence, a common type of measure of divergence
between probability measures that has application in several fields.

The restrictions on preferences for non-instrumental information I obtain are
strong enough so that on certain domains of consumption there is no preference
for non-instrumental information. In these domains, consumption programs can be
ranked in terms of persistence, as is often the case in applications. Proposition 4
demonstrates that such domains can separate risk aversion from intertemporal sub-
stitution without implying preference for useless information. However, I show that
recursive preferences in (1) cannot disentangle risk aversion from correlation aversion,
emphasizing the need for more general recursive utility models.

Together, these results have important implications for applications of recursive
utility. The literature on consumption-based asset pricing has considered consump-
tion processes that involve persistence, such as the long-run risk model of Bansal and
Yaron (2004) in which consumption growth contains a small, persistent predictable
component. Such persistence provides non-instrumental information: realizations of
consumption growth today provide non-instrumental information about consumption
growth for the long-run future. An investor with preferences for early resolution of un-
certainty should enjoy such non-instrumental information, and hence demand a lower
premium on equity if the persistence of consumption growth increases. However, the
persistent component also increases positive correlation between consumption growth
at different time periods. Therefore, the equity premium in this model is higher rel-
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ative to the discounted expected utility benchmark because Epstein-Zin preferences
satisfy IRRA, making correlation aversion a more dominant feature of preferences.3

This point has important implications for Epstein et al. (2014)’s result which suggests
that timing premia for the long-run risk model seem implausibly high based on in-
trospection. Following the analysis based on aversion to correlation, I ask a different
question: “What fraction of your consumption stream would you give up to remove all
persistence in consumption growth?” Under standard parameter specifications, a pre-
liminary analysis suggests that an investor would be willing to give up a share of his
wealth which is not consistent with the experimental evidence. This result supports
Epstein et al.’s assertion that greater quantitative rigor is necessary for accurately
modeling investors’ preferences. Potential solutions are briefly discussed.

A strand of the literature (e.g., Hansen et al. (1999)) has motivated the use of
models of recursive utility with robustness concerns and in particular fear of model
misspecification. Correlation aversion has a straightforward connection with aversion
to model misspecification as exemplified by the robust representation in (2). To better
understand this point, observe that an equivalent way of thinking about gamble A is
that a biased coin is tossed at every period, but there is uncertainty about the bias:
with equal chance the coin always returns heads or always returns tails. In contrast,
gamble B features no such uncertainty: the coin is known to be unbiased. In other
words, a preference for B over A indicates aversion to model misspecification. In
optimal fiscal policy and risk sharing problems, the key feature of recursive utility is
aversion to volatility in future utility (see for example Karantounias (2018), p. 2284,
or Anderson (2005), p. 94). Correlation aversion has a strong connection with such
a property: in gamble B, at t = 0 future utility is constant and equal to 1

2 , while
for gamble A future utility is volatile, being either 0 or 1. Thus preferring B to
A indicates aversion to volatility in future utility. In summary, correlation aversion
enables us to connect various crucial properties—aversion to long-run risk, model
uncertainty, and volatility in continuation utility—to observable consumption choice
behavior.

3This point has to be contrasted with the common understanding of the long-run risk model, e.g.
Bansal et al. (2016) who state “The long-run risks (LRR) asset pricing model emphasizes the role
of low-frequency movements [...] along with investor preferences for early resolution of uncertainty,
as an important economic-channel that determines asset prices”.
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Figure 1: Relationship between correlation averse (CA) preferences and other recur-
sive risk preferences: recursive preferences that satisfy intertemporal-hedging (IH),
Epstein-Zin (EZ) preferences, multiplier-preferences (HS), monotone recursive pref-
erences (MON), and preferences that exhibit a preference for early resolution of un-
certainty (PERU).

1.1 Related literature

The literature on dynamic choice has considered a notion of correlation aversion
derived from the literature on risk aversion with multiple commodities started by
Kihlstrom and Mirman (1974) (see also Richard (1975) or Epstein and Tanny (1980)).
In particular, Bommier (2007) considers a notion of correlation aversion based on
the Kihlstrom and Mirman approach in a continuous time setting. The extension
to a purely subjective setting with discrete time is studied in Kochov (2015) and
Bommier et al. (2019), which they refer to as intertemporal hedging. Intertempo-
ral hedging involves comparing intertemporal gambles that do not differ in terms of
temporal resolution of uncertainty (see Section 3 for a discussion). Miao and Zhong
(2015) and Andersen et al. (2018) relate Epstein-Zin utility to an analogous notion
of intertemporal hedging and provide experimental evidence in its favor. Within
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the class of recursive preferences in (1)—which I refer to as Kreps-Porteus prefer-
ences—intertemporal hedging is equivalent to φ being concave, i.e. risk aversion.
The notion of correlation aversion studied in the present paper involves a trade-off
between non-instrumental information and intertemporal hedging. Therefore addi-
tional restrictions on risk aversion are required for correlation aversion to hold. Such
restrictions are satisfied by Epstein and Zin’s (1989) preferences and Hansen and Sar-
gent’s (2001) multiplier preferences. In particular an important consequence of the
present paper is that within the Kreps-Porteus setting multiplier preferences are the
ones to jointly satisfy correlation aversion and monotonicity as defined in Bommier
et al. (2017). Figure 1 illustrates the relationship just discussed between correlation
aversion and other prominent classes of recursive preferences. I discuss the relation-
ship of correlation aversion with the work of DeJarnette et al. (2020) and Dillenberger
et al. (2020) on preferences that satisfy stochastic impatience will be discussed more
in depth in Section 5.4.

1.2 Organization of the paper

Section 2 introduces the notation and the main choice-theoretic objects used in the
paper, and provides a novel treatment of preference for early resolution of uncertainty
based on the Blackwell’s order. This novel treatment is used in Section 3 for the main
results related to correlation aversion. Section 4 examines the relationships between
correlation aversion, risk aversion, and intertemporal substitution. The major im-
plications of these results for the applied literature are examined in Section 5, and
Section 6 offers a final summary of the paper.

2 Preliminaries

2.1 Choice setting

I assume that time is discrete and varies over a finite horizon 2 ≤ T < ∞. The
Supplemental Appendix discusses the case of an infinite horizon T = ∞. The con-
sumption set C is assumed to be an unbounded interval of non-negative real numbers
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C = [0,∞).4 Given a Polish space X, let ∆s(X),∆b(X) denote the space of simple
and Borel probability measures with bounded support over X, respectively. Observe
that ∆s(X) ⊆ ∆b(X) and that ∆b(X) is a mixture space. Given `,m ∈ ∆b(X) such
that ` is absolutely continuous with respect to m, indicated by `� m, d`

dm
denotes the

Radon-Nikodym derivative. Endow ∆b(X) with the weak∗ topology. Given x ∈ X, I
denote with δx ∈ ∆b(X) the Dirac probability defined by δx(A) = 1 when x ∈ A and
δx(A) = 0 otherwise. I denote with ⊕n

i=1 πimi the mixture of n probabilities (mi)ni=1

in ∆b(X) with a probability vector (πi)1≤i≤n. Further, note that every two-stage lot-
tery m ∈ ∆s(∆s(X)) can be (uniquely up to permutations) associated to a stochastic
matrix M [m] whose rows describe each probability M [m](·|i) ∈ suppm in the support
of m for i = 1, . . . , |suppm|.

Temporal lotteries (Dt)Tt=0 are defined by DT := C and recursively,

Dt := C ×∆b(Dt+1),

for every t = 0, . . . , T − 1. Likewise, simple temporal lotteries are defined by DT,s :=
C, Dt,s := C ×∆s(Dt+1,s) for every t = 0, . . . , T − 1. Simple temporal lotteries can
be intuitively represented using a tree diagram, as illustrated in Figure 2. I write
(c0, (c1,m)) ∈ D0 for a temporal lottery that consists of two periods of deterministic
consumption, c0 and c1, followed by the lottery m ∈ ∆b(D2). More generally, for
any consumption vector ct = (c0, . . . , ct−1) ∈ Ct and m ∈ ∆b(Dt), the temporal
lottery (c0, (c1, (c2, (. . . , (ct−1,m))))) ∈ D0 or (ct,m) for brevity is one that consists of
t periods of deterministic consumption followed by the lottery m. Given two Polish
spaces X, Y and m ∈ ∆b(X × Y ) I denote with margX m the marginal probability
over X, i.e., margX m(A) = m(A × Y ) for every measurable A ⊆ X. A function
I : X × X → [0,∞] is a generalized distance in the sense of Csiszár (1995) if it
satisfies I(m||`) = 0 if and only if m = ` for every m, ` ∈ X.

The preferences of a decision maker over temporal lotteries are given by a collec-
tion (�t)Tt=0 where each �t is a weak order over Dt and �t denotes the asymmetric
part of �t. To ease notation, I denote with �:= (�t)Tt=0 the entire collection of prefer-
ences. I consider preferences that admit the following general recursive representation
described in (1).

4Alternatively, one could consider an infinite horizon with a compact consumption set, say C =
[0, 1]. However, an unbounded consumption set is more germane to economic applications, where
an unbounded consumption set is needed.
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Figure 2: Probability tree representation of two temporal lotteries with T = 2

Definition 1. Preferences � admits a Kreps-Porteus (KP) recursive representation
(φ, u, β) if and only if, for t = 0, . . . , T , each �t is represented by Vt : Dt → R,

Vt(c,m) = u(c) + βφ−1 (Emφ (Vt+1)) for t = 0, . . . , T − 1,

and VT (c) = u(c) for every c ∈ C, where β ∈ (0, 1] is the discount factor, u : C → R
is unbounded above, continuous, and strictly increasing, and φ : u(C) → R is a
continuous and strictly increasing function.

