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Abstract

This paper studies how banking regulators should disclose the regulatory models

they use to assess banks that have reporting discretion. In my setting, such assess-

ments depend on both economic conditions and the fundamentals of banks’ assets.

The regulatory models provide signals about economic conditions, while banks re-

port information about their asset fundamentals. On the one hand, disclosing the

models helps banks understand how their assets perform in different economic en-

vironments. On the other hand, it induces banks with socially undesirable assets to

manipulate reports in order to obtain favorable assessments. While regulators can

partially deter manipulation by designing the assessment rule optimally, the disclo-

sure decision of the regulatory models remains necessary. The optimal disclosure

policy is to disclose the regulatory models when the assessment rule is more likely

to induce manipulation and keep them secret otherwise. In this way, disclosure

complements the assessment rule by reducing manipulation when it harms the reg-

ulators more. These analyses speak directly to supervisory stress tests and climate

risk stress tests.
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1 Introduction

Regulators assess banks on a regular basis to ensure the stability and sustainability of the

banking industry. In order to do this, regulators rely on models which capture various features

of the economy and banks. These models are not always disclosed to banks, making the process

of regulatory assessment opaque and its implications unclear. One important reason for not

disclosing these models is to prevent banks from gaming the regulatory assessment (Flannery

2019; Clark and Li 2022). A common way for banks to game is to provide uninformative reports

that do not represent their underlying risks (Huizinga and Laeven 2012; Bushman and C. D.

Williams 2012; Bushman 2016). However, regulatory models contain valuable information which

can help banks understand how their assets would perform under different economic conditions.

By disclosing the models, regulators enable banks to make more informed decisions. In this

paper, I study how regulators should disclose the models they use to assess banks, when banks

have reporting discretion.

This study is especially relevant for supervisory stress tests and climate risk stress tests.

Supervisory stress tests employ a batch of regulatory models to evaluate the resilience of large

banks to adverse macroeconomic shocks. The regulatory models translate these shocks into

parameters that affect the valuation of bank balance sheet components and banks’ loss absorption

capacity. Regulators in different countries vary in their approaches to disclosing regulatory

models. For example, in the past, the Federal Reserve only provided the broad framework

used in its supervisory stress tests. In recent years, it has moved towards more disclosure of

its models, including key variables and certain equations. Whereas in Europe, comprehensive

disclosure of stress test methodologies has become common practice.1 While the regulators’

disclosure of the models helps banks understand the impact of macroeconomic shocks on their

business activities, it also facilitates banks to manipulate information, which compromises the

reliability of stress test results. The severity of such manipulations, which is governed by banks’

reporting discretion, crucially affects the regulators’ tradeoff of disclosing the models. In the

case of climate risk stress tests, disclosing models is even more valuable due to the long-term

nature of climate risks.2 However, substantial reporting discretion for banks on climate issues

1For example, the European Banking Authority (EBA) discloses the details of models used
in stress tests (see https://www.eba.europa.eu/eba-launches-2023-eu-wide-stress-test-0),
the Federal Reserve instead discloses high-level information about the models underlying
Dodd-Frank Act Stress Test (DFAST) and demonstrates how these models work on hy-
pothetical loan portfolios (See https://www.federalreserve.gov/publications/files/
2023-june-supervisory-stress-test-methodology.pdf).

2To fully capture the climate risk factors, the time horizons for climate risk stress tests usually range
between 30 and 50 years. Such long time horizons considerably increase the uncertainty about the
implication of business activities. See Baudino and Svoronos (2021).
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undermines the stress test results, limiting the scope of the disclosure of regulatory models.3

I develop a tractable model to study the optimal disclosure policy about regulatory assess-

ment models. To fix idea, I describe the regulatory assessment in the context of stress test.

My model features one bank and one regulator. The bank has an existing asset whose payoff

depends on both economic conditions and the asset’s fundamental, which can be either high

or low. Specifically, the asset yields a higher payoff in good economic conditions or when its

fundamental value is high. While the bank is better than the regulator at measuring its asset’s

fundamental, the regulator is more proficient in evaluating the economic conditions.4

To evaluate the asset, the regulator conducts a stress test which proceeds as follows. The

regulator uses the regulatory models to obtain a signal about the economic conditions. The

regulator then discloses the signal to the bank according to a predetermined disclosure policy

(discussed later). In this paper, disclosing the regulatory models is equivalent to disclosing the

signal generated by the models. Subsequently, the bank, which has reporting discretion, reports

the fundamental of the asset. Based on the signal and the bank’s report, the regulator makes a

pass/fail decision. Passing the test allows the bank to retain the asset, while failing requires the

bank to liquidate the asset.5

The bank obtains large private benefits when retaining the asset such that it prefers to hold

the asset regardless of its payoff. But the regulator prefers that the bank keeps the asset only

when its fundamental is high. This conflict of interest motivates the bank to engage in report

manipulation. By manipulating the report, the bank aims to make the low fundamental asset

and the high fundamental asset appear more similar, reducing the informativeness of the report.

Manipulation is costly to the bank, and this cost is determined by the amount of reporting

discretion that the bank has.

In my setting, the regulator wields two tools to mitigate the impact of the bank’s manip-

ulation: adjusting the pass/fail decision and designing the disclosure policy about the signal.

3Governments and market watchdogs have recently introduced new climate-related report-
ing rules. For example, in Europe, the Corporate Sustainability Reporting Directive (CSRD)
entered into force on 5 January 2023, which requires large companies and listed SMEs
to disclose social and environmental related information (see https://finance.ec.europa.
eu/capital-markets-union-and-financial-markets/company-reporting-and-auditing/
company-reporting/corporate-sustainability-reporting_en). Similarly, the U.S. Securities
and Exchange Commission (SEC) has proposed rule changes which require registrants to include certain
climate-related disclosures (see https://www.sec.gov/news/press-release/2022-46). Nevertheless,
banks still have substantial reporting discretion regarding climate-related issues.

4This captures that the banking regulators, responsible for overseeing the entire banking industry,
possess superior industry-wide knowledge compared to the focal bank. The economic conditions can
be interpreted as indicators of the health of the financial system, including aggregate credit risk and
aggregate non-performing loans.

5I use the term "liquidation" to represent all possible remedial actions after failing the stress test.
Further discussions on this point are in Section 2.
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The necessity for such disclosure policy arises endogenously from the interactions between the

pass/fail decision and the bank’s manipulation choice, which ultimately determine the structure

of the disclosure policy.

I show that the regulator’s pass/fail decision is characterized by a cutoff rule based on the

bank’s report. Specifically, a high-value report is indicative of a high fundamental asset, leading

the regulator to pass the bank if the report exceeds a threshold, and to fail it otherwise. When

choosing the passing threshold, the regulator trades off the cost of passing a low fundamental

asset (i.e., inefficient continuation or type II error) against the cost of failing a high fundamental

asset (i.e., inefficient liquidation or type I error). The cost of inefficient continuation is equivalent

to retaining the payoff of the low fundamental asset, while the cost of inefficient liquidation

corresponds to forgoing the payoff of the high fundamental asset.

