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Abstract

Tradable factor risk premia are defined by the negative factor co-
variance with the Stochastic Discount Factor projection on returns.
They are robust to misspecification or weak identification in asset pric-
ing models, and they are zero for any factor weakly correlated with
returns. We propose a simple estimator of tradable factor risk premia
that enjoys the Oracle Property, i.e., it performs as well as if the weak
or useless factors were known. This estimator not only consistently
removes such factors, but it also gives rise to reliable tests of asset
pricing models. We study empirically a family of asset pricing models
from the factor zoo and detect a robust subset of economically rele-
vant and well-identified models, which are built out of factors with a
nonzero tradable risk premium. Well-identified models feature a rela-
tively low factor space dimension and some degree of misspecification,
which harms the interpretation of other established notions of a factor
risk premium in the literature.
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1 Introduction

Over the last decades, a myriad of factors and low-dimensional factor models
has been suggested to explain the cross-section of asset returns. Most of
the empirical evidence for these models is based on various versions of the
so-called two-step cross-sectional estimation and inference methodology, in
which (i) factor risk premia are estimated by a cross-sectional projection of
average returns on estimated asset return betas and (ii) asset return betas
are estimated by a time series regression of returns on factors; see, e.g., Fama
and MacBeth (1973) and Shanken (1992). However, this methodology has
been shown to produce unreliable results in empirically relevant situationss
where an asset pricing model may be misspecified or a candidate risk factor
may be at best only weakly correlated with returns.1

Misspecification arises when asset expected returns are not completely
spanned by the vectors of factor betas in an asset pricing model, and it has
important implications for the properties of risk premia and test statistics
produced by two-step cross-sectional regression approaches. First, misspec-
ification gives rise to non zero pricing errors that impact the asymptotic
distribution of estimated factor risk premia and derived statistics. Second,
misspecification can lead to a definition of (pseudo) factor risk premia in
two-step cross-sectional regression approaches that is to some extent arbi-
trary, as it depends on the weighting scheme chosen to penalize pricing errors
in the second step of the methodology.

The presence in an asset pricing model of risk factors that may be at best
only weakly correlated with returns gives rise to the so-called weak (or no)
identification problem. This issue arises when the cross-sectional projection
of expected returns on asset return betas does not uniquely identify a factor
risk premium. Weak (or no) identification has as well important implications
for the reliability of estimated risk premia and test statistics produced by
two-step cross-sectional regression approaches, as it may spuriously favour
statistically weak factors or even completely useless ones, i.e., factors that
are uncorrelated with returns. These undesirable features may be further
exacerbated by asset pricing models in which misspecification and weak (or
no) identification coexist.

This paper addresses the testing of asset pricing models in the joint
presence of misspecification and weak (or no) identification, based on a
well-established, economically motivated, notion of a tradable factor risk

1See Kan and Zhang (1999), Shanken and Zhou (2007), Kleibergen (2009), Kan et al.
(2013), Gospodinov et al. (2014), and Kleibergen and Zhan (2015), among many others.
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premium. A tradable factor risk premium is defined by the negative factor
covariance with the projection of any stochastic discount factor (SDF) on
the space of asset returns. Importantly, tradable factor risk premia are well-
defined whenever the standard no arbitrage condition of a finite maximum
asset Sharpe ratio holds, and they are zero by definition for any factor that
is only weakly correlated with returns. Therefore, they are naturally suited
objects to develop inference procedures in potentially misspecified or weakly
identified asset pricing models.

We show that a consistent finite sample selection of factors that are at
best only weakly correlated with returns is easily achievable using tradable
factor risk premia, together with a reliable and efficient inference on the
risk premia of all other factors in an asset pricing model. To achieve this,
we exploit the fact that a standard sample version of tradable factor risk
premia follows an asymptotically Gaussian distribution under quite general
assumptions, which cover models potentially including factors weakly cor-
related with returns. Crucially, this distribution may imply a distortion
of estimated risk premia in weakly-identified models, but only for the risk
premia of factors that are weakly correlated with returns.

We exploit these key properties to build a convenient Oracle estimator
of tradable factor risk premia, which overcomes the potential distortions
generated by weak factors in an asset pricing model. This estimator is
given in closed-form as a penalized minimum distance correction of sample
tradable risk premia and improves on the latter in two main directions.
First, it consistently identifies the set of factors that are weakly correlated
with returns. Second, it yields an (asymptotically) efficient estimate of
tradable risk premia for all other factors in an asset pricing model as if
these factors were known. By design, our Oracle estimator directly produces
a valid inference for the tradable risk premia of factors that are not weakly
correlated with returns. Alternatively, it can be used to perform a consistent
preliminary screening of factors weakly correlated with returns, in order
to reliably and efficiently apply in a second step standard cross-sectional
inference methodologies to the risk premia of all other factors in an asset
pricing model.

We make use of our Oracle estimation and inference methodology for
tradable factor risk premia, in order to build a coherent and easily applicable
framework for studying the asset pricing properties of a broad class of factor
models from the factor zoo. For this purpose, we first form randomized
families of candidate models of largest factor space dimension, in order to
single out a set of well-identified submodels consisting exclusively of factors
that are neither useless nor weak. Based on this set, we then pin down
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the properties of the resulting distribution of factors and factor risk premia
across well-identified models, for various benchmark choices of test assets in
the literature.

Our empirical analysis detects a quite robust set of economically rele-
vant, well-identified models from the factor zoo, which are all built out of
a relatively small set of factors having a nonzero tradable risk premium.
Such factors include market, size, intermediaries capital ratio, market with
a hedged unpriced component, a mispricing factor, a long-term behavioral
factor, a liquidity factor, a conservative minus aggressive factor and a com-
posite equity issuance factor. At the same time, we find that the relatively
low factor space dimension of well-identified models is associated with some
degree of misspecification. This feature harms the interpretation of other
established definitions of a factor risk premium in the literature, which may
give rise to excessively model-dependent risk premia and testing procedures
in presence of untradable factor risks. For instance, for factors intermediaries
capital ratio and market with a hedged unpriced component, we find that
the risk premium implied by two-step cross-sectional regression approaches,
across well-identified models and test assets, exhibits both an economically
implausible variability and weak statistical significance.

The rest of the paper is structured as follows. After a review of the
related literature, Section 2 defines tradable factor risk premia and clarifies
their main properties. In Section 3, we introduce our Oracle estimator
of tradable factor risk premia. We then derive its asymptotic properties
under varying assumption on the (potentially vanishing) correlation between
factors and returns. Finally, we explain our factor selection and inference
procedure based on tradable risk premia. Section 4 provides extensive Monte
Carlo simulation evidence on the finite sample accuracy of our methodology,
in comparison to alternative approaches in the literature. Section 5 presents
our empirical study, while Section 6 concludes and provides directions for
future research.

2 Factor risk premia

Let Rt = (R1t, . . . , RNt)
′ and Ft := (F1t, . . . , FKt)

′ be a vector of excess
returns and a vector of candidate asset pricing factors, where K < N , ob-
served at times t = 1, . . . , T . The joint vector Yt := (R′

t,F
′
t )

′ has moments
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partitioned as:

E [Yt] =

 µR

µF

 ; Cov [Yt,Yt] =

 VR VRF

VFR VF

 . (1)

Given a set of test asset returns and candidate asset pricing factors, the
main question studied by empirical asset pricers is whether some factors may
reflect sources of systematic risk that are priced in the cross-section of asset
returns. In order to answer this question empirically, one crucially needs
both an appropriate factor risk premium definition and reliable inference
techniques for testing hypotheses about factor risk premia.

Existing notions of factor risk premia all rely on the basic asset pricing
equation implied by the choice of a corresponding Stochastic Discount Factor
(SDF) projection Mt:

λ(M) = −Cov[Ft,Mt] . (2)

In all cases, SDF projection Mt is defined as some suitable approximation
of a corresponding unknown SDF in an arbitrage-free market. Such SDF
projections can be quite different with respect to several important features,
including, e.g., the type of risks they span and the optimality criteria used to
build them. More importantly for our purposes, most of these projections
directly depend on the properties of an asset pricing model and are not
well-defined in not or weakly identified models.

2.1 Tradable factor risk premia

In order to define tradable factor risk premia, the only assumption needed
is the nonredundancy of asset returns.

Assumption 1. Covariance matrix VR is positive definite.

Assumption 1 is standard and ensures a finite upper bound on the largest
Sharpe ratio of any excess return portfolio. This bound is attained by the
maximum Sharpe ratio portfolio having portfolio weights:

w = V −1
R µR . (3)

Portfolio (3) identifies the tradable minimum variance projection of any
stochastic discount factor (SDF) onto the space spanned by excess returns
and constant payoffs:2

M i
t := 1− µ′

RV
−1
R (Rt − µR) . (4)

2The normalization E[M i
t ] = 1 is without loss of generality since we work with excess

returns.
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By construction, this projection satisfies the basic risk premium identity:

E[Rt] = −Cov[Rt,M
i
t ] . (5)

Consistently with these pricing properties, a tradable factor risk premium
is the risk premium assigned to a candidate asset pricing factor by SDF
projection (4).

Definition 1. Given Assumption 1, the tradable risk premium of factor vec-
tor Ft is defined by:

λi := −Cov[Ft,M
i
t ] = VFRV

−1
R µR . (6)

The tradable factor risk premium in Definition 1 is a special case of general
risk premium definition (2) with Mt := M i

t and it satisfies a number of
desirable properties listed below.

(i) It is well-defined whenever Assumption 1 holds. In particular, it re-
mains well-defined when covariance matrix VRF does not have a full
column rank. This feature emerges in presence of useless or weak
factors or, more generally, when covariances of different factors with
returns are collinear.

(ii) It uniquely assigns a zero risk premium to any factor having a zero
or a vanishing population covariance with all excess returns, i.e., any
useless or weak factor.

(iii) It is independent of the misspecification properties of a factor asset
pricing model, because it is directly defined via the SDF projection
on the space of returns. In particular, the tradable risk premium of a
factor depends exclusively on the joint distribution of that factor with
test asset returns, and not on the joint distribution properties with
other factors.

(iv) It is invariant to linear invertible transformations of excess returns,
and thus also to a simple repackaging of the test assets.3

(v) It offers a straightforward economic interpretation as it coincides with
the expectation of the least squares projection of factors on the span
of excess returns:

λi = E[VFRV
−1
R Rt] ,

3A detailed discussion of this important invariance property is given in Kandel and
Stambaugh (1995).
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i.e., tradable factor risk premia are interpretable as the (tradable) risk
premia of factor replicating portfolios.4

In addition to the above properties, tradable factor risk premia naturally
give rise to an exact beta representation of expected returns in correctly
specified, but not necessarily identified, models.

Proposition 2.1. Let Assumption 1 hold. Then, following statements are
equivalent:

1. There exists a valid factor SDF of the form

MF := 1− γ ′(Ft − µF ) (7)

for some γ ∈ RK .

2. Following tradable beta-representation of expected returns holds:

µR = VRFγ = βiλi , (8)

for a N ×K matrix of mimicking portfolio return betas given by:

βi := VRF (VFRV
−1
R VRF )

+ , (9)

where A+ denotes the Moore–Penrose inverse of a matrix A.

Proposition 2.1 states that in correctly specified models there always exists
an exact beta-representation of expected returns, based on tradable factor
risk premia λi and N×K matrix βi of tradable factor betas. Note that this
representation is always valid, irrespective of the identification properties
of an asset pricing model. Indeed, recall that VFRV

−1
R VRF is the variance

covariance matrix of the factor mimicking portfolio returns. Therefore, in
identified models βi is the uniquely given N ×K matrix such that:

βiVFRV
−1
R VRF = VRF ,

i.e., the matrix of factor betas of mimicking portfolio returns. More gen-
erally, in unidentified models there always exists a multiplicity of N × K
matrices β̃ such that:

β̃VFRV
−1
R VRF = VRF ,

i.e., without additional assumptions the factor betas of portfolio mimicking
returns are not identified. In such settings, definition (9) identifies a unique
matrix of betas of portfolio factor mimicking returns, which (i) satisfies a
tradable beta representation of expected returns and (ii) implies the smallest
beta exposures under the Euclidean metric.