This representation of preferences effectively separates risk aversion (as captured
by the function φ) from intertemporal substitution (as modeled by the utility function
u). The axiomatic foundation of this representation is well-known (see for example
Proposition 4 in Sarver (2018)). The parameter β is unique, while u is cardinally
unique and φ is cardinally unique given u. This class of preferences comprises many
common cases used in applications. Two notable examples are Epstein-Zin preferences
(EZ), given by u(x) = xρ

ρ
for every x ∈ u(C) and φ(x) = ρ

α
x
α
ρ for every x ∈ u(C),

where 0 6= α < 1, 0 6= ρ < 1 and α < ρ; Hansen-Sargent multiplier preferences (HS)
are given by φ(x) = − exp

(
−x
θ

)
with 0 < θ < ∞ for every x ∈ u(C).5 The results

in the present paper will consider KP representations with φ that is concave and
satisfies certain differentiability assumptions. Assumptions on the smoothness of φ
are needed to employ standard tools from the theory of risk aversion. In particular,
I will make ample use of the Arrow-Pratt index Aφ : intu(C)→ R defined by

Aφ(x) = −φ
′′(x)
φ′(x) for every x ∈ intu(C),

5Under the present taxonomy, EZ preferences do not overlap with HS preferences, but they would
if one allowed for ρ = 0, see for example Hansen et al. (2007), Example 2.3.
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and the index of relative risk aversion defined by Rφ(x) = xAφ(x) for every x ∈
intu(C). A function φ is decreasing absolute risk averse (DARA) if Aφ is non-
increasing, it is increasing absolute risk averse (IARA) if its index Aφ is nondecreas-
ing, and it is constant absolute risk averse (CARA) if it is both DARA and IARA.
Decreasing (DRRA), increasing (IRRA), and constant (CRRA) relative risk averse
functions are defined analogously by replacing the index Aφ with Rφ.

2.2 Preferences for (non-instrumental) information

I reframe the theory of preferences for early resolution of uncertainty using the lan-
guage of information economics. Temporal lotteries are partially ordered by means
of a version of Blackwell order, which allows comparing them in terms of their (non-
instrumental) informativeness. In addition to its theoretical appeal and generality,
this approach will permit building a formal link between correlation and information.

Definition 2. Given d, d′ ∈ D0,s say that d is more informative than d′, denoted
d ≥B d′, if and only if for some t ≤ T − 2 and ct ∈ Ct, d = (ct,m) and d′ = (ct,m′)
with m,m′ ∈ ∆s(C ×∆s(Dt+1,s)) satisfying margCm′ = margCm, and

M
[
marg∆s(Dt+1,s)m

′
]

= GM
[
marg∆s(Dt+1,s) m

]
, (3)

where G is a stochastic matrix, with each row forming a probability vector.

In words, the expression d ≥B d′ means that the two lotteries, d and d′, have the
same distribution of consumption in the future period t + 1. However, the actual
realization of consumption in period t + 1 provides more information about future
values of consumption (from period t+ 2 onwards) for the lottery d compared to the
lottery d′. Observe that ≥B is a partial order just like the standard Blackwell order.
The following examples help to further clarify this notion of comparative information.

Example 1. Assume T = 2. Let d =
(
1, 1

2 (5, 10)⊕ 1
2 (5, 0)

)
and d′ = (1, 5, (1

210 ⊕
1
20)). Figure 2 provides a graphical representation of these two temporal lotteries.
We have

M
[
marg∆s(D2,s) m

′
]

=
1

2
1
2

1
2

1
2

 =
1

2
1
2

1
2

1
2

1 0
0 1

 =
1

2
1
2

1
2

1
2

M [
marg∆s(D2,s) m

]
,

so that d ≥B d′. In words, the terminal value of consumption is fully revealed by a
coin toss at t = 1 for d but only revealed at t = 2 for d′.
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Figure 3: Probability tree representation of a temporal lottery

Example 2. Again assume T = 2. Consider d, d′ given by d =
(
1, 1

2 (1, 1)⊕ 1
2 (0, 0)

)
and d′ =

(
1, 1

2

(
1,
(

1
21⊕ 1

20
))
⊕ 1

2

(
0,
(

1
21⊕ 1

20
)))

. Figure 3 provides a graphical rep-
resentation of these two temporal lotteries. We have

M
[
marg∆s(D2,s) m

′
]

=
1

2
1
2

1
2

1
2

 =
1

2
1
2

1
2

1
2

1 0
0 1

 =
1

2
1
2

1
2

1
2

M [
marg∆s(D2,s) m

]
,

so that d ≥B d′. In words, d′ is an “iid” temporal lottery while d is perfectly correlated.

This notion of comparative information is extended to arbitrary temporal lotteries
by means of the following standard procedure.

Definition 3. For every d, d′ ∈ D0, write d ≥B d′ if and only if there exist sequences
(dn)∞n=0, (d′n)∞n=0 in D0,s such that limn dn = d, limn d

′
n = d′ and dn ≥B d′n for every

n ≥ 0.

A preference for non-instrumental information or, equivalently, for early resolution
of uncertainty over a set of temporal lotteries is defined as monotonicity with respect
to the order ≥B.

Axiom 1. � exhibits a preference for information over a set B ⊆ D0 if and only if
for every d, d′,∈ B

d ≥B d′ =⇒ d �0 d
′.

The Kreps and Porteus’s approach restricts attention to temporal lotteries such as
those in Example 1 in which the draw at t = 1 provides information about consump-
tion at t = 2 but at the same time consumption at t = 1 is deterministic. Examples
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with correlation are excluded and it will become clearer why. Formally, in this case
the set B is given by6

B :=
{(
ct,m

)
: ct ∈ Ct,m ∈ ∆s(Dt+1,s),margCm = δ(c̄), c̄ ∈ C

}
. (4)

Observe that within the consumption domain B, consumption at time t + 1 is con-
sistently at level c̄, which implies that it is uncorrelated with consumption in the
following periods. Preferences valuing non-instrumental information over B exhibit
the following characterization.

Theorem 1. Assume � admits a KP representation (φ, u, β) with φ twice continu-
ously differentiable. Then � exhibits a preference for information over B if and only
if

−βφ
′′(βx+ y)
φ′(βx+ y) ≤ −

φ′′(x)
φ′(x) , (5)

for every x, y ∈ intu(C).

Outline of the proof. The key idea behind the proof is to demonstrate, using es-
tablished results from information economics (e.g., as outlined in Theorem 4 in
Kihlstrom (1984)), that � has a preference for information if and only if all func-
tions Ut : ∆s(Dt+1,s)→ R defined by

Ut(m) = φ
(
u(c̄) + βφ−1 (Emφ(Vt+1))

)
for every m ∈ ∆s(Dt+1,s), (6)

are convex for every c̄ ∈ C and t = 1, . . . , T − 2. Straightforward calculations show
that convexity of each Ut is equivalent to (5).

Condition (5) appears also in Strzalecki (2013) (p. 1051). Here I focus on risk atti-
tudes that exhibit a preference for information regardless of the level of impatience or
intertemporal substitution. Say φ satisfies uniform preference for information (UPI)
if and only if every � with KP representation (φ, u, β) exhibits a preference for in-
formation. Observe that if φ satisfies UPI, then it also satisfies DARA by (5). This
relationship provides a connection between classical risk attitudes and preference for
information.

6For a more recent treatment, see, for example, Definition 2 in Bommier et al. (2017).
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3 Attitudes toward correlation

3.1 The case T = 2

I introduce a general notion of an increase in positive correlation between consumption
at two distinct periods. For ease of exposition, consider first the case in which there
are two risky periods, i.e. T = 2. Later, I will show how it can be used to introduce
persistence over time to study long-run risk, i.e. persistence over multiple periods.
To this purpose, I introduce a class of temporal lotteries that can be defined by (i)
the distribution of consumption at time t = 1 and (ii) the conditional distribution of
consumption at time t = 2, given consumption in the prior period. Let

M∗
s := {m ∈ ∆s(C ×∆s(C)) : (c, µ), (c, µ′) ∈ suppm =⇒ µ = µ′} .

Every such m ∈ M∗
s can be (uniquely) associated with m1 ∈ ∆s(C) and m2(·|·) ∈

∆s(C)suppm1 , defined by m1 = margCm, and

m2(·|c) = µ(·),

where µ is the unique element of ∆s(C) such that (c, µ) ∈ suppm. Conversely, given
m1 ∈ ∆s(C) and m2(·|·) ∈ ∆s(C)suppm1 , we can uniquely define m ∈M∗

s by

m(c,m2(·|c)) := m1(c) for every c ∈ suppm1.

In words, m1 describes the distribution of time 1 consumption while m2(·|c) is the
conditional distribution of consumption at the final time period given a realization of
t = 1 consumption. The set D∗0,s := {(c,m) ∈ D0,s : m ∈M∗

s } is the set of temporal
lotteries that can be described in terms of a pair (m1,m2). Likewise, one can define
the associated cumulative distributions m1(c1 ≤ c), m2(c2 ≤ c|c1 ≤ c′).

Definition 4. Consider d = (c0,m), d′ = (c0,m
′) ∈ D∗0,s. Say that d differs from

d′ by an intertemporal elementary correlation increasing transformation
(IECIT) if and only if m1 = m′1 and there exist ε ≥ 0, and a pair (c, c′) such that
c 6= c′,m1(c),m1(c′) 6= 0 and

m2(c|c) = m′2(c|c) + ε

m′1(c) ,

m2(c′|c) = m′2(c′|c)− ε

m′1(c) ,
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m2(c′|c′) = m′2(c′|c′) + ε

m′1(c′) ,

and
m2(c|c′) = m′2(c|c′)− ε

m′1(c′) .

and m2 = m′2 otherwise.

The following two examples serve as an illustration of this concept.

Example 3 (Example 2 continued). In this case we have m1 = m′1, m2(1|1) = 1 =
m′2(1|1) + 1

1/2
1
4 = 1

2 + 1
2 , m2(1|1) = 0 = m′2(1|1) − 1

1/2
1
4 = 1

2 −
1
2 , m2(1|0) = 0 =

m′2(1|0)− 1
1/2

1
4 = 1

2 −
1
2 and m2(0|0) = 1 = m′2(0|0) + 1

1/2
1
4 = 1

2 + 1
2 . It follows that d

differs from d′ by an IECIT with ε = 1
4 . Therefore, the perfectly correlated temporal

lottery can be obtained from the “iid” lottery by means of an IECIT. In this case, an
IECIT increases the informativeness of a temporal lottery.

Example 4. Consider the temporal lotteries d = (c0,m), d′ = (c0,m
′) ∈ D0,s where

m1(x)′ = m1(x) = 1
2 and m2(1|0) = m2(0|1) = 1, m′2(1|1) = m′2(0|0) = 1. Figure 4

provides a graphical representation of these two lotteries. The lottery d is obtained
by applying an IECIT with ε = 1

2 . The lotteries d and d′ have perfect positive and
negative correlation, respectively. We can immediately see that d ≥B d′ and d′ ≥B d,
meaning that d and d′ are equally informative. The strict preference for d′ over d,
is referred to as correlation aversion by Bommier (2007) and intertemporal hedging
by Kochov (2015). I adopt the latter terminology as it reflects the fact that only
hedging considerations affect the evaluations of these two lotteries. The Supplemental
Appendix demonstrates that intertemporal hedging is equivalent to the concavity of
φ.

