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Abstract

We study the optimal method for rationing scarce resources through a queue sys-
tem. The designer controls agents’ entry into a queue and their exit, their service
priority—or queueing discipline—as well as their information about queue priorities,
while providing them with the incentive to join the queue and, importantly, to stay in
the queue, when recommended by the designer. Under a mild condition, the optimal
mechanism induces agents to enter up to a certain queue length and never removes
any agents from the queue; serves them according to a first-come-first-served (FCFS)
rule; and provides them with no information throughout the process beyond the rec-
ommendations they receive. FCFS is also necessary for optimality in a rich domain.
We identify a novel role for queueing disciplines in regulating agents’ beliefs and their
dynamic incentives, and uncover a hitherto unrecognized virtue of FCFS in this regard.
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1 Introduction

As a method for allocating scarce resources, queueing, or “waiting in line,” remains as old

and ubiquitous as its equally-celebrated brethren—market-clearing prices. Unlike the price

mechanism, however, queueing is time-consuming and imposes deadweight losses for the

agents in the queue. To this date, providing and managing the incentives to queue remains

the fundamental challenge for businesses that must rely on queueing for providing goods and

services.

In managing the queueing incentives, real-world queues often deploy several instruments.

First, they often control agents’ entry into the queue, and sometimes their exit. For instance,

service call centers sometimes encourage customers to wait in line (i.e., to be put on hold);

other times, presumably in the face of high call volume, they tell customers to try another

time. Some call centers ask customers to leave the queue and return later.

Second, they decide how to prioritize service among agents in the queue. In this regard,

first-come-first-served (FCFS) is the oldest and by far the most common queue discipline,

but service-in-random-order (SIRO) which assigns priority at random, has been also used.

Some authors have proposed other rules such as last-come-first-served (LCFS) (e.g., Hassin

(1985), Su and Zenios (2004), and Platz and Østerdal (2017)).

Finally, they can often control the information available to an agent, both when he arrives

at the queue and while he is in the queue. Many call centers keep the customers completely

in the dark about the queue length, their relative positions, or their estimated waiting times.

Similarly, many offices for social housing do not disclose any information on positions on

waiting lists.1 Meanwhile, other systems provide customers with some information. For

instance, popular ride-hailing apps provide a customer with not only the estimated arrival

time of a vehicle but also its current location on a map.

We ask: how should the queue system be chosen along these three dimensions? To ask

this question, we consider a queueing model in which agents’ arrival and servicing follow

general Markov processes. As in the standard model (e.g., Naor (1969)), agents have ho-

mogeneous preferences; they realize some positive lump-sum surplus from service and incur

linear costs from waiting until the service concludes. Given these primitive processes, the

designer chooses a queue system that is incentive compatible. While our designer can keep

an agent from joining the queue or remove one from the queue, she cannot coerce an agent to

enter the queue or to stay in the queue against his will. In other words, when recommended

1This is the case, for instance, for several housing choice voucher programs in California, e.g., PCCDS
Housing Service or HACA among others.
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to either join or stay in a queue, an agent must have the incentive to obey this recommen-

dation given the information that he has. Subject to this incentive constraint, the designer

maximizes a weighted sum of the agents’ welfare and the service provider’s profit. Since

the weight is arbitrary, the designer could be a service provider who maximizes the profit, a

consumer advocate who maximizes agents’ welfare, or a regulator who values both.

The queue system, together with the primitive arrival and service process, induces a

Markov chain on the length of the queue. Our analysis focuses on the steady state, or the

invariant distribution, of this Markov chain. Under a very mild regularity condition on the

process, our answer is strikingly simple and consistent with many observed practices of queue

design. (i) The optimal queue design has a cutoff policy: namely, there exists a maximal

queue length K ≥ 0 such that agents are recommended to enter the queue if and only if its

length is less than K.2 (ii) Those who join the queue are then prioritized to receive a service

according to FCFS. (iii) No information is provided to agents beyond the recommendations

they receive to join or to stay in the queue.3

Result (i) (shown in Section 4.1) means that one can achieve an optimal queue design,

without removing agents or incentivizing them to leave the queue once they join the queue.

Reneging—or abandonment of the queue—is then never part of our optimal queue behavior.4

Results (ii) and (iii) (both shown in Section 4.2) mean that, at least in the canonical model

we consider, the most tried-and-true queueing norm is (at least weakly) better than any

others, provided that agents receive no information beyond the recommendations from the

designer.

The optimal design we identify is consistent with many commonly-observed queue prac-

tices. The cutoff policy conforms to the standard practice of capping the queue length at

some level (e.g., offices for social housing often cap waiting lists when they are too long).

The optimality of FCFS accords well with its prevalent use in practice. The no information

beyond recommendation policy also conforms to standard practice in call centers which of-

ten put customers on hold with little or no information. Similarly, as we already pointed

out, offices for social housing often provide applicants with very limited information on their

position on the list. Offering a rough estimate on the waiting time, another common prac-

tice, is also consistent with our policy, which can be implemented via two estimates, a short

2 When the queue length is K − 1, an agent is recommended to enter with a positive probability possibly
equal to one. If this probability is less than one, the entry is “rationed” at K − 1.

3Since recommendations contain information about the state, this policy should not be confused with “no
information” authors often use, which refers to “no communication” whatsoever. Agents can make Bayesian
inferences on their expected waiting times, based on the recommendation they receive, the queue design that
the designer commits to, and the elapsed time after joining the queue.

4Removal of agents can only be consistent with optimality if it occurs when the queue is full or near full.
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estimate that encourages entry and a long estimate that discourages entry.

The simplicity of our optimal design, particularly the optimality of FCFS, contrasts with

the existing literature which finds it suboptimal (see our literature review). As we explain

below, these earlier findings can be traced to some aspects of queue design, particularly

the information policy, being exogenously fixed in a suboptimal manner. Allowing for all

aspects of queue design to be chosen optimally leads us to find FCFS optimal. This finding

is reassuring in light of the perceived fairness of FCFS (see Larson (1987)). According to

the common perception, “...the universally acknowledged standard is first-come-first-served:

any deviation is, to most, a mark of iniquity and can lead to violent queue rage” (“Why

Waiting is Torture,” Alex Grey, New York Times, Aug 18, 2012).

The intuition behind the information policy—no information beyond recommendation—

is explained as follows. It is well known and intuitive that incentive constraints are relaxed

most when agents are given as little information as possible. If an agent has the incentive

to join or to stay in a queue for a set of signals, he must also have the same incentives

when all these signals are pooled into one, regardless of the queueing discipline. Since this

“pooled” signal is precisely what the agent will have given “no information” beyond the

recommendation, the no information policy is optimal.

To explain why FCFS is optimal, fix an optimal entry and exit policy—i.e., a cutoff policy

with some maximal length K. Assuming agents obey the recommendation, this induces a

distribution of queue length in the steady state. Since our agents are homogeneous, the

expected waiting time when averaged across possible initial queue lengths is the same for each

agent, and does not depend on the queueing discipline in use. Then, given no information,

the incentive for joining the queue will be the same across all queueing disciplines, and on

this account, FCFS is not particularly necessary or desirable.

However, the dynamic incentives that agents face—their incentive to “continue” queueing

once they join the queue—differ across queueing disciplines, assuming the no information

policy. The reason is that the distribution of waiting times differs across queueing disciplines,

so one updates beliefs about the remaining waiting times differently as time passes under

different queueing disciplines. Our main insight is that, under the regularity condition on the

primitive process, the evolution of these beliefs become progressively more favorable under

FCFS. Consequently, under the condition, agents are willing to stay in the queue under

FCFS with no information, thus implementing the optimal queueing outcome.

The progressively improving beliefs under FCFS stem from its fundamental property:

namely, that one’s service priority can only improve over time under FCFS. Hence, starting

with any initial queue length, the elapse of time is indeed good news about the remaining
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waiting time. But there is also a countervailing force. Since an agent is not told about the

queue length k when he joins the queue (recall that agents get no information beyond the

designer’s recommendations), his belief about this will be also updated as time progresses.

On this account, the elapse of time is actually bad news, since it indicates that the agent

likely underestimated the initial length of the queue when he joined it. We show that the

good news dominates the bad news under the regularity condition. As noted above, this

means that incentive compatibility is maintained once an agent is willing to join the queue

under FCFS.

The belief evolution is not as favorable for other queueing disciplines, however. Consider

SIRO. Since priority is assigned randomly, one’s queue position does not matter; instead,

his belief about the current queue length is what matters for his incentives: the more agents

there are in the queue, the less likely it is for an agent to receive service. Hence, the passage

of time (without being served) is a signal that there are more agents in the queue than he

initially thought. Further, unlike FCFS, his priority does not improve over time. So, the

agent becomes more pessimistic as time passes. Indeed, we can find simple examples in

which an agent’s belief worsens over time to such a degree that he leaves the queue in the

midstream, thus undermining the implementation of the optimal cutoff policy.

While the optimality of FCFS does not preclude the possibility that another queueing

rule may be also optimal, we establish the sense in which the FCFS is uniquely best in

dealing with the dynamic incentives problem. In Section 5, we show that for any queueing

discipline differing from FCFS, there exists a (regular) environment under which it is strictly

suboptimal no matter the information policy adopted. That is, FCFS does not just attain

the optimal outcome under the no-information policy, but its use is also necessary to achieve

optimality in a rich domain.

The reason for this can be traced to the fairness property of FCFS: among all queueing

rules, the distribution of wait times is least dispersed under FCFS, meaning both unusu-

ally short waits and unusually long waits are rare under FCFS (Shanthikumar and Sumita

(1987)). By contrast, other rules, such as LCFS, induce more dispersed wait times, making

more probable both lucky early breaks and unlucky long delays. Such a dispersion is bad

for conditional belief about one’s residual waiting time and his dynamic incentives. As time

passes, the fact that one still remains in the queue indicates that he has “missed the early

breaks” and therefore the residual wait will be longer. The fairness property of FCFS allevi-

ates this problem. To the best of our knowledge, we are the first to connect the distributional

fairness of the queueing rules with the agents’ dynamic incentives and identify the crucial

role it plays in the optimal queue design.
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Related Literature. The current paper follows the long line of queueing theory re-

search, in particular, the rational queueing literature—which has developed into a signifi-

cant body of work since the seminal work by Naor (1969)—studies the strategic behavior

of rational Bayesian agents in a variety of queueing scenarios.5 While sharing their focus

and approach, the current paper is distinguished from standard works by the generality and

comprehensiveness of the queue designs, designer objectives, primitive processes, as well as

agents’ queue incentives we consider.

The existing literature typically studies one aspect of design such as the queueing disci-

pline, while taking other aspects such as entry/exit or information policies as exogenously

given. In particular, exising papers show FCFS to be suboptimal in a variety of environments.

For instance, Naor (1969) finds that FCFS produces excessive incentives for agents to

queue, due to the “congestion” externality they face under FCFS.6 Hassin (1985) and Su and

Zenios (2004) argue that LCFS can “cure” this externality and is thus optimal for a designer

who maximizes consumer welfare.7 But, this literature assumes that agents fully observe the

queue length upon arrival and the designer can’t control their entry into the queue. Indeed,

the negative externality problem can be easily fixed, and optimality achieved, under FCFS

if entry is controlled, as in our optimal cutoff policy.

Meanwhile, FCFS may give too few incentives if the designer maximizes (or is close to

maximizing) the service provider’s profit or his service utilization, or there is an excessive

supply of agents as in the case of Leshno (2019). Then, other mechanisms such as SIRO

were shown to outperform FCFS by providing greater incentives for queueing. But this

conclusion rests crucially on agents having full information about the queue length. The

result does not hold if the designer can control the agents’ information; in fact, it can be

drastically overturned if agents can freely leave the queue, an issue that the existing literature

largely ignores.8 Of course, there are important settings in which not all design instruments,

particularly information, can be controlled by the designer; our results do not apply to them.9

5See Hassin and Haviv (2003) and Hassin (2016), for an excellent survey of the literature.
6Plainly, under FCFS agents ignore the delay their joining the queue causes for the agents who will arrive

later.
7Platz and Østerdal (2017) find a similar result when there are a continuum of agents who enter at

their endogenously chosen times. See also Haviv and Oz (2016) for alternative schemes in the observable
environment and Haviv and Oz (2018) for extensions to the unobservable queue environment.

8A few papers consider incentives by agents to abandon a queue, or to “renege”; see Hassin and Haviv
(1995), Haviv and Ritov (2001), Mandelbaum and Shimkin (2000), Sherzer and Kerner (2018), and Cripps
and Thomas (2019). However, their approach is positive rather than normative; they seek to explain reneging
as an equilibrium phenomenon arising from nonlinear waiting costs or aggregate uncertainty, rather than as
an incentive constraint to be controlled in an optimal mechanism.

9In many “physical” queue settings (such as grocery check-out lanes), the length of the queue is visible, so
the scope for information design is limited. Even in this case, our theory offers some useful insight: organizing
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The reader should therefore view the alternative works as complementing one another.

Indeed, we show that FCFS is always optimal regardless of the designer’s objective,

provided that she can also control the entry of the agents and their information optimally.10

Further, FCFS is uniquely optimal and strictly dominates the other rules, if agents cannot

be prevented from leaving the queue. In particular, any rule departing from FCFS such as

LCFS and SIRO is likely to run afoul of this issue, as the fear of losing priority grows large

with the elapse of time on the queue and convinces them to abandon the queue.