4The relation between tradable factor risk premia and the risk premia of factor mim-
icking portfolio returns is explained in more detail in Section 2.2.
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2.2 Alternative notions of factor risk premia

Tradable factor risk premia differ from other commonly used notions of
factor risk premia in the literature, because of the different SDF projec-
tion underlying them. Tradable risk premia are defined by a linear SDF
projection on the return space, which correctly prices all test assets. Other
available notions are defined by a SDF projections on the factor space, which
implies some degree of asset mispricing in misspecified models. To clarify
these differences, recall the definition of a misspecification-robust factor risk
premium in Kan et al. (2013):

λ(W ) := −Cov[Ft,Mt(W )] , (10)

for some N×N symmetric and positive-definite weighting matrix W , where

Mt(W ) := 1− γ ′(W )(Ft − µF )

is a SDF projection on the factor space, with factor loadings such that:

γ(W ) ∈ argmin
γ∈RK

E[Mt(W )Rt]
′WE[Mt(W )Rt] . (11)

Factor risk premium (10) is another special case of the general risk premium
definition (2), which is however identified if and only if factor loadings (11)
are identified, i.e., the covariance matrix VRF has full column rank, in which
case:

γ(W ) = (VFRWVRF )
−1VFRWµR . (12)

This gives rise to following standard two-step weighted least squares expres-
sion for factor risk premia in identified models with non redundant factors:

λ(W ) = (β′Wβ)−1β′WµR , (13)

where β = VRFV
−1
F is the N ×K matrix of factor betas. These identities

give rise to following direct links between tradable factor risk premia and
misspecification-robust factor risk premia in identified models.

Proposition 2.2. Let Assumption 1 hold and matrix VRF have full column
rank. It then follows:

λ(V −1
R ) = VF (VFRV

−1
R VRF )

−1λi . (14)

In particular, λj(V
−1
R ) = λi

j for any factor Fj spanned by test asset returns.
If furthermore correct specification property (7) in Proposition 2.1 holds and
matrix VF is positive definite, then for any weighting matrix W it follows:

λ(W ) = (β′β)−1β′µR = (β′β)−1β′βiλi , (15)
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with
λi = (βi′βi)−1βi′µR . (16)

Proposition 2.2 shows that in identified models misspecification-robust fac-
tor risk premia implied by weighting matrix W = V −1

R are given by an
invertible linear transformation of tradable factor risk premia. Since in such
models VFRV

−1
R VRF is a (positive-definite) variance-covariance matrix of

the vector of factor mimimicking portfolio payoffs, this also shows that the
factor market prices of risk induced by both definitions are the same:

V −1
F λ(V −1

R ) = (VFRV
−1
R VRF )

−1λi . (17)

Moreover, when a factor in an asset pricing model is tradable, i.e., spanned
by test asset returns, then its misspecification-robust and tradable factor
risk premia are identical. Therefore, misspecification-robust risk premia
differ from tradable risk premia by the fact that they assign to not tradable
factors a rescaled risk premium, which is adjusted to the larger variance
covariance matrix of not tradable factors relative to the variance-covariance
matrix of factor mimicking portfolio payoffs.

In models that are additionally correctly specified, equation (16) shows
that tradable factor risk premia are equivalently given by the coefficients of a
two-step cross-sectional ordinary least squares regression of expected returns
on factor mimicking portfolio return betas. Such a definition of tradable fac-
tor risk premia is akin to a well-established approach in the literature, which
aims to identify with a two-step cross-sectional least squares approach the
risk premia of factor mimicking portfolios, as opposed to the risk premia of
the original factors.5 However, this equivalent definition implicitly assumes
the nondegeneracy of the covariance matrix of factor mimicking portfolio
returns, which is instead singular in not or weakly identified models where
matrix VRF is reduced rank.6 Finally, equations (15)–(16) together show
that the factor risk premia of correctly specified and identified models can
always be recovered from tradable risk premia, by first projecting expected
returns on tradable factor betas and then regressing that projection on factor
betas.

Having clarified the desirable properties of tradable factor risk premia
when working with potentially unidentified models, relative to other com-
mon notions in the literature, we study in the next section the asymptotic

5This approach dates back at least to Huberman et al. (1987), Grinblatt and Titman
(1987) and Lehmann and Modest (1988).

6In identified but potentially misspecified models, the two-step definition of factor
mimicking portfolio risk premia is not robust with respect to the weighting matrix W
used to weight pricing errors. In contrast, Definition 1 is universally valid and robust.
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properties of a convenient class of tradable factor risk premium estimators,
under varying assumptions on the data generating process for returns and
potentially useless or weak asset pricing factors. Building on these estima-
tors, we then set up our Oracle tests of asset pricing models.

3 Estimation of tradable factor risk premia

Definition 1 naturally motivates a direct estimator of tradable factor risk
premia, which is given by the sample version of equation (1):

λ̂ := V̂FRV̂
−1
R µ̂R , (18)

with the sample mean and sample covariance matrix estimators given by:

µ̂ := (µ̂′
R, µ̂

′
F )

′ :=
1

T

T∑
t=1

Yt , (19)

and

V̂ :=

 V̂R V̂RF

V̂FR V̂F

 :=
1

T

T∑
t=1

(Yt − µ̂)(Yt − µ̂)′ . (20)

In the sequel, we first show that estimator (18) has a number of useful
properties, which make it a convenient initial estimator for building tests of
potentially misspecified and not necessarily identified asset pricing models.
To this end, we prove in Section 3.1 that estimator (18) always has a stan-
dard asymptotically Gaussian distribution, even in the presence of useless
factors uncorrelated with returns, or, more generally, weak factors having a
correlation with returns that vanishes sufficiently fast with the sample size.7

Furthermore, we show in Section 3.2 that in presence of weak factors having
return correlations vanishing at a slow rate,8 the asymptotic distribution of
estimator (18) is still Gaussian, but dependent on an asymptotic bias term.
Crucially, this bias only affects the estimated risk premia of the weak factors
with slowly vanishing return correlations. Moreover, it does not affect the
estimator’s asymptotic mean square error.

By exploiting the asymptotic properties of sample tradable risk premia,
we next build in Section 3.3 an Oracle estimator of tradable factor risk

7I.e., at rate at least 1/Tα for some α > 1/2 .
8I.e., at rate 1/

√
T .
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premia. This estimator is given in closed-form by a penalized minimum dis-
tance correction of sample tradable risk premia, which corrects the potential
biases generated by weak factors with slowly vanishing return correlations.
We show that our Oracle estimator improves on sample tradable risk premia
in two directions. First, by ensuring a consistent finite-sample selection of
factors that are not weak or useless. Second, by giving rise to an efficient
asymptotic distribution for the estimated risk premia of all other factors,
which is independent of the potential presence of useless or weak factors in
an asset pricing model. Therefore, our Oracle estimator naturally produces
a valid asymptotic inference framework for testing potentially misspecified
and not or only weakly identified asset pricing models.

3.1 Tradable factor risk premium estimation with useless
factors

Let the vectors of excess return and factor innovations at time t be denoted
by:

R̄t := Rt − µR , (21)

F̄t := Ft − µF . (22)

The next proposition establishes the asymptotic properties of tradable factor
risk premium estimator (18), under the general assumption of factor and
excess return stationarity and ergodicity.9

Proposition 3.1. Let Assumption 1 hold and Yt be jointly stationary and
ergodic with finite fourth moments. Let further matrix:

Σ := lim
T→∞

1

T

T∑
t=1

T∑
s=1

E[hth
′
s] , (23)

where

ht := F̄tR̄
′
tV

−1
R µR − VFRV

−1
R R̄tR̄

′
tV

−1
R µR + VFRV

−1
R R̄t , (24)

be positive definite. It then follows:

√
T (λ̂i − λi) →d N (0,Σ) . (25)

9This assumption, together with the assumption of finite fourth moments of random
vector Yt, is needed to invoke a suitable central limit theorem for jointly stationary and
ergodic random vector ((Yt − E[Yt])

′, vec(YtY
′
t − V )′)′.
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In Proposition 3.1, the asymptotic covariance matrix (23) depends on three
sources of estimation uncertainty, which are present in the sum on the right
hand side of equation (24). They capture the uncertainty generated by the
estimation of population moments VRF , VR and µR in the definition of
tradable factor risk premia.

Several useful properties of asymptotic distribution (25) are worth notic-
ing. First, the marginal asymptotic distribution of sample tradable risk pre-
mia only depends on the joint factor distribution with asset returns, but
not on the joint distribution with other factors.10 This property does not
hold in general, e.g., for factor risk premium estimators implied by two-step
cross-sectional regression approaches. Second, in Proposition 3.1 the N ×K
matrix VRF is not required to have a full column rank. Therefore, asymp-
totic distribution (25) is valid also in presence of useless factors and one
can directly test with statistics having this asymptotic distribution the null
hypothesis of a zero tradable risk premium. This is a sharp difference with,
e.g., the approach in Gospodinov et al. (2014), in which useless factors have
first to be consistently eliminated with a sequential testing procedure, before
testing risk premium hypotheses involving factors that are not useless.

3.2 Tradable factor risk premium estimation with useless
and weak factors

The stationarity assumption in Proposition 3.1 does not cover nearly-singular
settings, in which matrix VRF is approximated by a sequence of matrices

V
(T )
RF depending on the sample size and having rank strictly greater than

VRF . This is the context in which some factors may be weak, in the sense
that while they exhibit a non degenerate covariance structure with returns
in finite samples, they may give rise to a degenerate covariance structure
as the sample size grows. Such a weak factor setting has been shown in
Kleibergen (2009), among many others, to be empirically relevant for many
macro-based asset pricing factors.

To study the properties of tradable risk premia estimators in weak factor
settings, we make the following assumption, in order to allow for the presence
of both useless and weak factors.

Assumption 2. The sample size-dependent joint covariance matrix of factors

10As we demonstrate in Section 4, this robustness of marginal asymptotic distributions
with respect to the presence of additional factors in an asset pricing model is a key property,
which is instrumental for building consistent exclusion procedures of useless or weak factors
that perform reliably in finite samples.
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and returns is given by:

V (T ) =

 VR V
(T )
RF

V
(T )
FR VF

 , (26)

where submatrix V
(T )
RF is of the form:

V
(T )
RF := VRF + Γ/Tα +∆/

√
T ,

for some α > 1/2 and N ×K matrices Γ,∆ such that 0 = VFRΓ = VFR∆.

In Assumption 2, matrices Γ and ∆ parametrize the way how covariance

matrix V
(T )
RF converges to its (possibly reduced-rank) limit VRF . By con-

struction,

Rank
(
V

(T )
RF

)
≥ Rank (VRF ) ,

with strict inequality holding when Γ ̸= 0 or ∆ ̸= 0. The orthogonality
restriction imposed on Γ (∆) embeds weak-factor settings in which covari-
ance matrix VRF contains columns of zeros but the corresponding columns

of V
(T )
RF are nonzero and vanishing at a rate 1/Tα with α > 1/2 (1/

√
T ).

More generally, the orthogonality restriction imposed on Γ and ∆ also em-
beds nearly singular settings in which some columns of VRF are collinear,

but the corresponding columns of V
(T )
RF are only weakly collinear.

The next proposition establishes the asymptotic properties of tradable
factor risk premium estimator (18) in the weak factor setting, under the
general assumption of factor and excess return near-epoch dependence.11

Proposition 3.2. Let Assumptions 1 and 2 hold, Yt be near-epoch depen-
dent with finite fourth moments, and regularity conditions detailed in David-
son (1992) hold. Let further matrix Σ defined in Proposition 3.1 be positive
definite. It then follows:

√
T (λ̂i − λi) →d N

(
λ(∆),Σ− λ(∆)λ(∆)′

)
, (27)

where
λ(∆) := ∆′V −1

R µR . (28)

11This assumption, together with the assumption of finite fourth moments of random
vector Yt and regularity conditions detailed in Davidson (1992), is needed to invoke a
suitable central limit theorem for jointly near-epoch dependent random vector ((Yt −
E[Yt])

′, vec(YtY
′
t − V (T ))′)′.
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Proposition 3.2 shows that weak factors vanishing at rate 1/Tα with α >
1/2 do not affect the asymptotic distribution of sample tradable factor risk
premia.12 This property is remarkable, because weak factors giving rise
to rapidly vanishing covariance distortions do instead crucially affect the
asymptotic distribution of risk premium estimators based on two-step cross-
sectional regression approaches.