The concept of an IECIT correlation is an application of Epstein and Tanny’s
(1980) idea of generalized increasing correlation, applied in a dynamic setting. With
the notion of an IECIT, it is possible to establish an ordering ≥C that can be used
to rank temporal lotteries based on their positive autocorrelation.

Definition 5. Given d, d′ ∈ D∗0,s say that d is more informative than d′, denoted
d ≥C d′, if and only if d differs from d′ by a finite amount of IECITs.

I provide a necessary condition of when two temporal lotteries differ by a finite
amount of IECITs.
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Figure 4: Negative vs positive correlation

Proposition 1. If d ≥C d′ then it holds that

m′2 (c2 ≤ c | c1 ≤ c′) ≤ m2 (c2 ≤ c | c1 ≤ c′) for every (c, c′) ∈ C × C.

Notably, Proposition 1 implies that ≥C is transitive and thus a partial order.
Finally, denote with D∗0 the weak∗ closure of D∗0,s. It is possible to extend ≥C to D∗0
as follows.

Definition 6. Given d = (c,m), d′ = (c,m′) ∈ D∗0, write d ≥C d′, if and only if
margCm = margCm′ and there exist sequences (dn)∞n=0, (d′n)∞n=0 in D∗0,s such that
limn dn = d, limn d

′
n = d′ and dn ≥C d′n for every n ≥ 0.

The following result establishes a formal connection between IECITs and non-
instrumental information by showing that increasing the correlation of “iid” temporal
lotteries makes them more informative. To this end, define the “iid” temporal lottery
for each ` ∈ ∆b(C) by diid(`) = (c,m) where m(A × B) = `(A) if ` ∈ B and
m(A×B) = 0 otherwise.

Proposition 2. Consider ` ∈ ∆b(C) and d, d′ ∈ D∗0. Then it holds that

d ≥C≥ d′ ≥C diid(`) =⇒ d ≥B d′ ≥B diid(`).

Proof. See the Appendix.

This proposition establishes formally the main trade-off described in the introduc-
tion: increasing persistence in consumption risks to an “iid” lottery provides more
information about future consumption. Having fully established a theory of increas-
ing correlation, we can define correlation aversion as a form of monotonicity with
respect to the order ≥C .
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Axiom 2. � exhibits correlation aversion if and only if for every d, d′ ∈ D∗0 and
` ∈ ∆b(C)

d ≥C d′ ≥C diid(`) =⇒ diid(`) �0 d
′ �0 d.

The next result characterizes correlation averse preferences in terms of risk atti-
tudes, under the assumption of UPI, i.e. when the trade-off between intertemporal
hedging and non-instrumental information is relevant.

Theorem 2. Consider φ that is twice continuously differentiable and satisfies UPI.
Then every � with KP representation (φ, u, β) exhibits correlation aversion if and
only if φ satisfies IRRA.

Proof. See the Appendix.

As shown by Proposition 2, increasing positive correlation entails more non-
instrumental information. This result implies that under the restriction that such
non-instrumental information is valuable, the effect of correlation aversion will be
stronger than that of preference for early resolution of uncertainty. Conversely, if
IRRA fails then correlation aversion will not be satisfied. IRRA is one of the most
important classes of utility functions (e.g., see Arrow (1971), p. 96), which in turn
contains as a special case the CRRA and CARA cases represented by EZ and HS
preferences. Moreover, empirical findings support DARA and IRRA (Wakker (2010),
p. 83). To gain intuition, observe that IRRA means that Rφ is non-decreasing.
Therefore, we have:

R′φ(x) ≥ 0 =⇒ A′φ(x) ≥ −Aφ(x)
x

,

for every x 6= 0. Since under UPI it holds that A′φ ≤ 0, IRRA results in a constraint
on the reduction of absolute risk aversion for a given increase in consumption. Since
a uniform preference for information implies DARA, this inequality can be seen as a
constraint on the preference for information. Finally, observe that as a consequence of
Theorem 2, indifference to correlation occurs only under risk neutrality, i.e. φ(x) = x.

The following condition requires a mild strengthening of the notion of increasing
relative risk aversion by adding the requirement that Rφ be convex, in addition to
being non-decreasing. We refer to this condition as strong correlation aversion, given
the connection between increasing relative risk aversion and correlation, as established
by Theorem 2.
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Definition 7. We say that φ satisfies strong correlation aversion (SCA) if and only
if Rφ is non-decreasing and convex.

The next key result formalizes the connection between robustness to model mis-
specification and correlation aversion.

Theorem 3. Assume that � admits a KP representation (φ, u, β) with φ four times
continuously differentiable and satisfying UPI. If φ satisfies SCA, then � admits the
recursive representation (Vt)2

t=0 given by V2(c) = u(c) and

Vt(c,m) = u(c) + β min
`∈∆b(Dt+1)

{
E`Vt+1 + I t(u,β,φ)(`||m)

}
for t = 0, 1,

where I t(u,β,φ)(·, ·) : ∆b(Dt+1)×∆b(Dt+1)→ [0,∞] is a generalized distance.

Outline of the proof. Using a general result due to Hardy et al. (1952) on certainty
equivalents, I show that SCA implies that the certainty equivalent φ−1 (Emφ (Vt+1))
is concave in utilities.7 This result allows us to utilize the Fenchel-Moreau dual-
ity theorem, revealing that the certainty equivalent can be represented dually as
φ−1 (Emφ (Vt+1)) = min` E`V t+ 1 + I tφ,u,β(`‖m), where each I tφ,u,β(`‖m) is a cost
function whose general formulation is discussed in the Appendix. The cost func-
tions (I tφ,u,β)1

t=0 have therefore the same uniqueness properties as a KP representation
(φ, u, β). The details are in the Appendix.

It is well-known that when φ(x) = −e−xθ , the cost function I tφ,u,β is given by
Relative Entropy:

I tφ,u,β(`‖m) = I tθ(`‖m) = θ

(
Em

[
d`

dm
log

(
d`

dm

)])
,

when `� m and I tφ,u,β(`‖m) =∞ otherwise.8 The interpretation is that the decision-
maker is concerned about misspecification of the distribution of future consumption.
Therefore, alternative distributions are considered based on their distance from m, as
measured by the cost function I tφ,u,β. Theorem 3 implies that this interpretation in

7Cerreia-Vioglio et al. (2011) provide a similar representation under the assumption that φ is
strictly increasing and concave. However, their result significantly differs from this one because they
assume that u(C) = (−∞,∞). This assumption is typically not satisfied in applications, such as
the standard Epstein-Zin case.

8See for example Strzalecki (2011).
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terms of model misspecification applies to all preferences satisfying strong correlation
aversion. Similar to the variational preferences in Maccheroni et al. (2006), these cost
functions can be interpretated as measure of aversion to model misspecification, or
equivalently as an index of correlation aversion. A lower value of each I tφ,u,β indicates
a higher degree of correlation aversion exhibited by the decision-maker, meaning that
considering alternative distributions of future consumption becomes less costly. To
illustrate, consider the common parametrization of Epstein-Zin used in asset pricing
with intertemporal rate of substitution greater than unity 1

1−ρ > 1 and α < 0 (see
Bansal and Yaron (2004)). As shown in the proof of the theorem, by setting q =
α
α−ρ > 0 in this case we have the cost function

I tφ,u,β(`‖m) = [E`Vt+1]
[
e

1−q
q
Rq(`‖m) − 1

]
if `� m,

whereRq(`‖m) = 1
q−1 log

(
Em

[(
d`
dm

)q])
is the Rényi divergence. The Rényi divergence

has applications in a variety of fields, including information theory, statistics, and
machine learning (see Sason (2022) for a review). As the level of risk aversion 1− α
increases the cost function correspondingly decreases. While the cost function for
Hansen-Sargent preferences depends solely on φ through θ, the cost function for
Epstein-Zin preferences also depends on the continuation utility, thus allowing for
more complex patterns of correlation aversion.

3.2 The case T <∞

The previous results are easily extended to an arbitrary horizon T < ∞. The case
of an infinite horizon (that is, T = ∞) is discussed in the Supplemental Appendix
(see Section 9.1). In this setting, it is possible to extend the previous analysis as
follows. One can define the present equivalent PE�t(d) of each lottery d ∈ Dt as
the unique single period consumption level c ∈ C such that d ∼t (c, 0, . . . , 0). Now
observe that every m ∈ ∆b(C × ∆b(Dt+1)) and � with KP representation (φ, u, β)
induce the probability m� over ∆b(C ×∆b(C)) defined as follows:

m�(A×B) = m(A×B�) for every closed A×B ⊆ C ×∆b(C),

where B� = {` ∈ ∆b(Dt+1) : `� ∈ B} and `� ∈ ∆b(C) is defined by `�(A) =
`({d ∈ Dt+1 : PE�t(d) ∈ A}).9 In words, m� describes the joint distribution between

9The present equivalent and consequently the lottery m� are both well defined since preferences
are continuous and u is unbounded above.
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consumption at time t+1 and the continuation temporal lottery, where each temporal
lottery is expressed in terms of one-period consumption. In this way, it is possible to
extend the order ≥C and the correlation aversion axiom as follows.

Definition 8. Consider d = (c,m), d′ = (c,m′) ∈ D0 such that (c,m�), (c,m′�) ∈ D∗0.
Write d ≥C d′ if and only if (c,m�) ≥C (c,m�).

Given ` ∈ ∆b(C), the “i.i.d.” lottery is given by diid(`) := (c,m) where m� is such
that m(A×B) = `(A) whenever ` ∈ B and m(A×B) = 0 otherwise.

Axiom 3. � exhibits correlation aversion if and only for every ` ∈ ∆b(C) and d =
(c,m), d′ = (c,m′) ∈ D0 such that (c,m�), (c,m′�) ∈ D∗0

d ≥C d′ ≥C diid(`) =⇒ diid(`) �0 d
′ �0 d.

We can generalize Theorems 2 and 3 to this setting with an arbitrary finite horizon.