Finally, our paper is related to the burgeoning literature in queueing that considers in-

formation design; see Simhon, Hayel, Starobinski, and Zhu (2016), Hassin and Koshman

(2017), Lingenbrink and Iyer (2019), Das, Kamenica, and Mirka (2017), and Anunrojwong,

Iyer, and Manshadi (2020).11 While the latter two papers identify the same optimal infor-

mation design as the current paper, they do not study the optimal queueing discipline but

they instead take FCFS as given. All of them also ignore the dynamic incentives issue, a

crucial necessary condition for FCFS to be uniquely optimal.

2 Model and Preliminaries

We consider a generalization of a canonical queueing model (e.g., Naor (1969)) in which

agents arrive sequentially at a queue to receive a service. Time indexed by t ∈ R+ is

continuous.

a single serpentine line (as is done by Trader’s Joe) is better than organizing multiple parallel lines. The
former admits less variance in wait times; this is not only fairer to the customers but more importantly
reduces their incentives to leave the queue in the midstream.

10Several papers study alternative queueing disciplines in environments that are less related or comparable
to ours. FCFS is shown to be optimal in Bloch and Cantala (2017) and a part of the optimal design
in Margaria (2020) in models where, unlike the standard queueing model, the lengths of queues are non-
stochastic, either because arrival occurs only when an agent exits (the former) or because there is a continuum
of agents (the latter). Further, they do not consider information design, so the reason for the optimality of
FCFS is completely different in these models than in our model. Kittsteiner and Moldovanu (2005) consider
the allocation of priority in queues via bidding mechanisms where processing time is private information.
The crucial difference is the use of transfers implicit in bidding mechanisms, which is not allowed in our
model.

11In a less related model, Ashlagi, Faidra, and Nikzad (2020) study optimal dynamic matching with
information design, showing that FCFS, together with an information disclosure scheme, can be used to
implement the optimal outcome. Although similar at first glance, their model is quite different from, and
not easily comparable to, ours. There is a continuum of agents in their model, and their information policy
pertains to the quality of goods rather than to agents’ queue position. In particular, the virtue of FCFS
in regulating agents’ beliefs on where they stand in the queue is orthogonal to Ashlagi, Faidra, and Nikzad
(2020)’s insights.
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Agents’ payoffs. There are three parties: a designer, who organizes resource allocation

including the queueing policy, a service provider who services agents, and agents who receive

service. As will be seen, the designer may be the service provider, a representative of the

agents, or a planner who reflects the welfare of both parties.

The agents are homogeneous in their preferences. Each agent enjoys a payoff of

U(t) ≜ V − C · t,

if she receives service after waiting t ≥ 0 time period, where V > 0 is the net surplus from

service (possibly after paying a service fee to the provider) and C > 0 is a per-period cost

of waiting. The service provider earns profit R > 0 for each agent she serves. In a customer

service context, the profit may not take the form of monetary fees collected from customers

but rather the shadow value of fulfilling a warranty service or more generally addressing any

customer needs (See Section 6 for a discussion of an endogenously set monetary fee collected

from customers). The designer’s objective (to be specified below) is a weighted sum of the

service provider’s and agents’ payoffs. An agent’s outside option, which she collects when

not joining the queue or exiting one, yields zero payoffs.

Primitive process. At each instant, given the number of agents in the queue, or queue

length, k ∈ Z+, an agent arrives at a Poisson rate of λk ≥ 0. The technology allows for an

agent to be served at each instant at the Poisson rate of µk > 0.12 Hence, a pair (λ, µ), where

λ ≜ {λk} and µ ≜ {µk}, µ0 = 0, and λ0 > 0, specifies a primitive process. We view (λ, µ)

as arrival and service rates that arise in many queueing environments of interest, including

M/M/c queue models and dynamic matching models, as illustrated in Section 3; for instance,

the possibility of arrival and service rates depending on the current queue length k emerges

naturally from a dynamic matching context.

We interpret µj as the maximal service rate that any set of j or fewer agents may receive

in any queue of length k ≥ j. It is then natural to assume that µk is nondecreasing in k.13

We also assume that µk is bounded uniformly in k. In addition, our results invoke one of

the following conditions:

Definition 1. (i) The service process µ = {µk} is regular if µk − µk−1 is nonincreasing

12Different interpretations apply to different settings. In the service scenario (imagine a call center or in
a Apple repair center), multiple servers are serving customers simultaneously, but each takes a stochastic
amount of time for completion; the service time for the first to be completed is then distributed exponentially
with mean 1/µk. In the housing assignment context, a housing becomes available at the Poisson rate µk.

13See Section S.2 in the online appendix for further details.
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in k. (ii) The primitive process (λ, µ) is regular if the service process µ is regular and

λk − λk−1 ≤ µk − µk−1 for each k ≥ 2.

These two regularity conditions are extremely mild. Section 3 shows that all the canonical

queueing models, as well as dynamic matching models, satisfy these two conditions.14

Designer’s policy. The designer has a number of instruments at her disposal. We focus

on an anonymous stationary Markovian policy that treats all agents identically based on two

state variables: the queue length k and the queue position ℓ, namely the arrival order of an

agent among those in a queue. The stationarity restriction means that the policy does not

depend on the calendar time. The designer chooses the following set of policies.

• Entry and exit rule: The entry and exit rules specify how the designer regulates

the entry of agents who arrive at a queue and exit from those who are already in the queue.

Formally, an entry rule is given by x = (xk), where xk ∈ [0, 1] denotes the probability

that an arriving agent is asked to join a queue of length k. An exit rule is given by

(y, z) = (yk,ℓ, zk,ℓ)k,ℓ. The designer removes the agent with queue position ℓ from the queue

of length k ≥ ℓ at a Poisson rate yk,ℓ ≥ 0. In addition, upon a new arrival in the queue, the

designer can keep the queue length constant by removing an agent currently in the queue:

zk,ℓ ∈ [0, 1] denotes the probability that an agent with queue position ℓ is removed from a

queue of length k when another agent is joining the queue (where k is the length of the queue

before the new arrival).15 The entry rule could accommodate the possibility of non-entry

that is either involuntary or voluntary. Similarly, the exit rules y and z capture both the

explicit policy of removing some agent away from a service pool (e.g., Mandelbaum and

Shimkin (2000)) as well as the abandonment induced by a queueing policy (to be described

below). The main difference between y and z pertains to whether the removal is conditional

on the entry of another agent. In particular, z captures the possibility of an agent being

“preempted” by a new arrival, e.g., under an LCFS rule (see Hassin (1985)). We let (X ,Y ,Z)

denote the set of all feasible (x, y, z)’s.

• Queueing rule: A queueing rule specifies the allocation of service priority among

agents in the queue. Although we can accommodate any arbitrary policy in this regard,

for expositional ease, here we restrict attention to a “Markovian” policy that depends on

the queue length k and the agent’s queue position ℓ ≤ k, or her arrival order, at any

14In particular, as shown in the online appendix Section S.2, the regularity of the service process, namely,
(i), has a desirable axiomatic foundation.

15By definition, if an agent ℓ is removed, no other agent ℓ′ ̸= ℓ is removed.
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point.16 A queueing rule specifies the allocation of an available service rate based on the

queue length and agents’ queue positions.17 Formally, a queueing rule is given by q = (qk,ℓ),

where qk,ℓ ≥ 0 is the Poisson rate at which an agent receives service when the queue length

is k and her position in the queue is ℓ. Feasibility requires that
∑

ℓ∈S qk,ℓ ≤ µ|S|, for all

k and all S ⊂ {1, ..., k}: that is, the total service rate received by a subset of agents in

the queue cannot exceed the service rate available for the number of those agents.18 As is

standard, we also require a feasible queueing rule to be work conserving:
∑k

ℓ=1 qk,ℓ = µk, for

all queue length k. This means that the allocation of service is “non-wasteful,” or exhausts

the available service capacity. We let Q denote the set of all work-conserving queueing rules.

The set Q encompasses all standard queueing disciplines. For instance, assuming the service

process is regular, first-come-first-served (FCFS) satisfies qk,ℓ ≜ µℓ − µℓ−1. Namely, the

agent in position 1 enjoys the highest possible service rate µ1 for any single agent; given this,

the agent in position 2 receives the highest possible service rate, µ2−µ1 ≥ 0, and so on. The

regularity condition guarantees the service rate can only fall as one’s position gets worse.

(We will see in Section 3 how this corresponds to more familiar expressions in the canonical

queuing models such as M/M/1, M/M/c, or dynamic matching models.) Similarly, last-

come-first-served (LCFS) satisfies qk,ℓ ≜ µk−ℓ+1 − µk−ℓ, and service-in-random-order

(SIRO) satisfies qk,ℓ ≜ µk/k, for all k ∈ N, ℓ ≤ k.19 Our results remain valid beyond the

class Q, in fact, for any arbitrary work-conserving rules; see Section S.1.

• Information rule: An information rule specifies the payoff-relevant information given

to an agent in the queue after each time t ≥ 0 he has spent in the queue, including t = 0 when

16There are two reasons for this restriction. First, the current restriction makes the queueing rule more
easily interpretable with respect to the standard queueing disciplines than the general class described in
Section S.1. Second, even the restricted class of queueing rules is quite broad and encompasses any standard
service allocation rule.

17In fact, we can allow queueing rules to be fully general, i.e., without limiting ourselves to those that
depend only on (k, ℓ); examples include rules that allow service probabilities to vary with time and to depend
on the history leading up to the current queue length and positions. However, our class entails no loss since
the optimal rule in this fully general class belongs to the current class that we focus on.

18Recall that we interpret µj as the maximal rate at which a set of j (or fewer) agents in the queue can be
served collectively. Hence, the feasibility condition simply requires that any subset of agents of size j must
be collectively served at a rate no greater than this maximal service rate µj . For instance, in the M/M/c
queue model, there are c servers each able to serve an agent at rate, say µ. Then, any j agents can be served
at most at rate µj = min{j, c}µ in total.

19In online appendix Section S.2, we provide a definition of FCFS based on the concept that the priority
must be assigned greedily to maximize the service rates for earlier arriving agents. If the class of allocation
rules satisfies feasibility and the service process is regular, it is shown that FCFS indeed corresponds to our
formula. In addition, under regularity, we show that these standard queueing disciplines (FCFS, LCFS, and
SIRO) are work-conserving. Conversely, the regularity property is necessary if one requires FCFS and LCFS
to be work-conserving.
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he has just arrived at the queue. Since an agent has a linear waiting cost, the only payoff-

relevant information at each time t ≥ 0 spent on the queue is the probability σt ∈ [0, 1] that

he will be eventually served and the expected remaining waiting time τ t ∈ [0,∞].20 Given

the memoryless nature of the process (λ, µ, x, y, z, q), these two variables depend only on the

current queue length k and one’s queue position ℓ ≤ k and are independent of the time t

one has spent in the queue, so we write (σk,ℓ, τ k,ℓ) ∈ [0, 1]× [0,∞] for each (k, ℓ). An agent’s

(payoff-relevant) information then boils down to his information regarding (k, ℓ) at each

time t ≥ 0. As is well-known, say from Kamenica and Gentzkow (2011), this information

can be represented as a distribution of “posterior beliefs” about (k, ℓ), which does, in general,

depend on time in the queue t ≥ 0.

Formally, an information rule is given by I = (I t)t∈R+ , where I t ∈ ∆(∆(Z+ × N))
specifies the distribution of posterior beliefs on (kt, ℓt) conditional on the time-on-the queue

t.21 Feasibility requires that posterior beliefs at each t must be adapted to the filtration

generated by the process (λ, µ, x, y, z, q) and must satisfy Bayes rule given his prior belief

and knowledge of the process (λ, µ, x, y, z, q). The agents’ prior belief is given by the steady

state distribution of the stochastic process induced by the entry and exit rule (see next

paragraphs).22 Let I denote the set of all feasible information rules. (We suppress the

dependence both of (σk,ℓ, τ k,ℓ) and I on (λ, µ, x, y, z, q) for notational ease.)

The set I is large enough to include all realistic information rules, particularly given

the Markovian queueing rule q. Special cases include full information, in which case I t

coincides with the true distribution of (kt, ℓt), and no information, in which case the

posterior I t is degenerate on the belief obtained by Bayes updating via (λ, µ, x, y, z, q) from

the prior beliefs I0. We allow for many other rules between the two. For instance, the

designer may simply reveal whether, upon joining the queue, the agent’s expected waiting

time is below or above some predetermined threshold.23 As we show in Section S.1, our main

results hold beyond I under the fully unrestricted class of information rules.24

20The waiting time refers to the duration of time an agent spends in the queue, including the service time.
In the queueing literature, this is sometimes referred to as sojourn time. Since the waiting cost is linear, the
waiting time distribution matters only through its expectation.

21Note that the process (It)t∈R+ does not form a martingale since the belief distributions are conditional
on staying in the queue.

22This is formally justified by the PASTA property (Wolff (1982)). One can think of an agent’s uncondi-
tional (i.e., before conditioning on her arrival or on recommendations) belief about the state as given by the
invariant distribution over states.

23For many queueing rules (e.g., FCFS), this will mean specifying whether the agent’s position is above or
below a certain predetermined integer L. Formally, I0 will put weight only on two possible posterior beliefs,
one with support in {1, . . . , L}, the other one with support in {L+ 1, . . . ,K}.

