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Motivation

Phantom Riches

= illusion of attaining substantial wealth through investments

- E.g. bubbles or scams
- Direct effect: redistribution of wealth
- Indirect effect: suboptimal decisions due to distorted beliefs

This paper: First microanalysis of household responses to investment fraud

- Economically important, $20 billion a year (U.S. prosecuted)

- Existence of fraud may reduce trust in legitimate investments too
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Setting: ”Wincapita” ponzi scheme

- Largest investment scam and police investigation in
Finnish history (e100 million damages)

- 3,000 identities of victims from police interviews

- Merge with register-based data

Identification advantages to uncover causal effects:

- People could join only after invitation by a member of
network → only few could join

- Diffusion of scheme creates heterogeneity in treatment
intensity → instrument for entry year with network
distance to origin



Setting: ”Wincapita” ponzi scheme

- Largest investment scam and police investigation in
Finnish history (e100 million damages)

- 3,000 identities of victims from police interviews

- Merge with register-based data

Identification advantages to uncover causal effects:

- People could join only after invitation by a member of
network → only few could join

- Diffusion of scheme creates heterogeneity in treatment
intensity → instrument for entry year with network
distance to origin



Setting: ”Wincapita” ponzi scheme

- Largest investment scam and police investigation in
Finnish history (e100 million damages)

- 3,000 identities of victims from police interviews

- Merge with register-based data

Identification advantages to uncover causal effects:

- People could join only after invitation by a member of
network → only few could join

- Diffusion of scheme creates heterogeneity in treatment
intensity → instrument for entry year with network
distance to origin



Setting: ”Wincapita” ponzi scheme

- Largest investment scam and police investigation in
Finnish history (e100 million damages)

- 3,000 identities of victims from police interviews

- Merge with register-based data

Identification advantages to uncover causal effects:

- People could join only after invitation by a member of
network → only few could join

- Diffusion of scheme creates heterogeneity in treatment
intensity → instrument for entry year with network
distance to origin



Setting: ”Wincapita” ponzi scheme

- Largest investment scam and police investigation in
Finnish history (e100 million damages)

- 3,000 identities of victims from police interviews

- Merge with register-based data

Identification advantages to uncover causal effects:

- People could join only after invitation by a member of
network → only few could join

- Diffusion of scheme creates heterogeneity in treatment
intensity → instrument for entry year with network
distance to origin



Setting: ”Wincapita” ponzi scheme

- Largest investment scam and police investigation in
Finnish history (e100 million damages)

- 3,000 identities of victims from police interviews

- Merge with register-based data

Identification advantages to uncover causal effects:

- People could join only after invitation by a member of
network → only few could join

- Diffusion of scheme creates heterogeneity in treatment
intensity → instrument for entry year with network
distance to origin



Main findings
Income (1) declines after joining the scheme (labor supply) and (2) after the scheme
collapse (financial distress)
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Data and Background



Register data

- Statistics Finland

- Demographics, labor and family variables, loans
- Panel of Finnish population over nearly two decades

- Finnish Tax Administration

- Direct equity and mutual fund holdings

- Finnish Defense Forces

- IQ scores



Summary statistics

- Scheme active 2003–2008 (6 entry-year cohorts)

- Average (median) investment: e15,400 (e8,000)

- Median wealth loss at collapse e6,100 (2008 entrants) – e106.700 (2003
entrants)

- Scheme promised annual returns of several hundred percent

- Victim characteristics relative to population

- More males
- Higher income and financial wealth
- Average IQ
- More entrepreneurs



Empirical Design



Event-study difference-in-differences with tightly matched control group

1 Match (CEM) each Ponzi scheme investor to control individuals on

- Earned income, capital income, income trend
- Birth year, gender
- Labor market status, stock market participation

2 Event-study D-i-D design

yi ,c,t = αi ,c + λc,t +
n=m

∑
n=−q
n ̸=0

δn1i=investor1j=n + ϵi ,c,t ,

yi ,c,t is calendar year t labor income, αi ,c are individual-cohort fixed effects, λc,t are
cohort-year fixed effects, 1i=investor is an indicator variable equal to 1 for the scheme
investors, and 1j=n is an indicator variable equal to 1 for event-year j .