Theorem 4. Consider φ that is twice continuously differentiable and satisfies UPI.
Then every � with KP representation (φ, u, β) exhibit correlation aversion if and only
if φ satisfies IRRA. Further, if � that admits a KP representation (φ, u, β) with φ

that additionally satisfies SCA and is four times continuously differentiable then �
admits the recursive representation (Vt)Tt=0 given by VT (c) = u(c) and

Vt(c,m) = u(c) + β min
`∈∆b(Dt+1)

{
E`Vt+1 + I t(u,β,φ)(`||m)

}
for t = 0, . . . , T − 1

where I t(u,β,φ)(·, ·) : ∆b(Dt+1)×∆b(Dt+1)→ [0,∞] is a generalized distance.

Proof. The proof follows the same steps as the proof of Theorems 2 and 3 and is
therefore omitted for brevity.

The theory presented thus far has focused on studying attitudes towards the
correlation between consumption at two separate periods. However, it is also possible
to consider more complex patterns of correlation, such as correlation between multiple
periods. To explore this, I introduce a class of “Markov” temporal lotteries, in which
the persistence of consumption between periods is determined by a single parameter,
ε, which ranges from 0 to 1. This parameter is similar to the long-run risk concept
introduced by Bansal and Yaron (2004). When ε = 0, the lottery outcomes are
independent across periods, while for ε = 1 one has perfect positive correlation. Given
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Figure 5: Example of dε(`) with `(1) = `(0) = 1
2 and ε ∈ [0, 1]

` ∈ ∆s(C) and ε ∈ [0, 1], define dε(`) recursively as follows: dT−1,c,ε(`) = (c,mT−1,ε(`))
where

mT−1,ε(`)(x) =

`(c) + (1− `(c))ε if x = c

`(x)− `(x)ε x 6= c

and recursively for 2 ≤ t ≤ T − 2 define dt−1,c,ε(`) =
(
c,mε

t−1(`)
)

by

mt−1,ε(`)(dt,x,ε(`)) =

`(c) + (1− `(c))ε if x = c

`(x)− `(x)ε x 6= c

and finally set dε(`) = (c0,m1,ε)(`) where m1,ε(`) := `(c). Figure 5 provides a graph-
ical example of a temporal lottery of this type. The following result demonstrates
that, under the assumption of correlation aversion, a higher value of ε corresponds to
a lower level of utility.

Proposition 3. Consider � satisfying correlation aversion. Then for every ` ∈
∆s(C) and ε, ε′ ∈ [0, 1]

ε ≥ ε′ =⇒ dε
′(`) �0 d

ε(`).

Outline of the proof. The proof is a straightforward consequence of Theorem 4. See
the Appendix.
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Increasing the value of ε involves again a trade-off between non-instrumental infor-
mation aversion and intertemporal hedging.10 Under the interpretation that ε ∈ [0, 1]
models the persistent component in consumption, the above result implies that cor-
relation aversion is a sufficient condition for disliking long-run risks.

4 Substitution, risk aversion, and correlation
aversion

A key motivation for the study of recursive preferences is that the two distinct aspects
of preference—intertemporal substitutability and risk aversion—are not intertwined
(see Epstein and Zin (1989) pp. 949-950 and Chew and Epstein (1991), Theorem
3.2). However, a potential drawback of this fact is that it leads to preferences for
non-instrumental information in certain domains such as the one defined in (4). In
this section I show that under the assumption of correlation aversion, one can distin-
guish between risk aversion and intertemporal substitution by means of a consump-
tion domain in which preferences do not exhibit a preference for non-instrumental
information. To this end, let

R = {dε(`) : ` ∈ ∆s(C), ε ∈ [0, 1]} ∪ CT .

The consumption domain R contains all possible “Markov” temporal lotteries intro-
duced in the previous section along with deterministic consumption streams. Consider
preferences �i, i = 1, 2. Comparative risk aversion can be defined in a similar fashion
as in Chew and Epstein (1991), but in a smaller domain and not the entire class of
temporal lotteries D0.

Definition 9. Say that �1 is more risk averse than �2 if and only if for every
(c0,m) ∈ R

(c0,m) �2
0 (c0, c, . . . , c) =⇒ (c0,m) �1

0 (c0, c, . . . , c),

and
(c0,m) �2

0 (c0, c, . . . , c) =⇒ (c0,m) �1
0 (c0, c, . . . , c).

10Again, it holds that dε(`) ≥B dε
′(`) just like in Proposition 2. The proof is omitted for brevity.
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The next result shows the domain R is enough to distinguish risk aversion from
intertemporal substitution.

Proposition 4. Consider �1, �2 that both admit a KP representation. Then �1 is
more risk averse than �2 if and only if they admit KP representations (φ1, u1, β1) and
(φ2, u2, β2) such that u1 = u2, β1 = β2 and Aφ1 ≥ Aφ2.

Outline of the proof. Since R contains all deterministic consumption streams it fol-
lows that �1 and �2 admit KP representations (φ1, u1, β1) and (φ2, u2, β2) such that
u1 = u2, β1 = β2. Then one can apply the standard results on comparative risk
aversion by means of lotteries of the type ⊕n

i=1 πi(ci, . . . , ci) for every probability
vector (πi)ni=1 and constant consumption streams (ci, . . . , ci) ∈ CT to obtain that
Aφ1 ≥ Aφ2 .

Under correlation aversion, a decision maker prefers less informative temporal lot-
teries to more informative ones. Therefore, preferences under this assumption do not
exhibit a preference for information over the set R. In fact, the preference for less
informative lotteries, as represented by dε′(`) �0 dε(`) when ε ≥ ε′, aligns with pref-
erences that are correlation averse but indifferent to non-instrumental information.
By Theorem 1, preferences that are indifferent to information and not indifferent to
correlation are characterized by β = 1 and φ(x) = − exp

(
−x
θ

)
. As a result, when

considering an empirically relevant restriction on risk attitudes, the consumption do-
main R is able to distinguish between risk aversion and intertemporal substitution,
but attitudes towards non-instrumental information do not play a role.

However, even when considering the entire set of temporal lotteries D0, KP prefer-
ences cannot differentiate between risk aversion and correlation aversion. To illustrate
this point, as established in the proof of Theorem 3, if �1 is more risk averse than
�2, then it follows that

I t(φ1,u,β)(·||m) ≤ I t(φ2,u,β)(·||m),

for every t = 0, . . . , T−1. Because I tφ,u,β is a measure of correlation aversion, it follows
that for KP preferences, risk aversion and correlation aversion cannot be disentangled.
For example, for EZ and HS preferences, correlation aversion and risk aversion are
both determined by the parameters α and θ, respectively. However, this point does
not hold for other classes of recursive preferences, such as Epstein-Uzawa. These
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preferences admit the representation

Vt(c,m) = u(c) + b(c)EmVt+1,

and VT (c) = u(c) for some continuous functions u : X → R and b : X → (0, 1). These
preferences are indifferent to non-instrumental information and value intertemporal
hedging when b is non-increasing (Chew and Epstein (1991), Bommier et al. (2019));
but on the other hand cannot distinguish risk aversion from intertemporal substitution
(Chew and Epstein (1991), p. 361). As I discuss next, not being able to distinguish
between risk aversion and correlation aversion has important implications in asset
pricing.

5 Implications

5.1 Long-run risk

Long-run risk models are a cornerstone in the consumption-based asset pricing litera-
ture for their ability to account for a wide range of asset pricing puzzles. A key model
is that of Bansal and Yaron (2004), which relies on Epstein and Zin’s preferences and
a consumption process (case I) given by

log
(
ct+1

ct

)
= m+ xt+1 + σεc,t+1,

xt+1 = axt + ϕσεx,t+1,

εc,t+1, εx,t+1 ∼ iid N(0, 1).

(7)

In asset pricing, asset prices are determined by the claim on consumption growth
process dt := log

(
ct+1
ct

)
.11 Such a model faces the trade-off discussed in previous

sections. An investor with recursive preferences values both early resolution of uncer-
tainty and intertemporal hedging, with intertemporal hedging being more valuable

11While the present paper has focused on consumption levels, when u is isoelastic (such as is the
case in applications), the same considerations apply to consumption growth. For example, when
u(x) = log(x) we have the identity

(1− β)
∞∑
t=0

βt log(ct) = log(c0) +
∞∑
t=1

βt log
(

ct
ct−1

)
.
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due to Epstein-Zin preferences satisfying IRRA. My findings imply that the persistent
component of consumption inflates the equity premium because of correlation aver-
sion, thus making the ability of the model to match the risk premium independent
of preferences for early resolution of uncertainty. Given the widespread use of long-
run risk models in climate models to estimate the social cost of carbon (see Cai and
Lontzek (2019)), this is a significant finding. Importantly, my research indicates that
such estimates do not rely on preferences for irrelevant information, which is a crucial
consideration for the credibility of climate models. However, some limitations of the
model stem from the fact that the key feature of preferences, correlation aversion, is
based solely on risk attitudes, which will be discussed further in the next section.

5.2 How much would you pay to remove long-run risk?

Epstein et al.’s (2014) have suggested that the long-run risk model entails implausibly
high levels of preferences for early resolution of uncertainty. They introduce the
concept of a “timing premium” to reflect, among other things, preferences for early
resolution of uncertainty. However, when calculated using the standard parameters
of the model as found in the literature, they note that the resulting timing premium
seems excessively high compared to introspective assessments. I revisit their result
that common parameter specifications lead to implausibly high timing premia in
light of the theory on correlation aversion developed in the previous section. I ask
a different question: “What fraction of your wealth would you give up to remove all
persistence in consumption?” Formally, define the persistence premium by

π = 1− V0(dcorr)
V0(diid) ,

where diid and dcorr are given by (7) with a = 0 (no persistence) and a = 0.9790,
respectively. Table 1 summarizes the parameters of the model.12 Under the level
of risk aversion of 1 − α = 7.5, I obtain the persistence premium: π ≈ 0.3028,
while we have π ≈ 40% when 1 − α = 10. In other words, an investor with such
preferences would be willing to give up either 30% or 40% of his wealth to get rid of
persistence of consumption. Using the limited existing experimental evidence from
Andersen et al. (2018), my calibration suggests that we should have at most π ≈
20% (see Section 7.2.2). This finding implies that either the level of persistence is

12This a standard specification for persistence in the literature, see Bansal and Yaron (2004).
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σ ϕ a β 1− α ρ x0 π

0.0078 0.044 0 0.998 7.5 0 0 0
0.0078 0.044 0.9790 0.998 7.5 0 0 30%
0.0078 0.044 0.9790 0.998 10 0 0 40%

Table 1: Parameters of the LRR model (see Epstein et al. (2014)

unrealistic or the degree of risk aversion is too elevated. As previously discussed,
one potential solution to this problem is to incorporate other sources of correlation
aversion, such as endogenous discounting, into common recursive preferences like
Epstein-Zin. However, it is important to note that the calibration exercise is based
on limited experimental evidence and requires further empirical validation.