24The information rules considered there allow for information to be any garbling of all events observable
by the designer, including a possible change of information in a non-stationary fashion.
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Steady State. Given the primitive process (λ, µ), a Markov policy (x, y, z) generates a

Markov chain—more specifically, a birth-and-death process—on the queue length k. Given

(λ, µ), we only consider a Markov policy that induces an invariant distribution p ≜ (p0, p1, . . . )

on the queue length. Specifically, this means that the distribution pmust satisfy the following

balance equation:

λkxk(1−
∑
ℓ

zk,ℓ)pk = (µk+1 +
∑
ℓ

yk+1,ℓ)pk+1, ∀k (B)

The LHS of the equation is the rate at which the queue length transits from k to k + 1:

with probability pk the queue length is k, in which case an agent arrives at rate λk, is

recommended to join the queue with probability xk, and no agent is removed from the queue

with probability 1 −
∑

ℓ zk,ℓ. The balance equation (B) requires this rate to equal the rate

at which the queue length transits from k + 1 to k, namely its RHS: with probability pk+1

the queue length is k+1, in which case an agent is served at rate µk+1 or is removed at rate∑
ℓ yk+1,ℓ from the queue. We say that an entry/exit policy (x, y, z) ∈ X ×Y×Z generates

an invariant distribution p if (x, y, z, p) satisfies (B), and call the associated tuple (x, y, z, p)

an outcome. From now on, we evaluate the policy at the associated outcome, assuming

that the dynamic system is at a steady state. This treatment is largely for expositional ease;

Section S.9 in the online appendix shows how our analysis carries through even when we

focus on a long-run time average of the Markov process that starts at an empty queue with

k = 0.25

Incentives. The designer may keep an agent from joining the queue or remove an agent

from the queue,26 but the designer cannot coerce an agent to join or stay in the queue

against his preference. Consequently, when recommended to enter the queue or to stay in

the queue, an agent must be provided with the incentive to obey that recommendation, given

the information available to him.

Formally, this obedience constraint is specified in terms of an agent’s beliefs about the

queue length and position (kt, ℓt) at each time, which in turn determines the conditional ser-

vice probability and expected residual waiting times (σk,ℓ, τ k,ℓ). We evaluate these variables

25We prove that the Markov chain satisfying the incentive constraint must converge to a unique invariant
distribution. Further, our optimal queue design is optimal for this long-run time average formulation of the
problem as long as the optimal queue length is finite, which, for instance, holds true when the designer puts
a nonzero weight on the agent welfare in his objective.

26This assumption can be dispensed with under a broad set of circumstances, see the discussion at the
end of Section 4.2.
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when the system is at its invariant distribution p. Obedience then requires:∑
k,ℓ

γt
k,ℓ [V · σk,ℓ − C · τ k,ℓ] ≥ 0,∀γt ∈ supp(I t),∀t ≥ 0, (IC)

where (σk,ℓ, τ k,ℓ) is induced by the policy (x, y, z, q). In words, (IC) states that each agent,

when recommended to join or stay in the queue, must find the prospect of being served to

be high enough to justify the remaining waiting cost, given each possible belief (γt
k,ℓ) at each

t ≥ 0.

In the sequel, we refer to the incentive constraint for t by (ICt). We say that a queue-

ing/information policy (q, I) ∈ Q×I implements an outcome (x, y, z, p) if (IC) holds. Even

though we interpret an implemented outcome as resulting from the designer’s policy choice,

this is without loss, due to the revelation principle. Our model can capture any equilibrium

outcome, both regulated and unregulated.27

Problem statement. The designer’s objective is evaluated at the invariant distribution

p = (pk) of the Markov chain. It can be written as follows:

W (p) ≜ (1− α)R
∞∑
k=1

pkµk + α
∞∑
k=1

pk(µkV − kC),

where α ∈ [0, 1]. The first term is the flow expected profit for the service provider: with

probability pk, the queue has k agents, and an agent is served at rate µk, generating a

profit (or shadow value) of R for each agent served. The second term is the flow expected

utility for agents: again with probability pk, the queue has k agents, each of whom pays

a holding/waiting cost of C per unit time (the second term), and an agent is served and

realizes a surplus of V , at rate µk. The objective is a weighted sum of these two terms, with

weight α ∈ [0, 1]. One can show that this objective corresponds to the expectation of the

long-run time average of the designer’s payoff (see online appendix Section S.9).

The designer’s problem is to choose (p, x, y, z, q, I) ∈ ∆(Z+)×X × Y × Z ×Q× I to

[P ] sup W (p) subject to (B) and (IC),

27For instance, consider the textbook unregulated and unobservable M/M/1 queue (where agents arrive
at rate λ and where there is a single server serving an agent at rate µ) governed by FCFS, in which agents
make their entry decisions without any recommendation or any information about the queue length (see
Hassin and Haviv (2003) for instance). If λ is sufficiently large so that (µ − λ)V < C, then there exists a
random entry probability e ∈ (0, 1) such that if all agents adopt this mixing strategy, each agent becomes
indifferent to entry, making it an equilibrium behavior. In our model, this corresponds to our entry policy
of xk,ℓ = e and yk,ℓ = zk,ℓ = 0, for all k, ℓ (along with FCFS and no information).
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where the conditional service probabilities and residual waiting times (σk,ℓ, τ k,ℓ) in (IC) are

induced by (p, x, y, z, q).28 In words, the designer picks the outcome that maximizes her

objective among those that are implementable by some queueing/information policy. Let W
denote the supremum of the value of program [P ].

3 Scope of Applications

Our model encompasses a variety of queueing and dynamic matching models considered by

the existing literature.

• M/M/c queue model: In this model, agents arrive at some constant rate λ. There

are c ≥ 1 servers each serving at a constant rate µ. A special case with c = 1, known

as M/M/1, is particularly common in the literature.29 M/M/c model is a special case of

our model in which λk ≡ λ, and the service rate is linear up to the number of available

servers, so µk = min{k, c}µ. Clearly, this model satisfies regularity. In this model, our

queueing formula simplifies to qk,ℓ = 1{ℓ≤c} ·µ under FCFS, qk,ℓ = 1{k−ℓ+1≤c} ·µ under LCFS,

and qk,ℓ = min{k, c}µ/k under SIRO. In fact, our model may capture a more general, and

arguably more realistic, version of the M/M/c model in which servers differ in their service

rates.30

• Team servicing model: Suppose there are m customers (or machines) each having a

service need arising at an independent Poisson rate while operating (see Gnedenko and

Kovalenko (1989), p. 42). There are c servers each of whom can serve a customer at rate µ.

When there are k agents in the queue, the arrival rate is then λk = (m− k)λ and the service

rate is µk = min{k, c}µ. Again, our regularity condition holds.

• Dynamic one-sided matching with stochastic compatibility: Suppose each agent is com-

patible with another agent with probability θ ∈ (0, 1]. In this model, an agent joins a queue

only when he arrives at some rate η and is incompatible with the agents already in the

queue, which occurs with probability (1− θ)k, or else, he matches with a compatible partner

and does not join the queue, which occurs with probability (1− (1− θ)k). This is a special

case of our model in which λk = η(1 − θ)k and µk = η(1 − (1 − θ)k). Observe that µk is

increasing at a decreasing rate, and λk is decreasing, in k, so the process is regular. Our

28While the entry/exit policy (x, y, z) uniquely pins down the invariant distribution, we include p as part
of the designer’s choice.

29This model is adopted by Naor (1969), Hassin (1985), Simhon, Hayel, Starobinski, and Zhu (2016),
Hassin and Koshman (2017), Lingenbrink and Iyer (2019), among others.

30That is, server j serves at rate µ̃j := µj − µj−1, with µ̃0 := 0.
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queueing formula for FCFS, for instance, yields the service rate for ℓ-th positioned agent to

be qℓ = µℓ − µℓ−1 = η(1 − θ)ℓ−1θ, the probability that all agents ahead of him are incom-

patible, and he is compatible, with an incoming agent. Likewise, LCFS and SIRO formula

have intuitive interpretations. Doval and Szentes (2018) consider such a model with θ = 1

and study agents’ incentive to join a queue under FCFS. Akbarpour, Li, and Gharan (2020)

study the limit as θ ∈ (0, 1) tends to 0 but the arrival rate increases.31

• Dynamic two-sided matching with stochastic compatibility: Heterogeneous agents on one

side match with heterogeneous agents or objects (e.g., housing) on the other side. If the

types of the matched pair are compatible, then high surplus is realized; if not, a low surplus

is realized. The designer operates buffer queues for different types of agents or objects to

keep the agents waiting until a compatible match is found. Leshno (2019) and Baccara,

Lee, and Yariv (2020) consider such models. In these models, if one buffer queue is active,

the other is empty. Hence, the system can be analyzed as a one-dimensional Markov chain.

Some of our results below rely on the system induced by a given policy to exhibit birth and

death processes. Indeed, this feature is satisfied under the optimal policy under Baccara,

Lee, and Yariv (2020) but not under Leshno (2019). Nevertheless, our central results apply

to the latter setup, as we show in Section S.10 of the online appendix.32

4 Main Result

Below we state the main result of the paper: Under regularity of the primitive process,

FCFS and no information beyond recommendations together with the following particularly

intuitive form of entry/exit policy solves the designer’s program [P ]:

Definition 2. An entry/exit policy (x, y, z) is a cutoff policy if there exists K ∈ Z+∪{+∞}
such that xk = 1 for all k = 0, 1, ..., K − 2, xK−1 ∈ (0, 1], and xk = 0 for all k ≥ K and that

yk,ℓ = zk,ℓ = 0 for all k, ℓ.

31Their focus differs from ours; for instance, they do not consider the incentive to join or stay in a queue,
the queueing rule, or information design. Instead, they study the benefit from thickening the market, which
we do not consider.

32Baccara, Lee, and Yariv (2020) consider optimal matching policy under both FCFS and LCFS, whereas
Leshno (2019) considers a general class of queueing rules, and finds FCFS to be suboptimal. Again, the
current paper is differentiated by its consideration of broad incentive issues (i.e., the incentive to stay in, not
just to join, a queue) and a general class of queueing rules as well as information design. The fact that we draw
a different conclusion on the optimal queueing rule—namely, FCFS—relative to Leshno (2019) is attributed
to the combination of information design and choice of queueing rule together with our consideration of
agents’ dynamic incentives (see Section 6 for further discussion).
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In words, a cutoff policy sets a maximum queue length K and recommends that an

arriving agent joins a queue as long as k ≤ K − 1 and that those who join the queue stay in

the queue until they are served. Thus, no agent is removed or induced to abandon the queue

once he has joined it. It is possible that xK−1 ∈ (0, 1), in which case the K-th entrant may

be randomly rationed.33

We are now in a position to state our main theorem.

Theorem 1. Assume that the primitive process is regular. There is an optimal solution

(x∗, y∗, z∗, q∗, I∗) of [P ] s.t. (i) (x∗, y∗, z∗) is a cutoff policy; (ii) q∗ is FCFS; and (iii) I∗ is

the no information rule.

In order to prove this statement we study a relaxed problem for the designer where,

in essence, the designer only chooses the entry/exit policy (x, y, z) (or, equivalently, the

invariant distribution). We define this relaxed problem in the next section (Section 4.1)

and prove that the optimal solution is a cutoff policy when the service process is regular

(Theorem 2). In Section 4.2, we show that this cutoff policy together with FCFS and the

no information rule satisfy all constraints of problem [P ] proving that this forms an optimal

solution of [P ] (Theorem 3). These two results together yield Theorem 1.

Intuitions for Theorem 1 will be provided in the next sections when we establish the

intermediary theorems (Theorem 2 and Theorem 3).

4.1 Optimality of the Cutoff Policy

The designer’s problem [P ] is, in general, difficult to solve. Instead, we consider the following
relaxed problem:

[P ′] max
p∈∆(Z+)

W (p)

subject to
∞∑
k=1

pk(µkV − kC) ≥ 0; (IR)

λkpk − µk+1pk+1 ≥ 0,∀k. (B′)

33While we assume yk,ℓ = zk,ℓ = 0 for all k, ℓ, this is just a convenient normalization. If xK−1 ∈ (0, 1) in

a cutoff policy, the same p∗ can be implemented by any (x′, y′, z′) such that x′
K−1 =

µK+
∑

ℓ y
′
K,ℓ

µK(1−
∑

ℓ z
′
K−1,ℓ)

xK−1;

see (B). In this sense, the reader should interpret the cutoff policy as an equivalence class involving a set of
such pairs. This means that while it is unnecessary to induce an agent to exit from a queue after he joins
it, doing so when the queue length is K − 1 (and xK−1 ∈ (0, 1)) or K is consistent with a cutoff policy. In
other words, encouraging a customer to come back later is not at odds with a cutoff policy.
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Here, the planner maximizes the designer’s objective subject only to individual rationality

(IR) and a weakening (B′) of the balance equation (B). The problem constitutes a linear

program (LP) involving an infinite-dimensional measure p.

Clearly, [P ′] is a relaxation of [P ]. First, (IR) must be implied by (IC). If the former

condition fails, the agents do not ex ante break even. Then, there must exist some agent

and some belief induced by that mechanism such that the agent with that belief would not

wish to join a queue when called upon to do so. Hence, (IC) would fail. (A rigorous proof

is provided in Lemma S1 of Section S.1 of the online appendix.34) Next, since the yk,ℓ are

nonnegative and zk,ℓ, xk,ℓ are all in [0, 1], (B) implies (B′). Let W∗ denote the supremum of

the value of program [P ′]. Then, whenever W∗ < ∞, we must have W∗ ≥ W .