However, even when the passing threshold is chosen optimally, I find that the regulator

passes the low fundamental asset too often. This occurs because while the optimal passing

threshold trades off inefficient liquidation against inefficient continuation, the bank’s manipula-

tion increases the likelihood of inefficient continuation unconditionally. As a result, from the ex

ante perspective, the optimal passing threshold alone is insufficient in reducing the inefficient

continuation. Therefore, the regulator requires additional tools to tackle this issue.

The disclosure of the regulator’s signal complements the pass/fail decision as an ex ante

approach to mitigate the issue of excessive inefficient continuation caused by the bank’s manip-

ulation. The bank’s manipulation incentive is driven by the desire to have the low fundamental

asset pass the test. The benefit of manipulation is then determined by two factors: the extent to

which manipulation increases the probability of passing the test and the gain from passing the

test. The former is determined by the passing threshold, while the latter depends on the payoff

of the low fundamental asset. Since the economic conditions impact both the threshold and the

asset’s payoff, the disclosure of the regulator’s signal affects how the bank perceives the benefit

of manipulation. In the absence of such disclosure, the bank chooses manipulation based on

the expected economic conditions, resulting in a constant level of manipulation across different

economic conditions. In contrast, when the regulator’s signal is disclosed, the bank observes the

realized economic conditions.

The effect of the disclosure of the regulator’s signal on the bank’s manipulation is two-fold.

First, it induces the bank’s manipulation to be contingent on the economic conditions. I show

that when the cost of inefficient continuation (i.e., retaining the payoff of the low fundamental

asset) and that of inefficient liquidation (i.e., forgoing the payoff of the high fundamental asset)

are similar, the bank’s manipulation choice varies with the gain from passing the test with the
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low fundamental asset. When this gain is lower, or, equivalently, when the payoff of the low

fundamental asset is lower, the bank manipulates less. Such manipulation choice occurs because,

in this case, the regulator’s choice of the passing threshold is not responsive to the bank’s

manipulation since any adjustment in the threshold would affect both inefficient liquidation and

inefficient continuation which are equally costly. As a result, the bank can manipulate to increase

the probability of passing the test for the low fundamental asset without triggering the regulator

to adjust the passing threshold. Given that manipulation is effective in increasing the passing

probability, the bank’s manipulation choice is then driven by the gain from passing the test with

the low fundamental asset, resulting in reduced manipulation as this gain decreases. However,

when the cost of one inefficiency outweighs the other, I show that the bank’s manipulation choice

changes based on the extent to which manipulation can increase the probability of passing the

test for the low fundamental asset. Because in this case, as the bank’s report becomes less

informative due to increased manipulation, the regulator adjusts the passing threshold to prevent

the inefficiency that is more costly. This suggests that the regulator’s choice of the passing

threshold is sensitive to the bank’s manipulation, restricting the extent to which manipulation

can increase the passing probability for the low fundamental asset. Consequently, the bank

manipulates more when manipulation increases the passing probability by a larger magnitude.

The second effect of disclosing the regulator’s signal on the bank’s manipulation is that it

affects the bank’s expected amount of manipulation across the economic conditions. When the

bank’s manipulation choice varies with the gain from passing the test with the low fundamental

asset, disclosing the regulator’s signal reduces the expected amount of manipulation. Conversely,

if the bank increases its manipulation when it can raise the passing probability for the low

fundamental asset by a larger amount, disclosing the regulator’s signal increases the expected

amount of manipulation. This second effect of disclosing the regulator’s signal is caused by the

bank’s varying manipulation choice across different economic conditions. This variation triggers

the regulator to further adjust the passing threshold, amplifying the first effect discussed above.

The optimal disclosure policy is to disclose the regulator’s signal when the cost of inefficient

continuation and that of inefficient liquidation are comparable and keep the signal secret oth-

erwise. When the costs of the two inefficiencies are comparable and the regulator’s signal is

disclosed, the bank manipulates less when the payoff of the low fundamental asset is lower. This

manipulation choice benefits the regulator as it reduces the bank’s manipulation when pass-

ing the low fundamental asset results in higher losses. Hence, disclosing the signal diverts the

bank’s manipulation away from cases where the regulator suffers higher losses from manipula-

tion. Moreover, disclosing the signal in this case reduces the expected amount of manipulation.
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In contrast, when the cost of one inefficiency dominates, the regulator should keep the signal

secret to hinder the bank from assessing how manipulation can affect the pass/fail decision.

Specifically, this approach prevents the bank from manipulating more when manipulation re-

sults in larger increase in the passing probability for the low fundamental asset, reducing the

regulator’s expected losses from passing the low fundamental asset. In addition, keeping the

signal secret reduces the expected amount of manipulation.

The optimal disclosure policy crucially depends on the bank’s private benefit when retaining

the asset and the reporting discretion. Lower private benefit and lower reporting discretion

reduce the bank’s manipulation incentive, mitigating the regulator’s concerns. I show that when

disclosing the signal results in increased (reduced) manipulation by the bank, the regulator is

more (less) likely to disclose as the bank’s private benefit and reporting discretion decrease.

I consider several extensions to the baseline model. First, in a situation where the regulator

cannot commit to a predetermined disclosure policy, I show that the regulator will always disclose

the signal and be worse off. This result resembles the “unraveling” of private information (e.g.,

Grossman and Hart (1980)). However, the rationale differs. In absence of commitment, the

regulator discloses the signal to reduce the bank’s manipulation for a given economic condition.

However, such disclosure destroys the possibility to share the bank’s manipulation incentive

across different economic conditions. Consequently, the bank may increase its manipulation

especially when it is more effective in influencing the regulator’s pass/fail decision, leading to

an increase in the expected level of manipulation and ultimately reducing the regulator’s ex

ante payoff. Second, I extend the model to incorporate the bank’s investment choice. In this

extension, the regulator’s disclosure choice of the signal may not only affect the bank’s reporting

decision but also its investment decision. I demonstrate that the regulator’s additional concern

about the bank’s investment may increase the likelihood of disclosing the signal.

The remainder of the paper is organized as follows. The rest of the introduction discusses

the relevant literature. Section 2 presents the model. Section 3 studies the optimal pass/fail

decision and the bank’s manipulation response. Section 4 analyzes the optimal disclosure policy

about the regulatory models. Section 5 conducts comparative statics and demonstrates how the

bank’s reporting discretion and private benefit affect the optimal disclosure policy. Section 6

discusses the model assumptions and possible extensions. Section 7 concludes. All proofs are

included in Appendix A.
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1.1 Related literature

This paper is related to the literature on the design of stress tests and their implications.

Parlatore and Philippon (2022) study the design of stress test scenarios. Ding, Guembel, and

Ozanne (2022) examine how the leniency of stress tests and the level of granularity in test

results affect the incentives for financial markets to generate information about banks. Shapiro

and Zeng (2023) study the leniency of stress tests in cases where the regulator trades off the

reputational concern against the banks’ lending efficiency. I contribute to the design of stress

tests by considering the optimal disclosure policy about regulatory models, taking into account

its implication on the banks’ reporting incentive which further influences the accuracy and

reliability of stress test results.