5.3 Utility smoothing

Karantounias (2018, 2022) demonstrates that standard Ramsey tax-smoothing pre-
scriptions for optimal fiscal policy are significantly altered when the decision-maker
has Epstein-Zin recursive preferences. The planner adopts a fiscal hedging policy:
taxing less during unfavorable conditions and more during favorable conditions to
mitigate income shocks. A key driver of this result is that with recursive preferences
the planner is averse to volatility in future utilities (see Karantounias (2018), p. 2284).
However, an important implication of the previous results is that such a feature of
preferences emerges in spite of the fact that recursive preferences value early resolu-
tion of uncertainty, and is tightly connected with correlation aversion. As shown by
Theorems 2 and 3, aversion to volatility in future utilities—mathematically reflected
by concavity of the certainty equivalent—is characterized by bounds on preferences
for early resolution of uncertainty. The findings of my paper demonstrate that the
same implications for optimal fiscal policy may not hold when using recursive pref-
erences that do not satisfy correlation aversion, as is the case with preferences that
exhibit DRRA.
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Figure 6: Relationship between correlation averse (CA) preferences and recursive
preferences that satisfy intertemporal-hedging (IH), Epstein-Zin (EZ) preferences,
and stochastic impatience (SI)

5.4 Non-EU and Stochastic impatience

DeJarnette et al. (2020) and Dillenberger et al. (2020) study stochastic impatience, a
property that extends impatience to uncertain environments. Like correlation aver-
sion, stochastic impatience is a normatively desirable behavioral postulate. They find
that EZ and HS models exhibit stochastic impatience, provided that the level of risk
aversion is not excessively high relative to the inverse elasticity of intertemporal sub-
stitution. The relationship between correlation aversion and stochastic impatience is
represented in Figure 6. In particular, correlation aversion can be compatible with
stochastic impatience. Similar to my findings, their results also advocate for a more
comprehensive specification of preferences in order to reduce the level of risk aversion
used in applications.

6 Concluding remarks

This paper has explored the relationship between non-instrumental information and
intertemporal hedging in the context of recursive preferences. I have shown that
under reasonable restrictions on risk attitudes intertemporal hedging is valued more
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than non-instrumental information. In other words, decision makers will exhibit an
aversion to positive autocorrelation in consumption even when it provides information
about future consumption. I have discussed the importance of this novel trade-off in
various economic applications: asset pricing, optimal taxation, and model misspeci-
fication. Note that this trade-off may not be driven solely by risk aversion, as other
features of preferences may also be at play. However, standard models affect corre-
lation aversion only through risk aversion. Further research is necessary to develop
models of decision making that enable a greater disentangling. This paper has sug-
gested a potential solution by integrating the Kreps-Porteus recursive framework with
time non-separable preferences, such as those found in the Epstein-Uzawa model.

7 Appendix

7.1 Proofs

7.1.1 Proof of Theorem 1

Lemma 1. Each Ut defined in (6) is convex if and only if (5) holds.

Proof. First I claim that each Ut defined in (6) is convex if and only if the function
Φ : φ(u(C))→ R defined by x 7→ φ(y+βφ−1 (x)) is convex. To see this point, observe
that for every c̄ ∈ C we have that

Ut(αm+ (1− α)m′) ≤ αU(m) + (1− α)U(m′) ⇐⇒

φ
(
c̄+ βφ−1 (αEmφ (Vt+1) + (1− α)Emφ(Vt+1))

)
≤

αφ
(
c̄+ βφ−1 (Emφ (Vt+1))

)
+ (1− α)φ

(
c̄+ βφ−1 (Em′φ (Vt+1))

)
.

Since u(C) is unbounded above and the statement above has to hold for every m,m′ ∈
∆s(Dt+1,s) it follows that convexity of Ut is equivalent to

φ
(
c̄+ βφ−1 (αx+ (1− α)y)

)
≤ αφ

(
c̄+ βφ−1 (x)

)
+ (1− α)φ

(
c̄+ βφ−1 (y)

)
,

for every x, y ∈ φ(u(C)) which is equivalent to convexity of Φ for every c̄ ∈ u(C).
Finally, the claim follows by using Lemma 3 in Strzalecki (2013).

Proof of Theorem 1. Now if φ satisfies (5), then Ut is convex by Lemma 1. Take d, d′ ∈
B such that d = (c,m), d′ = (c,m′) and d ≥B d′. By Theorem 4 in Kihlstrom (1984),
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Wt(marg∆s(Dt+1,s) m) ≥ Wt(marg∆s(Dt+1,s) m
′) for every real-valued convex function

Wt : ∆s(Dt+1,s) → R. By convexity of Ut, it follows that Ut(marg∆s(Dt+1,s) m) ≥
Ut(marg∆s(Dt+1,s) m

′), and therefore that d �0 d
′.

Conversely, consider d, d′ ∈ B given by

d = (c0, α (c̄, m1)⊕ (1− α) (c̄, m2)) ,

and
d′ = (c0, c̄, αm1 ⊕ (1− α)m2) ,

where α ∈ [0, 1] and V2(m1) = x, V2(m2) = y. We have that d �0 d
′ if and only if

αφ(c̄+ βφ−1(x)) + (1− α)φ(c̄+ βφ−1(y)) ≥ φ(c̄+ βφ−1(αx+ (1− αy))).

Since the statement has to hold for arbitrary x, y ∈ u(C) (recall that u is unbounded
above) and α ∈ [0, 1], it follows that the mapping x 7→ φ(c̄ + βφ−1 (x)) must be
convex. Hence an immediate application of Lemma 1 concludes the proof.

7.1.2 Proof of Proposition 1

Proof. Take d, d′ ∈ D∗0,s. Without loss of generality we can assume m1,m
′
1 and have

common support {c1, . . . , cn} ⊆ [0, 1], and (m2(·|ci))ni=1, (m′2(·|ci))ni=1 have common
support over {c1, . . . , cm} ⊆ [0, 1], with c1 < . . . < cn and c1 < . . . < cm. Let gij =
m2(ci|cj)m2(ci), fij = m′2(ci|cj)m′1(ci) for i = 1, . . . , n and j = 1, . . . ,m. Likewise,
let G(c, c′) = ∑∑

j:cj≤c
∑
i:ci≤c′ gij and F (c, c′) = ∑∑

j:cj≤c
∑
i:ci≤c′ fij. Observe that

if d differs from d′ by an IECIT then G differs from F by an elementary correlation-
increasing transformation as defined by Epstein and Tanny (1980) (see their Definition
1). By Theorem 1 in Epstein and Tanny (1980) it follows that if d ≥C d′, we have
G ≥ F , which by using the fact that m1 = m′1 one obtains

G ≥ F

⇐⇒ m′ (c2 ≤ c, c1 ≤ c′) ≤ m (c2 ≤ c, c1 ≤ c′)

⇐⇒ m′2 (c2 ≤ c | c1 ≤ c′) ≤ m2 (c2 ≤ c | c1 ≤ c′) ,

for every (c, c′) ∈ C × C as desired.
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7.1.3 Proof of Proposition 2

Proof. Denote with {c, c′, . . . , cN} the support of ` ∈ ∆s(C). It suffices to show that
if d′ ∈ D∗0,s differs from some diid(`) ∈ D∗0,s by an IECIT and d ∈ D∗0,s differs from d′

by an IECIT then d ≥B d′ ≥B diid(`). Suppose that d′ that differs from diid(`) by an
IECIT. Then for some ε ≥ 0 and (c, c′) it holds that



`(c) `(c′) . . . `(cN)
`(c) `(c′) . . .

...
... ... . . . ...

`(c) `(c′) . . . `(cN)

 =



x 1− x 0 . . . 0
x 1− x 0 . . . 0
0 0 1 . . . 0
... ... ... . . .

0 ... ... 0 1





`(c) + ε `(c′)− ε . . . `(cN)
`(c)− ε `(c′)− ε . . .

...
... ... . . . ...

`(c) . . . . . . `(cN)

 ,

where x ∈ [0, 1], so that d′ ≥B diid(`). Using the same reasoning it is immediate to
show that d ≥B d′.

7.1.4 Proof of Theorem 2

It is enough to prove that for every d, d′ ∈ D∗0,s and ` ∈ ∆s(C),

d ≥C d′ ≥C diid(`) =⇒ d �0 d
′ �0 d

iid(`).

The statement can be extended to arbitrary elements of means of continuity of pref-
erences.13 I prove first the following preliminary result.

Lemma 2. Consider d, d′ such that d′ differs from some diid(`) by an IECIT and d

differs from d′ by an IECIT. Then there exists a differentiable function U : [0, 1]→ R
such that

1. U(0) = V0(d) and U(1) = V (d′);

2. limε→0 U
′(ε) ≤ 0 whenever d = diid(`);

3. U ′′(ε) ≥ 0 for every ε ∈ (0, 1).

Proof. See the Supplemental Appendix.
13To see this, assume that d ≥C d′ ≥C diid(`). Then there exist sequences (dn)∞n=0, (d′n)∞n=0 and

(diid(`n))∞n=0, such that limn dn = d, limn d
′
n = d′ and limn d

iid(`n) = diid(`) and dn ≥C d′ ≥C
diidn (`n). Then diid(`) �0 d

′ �0 d follows by continuity.
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It is now possible to prove Theorem 2. To this end, given ` ∈ ∆s(C), denote with
dcorr(`) = (c,m) ∈ D∗0,s defined by m1 = ` and m2(c|c) = 1 for every c ∈ supp `.

Proof of Theorem 2. By Lemma 2, there exists U : [0, 1] → R such that for some
q1, q2 ∈ [0, 1] with q1 < q2 it holds that U(0) = V0(diid(`)), U(q1) = V0(d′), U(q2) =
V0(d), U(1) = V0(dcorr(`)), limε→0 U

′(ε) ≤ 0, and U ′(ε) ≥ 0 for every ε ∈ (0, 1) (where
derivatives are intended in a weak sense, see Section 8.2 in Brezis (2010)).14 I claim
that it also holds that

lim
ε→1

U ′(ε) ≤ 0.