The program [P ′] is interesting in its own right: it can be interpreted as the problem facing

a planner who chooses the invariant distribution p directly to maximize her objective, simply

facing the primitive process (λ, µ), but disregarding agents’ incentives altogether, except for

guaranteeing some minimal payoff for them. Ultimately, however, we are interested in [P ′] as

an analytical tool for characterizing an optimal queue design that solves [P ], since a solution

to this relaxed program [P ′] may be attained by a mix of policy tools (x, y, z, q, I).

Indeed, our ultimate goal is to prove such a policy mix exists, which will then imply that

it optimally solves [P ], the real object of interest. The analysis proceeds in three claims:

(i) an optimal solution p∗ to [P ′] exists, (ii) under regular service processes, the optimal

solution to the relaxed problem is implemented by a simple entry/exit rule, called a cutoff

policy; (iii) FCFS, together with no information rule, satisfies (IC) under the optimal cutoff

policy. Since W∗ ≥ W , it would then follow that the latter policy mix solves [P ], our original

problem of interest. The remainder of this section will address (i) and (ii), while claim (iii)

will be taken up in the next section.

Our next result establishes that under regular service processes, an optimal solution of

[P ′] can be implemented by a cutoff policy. All proofs of the paper are relegated to the

Appendix.

34 The proof of that lemma can be sketched here. Fix any (x, y, z, p, q, I) that satisfies (IC0). Aggregating
(IC0) across all beliefs γ0 ∈ supp(I0), we get∫

γ0

∑
k,ℓ

γ0
k,ℓ[V σk,ℓ − Cτk,ℓ]I

0(dγ0) ≥ 0.

Since the queueing rule is work-conserving, the ex-ante probability of eventually receiving service,∫
γ0

∑
k,ℓ γ

0
k,ℓσk,ℓI

0(dγ0), must equal
∑

k pkµk/[
∑

k pkλkxk]—the average rate of receiving service divided
by the average rate of entering the queue at p. Next, by Little’s law, the ex-ante expected waiting time,∫
γ0

∑
k,ℓ γ

0
k,ℓτk,ℓI

0(dγ0), equals
∑

k pkk/[
∑

k pkλkxk]—the average queue length divided by the average entry

rate. Substituting these two expressions and simplifying the terms, the above inequality implies (IR).
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Theorem 2. An optimal solution of [P ′] exists. If µ is regular, there is an optimal solution

to [P ′] implemented by a cutoff policy with maximal queue length K∗ ≥ argmaxk µkV −kC.

The intuition behind the result can be traced to the fundamental trade-off associated

with queueing. Although queueing agents may at first glance appear wasteful, it serves as

an “insurance” against the risk of the service capacity going idle and wasted when too few

agents show up for the queue. While this insurance benefit is positive for any queue length,

it falls as more agents enter the queue due to the concavity of µk in k. Moreover, the waiting

costs of agents increase as more of them enter the queue. These two observations explain

that a cutoff policy would be optimal.

4.2 Optimality of FCFS with No Information

In this section, we establish the general optimality of FCFS with no information. From

now on, we assume that the service process is regular (i.e., part (i) of Definition 1). Then,

by Theorem 2, the optimal solution p∗ to [P ′] is implemented by a cutoff policy (x∗, y∗, z∗)

with a maximal queue length K∗ ∈ Z+ ∪ {+∞}. To avoid the trivial case, we assume that

K∗ > 1. Further, recall that the optimal cutoff policy has y∗k,ℓ = z∗k,ℓ = 0. For notational

ease, we sometimes simply write this optimal cutoff policy as x∗, and similarly, write the

optimal policy (x∗, y∗, z∗, p∗) as (x∗, p∗).

In what follows, we fix the optimal outcome x∗ and the maximal queue length K∗ > 1.

We will then show that FCFS, together with an optimal information design, implements

(x∗, p∗); namely, (IC) holds under that policy. Since [P ′] is a relaxation of [P ], this will

prove that the identified policy mix solves [P ].

We denote the first-come-first-served (FCFS) rule by q∗, where, as defined before, the

service rate is given by q∗k,ℓ = µℓ − µℓ−1 ≜ q∗ℓ for each (k, ℓ) with k ≥ ℓ. Not surprisingly,

under FCFS the expected waiting time depends only on one’s queue position ℓ, so we use τ ∗ℓ
to denote the expected waiting time for an agent with queue position ℓ. Given the primitives,

this can be pinned down exactly.

Lemma 1. For any ℓ = 1, ..., K∗, τ ∗ℓ = ℓ/µℓ. τ
∗
ℓ is nondecreasing in ℓ. If 2µ1 > µ2, then τ ∗ℓ

is strictly increasing in ℓ.

From now on, we denote the no information rule by I∗ ∈ I. Recall that, under this

rule, no information is provided to each agent both at the time of joining the queue and after

joining the queue, beyond recommendations to join or stay in the queue. This means that

when he joins the queue, he forms a belief about his position ℓ, or the length of the queue,
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based on his prior belief (given by the invariant distribution) and the recommendation to

join the queue. From then on, he updates the belief about his queue position at each t > 0

according to Bayes rule without any further information (given that he is recommended to

stay from then on). In practice, the no-information rule can be implemented by sending a

message consisting of either “join” or “leave,” or by providing a coarse (i.e., binary) estimate

of the “expected” waiting time, to an arriving agent.

Given the cutoff policy x∗ and the queueing and information rules (q∗, I∗), the incentive

constraint at time t is given by

(ICt) V − C
K∗∑
ℓ=1

γ̃t
ℓ · τ ∗ℓ ≥ 0,

where γ̃t = (γ̃t
1, ...., γ̃

t
K∗) ∈ ∆({1, ..., K∗}) is the belief on his position in the queue after

spending time t on the queue.35 Since the expected waiting time depends only on one’s

position, the belief on other variables such as the queue length k does not affect the agent’s

incentive to join or stay in the queue.

Given the information rule I∗, the belief at the time of joining the queue must be:

γ̃0
ℓ =


p∗ℓ−1λ̃ℓ−1∑K∗−1
i=0 p∗i λ̃i

if ℓ = 1, ..., K∗

0 if ℓ > K∗,
(1)

where λ̃k is an “effective” arrival rate given by: λ̃k ≜ λk for k = 0, ..., K∗ − 2, and λ̃K∗−1 ≜

x∗
K∗−1λK∗−1.

36 This formulation rests on the consistency of an agent’s belief about the

rule in place—namely, (x∗, q∗, I∗)—as well as the invariant distribution p∗. Specifically, (1)

computes the probability of an agent occupying position ℓ conditional on entering the queue.

Its numerator is the probability that an agent joins the queue in state ℓ−1, which equals the

probability of there being ℓ− 1 agents already in the queue multiplied by the probability of

entry per unit time in that state λ̃ℓ−1.
37 Its denominator is the total probability of entering

the queue per unit of time.

35Note that σk,ℓ = 1 for all k, ℓ since, by definition of the cutoff policy, the designer never removes agents
from the queue.

36Recall that the optimal cutoff policy may involve random entry at k = K∗−1; recall that x∗
K∗−1 ∈ (0, 1]

stands for the optimal randomization at k = K∗ − 1.
37The formula in (1) is justified as follows. Recall that (by the PASTA property—Wolff (1982)), one can

think of an agent’s unconditional belief about the state as given by the invariant distribution over states. The
conditional belief is then obtained by conditioning based on the entry {xk} policy as well as the heterogeneity
in the arrival rate {λk}.
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It is easy to show that the candidate policy (q∗, I∗) provides the agents with incentives

to enter the queue, i.e., it satisfies (IC0). In fact, (IC0) follows from (IR) regardless of the

queueing rules, under no information I∗.38 By contrast, it is more challenging to show that

(q∗, I∗) satisfies (ICt) for t > 0, namely, that the agents have the incentive to stay in the

queue once they join it. To examine the latter, we need to study how an agent’s belief evolves

after he joins the queue. Since no agent is recommended to abandon the queue, (ICt) for

t > 0 boils down to whether an agent’s belief about his queue position becomes (at least

weakly) more favorable—or put more probability at lower ℓ’s—as time passes.

Suppose that an agent has belief γ̃t after spending time t ≥ 0 in the queue. By Bayes

rule, after time t+ dt, his belief is updated to:39

γ̃t+dt
ℓ =

γ̃t
ℓ(1−

∑ℓ
i=1 q

∗
i dt) + γ̃t

ℓ+1

∑ℓ
i=1 q

∗
i dt∑K∗

i=1 γ̃
t
i(1− q∗i dt)

+ o(dt).

The numerator is the probability that his queue position is ℓ after staying in the queue for

length t + dt of time. This event occurs if either (i) the agent already has position ℓ in the

queue at time t and none of the agents ahead of him and himself have been served during

time increment dt; or (ii) if he has position ℓ + 1 at t and one agent ahead of him is served

by t+ dt.40 The denominator in turn gives the total probability that the agent has not been

served by time t. Hence, given that an agent has not been served by t, the above expression

gives the conditional belief that his position in the queue is ℓ at time t+dt. By the definition

of FCFS, we have
∑ℓ

i=1 q
∗
i = µℓ, so we can rewrite the belief updating rule as:

γ̃t+dt
ℓ =

(1− µℓdt)γ̃
t
ℓ + µℓdtγ̃

t
ℓ+1∑K∗

i=1 γ̃
t
i(1− q∗i dt)

+ o(dt). (2)

We now study how the belief updates dynamically over time under (q∗, I∗). The statistic

we focus on is the likelihood ratio rtℓ ≜
γ̃t
ℓ

γ̃t
ℓ−1

in beliefs of being in queue position ℓ to being

in queue position ℓ − 1 after spending time t on the queue. One can use (2) to derive a

system of ordinary differential equations (ODEs) on the likelihood ratios:

ṙtℓ = rtℓ
(
µℓ−1 − µℓ − µℓ−1r

t
ℓ + µℓr

t
ℓ+1

)
, (3)

38Footnote 34 shows how this is implied by (IR). See also online appendix Section S.5 for an alternative
argument using directly the characterization of waiting times under FCFS given in Lemma 1.

39Section S.6 derives this belief recursion equation rigorously.
40The probability of multiple agents ahead of him being served during [t, t + dt) has a lower order of

magnitude denoted by o(dt).
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Figure 1: Belief about position ℓ = 1

Note: M/M/1 with K∗ = 2; λ = µ = 1.

where ℓ = 2, ..., K∗. Further, the invariant distribution p∗ can be used to obtain the boundary

conditions, r0ℓ = λ̃ℓ−1

µℓ−1
, for ℓ = 2, ..., K∗, where we recall that λ̃k is the effective arrival rate.

Appendix B.2 derives this system of ODEs and establishes the existence of a unique solution.

We will argue that the regularity of the primitive process (in particular part (ii) of

Definition 1) is sufficient for these likelihood ratios—the solution to the above ODEs—to

decline over time, meaning one’s belief about his position becomes progressively favorable

under (q∗, I∗). At first glance, this seems obvious under FCFS: conditional on starting at

any position ℓ at t = 0, an agent’s queue position can only improve as time passes. Since

the agent begins with no information, however, this is not the only event about which the

agent updates his beliefs. The agent is also updating his belief about his initial position ℓ.

On this account, however, the time t spent on the queue is “bad” news, as it suggests that

he may have been too optimistic about his position initially, causing him to revise his initial

queue position pessimistically as time passes.

Figure 1 displays these two competing effects in an M/M/1 queue with K∗ = 2. Its

top graph depicts the good news effect: an agent’s belief about being at the top position

(ℓ = 1) is improving over time when the belief about his initial queue position is held fixed at

the prior. The bottom graph depicts the bad news effect: the belief about his initial queue

position being ℓ = 1 falls over time. The middle graph displays the overall evolution of the

belief—namely about ℓ = 1 conditional on not being served by t. Its increase means that the
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former “position-improvement” effect dominates the worsening posterior about the initial

position.

The regularity of the primitive process is sufficient for the good news effect to dominate

the bad news effect:

Lemma 2. Assume that the primitive process (λ, µ) is regular. Then, for all ℓ ∈ {2, ..., K∗},
rtℓ is nonincreasing in t for all t ≥ 0.

Intuitively, regularity ensures that the arrival rate does not rise faster than the service

rate as the queue length increases. This keeps the adverse inference about initial position

from worsening one’s belief about the residual waiting time.41 We can now state the following

theorem.

Theorem 3. Assume that the primitive process is regular. Then, FCFS with no informa-

tion (q∗, I∗) implements the optimal outcome (x∗, p∗) where p∗ solves [P ′]. Consequently,

(x∗, q∗, I∗) is an optimal solution of [P ].

We close this section with two remarks. First, the above result relies on the designer’s

ability to stop an agent from entering a queue. While the designer does have such a power

in many settings, the power is unnecessary if V µK∗ ≤ K∗C, which holds for instance if

(IR) is binding at the optimal outcome; the latter in turn holds when 1− α, the weight in

the designer’s objective on the service provider’s profit, is large enough. In that case, the

designer can simply issue a “recommendation” not to enter when k = K∗, and the agent will

follow that recommendation.42

Second, to the extent that regularity is extremely mild, one may view this theorem as

suggesting that the combination of FCFS and No Information is optimal in a broad set of

circumstances. Nevertheless, the dynamic incentives provided by FCFS, or the role played

by regularity conditions, should not be taken for granted. Intuitively, with the failure of

regularity, delay is more of a signal about the initial queue length being long than about

predecessors having been served, and thus one’s belief, and therefore one’s incentive to stay

in the queue, may get worse over time. We provide an example in Section S.7 of the online

appendix where regularity fails and as a consequence the optimal solution to [P ′] is not

implementable under (q∗, I∗).