This paper is also related to the literature on the transparency of stress tests and regula-

tory information. Vast literature focuses on the disclosure of stress test results (e.g., Goldstein

and Sapra (2014); Goldstein and Leitner (2018); Corona, Nan, and Zhang (2019); Goldstein

and Leitner (2020); Quigley and Walter (2023); Parlasca (2023)), or, more generally, the disclo-

sure of regulatory information obtained through supervisions (e.g., Prescott (2008); Bouvard,

Chaigneau, and Motta (2015); Faria-e-Castro, Martinez, and Philippon (2017)). Instead, I focus

on, before conducting the stress tests (and/or examinations), whether regulators should com-

municate with banks about the test models. Similar to my paper, Leitner and B. Williams

(2023) also study the disclosure policy about the regulatory models. In their paper, revealing

the regulatory models induces the bank to always invest in the risky asset even when the value is

low, but not revealing them may lead to underinvestment. While their focus is on the riskiness

of bank’s investment, I examine the role of banks’ information inputs in the stress tests and

study how reporting discretion affects the disclosure policy about regulatory models.

In this paper, I study two-way communication between regulators and banks when both

have information to share. Relatedly, this paper is connected to the communication literature

with an informed receiver (e.g., Kolotilin et al. (2017); Guo and Shmaya (2019)). Different

from the existing literature which focuses on the sender, I study the communication strategy of

the informed receiver (i.e., the regulator), and, in particular, whether the informed receiver can

gain from communicating first to the sender (i.e., the bank). Extending the cheap talk game to

two-way communication, Chen (2009) shows that the informed receiver cannot credibly disclose

her information when communicating first and benefits little from two-way communication. In

this paper, I consider an informed receiver who can commit to a disclosure policy, and I show

that in this case, the receiver may sometimes benefit from two-way communication.

I also study the banks’ reporting incentive when reporting discretion exists. The banks’ re-
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porting discretion determines how much information banks communicate with regulators. Prior

literature has analyzed the role of reporting discretion in other settings. For instance, Fischer

and Verrecchia (2000) study how reporting bias affects the informativeness of the firms’ financial

reports, when the user of the reports (e.g., the capital market) is uncertain about the manager’s

reporting objective. Gao and Jiang (2018) study reporting discretion in the context of bank run.

In their paper, the reporting discretion reduces the panic-based runs, but it may also reduce the

fundamental-based runs. This paper also contributes to the literature on the determinants of

reporting quality (e.g., Leuz, Nanda, and Wysocki (2003); Barth, Landsman, and Lang (2008);

Holthausen (2009); Leuz and Wysocki (2016)). The consensus is that the reporting quality

depends on various factors. Among others, the regulatory environment and the development

of capital market are crucial. This paper shows that the design of stress tests can affect the

reporting quality of banks.

More broadly, this paper contributes to the discussion about the interplay between pruden-

tial and accounting regulation. Bertomeu, Mahieux, and Sapra (2023) show that accounting

measurement complements capital requirements to affect the level and efficiency of banks’ credit

decisions. Corona, Nan, and Zhang (2015) examine the impact of accounting information qual-

ity on banks’ risk-taking incentives, taking into account the interbank competition. This paper

shows that the design of stress tests should be coherent with the prevailing accounting regulation

to achieve informative assessment.

2 The model

Consider a risk-neutral economy with no discounting. There is one regulator and one bank.

The regulator conducts a stress test on the bank. I model the stress test as a four-period game.

At t = 1, the stressed scenarios are exogenously given and observed by everyone. The

regulator uses regulatory models to predict the impact of the macroeconomic variables included

in these stressed scenarios on the banking industry. The output of the regulatory models is

summarized in a signal s ∈ S = [
¯
s, s̄] with a cumulative distribution function F and density f .

The density f has full support. The regulator privately observes s. Throughout the paper, I

refer to the signal s as the economic condition. The signal s could represent the probability of a

liquidity shock in the interbank market during a given macroeconomic stress, or the aggregate

amount of deposit withdrawals from a specific industry due to supply chain disruptions.

The focus of this paper is to study the optimal disclosure policy about the signal s. At

t = 0, the regulator commits to a disclosure policy before conducting the stress test. The
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disclosure policy is defined by the disclosure set D ⊆ S and the no-disclosure sets Nn ⊆ S,

where n ∈ [1,+∞) denotes the number of no-disclosure sets, and, for simplicity, the first no-

disclosure set is denoted by N ≡ N1. For any signal s ∈ D, the regulator communicates it

truthfully to the bank. For any signal s ∈ Nn, the regulator informs the bank that the signal

falls within Nn. The no-disclosure sets are assumed to be convex sets and Nn ∩ Nn′ = ∅ for ∀

n ̸= n′ and
⋃
n
Nn = S \D.

The bank’s asset has continuation value X(s, ω) and liquidation value L(s, ω), which depend

on a state variable ω and the economic condition s. The variable ω represents the fundamental

of the asset. It is either ωh with probability qh or ωl with probability ql ≡ 1− qh and ωh > ωl.

Let x(s, ω) denote the relative gains from continuing the asset. That is,

x(s, ω) = X(s, ω)− L(s, ω).

For the remainder of the paper, the solutions are derived in terms of x(s, ω). I assume that

x(s, ω) is increasing and weakly concave in s.6

To define efficient liquidation and efficient continuation, I assume that x(s, ωl) ≤ 0 ≤

x(s, ωh). This implies that the asset should only continue if its fundamental value is high.

Moreover, I assume that x(s,ωl)
x(s,ωh)

is weakly log-concave in s. This assumption ensures that the

ratio is not too concave and that the relative gain x(s, ωl) compared to x(s, ωh) increases at a

sufficiently high rate with respect to s. For example, x(s, ω) = sq + ω with 0 < q ≤ 1 satisfies

all the assumptions for appropriate values of s and ω. I make the following further assumption

about the bank’s asset.

Assumption 1. The bank’s asset is ex ante worth continuing: Eω

[
x(s, ω)

]
∈ [0, qhx(s̄, ωh)] for

s ∈ [
¯
s, s̄].

This assumption also suggests that the expected continuation value of the bank’s asset

exceeds its liquidation value for any signal s.7 Consequently, in expectation, liquidating a high

fundamental asset (inefficient liquidation) is more costly than continuing a low fundamental

asset (inefficient continuation). This assumption helps to characterize the optimal disclosure

policy, but my main results can be extended to cases where this condition is violated. I discuss

this assumption in Section 6.1.

6As it will become clear in later sections, all analyses revolve around the low fundamental asset.
Hence, I can alternatively assume x(s, ωh) to be a constant for simplicity and the analyses will remain
unchanged.

7Notice that x(s, ωl) is assumed to be non-positive, hence, the maximum value of Eω

[
x(s, ω)

]
is

qhx(s̄, ωh).
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The fundamental of the bank’s asset ω is not observable to anyone but it is measured by

the bank’s report. More specifically, the fundamental of the bank’s asset determines the report

distribution. If the fundamental is ωi, then the report t follows a distribution with density gi(t)

over t ∈ [
¯
t, t̄], where i = {h, l}. The density functions have full support and satisfy the monotone

likelihood ratio property (MLRP), i.e., gl(t)
gh(t)

is decreasing in t. This assumption implies that

the report t is informative about the asset fundamental. Moreover, I assume that the ratio
gl(t)
gh(t)

is weakly concave in t. I impose the regularity condition that the hazard rate gh(t)
1−Gh(t)

and
gl(t)

1−Gl(t)
are decreasing on the support of t. This assumption means that when the bank receives

a high-value report, it becomes more probable to receive a higher report.