Indeed, we have for some p, q ∈ (0, 1) and x, y such that x ≥ y

lim
ε→1

U ′(ε) = lim
ε→1

∂

∂ε

pφ (x+ βφ−1 (φ(x) (p+ qε) + φ(y) (q − qε))
)

+

qφ
(
y + βφ−1 (φ(x) (p− pε) + φ(y) (q + pε))

) 
≤ (φ(x)− φ(y))

(
φ′((1 + β)x)

φ′(x) − φ′((1 + β)y)
φ′(y)

)

= (φ(x)− φ(y))
∫ x

y

(1 + β)φ
′′(z(1+β))
φ′(z(1+β)) −

φ′′(z)
φ′(z)

(φ′(z))2 dz ≤ 0,

where the last inequality follows by the fact that φ satisfies IRRA, upon observing
that

(1 + β)φ
′′(z(1 + β))
φ′(z(1 + β)) −

φ′′(z)
φ′(z) ≤ 0 ⇐⇒ −z(1 + β)φ

′′(z(1 + β))
φ′(z(1 + β)) ≥ −z

φ′′(z)
φ′(z) .

Applying the fundamental theorem of calculus for weak derivatives (see Theorem 8.2
in Brezis (2010)), it follows that

V (d′)− V (diid) =
∫ q1

0
U ′(ε̃)dε̃ ≤ 0,

and
V (d)− V (d′) =

∫ q2

q1
U ′(ε̃)dε̃ ≤ 0.

14By applying Lemma 2, if there is a sequence (di)Ni=0 such that each di differs from di−1 by
an IECIT, then one can construct U : [0, 1] → R that is continuous and weakly differentiable by
setting (Ui)Ni=1 using Lemma 2 and setting U(x) = Ui

(
Nx
i

)
for x ∈

[
i−1
N , iN

)
, i = 1, . . . , N − 1 and

x ∈
[
N−1
N , 1

]
.
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Hence we obtain d′ �0 d �0 diid for every � with KP representation (φ, u, β) as
desired.

Conversely, assume that φ does not satisfy IRRA. Then there exists
¯
z < z̄ such

that Rφ is non-increasing over the interval [
¯
z, z̄] and Rφ(z̄) < Rφ(

¯
z). Pick β ∈ (0, 1]

such that z̄
1+β > ¯

z, and let x = z̄
1+β , y =

¯
z. Consider diid(`) where `(x) = `(y) = 1

2 .
Let dε(`) = (c0,m) where m2(x|x) = `(x) + 1

2ε, and m2(y|y) = `(y) + 1
2ε. Then

dε(`) ≥C dε
′(`) ≥C diid(`) for ε ≥ ε′. Now define U : [0, 1] → R such that U(ε) =

V0(dε(`)). Applying the same reasoning as in Lemma 2, we obtain U ′′(ε) ≥ 0 for
ε ∈ (0, 1) since φ satisfies UPI. Therefore by analogous calculations as before we have
that since IRRA is not satisfied

lim
ε→1

U ′(ε) ∝ (φ(x)− φ(y))
∫ x

y

(1 + β)φ
′′(z(1+β))
φ′(z(1+β)) −

φ′′(z)
φ′(z)

(φ′(z))2 dz > 0,

which implies that for some ε̄ < 1 it most hold that U ′(ε̃) > 0 for every ε̃ ∈ [ε̄, 1). It
follows that

V (d1(`))− V (dε̄(`)) =
∫ 1

ε̄
U ′(ε)dε > 0,

which implies that d1(`) ≥C dε̄(`) ≥C diid(`) but d1(`) �0 d
ε̄(`). We can therefore

conclude that φ must satisfy IRRA as desired.

7.1.5 Proof of Theorem 3

I introduce first some important notation: given a measurable space (S,Σ), ca(Σ) is
the set of all countably additive elements of the set of charges ba(Σ), while ca+(Σ) =
ca(Σ) ∩ ba+(Σ) is its positive cone and ∆(Σ) is the set of countably additive proba-
bility measures. Given p ∈ ba(Σ), let ba(Σ, p) = {v ∈ ba(Σ) : B ∈ Σ and p(B) = 0
implies v(B) = 0}. Observe that ba(Σ, p) is isometrically isomorphic to (see ?, The-
orem IV.8.16) the dual of L∞(p) := L∞(S,Σ, µ) and ca(Σ, p) = ca(Σ) ∩ ba (Σ, p) is
(isometrically isomorphic to) L1(p) (via the Radon-Nikodym derivative ν 7→ dν/dp).
Turning to the proof of Theorem 2, I first introduce important notions related to quasi-
arithmetic certainty equivalent functionals: given p ∈ ∆(Σ), let Mφ,p : L∞(p) → R
be defined by

φ−1
(∫

φ(ξ)dp
)

for every ξ ∈ L∞(p).

The functional Mφ,p is well-defined whenever φ is continuous and non-decreasing.
I provide an important result concerning the convex conjugate M∗

φ,p of the quasi-
arithmetic mean.
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Lemma 3. Assume that Mφ,p satisfies Mφ,p(ξ+k) ≥Mφ,p(ξ)+k for every ξ ∈ L∞(p)
and k ∈ R. Then the Fenchel-Moreau conjugate satisfies M∗

φ,p(q) = −∞ when q 6∈
∆(Σ).

Proof. Observe first that by the aforementioned isometry between the dual of L∞(p)
and ba(Σ), the convex conjugate M∗

φ,p can be seen as a mapping ba(Σ, p)→ [−∞, 0]
defined by

M∗
φ,p(q) = inf

ξ∈L∞(p)

∫
ξdq −Mφ,p(ξ).

Now by assumption,

M∗
φ,p(q) = inf

ξ∈L∞(p)

∫
ξdp−Mφ,q(ξ) ≤ φ−1

(
inf
ξ

∫
ξdp−

∫
φ(ξ)dp

)
.

Therefore, Corollary 2A in Rockafellar (1971) implies that M∗
φ,p(q) = −∞ whenever

q 6∈ ca(Σ, p). Further, assume that q(S) 6= 1. Again by assumption on Mφ,p∫
(ξ + b) dq −Mφ,p(ξ + b) ≤

∫
ξdq −Mφ,p(ξ) + b(q(S)− 1),

for all b ∈ R and so M∗
φ,p(q) = −∞ as desired.

Denote with L∞+ (p) be the non-negative orthant of L∞(p).

Theorem 5 (See Hardy et al. (1952) Theorem 106, Chudziak et al. (2019) or Gollier
(2001)). Consider φ : R→ R strictly increasing, strictly concave, and twice differen-
tiable over (0,∞). Then Mφ,p|L∞+ (p) is concave if and only if Aφ|(0,∞) is convex.

Proof. First observe that Aφ|(0,∞) is convex if and only if 1
Aφ|(0,∞)

is concave. To see
this point, take x, y ∈ (0,∞). It is enough to prove that

1
Aφ

(
x+y

2

) ≤ 1
2

(
1

Aφ(x) + 1
Aφ(y)

)
. (8)

Recall that in general it holds that

x+ y

2 ≥ 1
1
2( 1

x
+ 1

y
) .

Hence the claim follows by rewriting (8) as

1
1
2

(
1

Aφ(x) + 1
Aφ(y)

) ≤ 1
Aφ

(
x+y

2

) .
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Now if Aφ is convex, by it follows that by setting L∞s,+(p) := {ξ ∈ L∞s,+(p) : ξ =∑n
k=1 ak1Ak , (ak)nk=1 ∈ Rn

+}, one can apply the above claim combined with Theorem 1
and Theorem 5 in Chudziak et al. (2019) to show that Mφ,p|L∞s,+(p) is concave. Con-
vexity of Mφ,p|L∞+ (p) follows by the fact that L∞s,+(p) is dense in L∞+ (p). Conversely,
if Mφ,p|L∞+ (p) is concave then Mφ,p|L∞s,+(p) is also concave, which by Theorem 1 and
Theorem 5 in Chudziak et al. (2019) implies that Aφ|(0,∞) must be convex.

Thanks to Theorem 5, we obtain the following powerful result, which shows that
the conjunction of DARA and SCA on φ implies the concavity of the quasi-arithmetic
mean Mφ,p|L∞+ (p).

Corollary 1. Assume that φ is four times continuously differentiable and satisfies
UPI over (0,∞). Then if Rφ is convex Mφ,p|L∞+ (p) is concave.

Proof. Observe that

R′′φ(x) = (xAφ(x))′′ = xA′′φ(x) + 2A′φ(x).

If φ satisfies UPI, then A′φ ≤ 0. Hence if φ satisfies SCA so that R′′φ ≥ 0, it has to be
the case that

A′′φ(x) ≥ 0.

The result therefore follows by Theorem 5.

Such a result in a way completes Theorem 12 and Corollary 1 in Marinacci and
Montrucchio (2010), who characterize quasi-arithmetic certainty equivalents that are
constant subadditive and subhomogeneous. Indeed, one way to think about Corollary
1 is that it implies that for quasi-arithmetic means to be concave it is enough to
assume constant superadditivity (DARA) and SCA, where the latter property implies
subhomogeneity (IRRA) of Mφ,p. It is important to observe that both EZ and HS
preferences satisfy such an assumption.

Corollary 2. Assume that φ is given by φ(x) = xλ

λ
for λ < 1 or φ(x) = −e−θx with

θ ≥ 0 for every x ∈ R+. Then Mφ,p is concave.

Proof. Immediate from Theorem 5.
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Now consider � with KP representation (φ, u, β). Without loss of generality,
assume u(C) = [0,∞). I now show that letting

φ̂(x) =

φ(x) x ≥ 0

−∞ x < 0,

then Mφ̂,p is concave if φ satisfies SCA.

Lemma 4. If φ : [0,∞)→ R satisfies SCA, then Mφ̂,p is concave.

Proof. By Corollary 1, Mφ,p|L∞+ (p) is concave. Now given ξ, ξ′ ∈ L∞(p) and α ∈ [0, 1],
if Mφ,p(αξ + (1 − α)ξ′) = −∞ then it must be the case that Mφ,p(ξ) = −∞ or
Mφ,p(ξ′) = −∞, so that Mφ,p(αξ + (1 − α)ξ′) ≥ αMφ,p(ξ) + (1 − α)Mφ,p(ξ′). If
Mφ,p(αξ + (1 − α)ξ′) > −∞ and Mφ,p(ξ) = −∞ or Mφ,p(ξ′) = −∞, then Mφ,p(αξ +
(1 − α)ξ′) ≥ αMφ,p(ξ) + (1 − α)Mφ,p(ξ′). Finally, if Mφ,p(ξ),Mφ,p(ξ′) > −∞ then it
must be that ξ, ξ′ ∈ L∞+ (p) so that Mφ,p(αξ+ (1−α)ξ′) ≥ αMφ,p(ξ) + (1−α)Mφ,p(ξ′)
as desired.