41Our proof method differs from the standard queuing analysis which focuses on the increasing or de-
creasing hazard rate of an agent’s waiting time in the M/M/1 and M/M/c queue models (see Gnedenko
and Kovalenko (1989)). Analyzing the evolution of hazard rates appears difficult in our general Markovian
model. We believe that the current method that tracks the evolution of posterior beliefs are of independent
analytical interest for queuing theory.

42Given the length K∗ (which the agent infers from the recommendation not to enter), he expects to wait
for τ∗K∗ = K∗/µK∗ (recall Lemma 1).
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5 Necessity of FCFS for Optimality in a Rich Domain

We have shown that FCFS with no information is optimal in all regular environments. This

result raises the question of whether a different queueing/information policy may be also

optimal in some (or all) environments. While some other policies may be also optimal in

some environments,43 we show below none of them can be optimal in all regular environments.

Specifically, we show that of all feasible queueing rules, FCFS is the only queueing rule that

is optimal for all (regular) queueing environments. Or equivalently, for any queueing rule

differing from FCFS, we exhibit a (regular) environment in which this rule is suboptimal

under any information rule.

For this purpose, we focus on the simplest environment: the M/M/1 environment in

which a uniquely optimal solution to [P ′] involves (i) K∗ = 2, (ii) no rationing when k =

K∗ − 1 = 1, and (iii) a binding (IR). Specifically, we fix any service rate µ > 0. We then

consider a sufficiently small arrival rate λ by letting it approach zero. When we do this,

we simultaneously adjust the values of (V,C, α) to ensure that properties (i), (ii), and (iii)

continue to hold.44

Since K∗ = 2, there are only three relevant “states,” (k, ℓ) = (1, 1), (2, 1), (2, 2), based

on the queue length k and one’s queue position ℓ. Hence, we can denote a queueing rule by

q = (q1,1, q2,1, q2,2). Recall that FCFS corresponds to q∗ = (µ, µ, 0). For any feasible work-

conserving queueing rule, we must have q1,1 = µ and q2,1 + q2,2 = µ. Hence, a queueing rule

q ∈ Q can differ from FCFS q∗ if and only if q2,1 < µ, or equivalently, q2,2 > 0. Formally, we

say that a queueing rule differs from FCFS if q2,2 is bounded away from 0 for all possible

values of λ (recall that we have fixed the value of µ).45 All queueing rules studied in the

literature such as SIRO, LCFS, and LIEW differ from FCFS in this sense. We are now in a

position to state the main result of this section:

Theorem 4. Fix any queuing rule q that differs from FCFS. Then, there exists a regular (in

43For instance, one can show that, when α = 1, FCFS is optimal under full information, with the entry
controlled optimally. See our generalization of Naor (1969) in appendix Section S.8. In the same environment,
Hassin (1985) and Su and Zenios (2004)) have shown that versions of LCFS, possibly with preemption (i.e.,
where a newly arriving agent replaces one under service), are optimal under full information when α = 1.

44 These requirements can be met by choosing V/C = 2λ+µ
(λ+µ)µ and α = 0. In that case, there is a unique

optimal solution p to [P ′] and any outcome (x, y, z) implementing p satisfies (i), (ii) and (iii). Note that
assumption (iii) precludes α = 1 under which (IR) is non-binding at the optimal policy as long as the value
of the objective may be strictly positive.

45A standard queueing rule does not depend on the arrival rate of agents. An exception is Load-
Independent Expected Wait (LIEW) considered by Leshno (2019), which adjusts priorities based on the
arrival rates. Nevertheless, LIEW has q2,2 bounded away from 0, so it satisfies our definition of a queueing
rule differing from FCFS.
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particular M/M/1) queueing environment with values (V,C, α, λ, µ) such that the queueing

rule q fails (ICt) for some t > 0 under any information policy. Hence, q cannot implement

the optimal cutoff policy under any information policy.

The intuition for this result is most clear under LCFS. Under this rule, an agent loses

his service priority when another agent enters. So, if an agent were initially indifferent to

queueing, he will definitely wish to abandon the queue once a new agent enters. Consequently,

(ICt) fails at time t when a new entry occurs if he had full information. Even with no

information, as time passes without getting served, an agent will suspect that a new entry

is increasingly likely and he will lose his priority as a consequence. This feature destroys

his dynamic incentive.46 Although LCFS is extreme in this regard, any rule that assigns

q2,1 < µ = q1,1, including SIRO, suffers from the same fundamental issue. As mentioned

in the introduction, the issue is traced to the dispersed wait times arising from these rules,

compared with FCFS. A dispersion of wait times creates unfavorable conditional beliefs for

agents since the elapse of time on the queue (without being served) signals a longer residual

wait time.

This point is illustrated in Figure 2, which plots the expected waiting times against

the time-on-the-queue under five queueing disciplines: FCFS, SIRO, LIEW, LCFS, and

LCFS-PR, where LCFS-PR is the LCFS with “preemption,” namely, a rule in which an old

agent leaves when a new agent enters the queue. As is clearly seen, and consistent with

Theorem 4, as time passes, an agent in the queue expects to wait increasingly longer under

all these disciplines, except for FCFS under which his expected wait decreases.

6 Concluding Remarks

While we have focused on a canonical queueing model, the insights we obtain appear general

and apply beyond our model. Here we discuss how one may extend our analysis to other

settings of potential interest.

Dynamic two-sided matching. A topic closely related to queueing is dynamic match-

ing; see Akbarpour, Li, and Gharan (2020), Akbarpour, Combe, Hiller, Shimer, and Tercieux

46A similar problem arises with LIEW, the queueing rule that equalizes the expected waiting times upon
entry, to maximize the incentive to join the queue. Note the latter goal is achieved under all queueing rules
once the no-information policy is adopted. More problematic is the incentive to stay resulting from LIEW.
The equalization of waiting time across queue lengths means that an agent who enters an empty queue must
be “penalized” in service priority later when a new agent enters. This very feature undermines the dynamic
incentive of an agent. The root cause of the problem under these rules is: q2,1 < q1,1 = µ—namely, the loss
of priority an agent suffers when a new agent arrives.
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Figure 2: Expected waiting times under alternative values of q.

Note: M/M/1 with K∗ = 2; λ = µ = 1.

(2020), Baccara, Lee, and Yariv (2020), Leshno (2019), Doval and Szentes (2018), and Ash-

lagi, Nikzad, and Strack (2019), among others. The primary focus of this literature is the

optimal timing of matching and assignment, rather than queueing incentives. Exceptions

are Leshno (2019) and Baccara, Lee, and Yariv (2020), who study incentives for two differ-

ent types of agents for queueing to match with either two different types of objects (e.g.,

housing) or agents. In such a model, efficiency calls for accumulating agents in a queue

until the right type of object or agent arrives, to avoid mismatching. Leshno (2019) assumes

overloaded demand so that the planner wishes to incentivize the agents to queue as much as

possible, and shows that, given complete information, SIRO outperforms FCFS in this regard

and LIEW outperforms all other mechanisms. This result rests crucially on his assumption

of complete information. In fact, the main problem of his model is captured precisely by

an M/M/1 version of our model with α = 0, where the designer wishes to maximize the

incentive for queuing just as in his model. As has been shown in the current paper, with

optimal information design, the FCFS could do just as well as any other mechanism, includ-

ing LIEW, in incentivizing agents to enter a queue. Meanwhile, if the dynamic incentives

are the problem, which the existing authors ignored, then FCFS does strictly better than

other queueing disciplines.47 Baccara, Lee, and Yariv (2020)’s model is similar to that of

47Despite the ostensible difference in modeling, Section S.10 in the online appendix shows that our analysis
applies without much modification to Leshno’s model, and points out that the main results from Leshno
(2019) rest on his full information assumption. Strictly speaking, Leshno (2019) assumes the value of outright
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Leshno (2019), except that there are agents on both sides. Here again, our main insights in

Theorem 1 and Theorem 4 apply.48

Monopolist problem with endogenously set fee. If α = 0, one could interpret the

service provider/designer as a monopolist who provides the service. We treated the fee R as

exogenous, representing the shadow value of addressing customer needs. In many contexts,

however, one may think of this profit as a monetary fee collected and set by the service

provider. In this case, the designer/monopolist chooses this fee R and the net surplus of

customers for service now equals V − R. Hence, we can rewrite problem [P ] assuming that

R is part of the decision variables and incorporating the new net surplus of customers into

the (IC) condition. Our framework can be easily adapted to this environment. Indeed, one

can write [P ′] assuming that the designer chooses both the invariant distribution and the fee

level. Given the optimal choice of fee, the rest of the proof applies without any modification.

Namely, a cutoff policy is optimal. Clearly, Lemma 2 must still hold, so Theorem 3 (and so

Theorem 1) extends to this context. Incidentally, one can also characterize the optimal fee

in this context. Intuitively, when choosing the fee, the monopolist should consider both its

impact on his profit and also on the incentives of agents to join (and stay) in the queue. For

instance, a higher fee increases profit but may also discourage agents from joining the queue,

which increases the probability that the servers go idle and thus jeopardizes the opportunity

to collect that fee. The optimal fee must balance this tradeoff.

Time preferences. The current model follows the standard convention of the queueing

literature by assuming linear waiting cost. This convention is useful for analytical tractability

and comparability with existing queueing models. It serves another purpose in our model: it

isolates the effect of dynamic incentives generated by alternative queueing rules. Given linear

waiting costs, we find that the differences in waiting time distributions across alternative

queueing rules matter for agents’ dynamic incentives for queuing. In particular, the fact that

FCFS induces the least dispersed waiting times in comparison with other queueing rules helps

to minimize the adverse updating from a “missing” an early service. Introducing nonlinear

exit to be very low (e.g., in comparison with the value of a mismatched object), so the dynamic incentives
may not be a problem. If the value of the outside option is significant, however, as we assume in Section S.10
in the online appendix, then the dynamic incentives will matter just as they do in our model. Note also
that the dynamic incentive issue does not arise in SIRO or FCFS under complete information: any agent
who joins the queue will have the incentive to stay in the queue. But recall that neither discipline would
implement the optimum under complete information. Under no information (which is optimal), dynamic
incentives will be an issue.

48Unlike Leshno (2019), agents’ incentives to enter a queue may be excessive under FCFS or LCFS with
full information. While this is an issue in their decentralized matching, in our setting the designer can easily
solve the problem by preventing an agent from entering a queue, as is often done in practice.
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time preferences will confound this effect by rendering the waiting-time distribution under

an queueing rule directly payoff-relevant. A reasonable conjecture is, though, that risk-averse

time preferences will reinforce the optimality of FCFS whereas risk-loving time preferences

(such as exponential discounting) will counteract it.

Heterogenous preferences. Following the standard queueing models, we have assumed

that agents have homogeneous preferences. It will be interesting to allow agents to differ in

their waiting costs, value of service, or in their service requirements. Such heterogeneities

will introduce the need by the designer to treat agents differently based on their types, for

instance prioritizing service toward those agents with high waiting costs, high value of service

and small service requirements.49 This will again confound the analysis by making allocation

of service priority directly payoff-relevant, above and beyond making it relevant from the

perspective of dynamic incentives—the central focus of the current study. In particular, if

the agents’ characteristics are unobservable, one must deal with additional incentive issues

with screening agents based on this additional informational asymmetry. Such an extension

is therefore beyond the scope of the current paper. Nevertheless, we expect that the main

logic and thrust of the current paper will extend to such a model. At least within each type

of agents, allocating service according to FCFS contributes to their dynamic incentives for

queueing, and will be desirable.

We leave these and other worthy extensions of the current model for future research.
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Appendix

A Proof of Theorem 2

Rewrite problem [P ′] as:

[P ′] max
p∈M

∞∑
k=0

pk [µk((1− α)R + αV )− αCk] s.t.
∞∑
k=0

pk [µkV − Ck] ≥ 0,

where M ≜ {p ∈ ∆(Z+) : p satisfies (B′)}. (Recall our convention that, µ0 = 0).

Note that, assuming pk+1 > 0, (B′) binds at k if and only if (B) is satisfied for xk =

1, zk,ℓ = 0 for all ℓ = 1, ..., k and yk+1,ℓ = 0 for all ℓ = 1, ..., k + 1. This means that

an invariant distribution p is generated by a cutoff policy (x, y, z) with maximal length K

(possibly infinite) if and only if supp(p) = {0, ..., K} and (B′) binds for all k = 0, ..., K − 2

and holds for k = K − 1 (with weak inequality). Hence, in the sequel, if a distribution p

satisfies the latter property, we will simply say that it exhibits a cutoff policy. Our goal in

this section is therefore to show that the above LP problem has an optimal solution that

exhibits that property.

Below we use a Langrangian characterization of the LP problem. Unlike finite dimen-

sional LP problems, this characterization is not automatically valid in infinite dimensional
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LP problems.A.50 In order to overcome the difficulty, we first study a finite dimensional

truncation of [P ′] where the state space contains finitely many states, say K, where K can

potentially be “large”. In this environment, we will show that an optimal solution pK ex-

hibits a cutoff policy (Appendix A.1). In a second step, we show that as K gets large, a limit

point of {pK} is an optimal solution of [P ′] and exhibits a cutoff policy. The proof of this

second step, in essence, uses a continuity argument—and so uses fairly routine arguments.