A distinct situation emerges with respect to weak factors associated with
slowly vanishing covariance distortions ∆/

√
T in Assumption 1. Indeed, a

comparison of asymptotic distributions (25) and (27) shows that the latter
distribution displays both a bias term λ(∆) and a smaller variance covari-
ance matrix because of component −λ(∆)λ(∆)′. Therefore, weak factors
associated with slowly vanishing covariance distortions generate a bias in
the asymptotic distribution of sample tradable risk premia, but they do not
affect the estimator’s mean square error. Importantly, these biases are con-
centrated in the marginal asymptotic distribution of estimated risk premia
of weak factors with slowly vanishing covariance distortions, because matrix
∆ in Assumption 1 is by construction nonzero only along these very same
components.

In summary, the asymptotic distribution of Proposition 3.2 shows that
sample tradable risk premia tend to estimate a spuriously non zero finite
sample risk premium exclusively for the weak factors with a slowly vanish-
ing rate. Therefore, in the next section we borrow from the properties of
sample tradable risk premia to build an associated Oracle estimator that
consistently eliminates these distortions.

3.3 Oracle tradable factor risk premium estimation with use-
less and weak factors

This section studies Oracle tradable risk premium estimators. Borrowing the
terminology from high dimensional statistics (see, e.g., Fan and Li, 2001), we
define an Oracle tradable risk premium estimator as an estimator satisfying
two key properties. First, it consistently selects in finite samples factors
that are not weak or useless. Second, it implies an efficient asymptotic
distribution for the estimated risk premia of the selected factors.

Thanks to the convenient asymptotic properties of sample tradable risk
premia, Oracle tradable risk premium estimators can be built with a simple

12This result directly follows from the fact that asymptotic distribution (27) is indepen-
dent of matrix Γ, which models in Assumption 1 the rapidly vanishing components of the
covariance distortions generated by weak factors.

14



approach. Denote by

ρ̂ := [ρ̂1, . . . , ρ̂K ] := Ĉor[Rt,F
′
t ] , (29)

the N ×K matrix of sample correlations between returns and factors. We
propose an Oracle tradable risk premium estimator built by means of a
convenient minimum distance correction of sample tradable risk premia, in
which estimated risk premia of factors having small sample correlations with
all asset returns are shrank using a suitable data-driven penalty.

Definition 2. Given a penalty parameter τT > 0, consider the penalized
estimator defined by:

λ̌i := (λ̌i
1, . . . , λ̌

i
K)′ := argmin

λ∈RK

{
1

2
∥λ̂i − λ∥22 + τT

K∑
k=1

|λk|
∥ρ̂k∥22

}
. (30)

Estimator (30) is defined by a penalized minimum Euclidean distance cor-
rection of sample tradable risk premia and belongs to the class of prox-
imal estimators studied in Quaini and Trojani (2022). The optimization
problem in equation (30) is solvable in closed-form and gives rise to the
soft-thresholding formula:

λ̌i
k = sign(λ̂i

k)max

{
|λ̂i

k| −
τT

∥ρ̂k∥22
, 0

}
; k = 1, . . .K . (31)

Therefore, estimator λ̌i implies a zero estimated risk premium for all factors
associated with a sample tradable risk premium λ̂i

k that is smaller in absolute
value than scaled penalty parameter τT /∥ρ̂k∥22.

We next show that an appropriate choice of tuning parameter τT in
equation (30) implies the Oracle property. To see this, let

S := {k ∈ {1, . . . ,K} : VRFk
̸= 0} , (32)

be the active set indexing components of factor vector Ft = (F1t, . . . , FKt)
′

that are neither useless nor weak in the sense of Assumption 2. Accordingly,
for any vector x ∈ RK we denote by xS the subvector consisting only of
components of x with index in S. Finally, the estimated active set implied
by estimator λ̌i is denoted by

Š := {k ∈ {1, . . . ,K} : λ̌i
k ̸= 0} . (33)

Using this notation, we characterize in the next proposition the asymptotic
distribution of estimator (30) and its Oracle property.

15



Proposition 3.3. Let the assumptions of Proposition 3.2 hold. Let further
the sequence of tuning parameter τT be such that τT

√
T → 0 and τTT → ∞

as T → ∞. It then follows, as T → ∞:

1. Asymptotic distribution:

√
T
(
λ̌i
S − λi

S
)
→d N (0,ΣS) , (34)

with

ΣS = lim
T→∞

1

T

T∑
t=1

T∑
s=1

E[hSth
′
Ss] , (35)

where

hSt := VFSRV
−1
R R̄t −VFSRV

−1
R R̄tR̄

′
tV

−1
R µR + F̄StR̄

′
tV

−1
R µR , (36)

and VFSR is the submatrix containing all rows of matrix VFR with
index in S.

2. Consistent variable selection:

P(Š = S) → 1 .

A direct consequence of Proposition 3.3 is that proximal tradable risk pre-
mium estimator (30) is an Oracle estimator. Indeed, Property 2 states that
the set of factors that are neither useless nor weak is correctly selected with
a probability converging to one as the sample size grows. Property 1 fur-
ther implies that the asymptotic distribution of the estimated risk premia of
factors that are neither useless nor weak is identical to the asymptotic distri-
bution of an Oracle sample tradable risk premium estimator which knows ex
ante which factors are useless or weak.13 In this way, our Oracle estimator
directly produces a valid inference for the tradable risk premia of factors
that are not weakly correlated with returns. Alternatively, it can be used to

13Such asymptotic distribution is reported in Proposition 3.1. The Oracle property of
our proposed proximal tradable risk premium estimator is a natural consequence of the
desirable properties of sample tradable risk premia. To ensure a consistent selection of
factors that are not useless or weak, we exploit the fact that the sample correlations with
returns of factors that are useless or weak are at most of order 1/

√
T in probability. Once

a consistent factor selection is ensured, the efficiency of the asymptotic distribution for
the estimated risk premia of the selected factors follows directly, because the marginal
asymptotic distributions of sample tradable risk premia are independent of the properties
of the other factors in an asset pricing model.
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perform a consistent preliminary screening of factors weakly correlated with
returns, in order to reliably apply in a second step standard cross-sectional
inference methodologies to the risk premia of all other factors in an asset
pricing model.

Remark 1. Notice that while according to Proposition 3.3 the shrinkage
of sample tradable risk premia implied by soft-thresholding formula (31) is
asymptotically negligible for factors that are neither useless nor weak, it may
give rise to a finite-sample bias. Such bias can be removed by computing
sample risk premia only for factors that have been selected in finite sam-
ples by our proximal estimator. By construction, under the assumptions of
Proposition 3.3 the resulting “relaxed” proximal estimator is asymptotically
equivalent to proximal estimator (30).

4 Monte Carlo simulation evidence

We study by Monte Carlo simulation the finite-sample distribution of sample
tradable risk premium estimator (18), Oracle estimator (30) and its relaxed
version.14 In addition, we investigate the finite-sample factor selection prop-
erties induced by Oracle estimator (30).

4.1 Benchmark estimation and inference approaches

We benchmark our methodology to other important approaches in the litera-
ture. First, we consider the misspecification-robust estimation and inference
approach in Kan et al. (2013). This approach relies on a factor risk premium
defined with equation (13) for a weighting matrix W = V −1

R . It gives rise
to the factor risk premium estimator:

λ̂ := λ̂(V̂ −1
R ) := (β̂′V̂ −1

R β̂)β̂V̂ −1
R µ̂R , (37)

which is implied by the sample version of equation (13). Second, we doc-
ument how our approach compares with respect to the penalized two-step
Fama-MacBeth estimation and inference approach introduced in Bryzgalova
(2015). This approach relies on a penalized factor risk premium estimator
defined by:

λ̌ := λ̌(V̂ −1
R ) := arg min

λ∈RK

{
(λ̂− λ)′β̂′V̂ −1

R β̂(λ̂− λ) + τT

K∑
k=1

|λk|
||β̂k||d1

}
, (38)

14Recall, that the relaxed Oracle estimator is obtained by computing sample tradable
risk premia only for those factors that have been first selected by the Oracle estimator.
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where τT > 0, d > 0 are tuning parameters and ||β̂k||1 denotes the l1−norm
of the k−column in the N ×K matrix β̂ of sample betas.

By definition, this estimator is given by a penalized weighted minimum
distance correction of misspecification-robust factor risk premium estimator
λ̂. Since in unidentified models weighting matrix Ŵ := β̂′V̂ −1

R β̂ does not
converge to a positive definite limit matrix, the penalty term in equation
(38) is chosen to ensure that estimator λ̌ gives rise asymptotically to a zero
risk premium for all useless and weak factors. As shown in Proposition 2 of
Bryzgalova (2015), estimator (38) is oracle in the sense that (i) it consistently
selects in finite samples factors that are neither weak nor useless, and (ii)
it induces for all other factor risk premia an asymptotic distribution as
efficient as the one of an oracle misspecification-robust factor risk premium
estimator which knows ex-ante the factors that are neither useless not weak.
As a consequence, estimator (38) offers a second obvious benchmark for the
finite-sample performance of our approach.15

4.2 Monte Carlo simulation setting

We simulate four linear asset pricing models with varying dimension and
factor properties:16

• Model 1 is a 1-factor model with no useless or weak factor;

• Model 2 (Model 3) is a 3-factor model with two useless (weak) factors
and one factor that is neither useless nor weak;

• Model 4 is a higher dimensional model with eleven useless factors, one
weak factor and three factors that are neither useless nor weak.

The two weak factors in Model 3 have covariances with returns that are
fastly and slowly vanishing at rate 1/T 3/4 and 1/

√
T , respectively, while the

single weak factor in Model 4 has slowly vanishing covariances at rate 1/
√
T .

15In our implementation of estimator (38) we use d = 4, consistently with the choice in
the simulation section of Bryzgalova (2015), and we define the adaptive penalty weights
based on sample betas. Results for different choices of tuning parameter d and penalty
weights – e.g., based on correlations or partial correlations of factors and returns – are
similar to the ones obtained below, and are available upon request.

16In Online Appendix 9.2.2, we further report results for the Monte Carlo simulation
settings considered in Gospodinov et al. (2014) of a 2-factor model, where the useless
factor has mean zero and unit variance, while the factor that is neither useless nor weak
has moments calibrated to the market factor.
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For each of the above models, we generate a correctly specified and a
misspecified version of the model. Returns on the test assets and factors are
drawn from a multivariate normal distribution Rt

Ft

 ∼ N

 µR

µF

 ,

 VR VRF

VFR VF

 .

Moments in this distribution are calibrated to match those of following set
of factors and test asset excess returns:

• The five Fama-French factors, momentum, the q-factors in Hou et al.
(2015), the intermediary factors of He et al. (2017), the betting-against-
beta factors in Frazzini and Pedersen (2014), and the real per capita
nondurable consumption growth;

• The 25 double-sorted portfolios constructed on size and book-to-market
and 17 industry portfolios.

Data for the moment calibration are obtained from the Kenneth French data
library and consist of monthly observations from January 1970 to October
2021 for the considered set of assets and factors, which gives rise to a panel
including 624 observations across time. Accordingly, in our Monte Carlo
simulation we produce 10′000 random samples consisting each of 624 time
series observations of factors and excess returns.

Regarding factors that are neither weak nor useless, in Model 1–3, the
single such factor is calibrated to the market factor. In Model 4, they are
calibrated to the three available factors implying the highest sum of squared
sample correlations with test asset returns. These are the size factor (RME),
the expected growth factor (REG) and the profitability factor (RROE).

Regarding factors that are weak or useless, their means and variances
are calibrated to the SMB and HML factors in Model 2–3, and to the twelve
factors implying the lowest sum of square sample correlations with test as-
set returns in Model 4. For these factors, means and marginal variances are
calibrated from the data, while the covariances between factors are set to
zero. The factor covariances with asset returns are set to zero when simu-
lating useless factors and appropriately scaled by 1/T 3/4 or by 1/

√
T when

simulating weak factors with fastly and slowly vanishing covariances with
returns.