It is now possible to deliver a proof of Theorem 3.

Proof of Theorem 3. Given (Vt)Tt=1 from the KP representation, observe that for every
mt ∈ ∆b(Dt), where Dt is the Borel σ-algebra of Dt, since each Vt : Dt → R,
t = 1, . . . , T is continuous we have Vt ∈ L∞+ (Dt,Dt,mt) := L∞+ (mt). If φ satisfies
SCA, then by Lemma Mφ̂,mt

is concave for each t = 1, . . . , T − 1. By applying the
Fenchel-Moreau Theorem (see Phelps (2009), p. 42) and Lemma 4 it follows that

Mφ̂,mt
(ξ) = inf

q∈∆(Dt,mt)
Eqξ −M∗

φ̂,mt
(q) for all ξ ∈ L∞(mt).

Now using the isometry between ca(Dt,mt) and L1(mt), we can write

M∗
φ̂,mt

(q) = M∗
φ,mt(q) = inf

ξ∈L∞+ (mt):Emt
dq
dmt

ξ=Eqξ

{
Emtξ − φ−1 (Emtφ (ξ))

}
.

By applying Proposition 1 in Frittelli and Bellini (1997) one obtains

M∗
φ,mt(q) = sup

ξ∈L∞+ (mt):Emt
[
dq
dmt

ξ

]
=Eqξ

{
φ−1Emt [φ(ξ)]− Emt

[
dq

dmt

ξ

]}

= φ−1
(
Em(φ ◦ ψ)

(
k(q) dq

dmt

))
− EqVt+1,
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where ψ = (φ′)−1 and k(q) ∈ (0,∞) is the only solution to the equation

Eψ
(
k(q) dq

dmt

)
dmt = Eqξ.

Hence if for t = 0, . . . , T − 1 we set

I tφ,u,β(`||mt) :=

E`Vt+1 − φ−1
(
Emt(φ ◦ ψ)

(
k(`) d`

dmt

))
`� mt,

+∞ otherwise,

then one obtains

Vt(c,mt) = u(c) + β min
`�mt

{
E`Vt+1 + I tφ,u,β(`‖mt)

}
where the infimum is attained because {` ∈ ∆b(Dt+1) : ` � mt} is a closed subset
of the compact metric space ∆b(Dt+1) (see Epstein and Zin (1989), p. 962) for
t = 0, . . . , T − 1. Observe that E`Vt+1 is entirely determined by (φ, u, β) and `.
Finally, observe that each I tφ,u,β is a premetric generalized distance in the sense of
Csiszár (1995). Indeed, one can show that I t(`||m) = 0 if and only if m = ` by
adapting the same arguments as in Remark 8 in Frittelli and Bellini (1997). Further,
Proposition 16 in Cerreia-Vioglio et al. (2011) can be used to show that

I t(u,β,φ1)(·||m) ≤ I t(u,β,φ2)(·||m),

whenever Aφ1 ≥ Aφ2 .
Further, observe that in the Epstein-Zin case we have (see Section 5.2 in Frittelli

and Bellini (1997)) by setting q = α
α−ρ ,

I tφ,u,β(`‖m) = E`Vt+1


(
Em

[
d`

dm

q
])− 1

q

− 1

 ,
so that upon noticing that the Rényi divergence is given for any q > 0, q 6= 1 (see
Van Erven and Harremos (2014)) by

Rq(`‖m) = 1
q − 1 log

(
Em

[
d`

dm

q
])

,

we obtain that whenever α < 0 and 1
1−ρ > 1 it holds that q > 0, q 6= 1 so that

Iφ,u,β(`,m) = E`Vt+1

[
e

1−q
q
Rq(`‖m) − 1

]
,

as desired.
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7.1.6 Proof of Proposition 3

Define again U : [0, 1] → R by U(ε) = V0(dε(`)). Similarly to the proof of Theorem
2, for every ε ≥ ε′ we have∫ ε

ε′
U ′(ε)dε = U(ε)− U(ε′) ≤ 0,

which implies dε′(`) �0 d
ε(`) as desired.

7.1.7 Proof of Proposition 4

Suppose that for each i ∈ {1, 2}, the preference relation�i admits a KP representation
of the form (φ̃i, ũi, β̃i). Observe first that if �1 is more risk averse than �2 then it
must be that for every cT , ĉT ∈ CT

cT �1
0 ĉ

T ⇐⇒ cT �2
0 ĉ

T ,

which implies that β̃1 = β̃2 and ũ1 = aũ2 + b for some a > 0 and b ∈ R. Therefore
setting u2 = ũ2

a
− b

a
and φ2(x) = φ̃2 (ax+ b) for every x ∈ u2(C), the statement

is satisfied with KP representations (φ̃1, ũ1, β̃1) and (φ2, u2, β̃2). Normalize ũ1(0) =
ũ2(0) = 0. Now define V : C → u(C) by V (c) := ∑T

t=1 β
tu(c). For each ` ∈ ∆s(u(C)),

there exists (π)ni=1 and (c̄i)ni=1 ∈
∏n
i=1C such that ` = V#

⊕n
i=1 πic̄i.15 Since �1 is more

risk averse than �2, it follows that since (c0,
⊕n
i=1 πi(c̄i, . . . , c̄i)) , (c0,0) ∈ R(

c0,
n⊕
i=1

πi(c̄i, . . . , c̄i)
)
�2

0 (c0,0) =⇒
(
c0,

n⊕
i=1

πi(c̄i, . . . , c̄i)
)
�1

0 (c0,0) .

for every ` ∈ ∆s(u(C)), if E`φ2(x) ≤ φ(0) then E`φ1(x) ≤ φ(0). Hence the re-
sult follows by applying Proposition 2 in Gollier (2001). The converse follows by a
straightforward application of Jensen’s inequality.

7.2 The persistence premium

7.2.1 Long-run risk

We have that (see Epstein et al. (2014), pp. 2684-2685)

log V0(dcorr) = log c0 + β

1− βax0 + β

1− βm+ α

2
βσ2

1− β

(
1 + ϕ2β2

(1− βa)2

)
,

15Here V#
⊕n

i=1 πic̄i denotes the pushforward of (c0,
⊕n

i=1 πi(c̄i, . . . , c̄i)) by V on u(C).
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and
log V0(diid) = log c0 + βx0 + β

1− βm+ α

2
βσ2

1− β
(
1 + ϕ2β2

)
.

Therefore we obtain

π = 1− V (dcorr)
V (diid) = 1− e

β
1−βax0−βx0+α

2
βσ2
1−β

(
ϕ2β2

(1−βa)2−ϕ2β2
)
.

π = 1− exp
(
−6.5× 0.998× 0.00782

2(1− 0.998)

(
0.0442 × 0.9982

(1− 0.998× 0.979)2 − 0.0442 × 0.9982
))

≈ 0.302.

π = 1− exp
(
−9× 0.998× 0.00782

2(1− 0.998)

(
0.0442 × 0.9982

(1− 0.998× 0.979)2 − 0.0442 × 0.9982
))

≈ 0.393.

Therefore we have that π ≈ 30% with α = 7.50 and π ≈ 40% with α = 10.

7.2.2 An upper bound on the persistence premium

There is no independent study that quantifies the persistence premium in the litera-
ture. To have a sense of a potential calibrated value, I conduct a thought experiment
that provides an upper bound for the persistence. The thought experiment is based
on the comparison between an “i.i.d.” lottery and a maximally correlated lottery in
the sense that there is no other temporal lottery more correlated than it. Andersen
et al. (2018) estimate an intertemporal utility function under uncertainty which can
be written as

V (f) = u−1φ−1EP
[
ϕ

( 2∑
t=1

βtu (ft)
)]

,

where β ≈ 0.998, φ(x) = x0.68 and u(x) = x0.65.
Given x > 0 and n = 2, let diid be the lottery that pays x and 0 with probabil-

ity 1
2 each and f corr the process that pay (x, x) and (0, 0) with probability 1

2 each.
Therefore, dcorr is maximally correlated in the sense that there is no lottery d such
that d ≥C dcorr and dcorr 6≥C d. In this case the persistence premium is given for
every x > 0 by

π = 1−

(
0.5
(
x1−0.35 + x1−0.35

1+0.114

)1−0.32
)1/(1−0.32)(1−0.35)

(
(x1−0.35)1−0.32 × 0.5 +

(
x1−0.35

1+0.114

)1−0.32
(1− 0.5)

)1/(1−0.32)(1−0.35) ≈ 1− 0.8 ≈ 0.2.

Hence π ≈ 20% provides an upper bound for the persistence premium.
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Biblioteca del Metron, 1:81–147.

DeJarnette, P., Dillenberger, D., Gottlieb, D., and Ortoleva, P. (2020). Time lotteries
and stochastic impatience. Econometrica, 88(2):619–656.

Dillenberger, D., Gottlieb, D., and Ortoleva, P. (2020). Stochastic impatience and
the separation of time and risk preferences. Available at SSRN. https://papers.
ssrn.com/sol3/papers.cfm?abstract_id=3645071.

Duffie, D. and Epstein, L. G. (1992). Stochastic differential utility. Econometrica:
Journal of the Econometric Society, 60(2):353–394.

Epstein, L. G. (1992). Behaviour under risk: recent developments in theory and
applications, in “Advances in Economic Theory: Sixth World Congress”(JJ Laffont,
Ed.), Econometric Society Monograph. Cambridge University Press, Cambridge.

Epstein, L. G. (2001). Sharing ambiguity. American Economic Review, 91(2):45–50.

Epstein, L. G., Farhi, E., and Strzalecki, T. (2014). How much would you pay to
resolve long-run risk? American Economic Review, 104(9):2680–97.

Epstein, L. G. and Tanny, S. M. (1980). Increasing generalized correlation: a defini-
tion and some economic consequences. Canadian Journal of Economics, 13(1):16–
34.

39

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3645071
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3645071


Epstein, L. G. and Zin, S. E. (1989). Substitution, risk aversion, and the temporal
behavior of consumption and asset returns: A theoretical framework. Econometrica,
57(4):937–969.