Hence it is sketched in Appendix A.2 but the formal argument is relegated to the online

appendix Section S.4.

A.1 Finite dimensional analysis

In the sequel, we fix an integer K ≥ 0. We consider the following “truncated” version of

[P ′], say [P ′
K ]

[P ′
K ] max

p∈MK

K∑
k=0

pk [µk((1− α)R + αV )− αCk] s.t.
K∑
k=0

pk [µkV − Ck] ≥ 0,

where MK ≜ {p ∈ ∆({0, 1, ..., K}) : p satisfies (B′)}.
Let us fix ξ ≥ 0 and consider the problem [Lξ]

[Lξ] max
p∈MK

L(p, ξ)

where

L(p, ξ) ≜
K∑
k=0

pk [µk((1− α)R + αV )− αCk] + ξ
K∑
k=0

pk [µkV − Ck]

=
K∑
k=0

pkf(k; ξ),

where f(k; ξ) ≜ µk((1− α)R + (α + ξ)V )− (α + ξ)Ck.

The Lagrangian dual of problem [P ′
K ] is taking the inf over ξ ≥ 0 of the value of [Lξ].

Since MK is a convex set, the problem constitutes a finite dimensional linear program, so

A.50Countably infinite linear programs (CILPs) are linear optimization problems with a countably infinite
number of variables and a countably infinite number of constraints. It is well-known that many of the nice
properties of finite dimensional linear programming may fail to hold in these problems. Indeed, while in
finite dimensional LP problems, zero duality gap is ensured provided that the primal problem is feasible,
necessary conditions for zero duality gap for CILPs are much more demanding and may often fail. See Kipp,
Ryan, and Matt (2016) and references therein.
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strong duality applies. Hence, p∗ is an optimal solution if and only if there is (a Lagrange

multiplier) ξ∗ ≥ 0 such that (p∗, ξ∗) is a saddle point of the function L(·, ·), i.e.,

L(p, ξ∗) ≤ L(p∗, ξ∗) ≤ L(p∗, ξ)

for any ξ ≥ 0 and p ∈ MK . We fix a saddle point (p∗, ξ∗) of function L(·, ·) and show that

it exhibits a cutoff policy.

In this section, we will show a finite-dimensional version of Theorem 2 stated below.

Proposition A.1. If µ is regular, then there is an optimal solution for [P ′
K ] which exhibits a

cutoff policy. In addition, p∗k > 0 for each k ≤ min{k∗, K} where k∗ ≜ min argmax f(k; ξ∗).

In order to prove this proposition, we need to first establish several lemmas. To be-

gin, we say a function f : Z+ → R is single-peaked if f(k − 1) < f(k) for all k ≤
min argmaxk∈Z+ f(k) while f(k) > f(k + 1) for all k ≥ max argmaxk∈Z+ f(k). Our con-

vention is that if argmaxk∈Z+ f(k) is empty, then min argmaxk∈Z+ f(k) is set to +∞. We

now show that the regularity of µ implies that f(·; ξ) is single-peaked.

Lemma A.3. If µ is regular, then for any ξ ≥ 0, function f(·; ξ) is single-peaked.

Proof. Fix any ξ ≥ 0. It is easily checked that f(·; ξ) is single-peaked if and only if f(k; ξ) ≥
(>)f(k+1; ξ) then f(k′; ξ) ≥ (>)f(k′+1; ξ) for any k′ ≥ k. Assume that f(k; ξ) ≥ f(k+1; ξ),

i.e.,

µk((1− α)R + (α + ξ)V )− (α + ξ)Ck ≥ µk+1((1− α)R + (α + ξ)V )− (α + ξ)C(k + 1).

Simple algebra shows that this is equivalent to

µk+1 − µk ≤
(α + ξ)C

(1− α)R + (α + ξ)V
.

Since µ is regular, µk+1 − µk is nonincreasing and so, for k′ ≥ k, we must have

µk′+1 − µk′ ≤ µk+1 − µk ≤
(α + ξ)C

(1− α)R + (α + ξ)V
.

Hence, f(k′; ξ) ≥ f(k′ + 1; ξ). The same argument holds to show that f(k; ξ) > f(k + 1; ξ)

implies f(k′; ξ) > f(k′ + 1; ξ) for any k′ ≥ k.

We will also use the following lemma.
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Lemma A.4. Suppose

f(ℓ; ξ∗) < f(ℓ+ 1; ξ∗)

for some ℓ ≤ K − 1. Then, λℓp
∗
ℓ = µℓ+1p

∗
ℓ+1.

Proof. Fix ℓ satisfying the properties of the lemma. Since p∗ is an optimal solution of [P ′
K ]—

and so satisfies (B′)—we know that µℓ+1p
∗
ℓ+1 ≤ λℓp

∗
ℓ . Toward a contradiction, assume that

µℓ+1p
∗
ℓ+1 < λℓp

∗
ℓ . Now, simply consider p̂ defined as

p̂k =


p∗k + ε if k = ℓ+ 1

p∗k − ε if k = ℓ

p∗k otherwise

and note that we can choose ε > 0 so that µℓ+1p̂ℓ+1 = λℓp̂ℓ while ensuring p̂ℓ, p̂ℓ+1 ∈ (0, 1).A.51

Clearly,
∑K

k=0 p̂k = 1. Now, let us show that µk+1p̂k+1 ≤ λkp̂k,∀k = 0, ...K − 1. Since these

inequalities holds at p∗ (because p∗ is an optimal solution of [P ′
K ] and so satisfies (B′)), by

construction of p̂, we only need to check this constraint for k = ℓ + 1 and k = ℓ − 1. For

k = ℓ+ 1, we have

µℓ+2p̂ℓ+2 = µℓ+2p
∗
ℓ+2 ≤ λℓ+1p

∗
ℓ+1 ≤ λℓ+1p̂ℓ+1.

Similarly, for k = ℓ− 1,

µℓp̂ℓ ≤ µℓp
∗
ℓ ≤ λℓ−1p

∗
ℓ−1 = λℓ−1p̂ℓ−1.

Now, we show that the value of the objective of [Lξ∗ ] strictly increases when we replace

solution p∗ by p̂. We have

K∑
k=0

p̂kf(k; ξ
∗)−

K∑
k=0

p∗kf(k; ξ
∗) = p̂ℓf(ℓ; ξ

∗)− p∗ℓf(ℓ; ξ
∗) + p̂ℓ+1f(ℓ+ 1; ξ∗)− p∗ℓ+1f(ℓ+ 1; ξ∗)

= −εf(ℓ; ξ∗) + εf(ℓ+ 1; ξ∗) = ε (f(ℓ+ 1; ξ∗)− f(ℓ; ξ∗)) > 0

where the inequality comes from the assumption in the lemma. To conclude, we must have

that L(p̂, ξ∗) > L(p∗, ξ∗) which contradicts the fact that (p∗, ξ∗) is a saddle point of the

function L(·, ·).

Finally, in the proof of Proposition A.1, we will need the following simple lemma which

proof is relegated to Section S.3 of the online appendix.

A.51Indeed, at ε = 0, we have µℓ+1p̂ℓ+1 < λℓp̂ℓ. In addition, for ε = pℓ > 0 we have p̂ℓ+1 = pℓ+1 + ε =
pℓ+1 + pℓ ≤ 1 and µℓ+1p̂ℓ+1 > λℓp̂ℓ = 0. Hence, by the Intermediate Value Theorem, there must exist
ε ∈ (0, pℓ) so that µℓ+1p̂ℓ+1 = λℓp̂ℓ and p̂ℓ, p̂ℓ+1 are in (0, 1).
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Lemma A.5. Assume that p′ stochastically dominates p. Let φ be a nondecreasing function.

If there is κ such that
K∑

k=κ

p′k >

K∑
k=κ

pk

and φ(κ) > φ(κ− 1) then
K∑
k=0

p′kφ(k) >
K∑
k=0

pkφ(k).

Proof. See Section S.3 in the online appendix.

Proof of Proposition A.1. Before proceeding, we make the following straightforward obser-

vations (1) p∗0 > 0 (or else p∗k = 0 for all k because, by construction of MK , p satisfies (B′);

this contradicts the assumption that p is a probability measure); (2) for all ξ, f(0; ξ) = 0.

Using these two facts, we claim that Proposition A.1 holds whenever f(k; ξ∗) = f(k′; ξ∗)

for all k, k′ in the support of p∗. Indeed, since p∗0 > 0, f(k; ξ∗) = 0 for all states k in the

support of p∗. In that case, supp L(p, ξ∗) = 0. Thus, the value of the problem [P ′
K ] is 0.

Clearly, the distribution p corresponding to the Dirac measure on state 0 yields the same

value and is a cutoff policy. Hence, in this very special case, Theorem 2 holds true. Thus, in

the sequel, we assume that there is a pair of states k and k′ in the support of p∗ satisfying

f(k; ξ∗) ̸= f(k′; ξ∗).

Let k∗ be min argmaxk f(k; ξ
∗) and k∗∗ be max argmaxk f(k; ξ

∗). Recall that k∗ can be

equal to +∞. By Lemma A.3, we know that f(k; ξ∗) is strictly increasing up to k∗. Hence,

Lemma A.4 implies that µkp
∗
k = λk−1p

∗
k−1 for each k ≤ min{k∗, K}. Note that (since p∗0 > 0)

this also implies that p∗k > 0 for each k ≤ min{k∗, K}, as stated in Proposition A.1. If

K ≤ k∗, we are done. So assume from now on that K > k∗; note that this implies that

k∗ < +∞. By means of contradiction, let us assume that p∗ does not exhibit a cutoff policy.

This means that there is k0 > k∗ such that µk0p
∗
k0

< λk0−1p
∗
k0−1 and p∗k0+1 > 0 (hence,

p∗k0 > 0).A.52 Without loss, assume that for any k < k0, we have µkp
∗
k = λk−1p

∗
k−1. We

consider two cases.

Case 1 : p∗k > 0 for some k > k∗∗. Toward a contradiction, we construct a p̂ that would

achieve a strictly higher value than p∗ in [Lξ∗ ]. Let p̂k = p∗k for k ≤ k0 − 1. For each k ≥ k0,

build p̂ inductively so that µk0 p̂k0 = λk0−1p̂k0−1, µk0+1p̂k0+1 = λk0 p̂k0 ... Since the total mass

of p̂ must be 1, this may be possible only up to a point K̂ where, by construction, we will

have µK̂ p̂K̂ ≤ λK̂−1p̂K̂−1. Finally, we set p̂k = 0 for all k > K̂. In order to show that p̂ lies

A.52Indeed, given the above, by definition, p∗ exhibits a cutoff policy if and only if µk0
p∗k0

= λk0−1p
∗
k0−1 for

all k0 = k∗ + 1, · · ·K − 1, i.e., (B′) binds for all k = 0, ...,K − 2.
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in ∆({0, 1, ..., K}), we need to show that K̂ ≤ K. By a simple induction argument, p̂k ≥ p∗k
for all k ≤ K̂ − 1 and so we must have that K̂ ≤ K. To recap, there is K̂ ≥ k0 (potentially

equal to K) such that µkp̂k = λk−1p̂k−1 for k = 0, ..., K̂ − 1, and p̂k = 0 for k > K̂. One can

show inductively that p̂k > p∗k for all k = k0, ..., K̂ − 1 while, by construction, p̂k = p∗k for all

k ≤ k0 − 1. We claim that distribution p∗ stochastically dominates distribution p̂. To see

this, fix any κ > K̂. Clearly,
∑K

k=κ p̂k = 0 ≤
∑K

k=κ p
∗
k. Now, fix κ ≤ K̂.

K∑
k=κ

p̂k = 1−
κ−1∑
k=0

p̂k ≤ 1−
κ−1∑
k=0

p∗k =
K∑

k=κ

p∗k (A.4)

where the inequality uses the fact that p̂k ≥ p∗k for all k = 0, ..., κ − 1. Importantly, the

above inequality is strict for all κ ∈ {k0 +1, ..., K̂} since p̂k > p∗k for all k = k0, ..., K̂ − 1.A.53

It is also strict for any κ ≥ K̂ + 1 as long as p∗κ > 0 since in that case the LHS is simply 0

while the RHS is strictly positive. In particular, given our assumption that p∗k > 0 for some

k > k∗∗, it must be that p∗k∗∗+1 > 0. Consequently,

K∑
k=κ

p̂k <
K∑

k=κ

p∗k (A.5)

for κ = max{k0 + 1, k∗∗ + 1}.
Now, we show that the value of the objective in [Lξ∗ ] strictly increases when we replace

solution p∗ by p̂. We have to show that

K∑
k=0

p̂kf(k; ξ
∗) >

K∑
k=0

p∗kf(k; ξ
∗).

Since p̂k = p∗k for all k ≤ k0 − 1, this is equivalent to showing

K∑
k=k0

p̂kf(k; ξ
∗) >

K∑
k=k0

p∗kf(k; ξ
∗) (A.6)

Now, define a function φ : Z+ → R as follows

φ(k) =

{
f(k0; ξ

∗) if k ≤ k0 − 1

f(k; ξ∗) if k ≥ k0.