Our simulations cover both correctly specified and misspecified models.
Following, e.g., Gospodinov et al. (2014), the misspecified version of each
model is simulated by setting the expected asset return vector µR equal
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to the sample asset returns means in the data. Instead, correctly specified
models are simulated by setting

µR = βSλ
KRS
S = βiλi .

Here, βS (λKRS
S ) is the matrix (vector) of factor betas (misspecification-

robust factor risk premia) for the subset of factors that are not useless or
weak.17 All these parameters act as population parameters in our simula-
tions, and are appropriately calibrated to the data. In Models 2–4, which
include useless or weak factors, we set λKRS

Sc = 0 for the factor risk premia
of factors that are weak or useless, as Kan et al. (2013) risk premia are not
identified in these models.

Finally, to select the tuning parameter τT of our proximal tradable risk
premium estimator in a purely data-driven way, we make use of a Gener-
alized Cross Validation (GCV; Wahba, 1990) scheme based on following
criterion:

GCV =

∥∥∥µ̂R − β̂i
Šλ̌

i
Š

∥∥∥2
2

(1− |Š|/T )2
,

where Š is the active set estimated by λ̌i, β̂i
Š := V̂RFŠ

(V̂FŠR
V̂ −1
R V̂RFŠ

)−1,

and |Š| is the cardinality of set Š, which is a proxy for a model’s number of
degrees of freedom.18

4.3 Finite sample bias-variance tradeoff and factor selection

We start by studying the finite sample bias-variance tradeoffs emerging for
the KRS factor risk premium estimator and for our sample, Oracle and Re-
laxed estimators of tradable factor risk premia. For each simulated model,
Figures 1–4 report the decomposition of the estimators’ MSE into its squared
bias and variance components.19 Overall we observe that, with the excep-
tion of Model 1 where the estimators’ MSE are almost identical, the KRS

17Recall from Proposition 2.1 that when the model is correctly specified, expected re-
turns are equivalently given by βiλi, where βi (λi) is the matrix (vector) of factor mim-
icking portfolios return betas (tradable factor risk premia).

18When comparing our Oracle estimator to the Pen-FM estimator of Bryzgalova (2015),
we further consider 5-fold Cross Validation (CV). Following, e.g., James et al. (2021), we
select the tuning parameters of the penalized estimators in our analysis according to the
”one-standard-error” rule: we select the most parsimonious model among the models with
a CV/GCV score that is not more than one standard error above the CV/GCV score of
the best model.

19The bias of each estimator is computed with respect to the associated population
factor risk premium definition.
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estimator’s MSE is considerably higher than the one of sample, Oracle and
relaxed estimators of tradable factor risk premia. This feature is a direct
consequence of the fact that the KRS risk premia of useless and weak fac-
tors are not estimated consistently, which gives rise to a substantially larger
estimator variance in the box plots of Figures 5–8.20 When further com-
paring our sample and Oracle estimators of tradable factor risk premia, the
latter estimator gives rise to some degree of bias for the risk premia of fac-
tors that are not weak nor useless. This feature is a natural consequence of
the shrinkage properties of this estimator. This shrinkage effect also implies
that the tradable risk premia of useless and weak factors are estimated with
a clearly lower variance, which results in a lower overall MSE with respect
to the MSE of sample tradable factor risk premia. Finally, the relaxed es-
timator successfully removes the finite-sample bias implied by the Oracle
estimator, while giving rise to a higher (lower) overall mean square error in
misspecified (correctly specified) models.

Given the problematic finite-sample properties of misspecification-robust
factor risk premium estimator (37) in weak or not identified models, we
next ask how much its Oracle version (38) improves on them. Figure 9 re-
ports the corresponding estimators’ MSE decompositions for Models 2 and
4. Overall, we observe that Oracle estimator (38) nicely improves on esti-
mator (37) in the low-dimensional Model 2, by providing comparable MSEs
as our Oracle estimator. In contrast, for the higher dimensional Model 4,
it still implies large MSEs, which exhibit a large bias component under
both cross-validation schemes used. On the other hand, our Oracle esti-
mator gives rise to clearly lower MSEs and virtually no bias when using
5-fold cross-validation. This evidence indicates that estimating precisely
misspecification-robust factor risk premia in weakly or not identified asset
pricing models may be a challenge also for Oracle-type estimators of these
risk premia.

Figure 10 summarizes the finite sample selection properties of our Ora-
cle estimator of tradable factor risk premia, based on a Generalized cross-
validation scheme. To this end, we report the Monte Carlo simulation fre-
quency with which the active set estimated by our Oracle estimator equals
or contains, respectively, the unknown active subset of factors that are nei-

20For brevity, when reporting these results for Models 2–4 in the main text, we focus
on correctly specified versions of the models. Similarly, for Model 4 we do not report
the evidence for estimated tradable weak factor risk premia. The results for misspecified
versions of the models and for the estimated weak factor risk premia in Model 4 are
analogous to those in the main text for correctly specified models and for useless factors,
respectively. Therefore, they are collected in Online Appendix 9.2.
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ther useless nor weak. Overall, we find that our methodology produces a
quite reasonable factor selection. Indeed, we find that the finite sample fac-
tor selection is virtually exact in Model 1. In Model 2–3 it is correct in more
than 98% (around 75-80%) of the cases in correctly specified (misspecified)
models, and it virtually always contains the unknown active subset of factors
that are neither useless nor weak. Even in the large dimensional Model 4,
a correct factor selection is obtained in 95% (74%) of the cases for correctly
specified (misspecified) models, while the unknown active subset of factors
that are neither useless nor weak is contained in the estimated active set in
95% of the cases

Figure 11 sets the above evidence in relation to the finite sample factor
selection properties of Oracle estimator (38) of misspecification-robust factor
risk premia. Coherently with the above MSE results, we find that for both
cross-validation schemes used this estimator produces a satisfactory factor
selection in low-dimensional Model 2. In contrast, it gives rise often to
incorrect factor selections in higher dimensional Model 4. On the other hand,
we find that 5-fold cross-validation further improves the factor selection
properties of our Oracle estimator under Generalized cross-validation, by
providing a virtually perfect selection for all models considered.

In summary, we conclude that a reliable estimation and factor selection
based on misspecification-robust factor risk premia may be hardly achievable
in weak or not identified models, even when using Oracle-type estimators of
these risk premia. Nonetheless, a trustworthy Oracle estimation and factor
selection can still be produced based on tradable factor risk premia.

4.4 Finite-sample inference

We next document the finite-sample inference properties implied by KRS
factor risk premium estimators and by the sample, Oracle and Relaxed es-
timators of tradable factor risk premia. For the estimators of tradable risk
premia, we obtain a feasible finite sample inference based on the asymptotic
standard error formulas implied by Propositions 3.1 and 3.3. For the KRS
estimator, we rely on the misspecification-robust standard error formula im-
plied by Proposition 2 of the internex appendix of Kan et al. (2013).

Figure 12 reports coverage probabilities for the event that a candidate
risk premium parameter λ∗ in a neighborhoud of true population risk pre-
mium λ0 is contained in a finite sample 95% confidence interval implied by
the different methods. Therefore, when λ∗ = λ0, one minus this probabil-
ity is the finite sample size of a test for testing null hypothesis λ = λ0.
Conversely, when λ∗ ̸= λ0, one minus this probability gives the finite sam-
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ple power of a test for testing null hypothesis λ = λ∗ against alternative
hypothesis λ = λ0. Since we obtain a similar and coherent evidence for
all simulated models, we focus for brevity in the sequel on the evidence
produced for the correctly specified versions of Model 4.

A first general pattern is that, relative to misspecification-robust risk
premia, sample tradable risk premium estimators imply an improved ability
to reject the hypothesis of a non-zero risk premium for weak and useless
factors. This feature is reflected in the coverage probabilities in the lower
panels of Figure 12. Indeed, while the size behavior of both tests under the
null of a zero risk premium for the useless factor gives rise to a conservative
empirical size lower than the nominal one, the null hypothesis of a non zero
tradable risk premium is correctly rejected with a rapidly increasing proba-
bility using sample tradable risk premia, as the distance between the null of
a nonzero risk premium and the alternative of a zero risk premium increases.
In contrast, the same null hypothesis for KRS misspecification-robust risk
premia is rarely rejected, even for quite large absolute risk premia under
the null. The well-known conservative behavior of the inference implied by
KRS misspecification-robust risk premia for testing the null of a zero risk
premium for the useless factors, is the foundation of the sequential testing
procedure proposed in Gospodinov et al. (2014) for consistently eliminating
these factors from an asset pricing model. In our methodology, the consis-
tent elimination of all useless and weak factors is performed jointly by our
Oracle estimator of tradable factor risk premia. This feature is directly visi-
ble in the lower panels of Figure 12, by the fact that such estimator produces
in virtually almost all simulations a zero estimated tradable risk premium.

The evidence in the upper panels of Figure 12 suggests that the infer-
ence regarding the tradable risk premia of factors that are not weak nor
useless is unaffected by the presence of weak or useless factors in an asset
pricing model. This feature holds exactly asymptotically for our estima-
tors, as shown in Propositions 3.1 and 3.3. In contrast, Gospodinov et al.
(2014) show that the same feature does not apply to estimators of KRS
misspecification-robust risk premia.21 Indeed, as displayed in the upper pan-
els of Figure 12, the finite sample inference implied by sample tradeable risk
premia is well-behaved and sharper than the one implied by misspecification-
robust risk premia, in the sense that their coverage probabilities are decaying
faster as we move away from the corresponding population risk premium.
The coverage probabilities of our Oracle estimator present a similar sharp

21This is the reason why they propose in the first place a sequential testing procedure
for consistently eliminating the useless factors from an asset pricing model.
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behavior, but they are shifted with respect to the population tradable risk
premium due to the finite sample bias induced by the shrinkage effect. As
shown in the figure, this finite sample bias can be reduced by means of the
Relaxed estimator.

5 Empirical analysis

We exploit our factor selection and inference methodology based on the
Oracle proximal estimator of Definition 2, in order to explore and analyze
a wide range of empirical asset pricing models generated from the factor
zoo. With this analysis, we ideally aim to first isolate a relevant subset
of low-dimensional, well-identified asset pricing models. Second, we aim
to understand whether a robust subset of factors exists, which consistently
appears in such subset of well-identified asset pricing models. Finally, if
such a subset of factors exists, we can try to study which of these factors
are priced.

5.1 Empirical setting

Our analysis is based on a universe of potential factors given by the 51
tradable and nontradable factors compiled in Bryzgalova et al. (2023).22

As test assets, we consider the 25 portfolios sorted on size and book-to-
market and the 17 industry portfolios. Section 9.3 of the Online Appendix
reports results for test assets including the 25 portfolios sorted on size and
book-to-market and the 25 portfolios sorted on operating profitability and
investment.

All data on test assets is sourced from the Kenneth French data library.
Our dataset consists of monthly observations of test asset excess returns
and risk factors collected from October 1973 to December 2016.23 Using
this dataset, we build randomized families of factor models having factor
dimension growing from 1 to 10. To these families of models, we apply
our factor selection methodology based on tradable factor risk premia. In-
tuitively, models of higher dimension are more likely to be weakly or not
identified. In this respect, a main goal of our analysis is to understand

22We are grateful to the authors for making their data publicly accessible. Detailed
descriptions of this factor universe can be found in their Table B.1 and Table IA.XIII
from their Online Appendix.

23Since tradable risk premia satisfy the identity λi = V
1/2
F Cor[F ,R]V

−1/2
R µR, we scale

all factors so that they have a unit sample variance, in order not to spuriously select factors
with a large variance.
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whether our methodology is effective in mitigating these identification prob-
lems, exclusively by consistently pruning the useless and the weak factors, in
a way that may ideally give rise to a selected subset of economically relevant
and well-identified lower dimensional models.