At t = 2, the bank may engage in costly manipulation to affect the report distribution. I

follow Gao and Jiang (2020) to model bank’s manipulation as ex ante manipulation. That is,

the bank chooses the manipulation level before observing the fundamental of the asset or the

report.8 Specifically, the bank chooses manipulation m ∈ [0, 1] to change the report distribution

from gi(t) to

gim(t) = gi(t) +m
(
gh(t)− gi(t)

)
. (1)

If m = 0, the report distribution is not affected by manipulation. If m = 1, then the report

is always generated from the distribution of high fundamental asset gh(t). If m ∈ (0, 1), then

manipulation improves the distribution in the sense of first-order stochastic dominance. The cost

of manipulation m is kc(m) for the bank, where k ∈ (0,+∞) measures the degree of reporting

discretion determined by rules and regulations and the cost function c(m) is increasing and

convex with c(0) = c′(0) = 0. I also assume that c′(m)
c′′(m) is weakly increasing in m, or, equivalently,

that c′(m) is weakly log-concave. The conditions are often used in the literature (see Gao and

Jiang (2020)) and are satisfied for common convex functions, e.g., c(m) = mq for q ≥ 2.

After observing the economic condition s and receiving the report t from the bank, the

regulator makes a pass/fail decision a at t = 3. In particular, the regulator passes (a = 1) or

fails (a = 0) the bank to maximize the payoff u given by

u ≡ ax(s, ω). (2)

The bank’s payoff v is

v ≡ a
(
x(s, ω) +B

)
− kc(m). (3)

Where B is the bank’s private benefit from continuing the asset. I assume x(s, ω) + B > 0

for all s and ω, meaning that the private benefit B is sufficiently large for the bank to prefer

8All results continue to hold with ex post manipulation. See Section 6.2 for more details.
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continuation regardless of the value of x. The private benefit introduces a conflict of interest

between the regulator and the bank concerning the low fundamental asset.9

The timeline of the model is as follows,

At t = 0, the regulator commits to a disclosure policy about the signal s.

At t = 1, the regulatory models generate a signal s. The regulator privately observes s and

discloses it to the bank according to the disclosure policy.

At t = 2, the bank chooses the level of manipulation m to affect the report distribution.

At t = 3, the state ω is realized, and the bank’s report t is generated. Based on the signal s

and report t, the regulator passes or fails the bank. And payoffs are realized.

The equilibrium is characterized by the regulator’s disclosure policy about s, the pass/fail

decision a, and the bank’s manipulation m. I solve the model by backward induction. I first

solve for the regulator’s pass/fail decision a for given manipulation level m and disclosure policy

about s. Anticipating the pass/fail decision rule, the bank then chooses the manipulation m

for given disclosure policy about s. Lastly, the regulator chooses the disclosure policy about s,

taking into account its impact on the bank’s manipulation choice and, consequently, the pass/fail

decision.

3 Manipulation and pass/fail decision

In this section, I discuss the bank’s manipulation choice and the regulator’s pass/fail decision,

taking the regulator’s disclosure policy about s as given.

At t = 3, the regulator forms expectation of the relative continuation value x based on the

signal s and the bank’s report t. The regulator passes the bank (a = 1) if and only if

Eω[x(s, ω)|t, m̂] ≥ 0. (4)

Where m̂ is the regulator’s conjecture about the bank’s manipulation.10 Since gh(t) is a mono-

tone likelihood ratio improvement of gl(t), the expected relative continuation value Eω[x(s, ω)|t, m̂]

9Continuation and liquidation should be interpreted broadly. While continuation represents cases
where the bank operates as usual, liquidation refers to situations where regulatory interventions are im-
posed on the bank. In the context of stress tests, the common regulatory interventions include increasing
capital buffers or restricting dividend distributions.

10The conditional expectation is

Eω[x(s, ω)|t, m̂] = x(s, ωh) Pr(ω = ωh|t, m̂) + x(s, ωl) Pr(ω = ωl|t, m̂)

= x(s, ωh)
qhg

h(t)

qhgh(t) + qlglm̂(t)
+ x(s, ωl)

qlg
l
m̂(t)

qhgh(t) + qlglm̂(t)
.
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is increasing in the report t. As a result, the pass/fail decision follows a cutoff rule.

Lemma 1. For a given signal s, a bank’s report t, and a conjecture about the bank’s manipulation

m̂, the regulator passes the bank if and only if t ≥ tp(s, m̂), where the passing threshold tp(s, m̂)

solves

Eω[x(s, ω)|tp, m̂] = 0.

All proofs are included in Appendix A. The passing threshold tp(s, m̂) is defined by the

regulator’s indifferent condition. That is, the regulator is indifferent between passing and failing

the bank when the report is tp(s, m̂). This passing threshold is chosen to equalize the expected

cost of failing a high fundamental asset (inefficient liquidation) and the expected cost of passing

a low fundamental asset (inefficient continuation) for a given signal s and a given conjecture

about manipulation m̂. The following lemma characterizes the passing threshold tp(s, m̂).

Lemma 2. For a given level of manipulation m, the passing threshold tp(s,m) is decreasing in

s. For a given signal s, the passing threshold tp(s,m) is decreasing in m.

The intuition of the first result follows from how the cost of failing a high fundamental asset

and that of passing a low fundamental asset change with the signal s. For a given manipulation

level m, the relative gain from continuing the asset x(s, ω) is increasing in s, implying that

failing a high fundamental asset becomes more costly relative to passing a low fundamental

asset. In response to the rising cost of inefficient liquidation, the regulator is willing to lower the

passing threshold and pass the bank more often. The second result captures how manipulation

affects the relative cost of failing a high fundamental asset and passing a low fundamental asset.

Assumption 1 assumes that in absence of the report, the regulator’s expectation of the relative

gain from continuing the asset is non-negative. This implies that inefficient liquidation (failing a

high fundamental asset) is more costly than inefficient continuation (passing a low fundamental

asset) in expectation for all signal s. Manipulation makes the report distribution of low and

high fundamental asset more similar, making it more difficult for the regulator to differentiate

between the two types of assets. In order to preserve the high fundamental asset, the regulator

needs to lower the passing threshold.

At t = 2, the bank anticipates the passing threshold tp(s, m̂) and chooses the manipulation

m to maximize the expected payoff. The bank’s expected payoff depends on the regulator’s

disclosure choice of s. If the bank does not observe the regulator’s signal s, its expected payoff
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is

V (m̂,m) =Es

[
qh
(
x(s, ωh) +B

) ∫
t≥tp(s,m̂)

gh(t)dt+ ql
(
x(s, ωl) +B

) ∫
t≥tp(s,m̂)

glm(t)dt

∣∣∣∣∣ s ∈ Nn

]
− kc(m).

Where Nn is the no-disclosure set containing signals s that are not disclosed to the bank. For

ease of exposition, I introduce the following definition.

∆
(
tp(s, m̂)

)
≡
∫
t≥tp(s,m̂)

(
gh(t)− gl(t)

)
dt. (5)

This term is the difference in passing probability between high and low fundamental asset. It

also measures the increases in passing probability for the low fundamental asset if the bank

manipulates the report distribution. Taking derivative of V (m̂,m) with respect to m, I obtain

the following first-order condition of the bank’s manipulation m,

Es

[
ql
(
x(s, ωl) +B

)
∆
(
tp(s, m̂)

)∣∣ s ∈ Nn

]
− kc′(m) = 0.