Results



Pooled event-year design around entry for all cohorts
Combining effects during active years and after collapse
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Threats to identification

1. Matching: do victims have lower average earnings potential than controls? →
would predict victims underperform controls in also other time periods



1. Matching algorithm does not find income declines in placebo studies
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Threats to identification

1. Matching: do victims have lower average earnings potential than controls? → but
do not find victims underperform controls in other time periods

2. What if victims select entry year based on expectations of (low) future income?
→ use exogenous variation in treatment intensity
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2. More exposed victims decrease income more during active years
Instrumenting year of entry

All entry-year cohorts experience labor-income loss relative to controls (match in 2002)
Here we study heterogeneity of income loss during active years by exposure intensity

IV = Network distance to founder

∆ Income02−07

OLS IV
Entry year 835.5*** 1370.5**

(3.15) (2.36)

Observations 1,829 1,829
Adj .R2 0.005 0.003
F -test 448.3
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→ but larger effects for more exposed victims

3. Other robustness

- Alternative matching specs yield similar results Link

- Effects over 2003–08 → not due to financial crisis that arrived to Finland in 2009
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Interpretation



1. Response to entry: labor supply response to wealth shock
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2. Response to collapse: financial stress at collapse
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2. Response to collapse: financial stress at collapse
Income loss at collapse as function of wealth loss

Proxy for financial stress: wealth loss at collapse
IV = year of entry (gains in the scheme increase with active time)

∆ Income07−08

OLS IV
Wealth loss -0.007*** -0.012**

(-2.17) (-2.69)

Observations 2,567 2,567
Adj .R2 0.0015 0.0002
F -test 2,226.4

e25,000 wealth loss or an additional year of participation → e275 income loss



Other outcomes consistent with negative effects of fraud

Table: Effect of fraud victimization on other long-term outcomes

Estimate t-stat N Adj. R2 Pre-mean

Unemp. and sickness benefits 0.020 (3.05) 899,457 0.27 0.17
Divorced 0.012 (2.39) 899,457 0.79 0.12
Has mortgage 0.019 (2.23) 884,356 0.63 0.44
Has consumer loan 0.038 (4.42) 884,356 0.47 0.35
Has directly held stocks 0.010 (1.59) 844,314 0.81 0.32
Has equity mutual funds -0.012 (-1.52) 844,314 0.66 0.31

Note: Difference in average outcome in nine years after scheme collapse relative to three years before entry



Conclusion

First microanalysis of household responses to investment fraud

- 6 % labor income loss

- Income declines after joining the scheme (labor supply)
- . . . and in the year of collapse (financial stress)

- Unemployment, indebtedness, divorces ↑, delegated vs. direct investments ↓

- Lifetime income loss exceeds loss of invested capital → indirect costs contribute
substantially to social costs of fraud



Appendix



−2500

−2000

−1500

−1000

−500

0

500

−4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9
Event year

Baseline

−2500

−2000

−1500

−1000

−500

0

500

−4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9
Event year

Adding education

−2500

−2000

−1500

−1000

−500

0

500

−4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9
Event year

Adding industry

−2500

−2000

−1500

−1000

−500

0

500

−4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9
Event year

Adding region

Figure: Labor income by matching scheme Back



−4000

−2000

0

2000

1998 2000 2002 2004 2006 2008 2010 2012 2014 2016

Do not withdraw
Withdraw

Figure: Effect of fraud on labor income by withdrawals Back


	1. Motivation
	2. Data and background
	3. Empirical Design
	4. Main results
	4. Results
	5. Conclusion
	Appendix