In order to verify the identification properties of the various candidate
models in our empirical study, we make use of the rank test proposed in Chen
and Fang (2019).24 We perform Chen and Fang (2019) test both before and
after our consistent selection procedure for factors that are neither weak nor
useless is applied. Precisely, let β = VRFV

−1
F be the N×K matrix of factor

betas of a set of candidate factors, before our selection procedure has been
applied. With Chen and Fang (2019) test we first test the null hypothesis:

H0 : Rank(β) ≤ K − 1 , (39)

against the alternative hypothesis Rank(β) = K, using the corresponding
matrix β̂ = V̂RF V̂

−1
F of estimated factor betas. Let further βS = VRFSV

−1
FS

be the matrix of factor betas of factors that are neither useless nor weak.
We then test the null hypothesis

H0S : Rank(βS) ≤ |S| − 1 , (40)

against the alternative hypothesis Rank(βS) = |S|, using the estimated
cardinality |Ŝ| of active set S and the corresponding matrix β̂Ŝ = V̂RFŜ

V̂ −1
FŜ

of estimated factor betas after the factor selection has been performed.
By comparing the rank test results before and after performing the fac-

tor selection, we can finally analyze whether our methodology is effective
in mitigating potential identification problems, exclusively by pruning the
useless and the weak factors. Moreover, by inspecting the distribution of
selected factors across randomized models, we can study whether a robust
subset of economically relevant, well-identified low dimensional asset pricing
models appears. Finally, we can study the pricing properties of asset pricing
factors appearing in such well-identified low dimensional models.

5.2 Identification evidence pre- and post-factor screening

We first quantify the degree to which our consistent factor selection method-
ology can help improve the identification of a candidate asset pricing model.

24This test first employs the iterative Kleibergen and Paap (2006) rank test procedure to
compute a first-step rank estimate. In a second step, it implements a bootstrap procedure
that allows to directly test the null hypothesis of a reduced column rank in the matrix of
factor betas of a candidate asset pricing model.
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Intuitively, if a model’s weak or no identification is exclusively due to the
existence of some useless or weak factors, then our methodology is able
to consistently select an associated set of well-identified submodels, each
including exclusively factors that are neither useless nor weak. In such a
situation, the rejection frequency of the null of no identification by Chen
and Fang (2019) test should be substantially larger after applying our fac-
tor selection procedure over randomized factor models from the factor zoo.
Moreover, after performing the factor selection, a potential identification
problem should depend to a less extent on the initial dimension of an asset
pricing model.

Figure 13 reports rejection frequencies of the null of no identification
by Chen and Fang (2019) test, before and after applying our factor selec-
tion methodology, for different randomization procedures over factor models
of dimension between 5 and 10 from the factor zoo.25 Each null rejection
is based on asymptotic critical values for a nominal size α = 0.05. Note
that this analysis is not aimed to directly identify a subset of well-identified
models from an initial larger set of models in a multiple hypothesis testing
problem, but rather to quantify how often a test of identification applied to
a randomly selected model would indicate an identification problem. There-
fore, we do not introduce a correction for multiple testing at this stage,
even though such a correction could be in principle developed using existing
methodologies in the literature.

The upper panels of Figure 13 show that the pre-screening identifica-
tion frequency decreases rapidly in the number of candidate factors of an
asset pricing model. Moreover, this frequency is lower for the testing setting
based on the lower dimensional set of test assets. For instance, identifica-
tion frequencies decrease from about 0.95 (0.99) for single factor models,
to about 0.05 for eight, nine and ten (ten) factor models, when test assets
comprise the 25 size/book-to-maket (25 size/book-to-maket and the 17 in-
dustry) portfolios. This evidence is partly expected, as the probability of
observing a reduced column rank in the matrix of factor betas of randomly
selected models may be naturally higher for larger dimensional models and
for testing frameworks based on less test assets. However, it crucially indi-
cates that the identification problem may appear quite frequently already
across randomly selected low dimensional models including no more than,
e.g., five factors.

A clearly distinct picture emerges for the post-screening identification
frequencies, which are uniformly higher than the pre-screening identifica-

25Results for lower dimensions are reported in the supplemental appendix.
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tion frequency, in many cases by a lare extent. For instance, the post-
screening identification frequency decrease from about 0.95 (0.99) for single
factor models to about 0.65 (0.8) for ten factor models, when test assets com-
prise the 25 size/book-to-maket (25 size/book-to-maket and the 17 industry)
portfolios. This evidence suggests that our factor screening methodology is
indeed effective in selecting factors that are neither useless nor weak. More-
over, it indicates that after the consistent selection of these factors the weak
or no identification problem emerges much less frequently across randomly
selected models.

The lower panels of Figure 13 further consider model randomizations
that always include the market factor in the initial model. Also in this case,
the pre-screening identification frequencies feature a dramatic degradation
as the asset pricing model size increases. In contrast, all post-screening
identification frequencies are always very large and above 0.9 (0.95) even
for ten factor models, when test assets comprise the 25 size/book-to-maket
(25 size/book-to-maket and the 17 industry) portfolios. This additional
evidence further confirms that our screening methodology is quite successful
in selecting factors that are neither useless nor weak and thereby largely
improving the identification properties of empirical asset pricing models.

5.3 Pre- and post-screening factor space dimension

While the post-screening dimension of an asset pricing model is by con-
struction not larger than the pre-screening dimension, the different pre- and
post-screening identification properties documented above have to be related
to strictly lower model dimensions after screening. This feature may imply
that the typical dimension of an identified asset pricing models from the
factor zoo is relatively low. To understand this issue properly, we study in
Figure 14 the distribution of post-screening factor space dimensions emerg-
ing across randomized asset pricing models.

The upper panels of Figure 14 show that, as expected, the post-screening
factor space dimension increases with the initial dimension of an asset pric-
ing model. More importantly, regardless of the pre-screening dimension,
lower post-selection factor space dimensions occur with higher frequencies
than higher dimensions. For instance, for settings with five initial factors,
we find that models with at most one, at most two, and more than four
selected factor(s) occur around 30% (60%), 50% (73%) and 30% (16%) of
the cases, respectively, when the test assets comprise the the 25 size/book-
to-market (the 25 size/book-to-market and the 17 industry) portfolios. The
post-screening factor dimension further shrinks uniformly for model ran-
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domizations that always include the market factor. For instance, for set-
tings with five initial factors, we find that models with at most one, at most
two, and more than four selected factor(s) occur 33% (30%), 77% (73%)
and 6% (8%) of the cases, respectively, when the test assets comprise the
25 size/book-to-market portfolios (the 25 size/book-to-market and the 17
industry portfolios).26

Overall, we conclude that the most likely factor space dimensions of iden-
tified asset pricing models from the factor zoo are relatively low, and even
more so for models including the market factor. As a consequence, standard
tests of asset pricing models based on two-step cross-sectional regression
methodologies are likely to be harmed by a weak identification problem
already when testing low-dimensional models with, e.g., between five and
seven factors.

5.4 Oracle factor selection and factor types

The previous evidence of a low post-screening factor space dimension sug-
gests that the majority of identified asset pricing models from the factor zoo
is relatively low-dimensional. Therefore, we next ask whether we can detect
asset pricing factors that most consistently appear in the subset of identified
low-dimensional models.

Figure 15 reports factor marginal selection frequencies, with which ev-
ery individual risk factor is selected from a randomized initial model after
screening, as a function of the model’s dimension. The upper panels of
Figure 15 show that factors such as the market, the SMB, the ICR in He
et al. (2017), and the market factor with a hedged unpriced component in
Daniel et al. (2020) (MKT star) are those with the highest and very consis-
tent marginal selection frequencies across randomized models and test asset
choices. For instance, when using the 25 size/book-to-market and 17 in-
dustry portfolios, the marginal selection frequencies of these factors when
randomizing 10-factor models are all 100%, except those for factor SMB
which has a selection frequency of 93.4%. Analogously, when using the 25
size/book-to-market portfolios, these selection frequencies are 99.4% and
92.9% for SMB and MKT star, respectively, and 100% for the other factors.
Overall, we conclude that this set of factors is unlikely to generate an iden-
tification problem when included in an asset pricing model from the factor
zoo.

26Analogous evidence is obtained in Section 9.3 of the Online Appendix for test assets
including the 25 size/book-to-market portfolios and 25 portfolios sorted on operating
profitability and investment.
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A second tier of factors display high, but less consistent, marginal selec-
tion frequency across randomized models and choices of test assets. These
factors may be crowd out in some identified models by other factors more
strongly co-moving with test asset returns. When using the 25 size/book-
to-market and 17 industry portfolios as test assets, there are just a few of
these factors, namely the long-term reversal factor in Jegadeesh and Tit-
man (2001) (LTRev), the liquidity factor in Pástor and Stambaugh (2003)
(LIQ NT), nondurable consumption (NONDUR) and the systematic skewe-
ness factor in Langlois (2020) (SKEW). When using just the 25 size/book-to-
market portfolios as test assets, additional such factors are the SMB factor
with a hedged unpriced component in Daniel et al. (2020) (SMB star), the
long-term behavioral factor in Daniel et al. (2020) (BEH FIN), the prof-
itability factor measured by gross profits-to-assets in Novy-Marx (2013)
(GR PROF), the mispricing factor in Stambaugh and Yuan (2017) (MGMT),
and the distress risk factor in Campbell et al. (2008) (DISSTR).

An even sharper evidence arises in the lower panels of Figure 15, for
model randomizations that always include the market factor. Here, fac-
tors including SMB, ICR, MKT star and MGMT are those having by far
the highest and most consistent marginal selection frequencies, with, e.g.,
selection frequencies above 97% when randomizing ten-factor asset pricing
models. Second tier factors with high, but less consistent, marginal selection
frequencies include BEH FIN, the composite equity issuance in Daniel and
Titman (2006) (COMP ISSUE) and the conservative minus aggressive in
Fama and French (2015) (CMA). For randomizations of ten-factor models,
these factors have marginal selection frequencies of 89.1% (85.4%), 69.3%
(89.2%) and 58% (73.4%), respectively, when using the 25 size/book-to-
market (25 size/book-to-market and 17 industry) portfolios as test assets.
A similar, and to some extent stronger, evidence is obtained in Section 9
of the Online Appendix for test assets including the 25 size/book-to-market
portfolios and 25 portfolios sorted on operating profitability and investment.
Here, all these factors have marginal selection frequencies above 95% when
randomizing ten-factor asset pricing models.

Overall, we conclude that models including robust asset pricing factors
MKT, SMB, ICR, MKT star, and MGMT, together with some of the factors
BEH FIN, COMP ISSUE and CMA, are natural well-identified benchmarks
for explaining the cross-section of test assets’ expected returns.
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5.5 Tradable factor risk premia

Given the above evidence regarding the set of well-identified candidate mod-
els and corresponding factors for explaining the cross-section of asset returns,
we next expore the associated tradable factor risk premia. Exploiting the
properties of our Oracle estimator in Definition 2, we can test whether a
factor gives rise to a tradeable risk premium component. Indeed, recall that
conditionally on a factor being identified as neither useless nor weak by our
Oracle factor selection, we can still make use of the marginal asymptotic
distributions from Proposition 3.3 to test the null hypothesis of a zero in-
dividual tradeable risk premium. Since these asymptotic distributions are
independent of the dimension of the factor space in an asset pricing model,
this inference is also invariant across randomized models.

Figure 16 reports the resulting inference, with estimated tradable factor
risk premia and their confidence intervals ranked according to a factor’s se-
lection frequency. In the set of robust asset pricing factors MKT, SMB, ICR,
MKT star, and MGM with highest selection frequencies, we find that they
all exhibit a statistically significant tradable risk premium at the 10% signifi-
cance level, for both sets of test assets. The tradeable risk premium of factor
CMA is as well significant for both sets of test assets, while the risk pre-
mium of factor COMP ISSUE is significant for the 25 size/book-to-market
and 17 industry portfolios. In contrast, factor BEH FIN, is (marginally)
insignificant at the 10% significance level for both sets of test assets. An
analogous, and to some extent stronger, evidence is obtained in Section 9
of the Online Appendix for test assets including the 25 size/book-to-market
portfolios and 25 portfolios sorted on operating profitability and investment.
Here, all tradeable risk premia of the above factors are significant at the 10%
level and each of these factors is selected in more than 97% of randomized
ten-factor models.

Overall, this evidence points to a robust subset of economically relevant
and well-identified low dimensional models from the factor zoo, which can be
built out of selected factors giving rise to a nonzero tradable risk premium.