Epstein, L. G. and Zin, S. E. (1991). Substitution, risk aversion, and the temporal
behavior of consumption and asset returns: An empirical analysis. Journal of
political Economy, 99(2):263–286.

Frittelli, M. and Bellini, F. (1997). Certainty equivalent and no arbitrage: A recon-
ciliation via duality theory. Working Paper, Università degli Studi di Milano.
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9 Supplemental Appendix

This supplemental material contains two parts. Section 9.1 extends the analysis to
an infinite horizon while Section 9.2 provides proofs of the claims made in the main
text and the Appendix.

9.1 The case T =∞

As the consumption set C = [0,∞) = R+ is identical to that of Epstein and Zin
(1989), I follow their approach in introducing the set of temporal lotteries for the
case of an infinite horizon, with specific reference to their discussion on pages 940-
944. The only deviation in my approach is the use of ∆(X) to denote the set of Borel
probabilities defined on a metric space X. The set of temporal lotteries, denoted by
D(b), is defined in equation 2.3 of their paper and is characterized by the expressions
given in equations 2.2-2.11, which define all the relevant objects. I also make use of
their characterization of temporal lotteries in D(b).

Theorem 6 (Theorem 2.2 in Epstein and Zin (1989)).

D(b) is homeomorphic to C × ∆̂(D(b)),
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where

∆̂(D(b)) :=

m ∈ ∆̂(D(b)) : f (m2) ∈
⋃
l>0

∆(Y (b; l)), m2 = P2m

 .
Because of this result, each d ∈ D(b) can be identified with (c,m) ∈ C× ∆̂(D(b)).

Further, each m ∈ ∆̂(D(b)) can be equivalently identified with an element ∆̂(C ×
∆̂(D(b))). Preferences are given by a weak order � over D(b). The utility function
V : D(b)→ R is called recursive if it satisfies the following equation for every (c,m) ∈
C × ∆̂ (D(b)) ,

V (c0,m) =
[
cρ + βφ−1 [(Emφ (V ))]ρ

]1/ρ
, 0 6= ρ < 1, 0 < β < 1, (9)

where φ : [0,∞) → R. The next result shows that (9) has always a solution, thus
making recursive utility well defined in this context.

Theorem 7. Suppose that φ is concave. Then there exists a continuous V : D(b)→ R
that satisfies (9).

Proof. Denote by S+(D(b)) the set of functions that map from D(b) into positive real
numbers. Let h ∈ S+(D(b)) be defined as in p. 963 of Appendix 3 in Epstein and
Zin (1989). Further, define S+

h (D(b)) as follows

S+
h (D(b)) ≡

{
X ∈ S+(D(b)) : ‖X‖h ≡ sup

d∈D(b)

X(d)
h(d) <∞

}
.

Define T : S+
h (D(b))→ S+

h (D(b)) by

T (X) =
[
cρ + βφ−1 [(Emφ (X))]ρ

]1/ρ
for every X ∈ S+

h (D(b)).

Let V ∗ be a continuous function such that

V ∗ (c0,m) = [cρ + β [Em (V ∗)]ρ]1/ρ , 0 6= ρ < 1, 0 < β < 1,

which exists uniquely by Theorem 3.1 in Epstein and Zin (1989). Let T 0(V ∗) = T (V ∗)
and T n(V ∗) = T (T n−1(V ∗)). By Jensen inequality

φ−1 (Eφ(X)) ≤ EX for all X ∈ S+
h (D(b)) ∈ =⇒ T (V ∗) ≤ V ∗.
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Further, it holds that T (V ∗) > 0. By induction, one obtains that the sequence
(T n(V ∗))∞n=0 is non-increasing and bounded below. Therefore we can define V ∈
S+
h (D(b)) S+

h (D(b)) as follows

V := lim
n→∞

T nV ∗,

which is continuous by continuity of V ∗ and by the fact that T maps continuous
functions into continuous functions. I now claim that V solves (9). Since

T nV ∗ (c0,m) =
[
cρ + βφ−1

[(
Emφ

(
T n−1V ∗

))]ρ]1/ρ
for every m ∈ D(b),

the statement follows by the fact that

lim
n→∞

φ−1
[(
Emφ

(
T n−1V ∗(m)

))]ρ
= φ−1

[(
Emφ

(
lim
n→∞

T n−1V ∗(m)
))]ρ

= φ−1 [(Emφ (V ))]ρ .

Consider now a weak order � over D(b). Say that � admits a KP representation
(φ, ρ, β) if there exists V : D(b) → R that satisfies (9) and that represents �. For
every d ∈ D(b) one can define the present equivalent PE�(d) as the unique single
period consumption level c ∈ C such that d ∼ (c,0), where 0 ∈ D(b) is the temporal
lottery that pays the constant zero level of consumption at every time period. Now
observe that every m ∈ ∆̂(C × ∆̂(D(b))) and � with KP representation (φ, ρ, β)
induce the probability m� over ∆̂(C × ∆̂(C)) defined as follows:

m�(A×B) = m(A×B�) for every closed A×B ⊆ C ×∆b(C),

where B� = {` ∈ ∆̂(D(b)) : `� ∈ B} and `� ∈ ∆b(C) is defined by `�(A) =
`({d ∈ D(b) : PE�(d) ∈ A}).16 In words, m� describes the joint distribution between
consumption at time t+1 and the continuation temporal lottery, where each temporal
lottery is expressed in terms of one-period consumption. In this way, it is possible to
extend the order ≥C and the correlation aversion axiom as follows.

Definition 10. Consider d = (c,m), d′ = (c,m′) ∈ D(b) such that (c,m�)),
(
c,m

′
�

)
∈

D∗0. Write that d ≥C d′ if and only if (c,m�) ≥C (c,m�).
16The lottery m� is well defined since preferences are continuous, u(x) = xρ and each m ∈ ∆̂(D(b))

has compact support.
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Correlation aversion can be then defined as in the main text.

Definition 11. � exhibits correlation aversion if and only for every d, d′ ∈ D(b)

d ≥C d′ ≥C diid(`) =⇒ diid(`) � d′ � d.

The main results of the paper carry out in the same way.

Theorem 8. Consider φ that is twice continuously differentiable and satisfies UPI.
Then every � with KP representation (φ, ρ, β) exhibit correlation aversion if and only
if φ satisfies IRRA. Further, if � that admits a KP representation (φ, ρ, β) with φ

that additionally satisfies SCA and is four times continuously differentiable then �
admits the recursive representation

V (c,m) =
[
cρ + β

(
min

`∈∆̂(D(b))

{
E`V + I(u,β,φ)(`||m)

})ρ] 1
ρ

,

where I(u,β,φ)(·, ·) : ˆ∆(D(b))× ˆ∆(D(b))→ [0,∞] is a generalized distance.

Proof. The proof follows the same steps as the proof of Theorems 2 and 3.

9.2 Additional proofs

9.2.1 Proof of Lemma 2

Write the support of m1 as {c1, . . . , cN} and pi = m1(ci) for every i = 1, . . . , N . Let

U(ε) =
N∑
i=1

piφ

xi + βφ−1

 N∑
j=1

pεjiφ(xi)
 for every ε ∈ [0, 1],

where for some
¯
i,

¯
j it holds that pε

¯
j
¯
i = p

¯
j
¯
i − p

¯
i
¯
jε, p

ε

¯
i
¯
i = p

¯
i
¯
i + p

¯
i
¯
jε, p

ε

¯
i
¯
j = p

¯
i
¯
j − p

¯
j
¯
iε,

pε

¯
j
¯
j = p

¯
j
¯
j + p

¯
j
¯
iε, and otherwise pji = m(cj|ci) for every other j, i. Clearly U defined

in such a way satisfies point (1) in the statement. To prove point (2), observe that in
this case we have that pji = m(cj) for every j, i = 1, . . . , N and pεji = pj + ε for some

45



¯
i,

¯
j. Now we have that for some p, q ∈ (0, 1) and x > y

lim
ε→0

U ′(ε) = lim
ε→0

∂

∂ε

[
pφ
(
x+ βφ−1 (φ(x) (p+ qε) + φ(y) (q − pε))

)
+

qφ
(
y + βφ−1 (φ(x) (p− qε) + φ(y) (q + pε))

) ]

≤ (φ(x)− φ(y)) lim
ε→0

[
φ′(x+ βφ−1 (φ(x) (p+ qε) + φ(y) (q − pε) + k))
φ′ (φ−1(φ(x) (p+ qε) + φ(y) (q − pε) + k)) −

φ′(y + βφ−1 (φ(x) (q + pε) + φ(y) (p− pε) + k))
φ′ (φ−1(φ(x) (q + pε) + φ(y) (p− pε) + k))

]

= (φ(x)− φ(y))
[
φ′(x+ βφ−1 (φ(x)p+ φ(y)q + k))
φ′ (φ−1(φ(x)p+ φ(y)q + k)) −

φ′(y + βφ−1 (φ(x)q + φ(y)p+ k))
φ′ (φ−1(φ(x)q + φ(y)p+ k))

]

= (φ(x)− φ(y))
φ′ (φ−1(φ(x)q + φ(y)p+ k))

∫ x

y
φ′(z)φ′′

(
z + βφ−1 (φ(z) + k)

)
dz ≤ 0,

where the last inequality follows by the fact that φ is strictly increasing and concave
and that x > y. Now to prove point (3), observe that letting

g1(ε) := p
¯
iφ

xi + βφ−1

∑
j

pεj
¯
iφ(xi)

 ,
and

g2(ε) := p
¯
jφ

xi + βφ−1

∑
j

pεj
¯
jφ(xi)

 ,
which are convex by Lemma 1. Then we obtain

U ′′(ε) = ∂2

∂ε2

p
¯
iφ

xi + βφ−1

∑
j

pεj
¯
iφ(xi)

+ p
¯
jφ

xi + βφ−1

∑
j

pεj
¯
jφ(xi)


=g′′1(ε) + g′′2(ε) ≥ 0,

for every ε ∈ (0, 1) as desired.

9.2.2 Intertemporal hedging

Proposition 5. � with KP representation (φ, u, β) satisfies intertemporal hedging if
and only if φ is concave.
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Proof. Observe that intertemporal hedging is equivalent to

1
2φ(x+ βx) + 1

2φ(y + βy) ≤ 1
2φ(y + βx) + 1

2φ(x+ βx),

for every x, y ∈ u(X). Therefore the statement follows by a straightforward applica-
tion Theorem 4(a) in Epstein and Tanny (1980).
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