A.53Recall that, by construction, k0 + 1 ≤ K̂.
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Since k0 > k∗, by Lemma A.3, this function is weakly decreasing and it is strictly decreasing

from k to k + 1 for any k ≥ max{k0, k∗∗}. Thus, φ(κ − 1) > φ(κ) for κ = max{k0 +
1, k∗∗ +1}. Now, we know that p∗ stochastically dominates p̂, that inequality (A.5) holds at

κ = max{k0 + 1, k∗∗ + 1}. and that φ(κ− 1) > φ(κ). Applying Lemma A.5,

K∑
k=0

(p̂k − p∗k)φ(k) > 0.

Since p̂k = p∗k for all k ≤ k0−1, this is equivalent to Equation (A.6). To conclude, L(p̂, ξ∗) >
L(p∗, ξ∗) which contradicts the fact that (p∗, ξ∗) is a saddle point of L(·, ·).

Case 2 : p∗k = 0 for all k > k∗∗. Recall our assumption that there is a pair of states k and

k′ in the support of p∗ satisfying f(k; ξ∗) ̸= f(k′; ξ∗). Hence, because f(·; ξ∗) is single-peaked,
f must be weakly increasing on the support of p∗ and strictly increasing from k to k + 1

for all k < k∗. In particular, this holds at k = 0, and so we have f(0; ξ∗) < f(1; ξ∗) and

p∗0 > 0. Recall that k0 is the smallest k in {k∗ + 1, ..., k∗∗ − 1} such that µkp
∗
k < λk−1p

∗
k−1

and p∗k+1 > 0. We now construct a measure p̂ as follows

p̂k =


p∗k/Z1 if k ≤ k0 − 1

p∗k + Z2 if k = k0

p∗k if k ≥ k0 + 1,

where Z1 > 1 and Z2 ≜
∑k0−1

k=0 (p∗k − p̂k) so that p̂ sums up to 1. We pick Z1 small enough

so that p̂k0 remains between 0 and 1 for each k. We show that, for Z1 > 1 small enough, for

each k ≤ K, µkp̂k ≤ λk−1p̂k−1. To see this, first fix k ≤ k0 − 1 and note that

µkp̂k = µkp
∗
k/Z1 ≤ λk−1p

∗
k−1/Z1 = λk−1p̂k−1

where the inequality follows from the fact that p∗ is a feasible solution of [P ′
K ]. Next,

µk0 p̂k0 = µk0

(
p∗k0 + Z2

)
≤ λk0−1p

∗
k0−1/Z1 = λk0−1p̂k0−1

where the inequality holds if Z1 is small enough since, by assumption, µk0p
∗
k0

< λk0−1p
∗
k0−1

(and Z2 vanishes as Z1 goes to 1).A.54 Now, for k = k0 + 1, we have

µk0+1p̂k0+1 = µk0+1p
∗
k0+1 ≤ λk0p

∗
k0

≤ λk0(p
∗
k0
+ Z2) = λk0 p̂k0 .

A.54Indeed, by construction, for each k ≤ k0 − 1, p̂k → p∗k as Z1 → 1. Since Z2 =
∑k0−1

k=0 (p∗k − p̂k), Z2

converges to 0 as Z1 → 1.
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Finally, by construction, for any k > k0 + 1, µkp̂k ≤ λk−1p̂k−1 must hold since p∗ and p̂

coincide.

Now, we show that the value of the objective in [Lξ∗ ] strictly increases when we replace

solution p∗ by p̂. To see this, observe first that p̂ must stochastically dominate p∗. Indeed,

fix any κ > k0. Clearly, since p̂k = p∗k for all k ≥ k0 + 1,
∑K

k=κ p̂k =
∑K

k=κ p
∗
k. Now, fix

κ ≤ k0.
K∑

k=κ

p̂k = 1−
κ−1∑
k=0

p̂k > 1−
κ−1∑
k=0

p∗k =
K∑

k=κ

p∗k (A.7)

where the inequality uses the fact that p̂k = p∗k/Z1 < p∗k for all k = 0, ..., κ− 1 (since Z1 > 1

and p∗k > 0 for such k). Now, we show that the value of the objective in [Lξ∗ ] strictly

increases when we replace solution p∗ by p̂, i.e.,

K∑
k=0

p̂kf(k; ξ
∗) >

K∑
k=0

p∗kf(k; ξ
∗).

We know that p̂ stochastically dominates p∗, that inequality (A.7) holds at κ = 1 and that

f(0; ξ∗) < f(1; ξ∗). In addition, f(·; ξ∗) is nondecreasing on the support of p∗ and p̂. Hence,

this follows from Lemma A.5.

A.2 Infinite dimensional analysis

Let us consider the sequence {pK}K where for each K, pK is an optimal solution of problem

[P ′
K ]. If µ is regular, we assume each pK exhibits a cutoff policy which is well-defined by

Proposition A.1. For each K, we see pK as a point in RZ+ with value 0 on states weakly

greater than K + 1. We will be interested in the limit points of sequence {pK}K . Together
with the result showing that [P ′] has an optimal solution, the following statement implies

Theorem 2.

Proposition A.2. Assume µ is regular. Sequence {pK}K has a subsequence which converges

to a distribution p∗ which is an optimal solution to [P ′] and exhibits a cutoff policy. Further,

it satisfies p∗k > 0 for each k ≤ min argmaxk µkV − Ck.

This result is shown in the online appendix Section S.4 through the following steps. First,

we show that the infinite-dimensional problem [P ′] admits an optimal solution (Proposi-

tion S1). Then, we show that the set of feasible distributions of [P ′] exhibiting a cutoff-

policy is sequentially compact, which in turn implies that (when µ is regular) {pK}K has a
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subsequence converging to a point which exhibits a cutoff policy (Proposition S4). Finally,

we argue that any limit point of {pK}K must be an optimal solution of [P ′] (Proposition S5).

B Proofs from Section 4.2: FCFS with No Information

B.1 Proof of Lemma 1

The expected waiting time satisfies the following recursion. The agent in the first position

has expected waiting time

τ ∗1 = (q∗1dt)dt+ [1− q∗1dt](τ
∗
1 + dt) + o(dt),

since he waits for dt period with probability q∗1dt and for τ ∗1 + dt periods with the remaining

probability. Letting dt → 0, we get

τ ∗1 = 1/q∗1 = 1/µ1.

More generally, the agent in queue position ℓ waits for

τ ∗ℓ = (q∗ℓdt)dt+

[
1−

ℓ∑
j=1

q∗jdt

]
(τ ∗ℓ + dt) +

(
ℓ−1∑
j=1

q∗jdt

)
(τ ∗ℓ−1 + dt) + o(dt),

since he is served in dt period with probability q∗ℓdt, in τ ∗ℓ + dt periods with probability

1−
∑ℓ

j=1 q
∗
jdt (when nobody before him is served), and in τ ∗ℓ−1+ dt periods with probability∑ℓ−1

j=1 q
∗
jdt (when somebody before him is served).B.55

The recursion equations yield a unique solution:

τ ∗ℓ =
ℓ∑ℓ

j=1 q
∗
j

=
ℓ

µℓ

,

where the last equality follows from feasibility.

Part (ii) of regularity implies that q∗ℓ is nonincreasing in ℓ. Therefore, for each ℓ

τ ∗ℓ+1 − τ ∗ℓ =

∑ℓ
j=1 q

∗
j − ℓq∗ℓ+1

(
∑ℓ

j=1 q
∗
j )(
∑ℓ+1

j=1 q
∗
j )

≥ 0.

B.55Again, the probability that multiple agents are served during [t, t+ dt) has a lower order of magnitude
denoted by o(dt).
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Hence, it follows that τ ∗ℓ is nonincreasing in ℓ. Further, if 2µ1 > µ2, then q∗1 > q∗2 ≥ q∗ℓ for all

ℓ ≥ 2. Then, the above inequality becomes strict for all ℓ, which proves the last statement.

B.2 Proof of Lemma 2

We let K̄ be the largest state in the support of p∗ (which can potentially be infinite). We

first study the dynamics for the case with K̄ < ∞. For K̄ = ∞, we show that the dynamics

can be approximated by the dynamics for K̄ < ∞ when K̄ goes to infinity. While it requires

some care, the argument for K̄ = ∞ essentially relies on the case with K̄ < ∞. Hence, we

defer the proof to online appendix Section S.6, which also derives the recursion equation for

belief evolution more rigorously. In the sequel, we assume that K̄ < ∞.

Using (2), we write for each such ℓ ≥ 2,

rt+dt
ℓ =

γ̃t+dt
ℓ

γ̃t+dt
ℓ−1

=
(1− µℓdt)γ̃

t
ℓ + µℓdtγ̃

t
ℓ+1

(1− µℓ−1dt)γ̃
t
ℓ−1 + µℓ−1dtγ̃

t
ℓ

+ o(dt) =
1− µℓdt+ µℓdtr

t
ℓ+1

(1− µℓ−1dt)
1
rtℓ
+ µℓ−1dt

+ o(dt).

Rearranging, we get

rt+dt
ℓ − rtℓ

dt
=

µℓ−1 − µℓ − µℓ−1r
t
ℓ + µℓr

t
ℓ+1

(1− µℓ−1dt)
1
rtℓ
+ µℓ−1dt

+ o(dt)/dt.

Letting dt → 0, we obtain

ṙtℓ = rtℓ
(
µℓ−1 − µℓ − µℓ−1r

t
ℓ + µℓr

t
ℓ+1

)
. (B.8)

(B.8) forms a system of ordinary differential equations. The boundary condition is defined

as follows. Recall that the effective arrival rate be λ̃k ≜ λkx
∗
k for each k. For ℓ ≤ K̄,

r0ℓ =
γ̃0
ℓ

γ̃0
ℓ−1

=
p∗ℓµℓ

p∗ℓ−1µℓ−1

=
λ̃ℓ−1

µℓ−1

, (B.9)

where the second equality uses the fact that γ̃0
ℓ = p∗ℓµℓ \

∑∞
i=1 p

∗
iµi for each ℓ, while the third

one uses (B) whereby
p∗ℓ

p∗ℓ−1
= λ̃ℓ−1

µℓ
.B.56 It is routine to see that the system of ODEs (B.8)

together with the boundary condition (B.9) admits a unique solution (rtℓ)ℓ for all t ≥ 0.B.57

B.56One can obtain the expression for γ̃0
ℓ as follows. The optimality of the cutoff policy means x∗

k = 1 for
all k = 0, ...,K∗ − 2, x∗

k = 0 for all k > K∗ − 1, and y∗k,ℓ = z∗k,ℓ = 0 for all (k, ℓ). Substituting these into (B),
one obtains the expression by rewriting (1).
B.57This follows from the observation that the RHS of (B.8) is locally Lipschitzian in r (a fact implied by
the continuous differentiability of RHS in rtℓ’s). See Hale p. 18, Theorem 3.1, for instance.
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We first claim that ṙ0ℓ ≤ 0 for all ℓ = 2, ..., K̄. It follows from (B.8) that, for ℓ = 2, ..., K̄,

ṙ0ℓ ≤ 0 if and only if

µℓ−1 − µℓ ≤ µℓ−1r
0
ℓ − µℓr

0
ℓ+1. (B.10)

Consider any ℓ = 2, ..., K̄. Substituting (B.9) into (B.10), the condition simplifies to:

µℓ−1 − µℓ ≤ λ̃ℓ−1 − λ̃ℓ,

which holds by regularity of (λ, µ) and the fact that x∗
k is nonincreasing in k.

Having established that ṙ0ℓ ≤ 0 for each ℓ = 2, ..., K̄, we next prove that ṙtℓ ≤ 0 for all

t > 0. To this end, suppose this is not the case. Then, there exists

ℓ ∈ arg min
ℓ′=2,...,K̄

Tℓ′ ,

where

Tℓ′ ≜ inf{t′ : ṙt′ℓ′ > 0}

if the infimum is well defined, or else Tℓ′ ≜ ∞. Let t = Tℓ < ∞, by the hypothesis. Then,

we must have

r̈tℓ > 0; ṙtℓ′ ≤ 0,∀ℓ′ ̸= ℓ; and ṙtℓ = 0.

Differentiating (B.8) on both sides, we obtain

0 < r̈tℓ = ṙtℓ
(
µℓ−1 − µℓ − µℓ−1r

t
ℓ + µℓr

t
ℓ+1

)
− rtℓ(µℓ−1ṙ

t
ℓ − µℓṙ

t
ℓ+1) = rtℓµℓṙ

t
ℓ+1 ≤ 0,

a contradiction. We thus conclude that ṙtℓ ≤ 0, for all ℓ = 2, ..., K̄, for all t ≥ 0.

B.3 Proof of Theorem 3

This theorem is a consequence of Lemma 2. Indeed, it suffices to prove that, under FCFS

with no information, (ICt) holds for all t ≥ 0. Note first that, as we already stated (see

Lemma S5 in the online appendix), (IC0) holds. Next consider (ICt) for any t > 0. Lemma 2

proves that rtℓ ≤ r0ℓ for each ℓ. Since τ ∗ℓ is nondecreasing in ℓ (Lemma 1), this means that

K∗∑
ℓ=1

γ̃t
ℓ · τ ∗ℓ ≤

K∗∑
ℓ=1

γ̃0
ℓ · τ ∗ℓ ,
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so we have

V − C

K∗∑
ℓ=1

γ̃t
ℓ · τ ∗ℓ ≥ V − C

K∗∑
ℓ=1

γ̃0
ℓ · τ ∗ℓ ≥ 0,

where the last inequality follows from (IC0) being satisfied. Hence, (ICt) holds for any t > 0.