5.6 Misspecification-robust factor risk premia

Given the above evidence regarding the set of low-dimensional well-identified
candidate models, we next explore the properties of misspecification-robust
factor risk premia estimated by two-step cross-sectional regression methods.
In doing so, we build on the fact that our Oracle factor selection ensures a
good identification of asset pricing models after screening.
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Recall that a factor has different misspecification-robust and tradable
risk premia only when it is partly unspanned by test asset returns. Further-
more, the latter risk premium depends in general on the factor composition
of a model. Therefore, misspecification-robust risk premia in general imply
different factor risk premium estimators across asset pricing models. Fig-
ures 17–18 summarize the composite post screening effects of unspanned
factor risks for such factor risk premium estimates, across well-identified
and potentially misspecified models from the factor zoo.

We find that while factors MKT, SMB, MGMT, CMA and COMP ISSUE
imply a relatively robust statistical significance of estimated risk premia,
factors like ICR, MKT star, and to some extent BEH FIN, give rise to a
uniformly weak significance. In addition, factors such as ICR, MKT star or
CMA give rise to a large variability of estimated risk premia across models,
which is hardly interpretable economically. This evidence emerges despite
the above findings that all these factors consistently appear in the subset of
well-identified asset pricing models with a statistically significant tradable
risk premium.

Overall, we conclude that the misspecification of identifiable models from
the factor zoo generates a challenge for interpreting notions of risk premia
allocating a non zero price to unspanned factor risks. In contrast, tradable
factor risk premia are economically-founded in general and can be studied
empirically based on our Oracle inference framework.

6 Conclusions

This paper addresses the challenge of testing misspecified and weakly (or
not) identified asset pricing models. Existing research has emphasized the
limitations of two-step testing procedures for factor risk premia defined by
the negative factor covariance with a Stochastic Discount Factor (SDF) pro-
jection on the factor space. In such settings, misspecification introduces
non-zero pricing errors that affect the asymptotic distribution of estimated
factor risk premia, while weak (or no) identification hinders the unique iden-
tification of the candidate SDF projection, and, consequently, the associated
factor risk premia. In contrast, our inference approach relies on the well-
established concept of a tradable factor risk premium, which is defined by
the negative factor covariance with the SDF projection on the asset return
space. We show that tradable factor risk premia give rise to a robust and
well-defined framework for Oracle inference in potentially misspecified or
weakly identified asset pricing models.
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Our methodology consistently identifies the set of factors that are weakly
correlated with returns and simultaneously enables a reliable and efficient
inference on the risk premia of all other factors in an asset pricing model.
We achieve this by leveraging the properties of a simple sample version
of tradeable factor risk premia, which exhibits an asymptotically Gaussian
distributions even in models including factors weakly correlated with re-
turns. Since this distribution may imply some asymptotic biases only for
the estimated risk premia of weakly correlated factors, we develop an Oracle
estimator of tradeable factor risk premia that overcomes these distortions.

Our Oracle estimator is derived through a closed-form penalized mini-
mum distance correction of sample tradable risk premia. It improves upon
existing estimators by producing a consistent identification of the set of
weak factors and simultaneously generating an efficient asymptotic distri-
bution for the estimated risk premia of other factors. By design, our Oracle
estimator directly provides a valid inference for the tradable risk premia of
factors that are not weakly correlated with returns. Alternatively, it can be
used for a consistent preliminary screening of potentially weakly correlated
factors, which enhances the identification of a model and hence facilitates the
reliable application of efficient two-step cross-sectional tests of asset pricing
models in a subsequent step of the analysis.

We make use of our Oracle estimation and inference methodology for
tradable factor risk premia, in order to build a coherent and easily applicable
framework for studying the asset pricing properties of a broad class of factor
models from the factor zoo. For this purpose, we first form randomized
families of candidate models of largest factor space dimension, in order to
single out a set of well-identified submodels consisting exclusively of factors
that are neither useless nor weak. Based on this set, we pin down the
properties of the resulting distribution of factors and factor risk premia
across well-identified models, for various benchmark choices of test assets in
the literature.

Our empirical analysis reveals that the proposed factor selection pro-
cedure greatly enhances model identification. This allows us to detect a
robust subset of economically relevant and well-identified models that are
all built out of factors with a nonzero tradable risk premium. Such fac-
tors include market, size, intermediaries capital ratio, market with a hedged
unpriced component, a mispricing factor, a long-term behavioral factor, a
liquidity factor, a conservative minus aggressive factor and a composite eq-
uity issuance factor. At the same time, we find that the relatively low factor
space dimension of well-identified models is associated with some degree of
misspecification. This feature harms the interpretation of other established
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notions of a factor risk premium in the literature, which may allocate a non
zero price to factor risks that are not tradable.
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7 Simulations: figures
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Figure 1: Estimators’ MSE decomposition, Model 1: the figure
presents the MSE bias-variance decomposition of KRS, tradable, Oracle
and Relaxed factor risk premia estimators in simulation Model 1, for both
correctly specified (left panel) and misspecified (right panel) version.
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Figure 2: Estimators’ MSE decomposition, Model 2: the figure
presents the MSE bias-variance decomposition of KRS (left panels), trad-
able (in both left and right panels), Oracle and Relaxed (right panels) factor
risk premia estimators in simulation Model 2, for both correctly specified
(upper panels) and misspecified (lower panel) version.
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Figure 3: Estimators’ MSE decomposition, Model 3: the figure
presents the MSE bias-variance decomposition of KRS (left panels), trad-
able (in both left and right panels), Oracle and Relaxed (right panels) factor
risk premia estimators in simulation Model 3, for both correctly specified
(upper panels) and misspecified (lower panels) version.
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Figure 4: Estimators’ MSE decomposition, Model 4: the figure
presents the MSE bias-variance decomposition of KRS (left panels), trad-
able (in both left and right panels), Oracle and Relaxed (right panels) factor
risk premia estimators in simulation Model 4, for both correctly specified
(upper panels) and misspecified (lower panels) version.
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Figure 5: Estimators’ simulated distribution, Model 1: the figure
presents the simulated distribution of KRS, tradable, Oracle and Relaxed
factor risk premia estimators of the strong factor of simulation Model 1, for
both correctly specified (left panel) and misspecified (right panel) version.
The population tradable and KRS factor risk premia are represented by the
horizontal dashed black and red lines, respectively.
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Figure 6: Estimators’ simulated distribution, Model 2 (correctly
specified): the figure presents the marginal simulated distributions of KRS
(left panels), tradable (left and right panels), Oracle and Relaxed (right
panels) factor risk premia estimators of the strong (upper panel) and one
of the two useless (lower panel) factors of the correctly specified version
of simulation Model 2. We omit the figure of the second useless factor
as it is qualitatively identical to the one of the first useless factor. The
population tradable and KRS factor risk premia are represented by the
horizontal dashed black and red lines, respectively.
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Figure 7: Estimators’ simulated distribution, Model 3 (correctly
specified): the figure presents the marginal simulated distributions of KRS
(left panels), tradable (left and right panels), Oracle and Relaxed (right
panels) factor risk premia estimators of the strong (upper panels)and the
1/
√
T−weak (lower panels) factors of the correctly specified version of sim-

ulation Model 3. We omit the figure of the 1/T 3/4−weak factor as it is
qualitatively identical to the one of the 1/

√
T−weak factor. The popula-

tion tradable and KRS factor risk premia are represented by the horizontal
dashed black and red lines, respectively.
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Figure 8: Estimators’ simulated distribution, Model 4 (correctly
specified): the figure presents the marginal simulated distributions of KRS
(left panels), tradable (left and right panels), Oracle and Relaxed (right
panels) factor risk premia estimators of the first strong (upper panels), the
third strong (central panels) and the first useless (lower panels) factors of
the correctly specified version of simulation Model 4. We omit the figure
of the other useless factors and of the weak factor as they are qualitatively
identical to the one of the first useless factor. The population tradable and
KRS factor risk premia are represented by the horizontal dashed black and
red lines, respectively.
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Figure 9: Estimators’ MSE decomposition, Models 2 and 4: MSE
bias-variance decomposition of the Pen-FM (Bryzgalova (2015)) and our
Oracle factor risk premia estimators, for both correctly specified (left panel)
and misspecified (right panel) versions of simulation Models 2 (upper panels)
and 4 (lower panels). Pen and Oracle (Pen-CV and Oracle-CV) are tuned
using Generalized Cross Validation (5-fold Cross Validation).
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Figure 10: Oracle factor risk premia selection properties, Models
1–4: the figure presents the ”exact” and ”contained” variable selection prop-
erties of our Oracle factor risk premia estimator for both correctly specified
(left panel) and misspecified (right panel) versions of simulation Models 1–
4. The ”exact” (”contained”) variable selection property is computed as
the frequency over the simulation runs that the active set of the population
tradable factor risk premia coefficient equals (is contained in) the estimated
active set of our Oracle risk premia estimator.
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Figure 11: Factor risk premia selection comparison, Models 2 and
4: the figure presents the ”exact” and ”contained” variable selection prop-
erties of the Pen-FM (Bryzgalova (2015)) and our Oracle factor risk premia
estimators, for both correctly specified (left panel) and misspecified (right
panel) versions of simulation Models 2 (upper panels) and 4 (lower panels).
The ”exact” (”contained”) variable selection property is computed as the
fraction over the simulation runs that the active set of the KRS (tradable)
population factor risk premia coefficient equals (is contained in) the esti-
mated active set of the Pen-FM (our Oracle) estimator. Pen and Oracle
(Pen-CV and Oracle-CV) are tuned using Generalized Cross Validation (5-
fold Cross Validation).
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Figure 12: Inclusion frequencies of estimators’ 95% confidence inter-
vals, Model 4 (correctly specified): the figure presents the frequencies
with which various values of factor’s j risk premium λ∗

j around the popu-

lation coefficient λ0
j are contained in the corresponding KRS (red dashed

line), tradable (green dashed-dotted line), Oracle (solid blue line) and Re-
laxed (dashed-dotted purple line) estimators’ 95% confidence interval across
the simulation runs, for the first strong factor (upper left panel, j = 1),
the second strong factor (upper right panel, j = 2), the 1/

√
T−weak fac-

tor (lower left panel, j = 4) and the first useless factor (lower right panel,
j = 5) of the correctly specified version of simulation Model 4. To facilitate
the comparison, we display these frequences as a function of the deviation
from the estimators’ corresponding population risk premia coefficient λ0

j ,
which is the population KRS risk premia coefficient for the KRS estimator,
and the population tradable risk premia coefficient for the tradable, Oracle
and Relaxed estimators. The horizontal dashed black line represents the
nominal level of the confidence intervals, namely 95%.
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8 Empirics: figures
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Figure 13: Model identification frequencies: Frequency of null hypoth-
esis (39) rejections under a significance level α = 0.05 by the Chen and Fang
(2019) test, across randomized factor models including 5–10 initial factors.
The red (blue) bars indicate model identification frequencies before (after)
having applied our Oracle factor selection. The upper (lower) panels report
the model identification frequencies for selections with no (the market as)
ubiquitous factor across models. The left (right) panels report the results
for test assets comprising the 25 size/book-to-market (the 25 size/book-to-
market and the 17 industry) portfolios. For models having 1 (2) randomized
factors, we consider all 52 (1326) possible model combinations. For models
including more than 2 randomized factors, we consider 10’000 random factor
combinations.
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Figure 14: Post-selection model size: Frequency of post-selection model
dimensions, i.e., number of factors selected by our Oracle factor selection,
across randomized factor models including 5–10 initial factors. The red
(blue) bars indicate model identification frequencies before (after) having
applied our Oracle proximal factor selection. The upper (lower) panels re-
port the model identification frequencies for selections with no (the market
as) ubiquitous factor across models. The left (right) panels report the results
for test assets comprising the 25 size/book-to-market (the 25 size/book-to-
market and the 17 industry) portfolios.