In equilibrium, the regulator’s conjecture about the manipulation m̂ is consistent with the bank’s

choice. Hence, the equilibrium manipulation mNn solves

Es

[
ql
(
x(s, ωl) +B

)
∆
(
tp(s,mNn)

)∣∣ s ∈ Nn

]
− kc′(mNn) = 0. (6)

Proposition 1. When s is not disclosed, the level of manipulation mNn is unique and it is a

constant over s for s ∈ Nn.

This result suggests that no disclosure of s forces the bank’s manipulation mNn to be constant

over the regulator’s signal s.

If the bank observes the regulator’s signal s, its expected payoff is

V (s, m̂,m) = qh
(
x(s, ωh) +B

) ∫
t≥tp(s,m̂)

gh(t)dt+ ql
(
x(s, ωl) +B

) ∫
t≥tp(s,m̂)

glm(t)dt− kc(m).

The first-order condition of the bank’s manipulation response m is as follows,

ql
(
x(s, ωl) +B

)
∆
(
tp(s, m̂)

)
− kc′(m) = 0.

Similar to the no disclosure case, the regulator’s conjecture about the manipulation is consistent

with the bank’s choice in equilibrium. Hence, the equilibrium manipulation mD(s) is determined

13



by

ql
(
x(s, ωl) +B

)
∆
(
tp
(
s,mD(s)

))
− kc′

(
mD(s)

)
= 0. (7)

I make the following notation for ease of exposition.

MBb

(
s, tp(s,m)

)
≡ ql

(
x(s, ωl) +B

)
∆
(
tp(s,m)

)
. (8)

Where "MB" stands for "marginal benefit" and "b" represents "bank". MBb

(
s, tp(s,m)

)
is the

bank’s marginal benefit of manipulation for given regulator’s signal s and manipulation level

m. It consists of two components concerning the low fundamental asset. The first component,

ql
(
x(s, ωl) +B

)
, is the bank’s gain after passing the test with the low fundamental asset. Since

the relative gain from continuing the low fundamental asset x(s, ωl) is increasing in the signal

s, the bank’s gain is also increasing in s. All else equal, the bank manipulates more when the

signal s is high.

The second component, ∆
(
tp(s,m)

)
, represents the increases in the passing probability for

the low fundamental asset when the bank changes the report distribution from gl(t) to gh(t).

This term crucially depends on the passing threshold tp(s,m). According to Lemma 2, the

passing threshold tp(s,m) is decreasing in s due to the rising relative cost of failing the high

fundamental asset. As the passing threshold decreases, the test becomes more lenient in the

sense that the low fundamental asset is more likely to pass the test without manipulation. In

other words, the difference in the passing probability between gh(t) and gl(t) shrinks. Hence,

manipulation is less effective in increasing the passing probability for the low fundamental asset

as s increases. All else equal, the bank manipulates less when the signal s is high. The following

lemma summarizes the impact of the signal s on ∆
(
tp(s,m)

)
.

Lemma 3. For given manipulation level m, ∆
(
tp(s,m)

)
is decreasing in s.

When evaluating the bank’s manipulation incentive MBb, the increases in the passing prob-

ability for the low fundamental asset ∆
(
tp(s,m)

)
acts as a counterforce to the gain from passing

the test with the low fundamental asset ql
(
x(s, ωl) +B

)
. The magnitude of the two forces then

determines how the manipulation mD(s) responds to the signal s.

Proposition 2. When s is disclosed, the level of manipulation mD(s) is unique and it is in-

creasing in s for s < sD and it is decreasing in s for s > sD, where sD ∈ (
¯
s, s̄) is the unique

solution for
∂MBb

(
s,tp(s,mD)

)
∂s = 0.

This result identifies the force that determines the bank’s manipulation mD(s) when s is

disclosed, and it highlights the effect of the passing threshold tp
(
s,mD(s)

)
on the bank’s manip-
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ulation mD(s). When the signal is relatively low, i.e., s < sD, the cost of inefficient liquidation

and that of inefficient continuation are comparable. Hence, the regulator sets the passing thresh-

old at a medium level to prevent both types of inefficiency. In this case, the regulator’s choice

of the passing threshold is also unresponsive to the bank’s manipulation, as any adjustment

would affect both types of inefficiency, which are similarly costly. This choice of the passing

threshold results in a substantial difference in the passing probability between the high and low

fundamental asset, i.e., ∆
(
tp
(
s,mD(s)

))
is large, and it also implies that manipulation is very

effective in increasing the likelihood of passing the test for the low fundamental asset. Since

manipulation can always increase the passing probability considerably, the bank focuses on the

gain from passing the test with the low fundamental asset, ql
(
x(s, ωl) +B

)
, when choosing the

level of manipulation. As a result, the bank’s manipulation mD(s) follows the changes in such

gain, and it is increasing in s. When s > sD, the inefficient liquidation becomes more costly

than the inefficient continuation. Hence, the regulator sets the passing threshold relatively low to

prevent inefficient liquidation. Moreover, the regulator’s choice of the passing threshold becomes

responsive to the bank’s manipulation to further mitigate inefficient liquidation. In this case, the

bank manipulates more when manipulation still has incremental effect on increasing the pass-

ing probability. Hence, the bank’s manipulation mD(s) changes with the difference in passing

probability between high and low fundamental asset ∆
(
tp
(
s,mD(s)

))
, and it is increasing in s.

Disclosure of s affects how manipulation changes with s. When s is not disclosed, the

bank’s manipulation mNn is constant over the signals in the no-disclosure set Nn. When s is

disclosed, the bank’s manipulation mD(s) varies with both the gain from passing the test with

the low fundamental asset ql(x(s, ωl) + B) and the increases in passing probability for the low

fundamental asset after manipulation ∆
(
tp
(
s,mD(s)

))
. Such variation in mD(s) further affects

the expected level of manipulation. The following proposition compares the expected level of

manipulation when s is disclosed with the one when s is not disclosed.

Proposition 3. Es

[
mD(s)|s ∈ N

]
≤ mN for any N ⊆ [

¯
s, sD] and Es

[
mD(s)|s ∈ N

]
≥ mN for

any N ⊆ [sD, s̄].

This result shows the additional effect of disclosing s. When s ≤ sD, the bank’s manipulation

mD(s) is driven by the gain from passing the test with the low fundamental asset ql
(
x(s, ωl)+B

)
and it is increasing in the signal s. In response, the regulator lowers the passing threshold

tp
(
s,mD(s)

)
, which makes the bank more likely to pass the test regardless of the fundamental

value. Such endogenous response of the regulator’s pass/fail decision then decreases the extent

to which the manipulation can increase the passing probability for the low fundamental asset,

i.e., ∆
(
tp
(
s,mD(s)

))
is reduced, rendering manipulation less useful and decreasing the bank’s
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manipulation incentive. Such endogenous response is absent if s is not disclosed, because the

bank’s manipulation remains constant. Hence, the expected level of manipulation is less if s

is disclosed. However, when s ≥ sD, the bank manipulates to increase the passing probability

and the manipulation level mD(s) is decreasing in s. In response, the regulator increases the

passing threshold tp
(
s,mD(s)

)
to make the test more difficult. Such endogenous response of the

regulator’s pass/fail decision then widens the difference in passing probability between the low

and high fundamental asset, i.e., ∆
(
tp
(
s,mD(s)

))
increases. More importantly, such response

makes the manipulation effective in increasing the passing probability for the low fundamental

asset, amplifying the bank’s manipulation incentive. Hence, the expected level of manipulation

when s is disclosed is larger compared to the case when s is not disclosed.