C Proof of Theorem 4

Fix a queuing rule q which differs from FCFS. We consider the information policy that

provides no information (beyond the recommendations) for all t ≥ 0. This is without loss

since, if a queueing rule q fails (ICt), for some t ≥ 0, under no information, it would fail

(ICt) under any information policy.

Recall that we have fixed the service rate µ. While arrival rate λ is yet to be fixed, for each

λ, we can choose parameters V,C and α to ensure that the optimal outcome (x∗, y∗, z∗, p∗)

(i) involves a maximal length K∗ = 2 (i.e., x∗
2 = 0 or z∗2,1 + z∗2,2 = 1), (ii) no rationing at

k = 1 (i.e., x∗
1 = 1 and z∗1,1 = 0), and (iii) (IR) is binding at p∗.C.58 Importantly, assumption

(ii) implies that y∗k,ℓ are all zeros.C.59 In the sequel, we fix such an outcome (x∗, y∗, z∗, p∗).

Note that x∗
2 > 0 implies that z∗2,1+z∗2,2 = 1 and since the values of z∗2,1 and z∗2,2 are irrelevant

when x∗
2 = 0, without loss, we will assume that z∗2,1 + z∗2,2 = 1. While the variables we study

below do depend on µ and λ, for simplicity, we omit the dependence in notations.

We then study an agent’s expected utility with elapse of time t ≥ 0 on the queue:

U(t) ≜ S(t)V −W (t)C. (C.11)

W (t) stands for the residual waiting time, conditional on having spent time t ≥ 0 on the

queue, i.e.,

W (t) ≜ γt
1,1τ 1,1 + γt

2,1τ 2,1 + γt
2,2τ 2,2

where γt = (γt
1,1, γ

t
2,1, γ

t
2,2) is the belief an agent has about alternative states (k, ℓ) and

C.58If V/C = 2λ+µ
(λ+µ)µ and α = 0, one can easily show that there is a unique optimal solution p to [P ′] and

any outcome (x, y, z) implementing p satisfies (i), (ii) and (iii).
C.59Indeed, in that case, x∗

0 = x∗
1 = 1 and

∑0
ℓ=1 z

∗
0,ℓ =

∑1
ℓ=1 z

∗
1,ℓ = 0. Further, (x∗, y∗, z∗, p∗) satisfies (B),

i.e., for each k

p∗kλkx
∗
k(1−

k∑
ℓ=1

z∗k,ℓ) = p∗k+1(

k+1∑
ℓ=1

y∗k+1,ℓ + µk+1).

From the above equation, it is easily checked that if x∗
k = 1 and

∑k
ℓ=1 z

∗
k,ℓ = 0, given that p∗kλk ≤ p∗k+1µk+1

since p∗ satisfies (B′), we must have that y∗k+1,ℓ = 0 for each ℓ. Thus, we must have that y∗1,ℓ = y∗2,ℓ = 0 for
each ℓ.
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τ = (τ 1,1, τ 2,1, τ 2,2) are his expected waiting times at alternative states, both under the

queueing rule q. Similarly, S(t) is the probability of eventually getting served and writes as:

S(t) ≜ γt
1,1σ1,1 + γt

2,1σ2,1 + γt
2,2σ2,2

where σ = (σ1,1, σ2,1, σ2,2) are the probabilities of an agent getting eventually served at

alternative states (k, ℓ), again under the queueing rule q. (Throughout, we suppress the

dependence on q for notational ease.)

Since U(0) = 0 (as implied by a binding (IR)), it suffices to show that U(t) decreases

strictly in the neighborhood of t = 0 which will then prove that q fails (ICt) for some small

t > 0. We establish this for a sufficiently small value λ > 0.C.60 Specifically, we focus on

U̇(0)—the change in utility “right after joining the queue”—as λ → 0. As it turns out,

U̇(0) → 0 as λ → 0. Hence, one must consider how “slowly” U̇(0) converges to 0, or more

precisely, the limit behavior of U̇(0)/λ as λ → 0.

Hence, we will show that U̇(0)/λ converges to a strictly negative number as λ → 0.

For our purpose, it is enough to show that, as λ vanishes, S ′(0)/λ converges to 0 while

W ′(0)/λ converges to a strictly positive number. To this end, it is necessary to characterize

the limit behaviors of (τ k,ℓ), (σk,ℓ) and (γ̇0
k,ℓ). We do this first.

Limit behavior of (τ k,ℓ). The expected waiting time τ 1,1 must satisfy:

τ 1,1 = (µdt) dt+ λdt (dt+ τ 2,1) + (1− µdt− λdt) (dt+ τ 1,1) + o(dt),

since, for a small time increment dt, the sole agent in the queue waits for time dt if he is

served during [t, t + dt) (which occurs with probability µdt), for dt + τ 2,1 if another agent

arrives during [t, t+dt) (which occurs with probability λdt), and for dt+ τ 1,1 if neither event

arises (which occurs with probability 1− µdt− λdt). By a similar reasoning, we have:

τ 2,1 =
(
q2,1dt+ λx∗

2z
∗
2,1dt

)
dt+ q2,2dt(dt+ τ 1,1) +

(
1− µdt− λx∗

2z
∗
2,1dt

)
(dt+ τ 2,1) + o(dt)

and

τ 2,2 =
(
q2,2dt+ λx∗

2z
∗
2,2dt

)
dt+q2,1dt(dt+τ 1,1)+λx∗

2z
∗
2,1dt (dt+ τ 2,1)+(1− µdt− λx∗

2dt) (dt+τ 2,2)+o(dt).

C.60Recall we adjust the values of C, V and α so as to ensure that (IR) is binding at the optimal cutoff
policy that solves [P ′].
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Letting dt → 0 and simplifying, we obtain:

(µ+ λ) τ 1,1 = λτ 2,1+1,
(
µ+ λx∗

2z
∗
2,1

)
τ 2,1 = q2,2τ 1,1+1 and (µ+ λx∗

2) τ 2,2 = λx∗
2z

∗
2,1τ 2,1+q2,1τ 1,1+1.

Thus, we have that, as λ → 0,

τ 1,1 →
1

µ
, τ 2,1 →

q2,2
µ

1

µ
+

1

µ
and τ 2,2 →

q2,1
µ

1

µ
+

1

µ
(C.12)

where we abuse notations and simply note q2,2 for the limit as λ vanishes of q2,2 (and similarly

for q2,1). We assume here that this limit is well-defined and take a subsequence of our

vanishing sequence of λ if necessary.

Limit behavior of (σk,ℓ). We have

σ1,1 = µdt+ λdtσ2,1 + (1− µdt− λdt)σ1,1 + o(dt)

since, for a small time increment dt, the sole agent in the queue is served with probability

µdt; the agent is eventually served with probability σ2,1 if another agent arrives (which

occurs with probability λdt), and the agent is served with probability σ1,1 if neither event

arises (which occurs with probability 1− µdt− λdt). Similar reasoning yields the following

expressions for σ2,1 and σ2,2

σ2,1 = q2,1dt+ (1− µdt− λx∗
2dt)σ2,1 + q2,2dtσ1,1 + λx∗

2dtz
∗
2,2σ2,1 + o(dt),

and

σ2,2 = q2,2dt+ (1− µdt− λx∗
2dt)σ2,2 + q2,1dtσ1,1 + λx∗

2dtz
∗
2,1σ2,1 + o(dt).

We obtain

(µ+ λ)σ1,1 = µ+ λσ2,1

(µ+ λx∗
2(1− z∗2,2))σ2,1 = q2,1 + q2,2σ1,1

(µ+ λx∗
2)σ2,2 = q2,2 + q2,1σ1,1 + λx∗

2z
∗
2,1σ2,1.

Hence, we obtain that

σ1,1, σ2,1, σ2,2 → 1 as λ → 0. (C.13)

Limit behavior of (γ̇0
k,ℓ). We study the dynamics of beliefs. An agents’ beliefs evolve
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during [t, t+ dt) according to Bayes rule. For instance, for state (k, ℓ) = (1, 1), we obtain

γt+dt
1,1 =

γt
1,1 [1− µdt− λdt] + γt

2,2 [q2,1dt] + γt
2,1 [q2,2dt]

γt
1,1 [1− µdt] + γt

2,1

[
1− q2,1dt− λx∗

2z
∗
2,1dt

]
+ γt

2,2

[
1− q2,2dt− λx∗

2z
∗
2,2dt

] + o(dt)

where the numerator is the probability that the agent’s state is (k, ℓ) = (1, 1) after staying

in the queue for length t+ dt of time. This event occurs if either (i) the agent is already in

state (1, 1) in the queue at time t, the agent is not served and no agent arrives in the queue

during time increment dt; or (ii) his state is (2, 2) or (2, 1) at t and the other agent in the

queue is served by t+ dt. The denominator in turn gives the probability that the agent has

not been served or removed from the queue by time t + dt. Hence, given that an agent has

not been served or removed from the queue by t, the above expression gives the conditional

belief that his state is (1, 1) at time t+ dt.

Similar reasoning yields the following expressions for the evolution of beliefs for state

(2, 1) and (2, 2)

γt+dt
2,1 =

γt
2,1

[
λx∗

2z
∗
2,2dt+ 1− µdt− λx∗

2dt
]
+ γt

2,2

[
λx∗

2z
∗
2,1dt

]
+ γt

1,1 [λdt]

γt
1,1 [1− µdt] + γt

2,1

[
1− q2,1dt− λx∗

2z
∗
2,1dt

]
+ γt

2,2

[
1− q2,2dt− λx∗

2z
∗
2,2dt

] + o(dt)

and

γt+dt
2,2 =

γt
2,2 [1− µdt− λx∗

2dt]

γt
1,1 [1− µdt] + γt

2,1

[
1− q2,1dt− λx∗

2z
∗
2,1dt

]
+ γt

2,2

[
1− q2,2dt− λx∗

2z
∗
2,2dt

] + o(dt).

From these, we can derive ODEs that describe belief evolutions:

γ̇t
1,1 = −γt

1,1 [µ+ λ] + γt
2,2 [q2,1] + γt

2,1 [q2,2] +
(
γt
1,1

)2
[µ]

+γt
1,1γ

t
2,1

[
q2,1 + λx∗

2z
∗
2,1

]
+ γt

1,1γ
t
2,2

[
q2,2 + λx∗

2z
∗
2,2

]
,

γ̇t
2,1 = −γt

2,1

[
µ+ λx∗

2(1− z∗2,2)
]
+ γt

2,2

[
λx∗

2z
∗
2,1

]
+ γt

1,1 [λ]

+γt
2,1γ

t
1,1 [µ] +

(
γt
2,1

)2 [
q2,1 + λx∗

2z
∗
2,1

]
+ γt

2,1γ
t
2,2

[
q2,2 + λx∗

2z
∗
2,2

]
and

γ̇t
2,2 = −γt

2,2 [µ+ λx∗
2] + γt

2,2γ
t
1,1 [µ]

+γt
2,2γ

t
2,1

[
q2,1 + λx∗

2z
∗
2,1

]
+
(
γt
2,2

)2 [
q2,2 + λx∗

2z
∗
2,2

]
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with a boundary condition at t = 0 satisfying γ0
2,1 = 0 and

γ0
1,1 =

λp0

λp0 + λp1 + λx∗
2p2
(
z∗2,1 + z∗2,2

) =
1

1 + λ
µ
+ x∗

2

(
λ
µ

)2 ,
and

γ0
2,2 =

λp1 + λx∗
2p2
(
z∗2,1 + z∗2,2

)
λp0 + λp1 + λx∗

2p2
(
z∗2,1 + z∗2,2

) =

λ
µ
+ x∗

2

(
λ
µ

)2
1 + λ

µ
+ x∗

2

(
λ
µ

)2 ,
where we used the fact that p1µ = λp0 and p2µ = λp1 = λλ

µ
p0 at the invariant distribution

together with z∗2,1 + z∗2,2 = 1 since state k ≥ 3 have mass 0 at the invariant distribution.

(Recall that we assumed, wlog, that z∗2,1 + z∗2,2 = 1).

Observe that
γ0
1,1

λ
− 1

λ
→ − 1

µ
,
γ0
2,2

λ
→ 1

µ
and

γ0
2,1

λ
= 0

In addition,
γ̇0
1,1

λ
→ −1 < 0,

γ̇0
2,1

λ
→ 1 > 0 and

γ̇0
2,2

λ
→ 0. (C.14)

Completion of the proof of Theorem 4. As we already mentioned, for our purpose, it is enough

to show that as λ vanishes, S ′(0)/λ converges to 0 while W ′(0)/λ converges to a strictly pos-

itive number. We have that

W ′(0)

λ
=

γ̇t
1,1

λ
τ 1,1 +

γ̇0
2,1

λ
τ 2,1 +

γ̇0
2,2

λ
τ 2,2 → − 1

µ
+

(
q2,2
µ

1

µ
+

1

µ

)
=

(
q2,2
µ

)
1

µ
> 0

where the limit result comes from (C.12) and (C.14) while the strict inequality holds given

our assumption that q differs from FCFS and so q2,2 > 0. Further, we have

S ′(0)

λ
=

γ̇t
1,1

λ
σ1,1 +

γ̇0
2,1

λ
σ2,1 +

γ̇0
2,2

λ
σ2,2 → 0

where the limit result comes from (C.13) and (C.14). Thus, as claimed, U̇(0)/λ converges

to a strictly negative number as λ → 0.
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