48



MKT
SMB
HML

RMW
CMA
UMD

STRev
LTRev

IA
ROE

LIQ_NT
LIQ_TR
MGMT
PERF
ACCR

DISSTR
ASS_Growth

COMP_ISSUE
GR_PROF

INV_IN_ASS
NetOA

O_SCORE
ROA

STOCK_ISS
ICR

BAB
HML_DEVIL

QMJ
FIN_UNC

REAL_UNC
MACRO_UNC

TERM
DEFAULT

DIV
UNRATE

PE
BW_ISENT

HJTZ_ISENT
BEH_PEAD

BEH_FIN
MKT_star
SMB_star
HML_star

RMW_star
CMA_star

SKEW
NONDUR

SERV
IPGrowth

Oil
DeltaSLOPE

Useless

5 6 7 8 9 10
# factors

0.25
0.50
0.75
1.00

Frequency

Selected  factors

MKT
SMB
HML

RMW
CMA
UMD

STRev
LTRev

IA
ROE

LIQ_NT
LIQ_TR
MGMT
PERF
ACCR

DISSTR
ASS_Growth

COMP_ISSUE
GR_PROF

INV_IN_ASS
NetOA

O_SCORE
ROA

STOCK_ISS
ICR

BAB
HML_DEVIL

QMJ
FIN_UNC

REAL_UNC
MACRO_UNC

TERM
DEFAULT

DIV
UNRATE

PE
BW_ISENT

HJTZ_ISENT
BEH_PEAD

BEH_FIN
MKT_star
SMB_star
HML_star

RMW_star
CMA_star

SKEW
NONDUR

SERV
IPGrowth

Oil
DeltaSLOPE

Useless

5 6 7 8 9 10
# factors

0.25
0.50
0.75
1.00

Frequency

Selected  factors

MKT
SMB
HML

RMW
CMA
UMD

STRev
LTRev

IA
ROE

LIQ_NT
LIQ_TR
MGMT
PERF
ACCR

DISSTR
ASS_Growth

COMP_ISSUE
GR_PROF

INV_IN_ASS
NetOA

O_SCORE
ROA

STOCK_ISS
ICR

BAB
HML_DEVIL

QMJ
FIN_UNC

REAL_UNC
MACRO_UNC

TERM
DEFAULT

DIV
UNRATE

PE
BW_ISENT

HJTZ_ISENT
BEH_PEAD

BEH_FIN
MKT_star
SMB_star
HML_star

RMW_star
CMA_star

SKEW
NONDUR

SERV
IPGrowth

Oil
DeltaSLOPE

Useless

5 6 7 8 9 10
# factors

0.00
0.25
0.50
0.75
1.00

Frequency

Selected  factors

MKT
SMB
HML

RMW
CMA
UMD

STRev
LTRev

IA
ROE

LIQ_NT
LIQ_TR
MGMT
PERF
ACCR

DISSTR
ASS_Growth

COMP_ISSUE
GR_PROF

INV_IN_ASS
NetOA

O_SCORE
ROA

STOCK_ISS
ICR

BAB
HML_DEVIL

QMJ
FIN_UNC

REAL_UNC
MACRO_UNC

TERM
DEFAULT

DIV
UNRATE

PE
BW_ISENT

HJTZ_ISENT
BEH_PEAD

BEH_FIN
MKT_star
SMB_star
HML_star

RMW_star
CMA_star

SKEW
NONDUR

SERV
IPGrowth

Oil
DeltaSLOPE

Useless

5 6 7 8 9 10
# factors

0.00
0.25
0.50
0.75
1.00

Frequency

Selected  factors

Figure 15: Factor selection frequencies: Selection frequencies of individ-
ual factors for our Oracle factor selection across randomized factor models
including 5–10 initial number of factors. The upper (lower) panels report
the frequencies of the post-selection model dimensions for selections with
no (the market as) ubiquitous factor across models. The left (right) panels
report the results for test assets comprising the 25 size/book-to-market (the
25 size/book-to-market and the 17 industry) portfolios.
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Figure 16: Tradable factor risk premia: Point estimates and confidence
intervals at confidence level 90% of sample tradable factor risk premia. Fac-
tors are ordered by their selection frequency in randomized 10-factor models
always including the market, reported in parenthesis, and only factors with
positive selection frequency are retained. The upper (lower) panel reports
the results obtained with test assets comprising the 25 size/book-to-market
(25 size/book-to-market and the 17 industry portfolios).
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Figure 17: Factor risk premia and 90% confidence intervals:
Misspecification-robust (represented by dots) and tradable (represented by
squares) factor risk premia and corresponding 90% confidence intervals of a
selection of factors over various randomized 10-factor models always includ-
ing the market. The significance frequencies are reported in parenthesis,
next to the factor’s label. The results are obtained with test assets compris-
ing the 25 size/book-to-market and the 17 industry portfolios.
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Figure 18: Factor risk premia and 90% confidence intervals:
Misspecification-robust (represented by dots) and tradable (represented by
squares) factor risk premia and corresponding 90% confidence intervals of a
selection of factors over various randomized 10-factor models always includ-
ing the market. The significance frequencies are reported in parenthesis,
next to the factor’s label. The results are obtained with test assets compris-
ing the 25 size/book-to-market portfolios.
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9 Online Appendix

9.1 Proofs of the mathematical results in the main text

Proof of Proposition 2.1. MF is a valid SDF if and only if µR = VRFγ,
which implies:

λi = VFRV
−1
R VRFγ . (41)

Furthermore, using the definition of generalized inverse, it follows:

VFR = VFRV
−1
R VRFβ

i′ . (42)

Together, this gives:

µR = VRFγ = βiVFRV
−1
R VRFγ = βiλi . (43)

Conversely, if µR = βiλi, it follows:

µR = βiλi = VRF (VFRV
−1
R VRF )

+λi =: VRFγ , (44)

with γ := (VFRV
−1
R VRF )

+λi. This concludes the proof.

Proof of Proposition 2.2. Under Assumption 1 we obtain, if matrix VRF has
full column rank:

λ(V −1
R ) = VF (VFRV

−1
R VRF )

−1VFRV
−1
R µR =VF (VFRV

−1
R VRF )

−1λi .

To prove the second statement of the proposition, note first that if a factor
Fj is tradable, then it is given without loss of generality by the payoff F̃j of
its factor mimicking portfolio:

F̃jt = VFjRV
−1
R Rt .

Therefore, VFej = VF̃ej , where ej denotes the j−unit vector, F̃ the vector
of all factor-mimicking portfolio payoffs, and

VF̃ = VFRV
−1
R VRF ,

its variance-covariance matrix. Using statement (14) of the proposition, this
finally gives:

e′jλ(V
−1
R ) = e′jVF (VFRV

−1
R VRF )

−1λi = e′jλi .
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If additionally the correct specification property from Proposition 2.1 holds,
then factor risk premium λ(W ) is independent of weighting matrix W and
we can set without loss of generality λ(W ) = λ(I). This gives:

λ(W ) =VF (VFRVRF )
−1VFRµR

=(β′β)−1β′µR

=(β′β)−1β′βiλi .

Using the correct specification property from Proposition 2.1 and the fact
that matrix βi has full column rank under the given assumptions, we further
obtain:

λi = (βi′βi)−1βi′βiλi = (βi′βi)−1βi′µR . (45)

This concludes the proof.

Proof of Proposition 3.1. Given the assumptions on stochastic process Yt =
[F ′

t ,Rt
′]′, terms V̂ −1

R − V −1
R , V̂FR − VFR and µ̂R − µR are all OPr(1/

√
T ).

Therefore, we can write:27

λ̂i − λi =V̂FRV̂
−1
R µ̂R − VFRV

−1
R µR

=VFRV
−1
R (µ̂R − µR) + VFR(V̂

−1
R − V −1

R )µR

+ (V̂FR − VFR)V
−1
R µR +OPr(1/T ) .

Moreover:28

V̂ −1
R − V −1

R = V −1
R (VR − V̂R)V

−1
R +OPr(1/T ) .

This further gives, up to terms of order OPr(1/T ):

λ̂i − λi = VFRV
−1
R (µ̂R − µR)− VFRV

−1
R (V̂R − VR)V

−1
R µR

+(V̂FR − VFR)V
−1
R µR

= VFRV
−1
R (µ̂R − µR)− VFRV

−1
R V̂RV

−1
R µR + V̂FRV

−1
R µR .

Finally, note that:

V̂R =
1

T

T∑
t=1

R̄tR̄
′
t − (µ̂R − µR)(µ̂R − µR)

′ =
1

T

T∑
t=1

R̄tR̄
′
t +OPr(1/T ) .

27Here, the term OPr(1/T ) collects (V̂FR − VFR)(V̂
−1
R − V −1

R )(µ̂R − µR), (V̂FR −
VFR)(V̂

−1
R − V −1

R )µR, (V̂FR − VFR)V
−1
R (µ̂R − µR) and VFR(V̂

−1
R − V −1

R )(µ̂R − µR).
28Here, the term OPr(1/T ) consists in (V̂ −1

R − V −1
R )(VR − V̂R)V

−1
R .
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Similarly:

V̂FR =
1

T

T∑
t=1

F̄tR̄
′
t +OPr(1/T ) .

Overall, we thus obtain:

λ̂i − λi =
1

T

T∑
t=1

ht +OPr(1/T ) , (46)

where

ht := VFRV
−1
R R̄t − VFRV

−1
R R̄tR̄

′
tV

−1
R µR + F̄tR̄

′
tV

−1
R µR , (47)

defines a stationary and ergodic process with zero expectation and finite sec-
ond moments. Using the Central Limit Theorem for stationary and ergodic
processes, we conclude:

√
T (λ̂i − λi) →d N (0,Σ) , (48)

where

Σ = lim
T→∞

1

T

∞∑
t=1

∞∑
m=1

E[hth
′
m] . (49)

This concludes the proof.

Proof of Proposition 3.2. To prove the statement of the proposition, we fol-
low the same steps as in the proof of Proposition 3.1, noting that under the
given assumptions on stochastic process Yt = [F ′

t ,Rt
′]′, quantities µ̂− µR,

V̂ −1
R − V −1

R and V̂FR − VFR are still all OPr(1/
√
T ). Therefore,

λ̂i − λi =
1

T

T∑
t=1

ht +OPr(1/T ) , (50)

where

ht = VFRV
−1
R R̄t − VFRV

−1
R R̄tR̄

′
tV

−1
R µR + F̄tR̄

′
tV

−1
R µR . (51)

However the distribution of random vector ht is different from the one ob-
tained in Proposition 3.1. Indeed,

ht = VFRV
−1
R R̄t − VFRV

−1
R (R̄tR̄

′
t − VR)V

−1
R µR + (F̄tR̄

′
t − VFR)V

−1
R µR ,
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where, for any α > 1/2:

F̄tR̄
′
t − VFR = F̄tR̄

′
t − V

(T )
FR + Γ′/Tα +∆′/

√
T

= F̄tR̄
′
t − V

(T )
FR +∆′/

√
T + oPr(1/

√
T ) .

Therefore, using the Central Limit Theorem for near-epoch dependent pro-
cesses, we obtain:

1√
T

T∑
t=1

ht →d N
(
λ(∆),Σ− λ(∆)λ(∆)′

)
, (52)

where λ(∆) := ∆′V −1
R µR. This concludes the proof.

Proof of Proposition 3.3. Under the assumptions of Proposition 3.2, it fol-
lows:

√
T (λ̂i − λi) →d ξ ∼ N

(
λ(∆),Σ− λ(∆)λ(∆)′

)
. (53)

Moreover,

√
T (λ̌i − λi) = arg min

u∈RK
{gT (u) + qT (u)} , (54)

where

gT (u) :=
1

2

∣∣∣∣∣∣√T
(
λ̂i − λi

)
− u

∣∣∣∣∣∣2
2
, (55)

and

qT (u) := TτT

(
fT

(
λi +

u√
T

)
− fT (λ

i)

)
, (56)

where fT (λ
i) =

∑K
k=1 |λi

k|/ ∥ρ̂k∥22. Therefore,

gT (u) →d
1

2
||ξ − u||22 =: g0(u) , (57)

uniformly on compact sets. Moreover, using the functional form of the
Adaptive Lasso penalty fT and the fact that, under the assumptions of
Proposition 3.2, ρ̂S →Pr ρS ̸= 0, ρ̂Sc →Pr 0 and that ρ̂Sc = OPr(1/

√
T ):

qT (u) →Pr q0(u) :=

 +∞ uSc ̸= 0

0 else
, (58)
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in epigraph. Using (Attouch, 1984, Thm. 2.15) and Geyer (1994), we thus
obtain:

gT (u) + qT (u) →d g0(u) + q0(u) , (59)

in epigraph, and:29

√
T (λ̌i − λi) →d argmin

{u:uSc=0}
{g0(u)} =

 ξS

0

 . (60)

Since the components of factor vector Ft with index in S are strong factors,
the distribution of ξS is unaffected by the presence of useless or weak factors,
i.e.:

ξS ∼ N (0,ΣS) , (61)

where, from the definition of variance covariance matrix Σ in Proposition
3.1:

ΣS = lim
T→∞

1

T

T∑
t=1

T∑
m=1

E[htSh
′
mS ] . (62)

This proves the first statement in Proposition 3.2. The second statement
follows from the first statement using standard proofs of model selection
consistency in Zou (2006) for the Adaptive Lasso penalty. This concludes
the proof.