4 Disclosure policy

In this section, I discuss the optimal disclosure policy about the regulator’s signal s, taking

into account the bank’s manipulation response and its impact on the regulator’s pass/fail deci-

sion. I show that the disclosure choice of s and the pass/fail decision are complementary tools

for the regulator to minimize the adverse consequence of the bank’s manipulation.

For given signal s, the regulator’s expected payoff at t = 1 is obtained by integrating across

all report values that are higher than the passing threshold tp(s,m
∗),

u(s,m∗) =

∫
t≥tp(s,m∗)

Eω[x(s, ω)|t,m∗]gm∗(t)dt

=

∫
t≥tp(s,m∗)

(
qhx(s, ωh)g

h(t) + qlx(s, ωl)g
l
m∗(t)

)
dt.

(9)

Where m∗ = {mD(s),mNn} is the equilibrium manipulation choice of the bank and gm∗(t) is

the unconditional distribution of report t when the manipulation is m∗. That is,

gm∗(t) = qhg
h(t) + qlg

l
m∗(t).

At t = 0, the regulator chooses disclosure policy D and Nn to maximize the ex ante payoff.

U =

∫
s∈D

u
(
s,mD(s)

)
dF (s) +

∑
n

(∫
s∈Nn

u(s,mNn)dF (s)

)

=

∫
s∈D

(∫
t≥tp
(
s,mD(s)

) (qhx(s, ωh)g
h(t) + qlx(s, ωl)g

l
mD(s)(t)

)
dt

)
dF (s)

+
∑
n

(∫
s∈Nn

(∫
t≥tp(s,mNn )

(
qhx(s, ωh)g

h(t) + qlx(s, ωl)g
l
mNn

(t)
)
dt

)
dF (s)

)
.

(10)
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As briefly discussed in Lemma 2, manipulation increases the similarity between the report

of the low fundamental asset and that of the high fundamental asset, making it more likely

that the regulator fails the high fundamental asset (inefficient liquidation) and passes the low

fundamental asset (inefficient continuation). The regulator is able to use the pass/fail decision

to control this adverse consequence of manipulation, but only partially. To see this, consider

the total derivative of u(s,m) in (9) with respect to m. This total derivative represents the

regulator’s marginal loss due to the bank’s manipulation,

du(s,m)

dm
=

∂u(s,m)

∂tp(s,m)

∂tp(s,m)

∂m︸ ︷︷ ︸
The impact of manipulation
through the pass/fail decision

+
∂u(s,m)

∂m
.

Since the regulator’s pass/fail decision is optimal, the first term of the derivative is zero, sug-

gesting that the bank’s manipulation does not affect the regulator’s ex ante payoff through the

pass/fail decision. However, the second term of the derivative remains. This is because the

manipulation, driven by the bank’s preference to continue the asset regardless of its payoff, in-

creases the ex ante likelihood of inefficient continuation. Such inefficient continuation cannot be

prevented by using the optimal pass/fail rule. Formally, I make the following definition.

MLr

(
s, tp(s,m)

)
≡ ∂u(s,m)

∂m
= qlx(s, ωl)∆

(
tp(s,m)

)
. (11)

Where "ML" stands for "marginal loss" and "r" represents "regulator". Given that the asset

should be liquidated when the fundamental value is low, i.e., x(s, ωl) ≤ 0 for all s, this term

is non-positive. It captures the regulator’s additional marginal losses from continuing the low

fundamental asset due to the bank’s manipulation.

The regulator’s additional losses caused by the bank’s manipulation MLr

(
s, tp(s,m)

)
con-

sists of two components. The first component, qlx(s, ωl), is the regulator’s expected loss of

passing the low fundamental asset. The second component, ∆
(
tp(s,m)

)
, is the increases in the

probability of passing the low fundamental asset after the bank changes the report distribution

from gl(t) from gh(t). This component captures the regulator’s inability to distinguish the low

fundamental asset and the high fundamental asset due to the bank’s manipulation.

Lemma 4. For any disclosure set D or no-disclosure set Nn, MLr

(
s, tp(s,m

∗)
)

is increasing

in s for m∗ = {mD(s),mNn}.

This lemma suggests that, regardless of the disclosure choice of s, the regulator bears less

additional losses from manipulation as the signal s increases. The intuition is as follows. Since
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the relative gain from continuing the low fundamental asset x(s, ωl) is increasing in s, the

regulator’s loss from passing the low fundamental asset is ameliorated. In addition, the passing

threshold tp(s,m
∗) is decreasing in the signal s, shrinking the difference in passing probability

between the low and high fundamental asset ∆
(
tp(s,m

∗)
)
. This implies that the extent to

which manipulation increases the passing probability for the low fundamental asset is declining

as the signal increases. Consequently, the regulator is less likely to pass low fundamental asset,

reducing the additional losses caused by manipulation.11

The regulator needs an additional tool to control the additional losses caused by manipula-

tion MLr

(
s, tp(s,m)

)
. Lemma 4 shows that MLr

(
s, tp(s,m)

)
is increasing in the signal s. To

minimize the expected loss from manipulation, the regulator should distribute more manipu-

lation to cases where the marginal loss MLr

(
s, tp(s,m)

)
is small and reduce the overall level

of manipulation. Recall that Proposition 2 and Proposition 3 state that the disclosure choice

of s not only affects how manipulation distributes across the signal s but also affects the ex-

pected amount of manipulation. Hence, the regulator can leverage the disclosure choice of the

regulatory signal s to minimize the expected loss from manipulation.

To pin down the optimal disclosure policy about the regulatory signal s, I first discuss the

cost and benefit of disclosure for the regulator. For given expected amount of manipulation, the

disclosure of the regulatory signal s affects how manipulation distributes across the regulator’s

marginal loss MLr. Disclosing s reveals ∆
(
tp(s,m)

)
which is the increases in the passing

probability after the bank changes the report distribution from gl(t) to gh(t). As captured

by MBb(s, tp(s,m)), all else equal, the bank’s marginal gain from manipulation is higher when

∆
(
tp(s,m)

)
is large. A large ∆

(
tp(s,m)

)
also means that the regulator is more likely to be

misled by the bank’s manipulation and make wrong passing decisions, which in turn increases the

regulator’s marginal loss from the bank’s manipulation MLr(s, tp(s,m)). Hence, the disclosure

of s incurs cost for the regulator because it facilitates the bank to manipulate more when the

regulator is more susceptible to manipulation. Disclosing s also gives benefit to the regulator.

Because the payoff of the asset x(s, ω) depends both on the regulator’s information about s and

on the asset’s fundamental value ω. Disclosing s reduces the bank’s uncertainty about its asset’s

payoff. All else equal, the bank manipulates less when the gain from passing the test with the

low fundamental asset is low, i.e., when ql(x(s, ωl) + B) is low. This manipulation choice is

11Notice that when the passing threshold is very low, the regulator is more likely to pass the low funda-
mental asset. However, such continuation is already considered when the regulator chooses the optimal
passing threshold tp(s,m

∗), which balances the tradeoff between inefficient liquidation and inefficient
continuation. The term MLr

(
s, tp(s,m

∗)
)

does not capture such continuation and it only reflects the
additional inefficient continuation caused by the bank’s manipulation. And such additional inefficient
continuation is reduced as the signal s increases.
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beneficial to the regulator. Because when x(s, ωl) is low, passing the bank incurs large loss for

the regulator. In other words, the regulator demands more informative report when x(s, ωl) is

low. Disclosing s then makes the regulator’s pass/fail decision more accurate. Given the result

in Proposition 2, the benefit of disclosing the regulatory signal s outweighs the cost when the

signal s is small.

In addition, Proposition 3 shows that the disclosure choice of the signal s changes the ex-

pected amount of manipulation across s. This additional layer strengthens the existing tradeoff

of disclosure. As a result, the optimal disclosure policy follows a simple cutoff rule.

Proposition 4. The optimal disclosure policy follows a cutoff rule where D = [
¯
s, s∗) and N =

[s∗, s̄]. That is, the regulator discloses the signal s when s < s∗ and does not disclose the signal

s when s > s∗, where s∗ ∈ [
¯
s, sD] solves

(
u(s∗,mN )− u

(
s∗,mD(s

∗)
))

f(s∗) =
∂mN

∂s∗

∫ s̄

s∗
MLr

(
s, tp(s,mN )

)
dF (s). (12)

The intuition for a cutoff rule is embedded in the tradeoff of disclosure. It is beneficial for

the regulator to disclose the signal s when the manipulation is driven by the gain from passing

the test with the low fundamental asset ql
(
x(s, ωl) +B

)
. In this case, the bank’s manipulation

is increasing in s which implies that the bank’s manipulation is less (more) when it causes more

(less) losses to the regulator as measured by MLr(s, tp(s,m)). In addition, the bank manipu-

lates less in expectation when observing the regulator’s signal s. Hence, disclosing the signal s

improves the regulator’s ex ante payoff. However, as the signal s increases, the bank’s manip-

ulation is driven by the increases in passing probability after manipulation ∆
(
tp(s,m)

)
. If the

signal is disclosed to the bank, then the bank would manipulate more when the regulator is more

susceptible to manipulation. Hence, no disclosure complements the passing threshold to deter

the bank’s manipulation. The disclosure cutoff point s∗ is characterized by equation (12). This

equation captures the regulator’s tradeoff between the utility gain (loss) from disclosing more

information and the loss (gain) from increased (decreased) manipulation in the no-disclosure

region. No disclosure at all can be optimal if it sufficiently reduces the expected level of ma-

nipulation. In sum, the regulator’s disclosure choice of s complements the pass/fail decision to

minimize the adverse consequence of the bank’s manipulation.

5 Comparative statics

In this section, I analyze how the optimal disclosure policy about the regulator’s signal s

changes with the bank’s private benefit B when passing the test and its cost of manipulation k.
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All else equal, an increase in the private benefit B or a decrease in the manipulation cost k

incentivizes the bank to manipulate more for any given regulatory signal s. Such increases in

manipulation occur irrespective of whether the bank observes the signal s or not. As a result,

the implications on the regulator’s disclosure policy about s is unclear. The following lemma

shows the effect of the bank’s private benefit B and its cost of manipulation k on the regulator’s

disclosure choice of s.

Proposition 5. The optimal disclosure policy is characterized in Proposition 4. If mD(s
∗) ≤

mN , then the disclosure cutoff point s∗ is increasing in k and decreasing in B. Otherwise, the

disclosure cutoff point s∗ is decreasing in k and increasing in B.

The intuition of this result follows the tradeoff underpinning the disclosure cutoff point s∗.

Recall equation (12), the regulator determines the disclosure cutoff point by weighing the utility

gain from disclosure against the loss resulting from manipulation in the no-disclosure region.

When the optimal disclosure policy satisfies mD(s
∗) ≤ mN , it implies that the regulator can

attain a non-negative utility by disclosing. However, increasing disclosure also increases manip-

ulation in the no-disclosure region, exacerbating the regulator’s loss from manipulation. Con-

sequently, concerns regarding manipulation in the no-disclosure region discourage the regulator

from realizing the benefits of disclosure. The cost of manipulation k addresses the regulator’s

concerns about manipulation in the no-disclosure region. As k increases, the regulator can dis-

close more information about s to recapture previously forgone gains. Therefore, an increase

in the cost of manipulation incentivizes a higher level of disclosure of the regulatory signal.

Conversely, an increase in the bank’s private benefit B would have the opposite effect on the

disclosure of s.

In the case where the optimal disclosure policy satisfies mD(s
∗) > mN , it exhibits excessive

disclosure at the disclosure cutoff point s∗. This excessive disclosure is utilized to mitigate

the manipulation mN and the resulting losses in the no-disclosure region. In other words, the

regulator leverages disclosure as a mechanism to reduce manipulation in the no-disclosure region.

When the cost of manipulation k increases, the regulator can rely less on disclosure as a means

of deterring manipulation, thereby incurring less losses associated with disclosure. Conversely,

as the bank’s private benefit B increases, the regulator needs to increase disclosure to counteract

the bank’s stronger incentive for manipulation. In sum, the disclosure of the regulatory signal s

acts as both a substitute for the cost of manipulation k and a counterforce for the bank’s private

benefit B in curbing manipulation in the no-disclosure region.
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6 Discussions

In this section, I discuss some of the assumptions and possible extensions of the model.

6.1 Cost of inefficient liquidation and inefficient continuation

Assumption 1 assumes that the bank’s asset is worth continuing ex ante. This assumption

affects how the regulator chooses passing threshold tp(s,m) in response to the bank’s manipula-

tion m (Lemma 2) and how the bank’s manipulation changes with the regulatory signal s when

s is disclosed (Lemma 3 and Proposition 2). Nevertheless, the main insight for the disclosure of

the regulator’s signal s does not depend on this assumption. In Appendix B, I derive the results

formally.

The main finding of the paper is that the regulator’s ex post pass/fail decision alone is

insufficient to fully prevent the adverse consequence of the bank’s manipulation. Hence, the

disclosure of the regulatory signal s is useful. When the signal s is disclosed, the bank’s marginal

benefit of manipulation is determined by two factors: the gain from passing the test with the low

fundamental asset ql
(
x(s, ωl) + B

)
and the increases in passing probability after manipulation

∆
(
tp(s,m)

)
. And the regulator’s marginal loss from the bank’s manipulation MLr(s, tp(s,m))

depends on the expected losses of inefficient continuation qlx(s, ωl) and the increases in passing

probability after manipulation ∆
(
tp(s,m)

)
. Disclosure is always beneficial to the regulator

when both the bank’s marginal benefit of manipulation and the regulator’s marginal loss from

manipulation are driven by the changes in the relative gain from continuing the low fundamental

asset x(s, ωl). Conversely, no disclosure is preferred when the changes in manipulation is driven

by the increases in passing probability after manipulation ∆
(
tp(s,m)

)
. The former force is more

likely to dominate when the cost of inefficient liquidation and the cost of inefficient continuation

are comparable. Because in such case, the regulator’s choice of passing threshold leads to

large increases in passing probability if the bank manipulates, i.e., ∆
(
tp(s,m)

)
is large. This

then incentivizes the bank to care about the gain from passing the test when choosing the

manipulation. Hence, the bank’s manipulation is more likely to be driven by the gain from

passing the test with the low fundamental asset ql
(
x(s, ωl) + B

)
. As discussed above, such

manipulation choice benefits the regulator. In any case, the regulator’s disclosure choice of s

still complements the pass/fail decision.
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6.2 Ex post manipulation

In the baseline model, the bank chooses manipulation before observing the fundamental

value of its asset. Although this manipulation choice fits in various contexts, it is pertinent to

examine the case where the bank privately observes the asset’s fundamental before engaging in

report manipulation. In this section, I demonstrate that all results continue to hold with this

manipulation choice.