29The equality in equation (58) holds after a reordering of the vector components.
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9.2 Additional Monte Carlo evidence

9.2.1 Additional evidence on Monte Carlo settings for models in
the main text
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Factor 2: useless
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Tradable Oracle Relaxed

Factor 2: useless

Figure 19: Estimators’ simulated distribution, Model 2 (misspeci-
fied): the figure presents the marginal simulated distributions of KRS (left
panels), tradable (left and right panels), Oracle and Relaxed (right panels)
factor risk premia estimators of the strong (upper panel) and one of the two
useless (lower panel) factors of the misspecified version of simulation Model
2. We omit the figure of the second useless factor as it is qualitatively iden-
tical to the one of the first useless factor. The population tradable and KRS
factor risk premia are represented by the horizontal dashed black and red
lines, respectively.
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Figure 20: Estimators’ simulated distribution, Model 3 (misspeci-
fied): the figure presents the marginal simulated distributions of KRS (left
panels), tradable (left and right panels), Oracle and Relaxed (right panels)
factor risk premia estimators of the strong (upper panels), the 1/T 3/4−weak
(central panels) and the 1/

√
T−weak (lower panels) factors of the misspeci-

fied version of simulation Model 3. The population tradable and KRS factor
risk premia are represented by the horizontal dashed black and red lines, re-
spectively.
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Figure 21: Estimators’ simulated distribution, Model 4 (correctly
specified): the figure presents the marginal simulated distributions of KRS
(left panels), tradable (left and right panels), Oracle and Relaxed (right
panels) factor risk premia estimators of the first strong (upper panels), the
third strong (central panels) and the first useless (lower panels) factors of
the correctly specified version of simulation Model 4. We omit the figure
of the other useless factors and of the weak factor as they are qualitatively
identical to the one of the first useless factor. The population tradable and
KRS factor risk premia are represented by the horizontal dashed black and
red lines, respectively.
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9.2.2 Additional Monte Carlo setting

We report the simulation evidence for the two-factor model in Gospodinov
et al. (2014), in which returns on the test assets and factors are simulated
in a similar manner as in Section 4 of the main text, but with moments of
the factor that is neither weak nor useless calibrated to the market factor
and moments of the useless factor given by a zero mean and a unit variance.
As shown in Figures 22–24 below, the analysis and conclusions regarding
the MSEs and finite sample distributions of our sample, Oracle and Relaxed
estimators of tradable factor risk premia, in relation to the misspecification-
robust estimators of Kan et al. (2013) of misspecification-robust factor risk
premia, remain unchanged. Similarly, Figure 25 displays the high degree of
factor selection accuracy achieved by our Oracle estimator in this simulation
setting.
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Figure 22: Estimators’ MSE decomposition, Model GKR: the figure
presents the MSE bias-variance decomposition of KRS (left panels), tradable
(both left and right panels), Oracle and Relaxed (right panels) factor risk
premia estimators in simulation Model GKR, for both correctly specified
(upper panels) and misspecified (lower panels) version.
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Figure 23: Estimators’ empirical distribution, Model GKR (cor-
rectly specified): the figure presents the empirical distribution of KRS
(left panels), tradable (left panels), Oracle and Relaxed (right panels) fac-
tor risk premia estimators of the strong (upper panel) and the two useless
(lower two panels) factors of the correctly specified version of simulation
Model GKR. The population tradable and KRS factor risk premia are rep-
resented by the horizontal dashed black and red lines, respectively.
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Figure 24: Estimators’ empirical distribution, Model GKR (mis-
specified): the figure presents the empirical distribution of KRS (left pan-
els), tradable (left panels), Oracle and Relaxed (right panels) factor risk
premia estimators of the strong (upper panel) and the two useless (lower
two panels) factors of the misspecified version of simulation Model GKR.
The population tradable and KRS factor risk premia are represented by the
horizontal dashed black and red lines, respectively.
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Figure 25: Proximal factor risk premia selection properties, Model
GKR: the figure presents the ”exact” and ”contained” variable selection
properties of our Oracle factor risk premia estimator for both correctly spec-
ified and misspecified simulation Model GKR. The ”exact” (”contained”)
variable selection property is computed as the fraction over the simulation
runs that the active set of the tradable population factor risk premia coef-
ficient equals (is contained in) the estimated active set of our proximal risk
premia estimator.

9.3 Additional empirical evidence

9.3.1 Identification and factor selection

This section complements the empirical analysis in Section 5 of the main
text, by reporting model identification frequencies, post-screening factor di-
mensions and factor selection frequencies across randomized models with
initial factor dimension between 1 and 4.
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Figure 26: Model identification frequencies: Frequency of null hypoth-
esis (39) rejections under a significance level α = 0.05 by the Chen and Fang
(2019) test, across randomized factor models including 1–4 initial factors.
The red (blue) bars indicate model identification frequencies before (after)
having applied our Oracle factor selection. The upper (lower) panels report
the model identification frequencies for selections with no (the market as)
ubiquitous factor across models. The left (right) panels report the results
for test assets comprising the 25 size/book-to-market (the 25 size/book-to-
market and the 17 industry) portfolios. For models having 1 (2) randomized
factors, we consider all 52 (1326) possible model combinations. For models
including more than 2 randomized factors, we consider 10’000 random factor
combinations.
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Figure 27: Post-selection model size: Frequency of post-selection model
dimensions, i.e., number of factors selected by our Oracle factor selection,
across randomized factor models including 1–4 initial factors. The red (blue)
bars indicate model identification frequencies before (after) having applied
our Oracle proximal factor selection. The upper (lower) panels report the
model identification frequencies for selections with no (the market as) ubiq-
uitous factor across models. The left (right) panels report the results for test
assets comprising the 25 size/book-to-market (the 25 size/book-to-market
and the 17 industry) portfolios.
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Figure 28: Factor selection frequencies: Selection frequencies of individ-
ual factors for our Oracle factor selection across randomized factor models
including 1–4 initial number of factors. The upper (lower) panels report
the frequencies of the post-selection model dimensions for selections with
no (the market as) ubiquitous factor across models. The left (right) panels
report the results for test assets comprising the 25 size/book-to-market (the
25 size/book-to-market and the 17 industry) portfolios.
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9.3.2 Misspecification-robust factor risk premia
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Figure 29: Significance of misspecification-robust factor risk pre-
mia: Significance frequencies of individual misspecification-robust factor
risk premia in randomized 10-factor models always including the mar-
ket. The 5% and 10% rows report the significance frequency of estimated
misspecification-robust factor risk premia post-screening, based on marginal
t-tests with significance level 5% and 10%, respectively. Factors are or-
dered by their selection frequency in randomized 10-factor models always
including the market, reported in parenthesis, and only factors with posi-
tive selection frequency are retained. The upper (lower) panel reports the
results obtained with test assets comprising the 25 size/book-to-market (25
size/book-to-market and the 17 industry) portfolios.
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Figure 30: Misspecification-robust factor risk premia: Empirical dis-
tribution across randomized 10-factor models always including the market
of estimated misspecification-robust factor risk premia for a selection of fac-
tors. The dashed red vertical line displays the estimated tradable factor risk
premium. Factor selection frequencies are reported in parenthesis, next to
the factor’s label. The results are obtained with test assets comprising the
25 size/book-to-market and the 17 industry portfolios.
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Figure 31: Misspecification-robust factor risk premia: Empirical dis-
tribution across randomized 10-factor models always including the market
of estimated misspecification-robust factor risk premia for a selection of fac-
tors. The dashed red vertical line displays the estimated tradable factor risk
premium. Factor selection frequencies are reported in parenthesis, next to
the factor’s label. The results are obtained with test assets comprising the
25 size/book-to-market portfolios.

9.3.3 Robustness to the choice of test assets

In this section we perform the same empirical analysis found in Section 5
of the main text, for a different set of test asset returns: the 25 size/book-
to-market and the 25 operating profitability/investment portfolios. Overall,
the analysis performed with this set of test assets confirms the conclusions
obtained when test asset comprise only the 25 size/book-to-market or the
25 size/book-to-market and the 17 industry portfolios. The only major
difference consists in the fact that, when considering models that always
include the market factor, more factors seem to display a higher selection
frequency compared to the selection frequencies obtained without necessarily
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always including the market factor in the model; see Figure 34.
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Figure 32: Model identification frequencies: Frequencies over various
combinations of factor models having 1–10 initial number of factors that
null hypothesis (39) is rejected, with a size α = 0.05, by the Chen and Fang
(2019) test. The red (blue) bars indicate the model identification frequencies
before (after) having applied our proximal factor selection. The left (right)
panels report the model identification frequencies for a model with no (the
market as) common factor in the various models. The results are obtained
with test assets comprising the 25 size/book-to-market and the 25 operating
profitability/investment portfolios.
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Figure 33: Post-selection model size: Frequencies of the post-selection
model size, i.e., number of factors selected by our proximal factor selection,
over the various combinations of factor models having 1–10 initial number
of factors. The left (right) panels report the frequencies of the post-selection
model size for a model with no (the market as) common factor in the var-
ious models. The results are obtained with test assets comprising the 25
size/book-to-market and the 25 operating profitability/investment portfo-
lios.
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Figure 34: Factor selection frequencies: Selection frequencies of individ-
ual factors under our proximal factor selection procedure over the various
combinations of factor models having 1–10 initial number of factors. The
left (right) panel reports the factor selection frequencies for a model with
no (the market as) common factor in the various models. These results are
obtained with test assets comprising the 25 size/book-to-market and the 25
operating profitability/investment portfolios.
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Figure 35: Tradable factor risk premia: Tradable factor risk premia
and corresponding confidence intervals at approximate level 95% (90%) in
the upper (lower) panel. Factors are ordered by their selection frequency
in randomized 10-factor models always including the market, reported in
parenthesis, and only factors with positive selection frequency are retained.
The results are obtained with test assets comprising the 25 size/book-to-
market and the 25 operating profitability/investment portfolios.
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Figure 36: Factor risk premia and 95% confidence intervals:
Misspecification-robust (represented by dots) and tradable (represented by
squares) factor risk premia and corresponding 95% confidence intervals of
a selection of factors over various random- ized 10-factor models always in-
cluding the market. The significance frequencies are reported in parenthesis,
next to the factor’s label. The results are obtained with test assets compris-
ing the 25 size/book-to-market and the 25 operating profitability/investment
portfolios.
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Figure 37: Significance of misspecification-robust factor risk pre-
mia: Significance frequencies of individual misspecification-robust factor
risk premia in randomized 10-factor models always including the mar-
ket. The 5% and 10% rows report the significance frequency of estimated
misspecification-robust factor risk premia post-screening, based on marginal
t-tests with significance level 5% and 10%, respectively. Factors are ordered
by their selection frequency in randomized 10-factor models always including
the market, reported in parenthesis, and only factors with positive selection
frequency are retained. The results are obtained with test assets comprising
the 25 size/book-to-market and the 25 operating profitability/investment
portfolios.
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Figure 38: Misspecification-robust factor risk premia: Histograms of
a selection of misspecification-robust factor risk premia of a selection of fac-
tors over various randomized 10-factor models always including the market.
The dashed red vertical line displays the corresponding tradable factor risk
premia. The selection frequencies are reported in parenthesis, next to the
factor’s label. The results are obtained with test assets comprising the 25
size/book-to-market and the 25 operating profitability/investment portfo-
lios.
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