In contrast to the baseline model, the bank’s manipulation choice becomes dependent on the

asset’s fundamental. When its asset’s fundamental is ωh, the bank does not gain by manipulating

the report distribution gh(t). Consequently, regardless of the disclosure of the regulator’s signal

s, the bank does not manipulate its report, i.e., mN (ωh) = mD(s, ωh) = 0 for all s. However,

the bank still has incentive to manipulate its report when its asset’s fundamental is ωl. The

marginal benefit of manipulation is
(
x(s, ωl) + B

)
∆
(
tp(s,m)

)
if the regulator discloses s, or

E
[(
x(s, ωl) + B

)
∆
(
tp(s,m)

)
|s ∈ Nn

]
if the regulator discloses that the signal s belongs to the

set Nn. With these slight modifications in the bank’s manipulation choice, all the results can be

derived similarly as in the baseline model, and the insights and intuitions remain unchanged.

With the ex post manipulation, this paper is also related to the literature on two-sided

incomplete information. In this alternative model, both the regulator and the bank have pri-

vate information that matters for the regulator’s pass/fail decision. This paper then provides

analyses on whether and how the regulator can elicit more information from the bank by com-

municating to the bank first. The two-sided private information is prevalent in many different

settings. Cramton (1984) studies bargaining game and shows that two-sided incomplete infor-

mation causes costly delays in trade. Watson (1996) studies information transmission when the

sender’s and the receiver’s private information are complementary. He shows that, in contrast

to communication games with one-sided incomplete information, fully revealing equilibria often

exist.

6.3 No commitment to disclosure policy

Suppose that the regulator cannot commit to any disclosure policy about the signal s. In-

stead, the regulator decides to disclose or not to disclose the signal s after observing the real-

ization of it. In the following, I show that the only equilibrium in this case is full disclosure.

The intuition is as follows. Consider the no-disclosure set N = [s1, s2] with s1 < s2. Denote

the bank’s manipulation response as mN . Upon observing the signal s, the regulator would dis-

close s if the bank’s manipulation mD(s) is less than mN . This implies that the no-disclosure set
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must consist of signals s such that mN ≤ mD(s) holds, implying that E
[
MBb

(
s, tp(s,mN )

)
|s ∈

[s1, s2]
]
≤ MBb

(
s, tp(s,mD(s)

)
for s ∈ [s1, s2]. Since MBb

(
s, tp(s,m)

)
is a continuous function

of s, the regulator must be indifferent between disclosing and not disclosing the signals at the

boundary of the no-disclosure set, i.e., mN = mD(s1) = mD(s2). Hence, the following condition

must hold

Es

[
MBb

(
s, tp(s,mN )

)∣∣ s ∈ [s1, s2]
]
= MBb

(
s1, tp(s1,mN )

)
= MBb

(
s2, tp(s2,mN )

)
.

However, given that MBb(s, tp(s,m)) is first increasing and then decreasing in s for any given

manipulation m, this condition cannot hold if s1 < s2. Hence, s1 = s2 and full disclosure is the

equilibrium.

As indicated in Proposition 4, full disclosure policy is suboptimal. Hence, lack of commit-

ment to the disclosure policy makes the regulator worse off. The intuition is that commitment

enables the regulator to use a no-disclosure set (i.e., partial disclosure policy) to share the

bank’s manipulation incentive across different signals s. Such manipulation sharing increases

the regulator’s ex ante payoff.

6.4 Real activity

In the baseline model, the bank engages in costly manipulation to affect the report dis-

tribution. The manipulation improves the bank’s report in the sense of first-order stochastic

dominance, but it does not affect the bank’s asset payoff. Hence, the disclosure of the regula-

tor’s private information only has informational consequences for the bank. It informs the bank

about the gain from manipulation and the probability of obtaining the gain.

In Appendix C, I extend the analysis to a case where the disclosure of the regulator’s private

information not only affects the bank’s reporting choice but also affects the bank’s investment

decision. More specifically, the bank exerts costly effort to improve the asset’s fundamental and

such effort manifests itself in the report. The effort still increases the similarity between the

report of the low and high fundamental asset, but the similarity arises from the actual improve-

ment in the asset’s fundamental. As a result, the disclosure of the regulator’s private information

affects the bank’s real activity, i.e., effort choice. I show that, in this case, the regulator may

benefit from disclosing more of the private information. In particular, full disclosure policy may

be optimal under some conditions.
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7 Conclusion

This paper presents a tractable model to analyze the optimal disclosure policy about the

regulatory assessment models in the presence of concerns about the banks’ manipulation. While

disclosing the regulatory models helps banks understand how their assets perform in different eco-

nomic environments, it also creates opportunities for banks to game the regulatory assessments.

The main message of this paper is that the disclosure policy about the regulatory models should

complement the assessment rules. Additionally, the paper highlights that the banks’ internal

governance and the rules and regulations concerning their reporting discretion complement the

design and improve the effectiveness of regulatory assessments. The implications of this paper

extend to regulatory practices such as supervisory stress test and climate risk stress test. By un-

derstanding the interactions between performing stress tests and reporting incentives of banks,

regulators can improve the design of stress tests and enhance the effectiveness of regulatory

assessments.
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A Proofs

For ease of exposition, I define the following ratio.

r(t) ≡ gl(t)

gh(t)
. (13)

Due to the assumption that the density functions of report t satisfy MLRP, the ratio r(t) is

decreasing in t.

Proof. Lemma 1

All the necessary steps for the cutoff rule are explained in the text.

Proof. Lemma 2

The regulator chooses the passing threshold based on the signal s and the conjecture about

the bank’s manipulation m̂. I drop the ·̂ for simplicity.

The passing threshold is determined by

Eω[x(s, ω)|tp,m] = 0.

This condition is equivalent to

x(s, ωh)
qhg

h(tp)

qhgh(tp) + qlglm(tp)
+ x(s, ωl)

qlg
l
m(tp)

qhgh(tp) + qlglm(tp)
= 0,

Since the density function gl(t) and gh(t) have full support, the condition reduces to

x(s, ωh)qhg
h(tp) + x(s, ωl)qlg

l
m(tp) = 0.

This is equivalent to

x(s, ωh)qh + x(s, ωl)ql − x(s, ωl)ql(1−m)
(
1− r(tp)

)
= 0. (14)

Apply the implicit function theorem, I derive the following two partial derivatives.

∂tp
∂s

= −
qh

(
x(s, ωl)

dx(s,ωh)
ds − x(s, ωh)

dx(s,ωl)
ds

)
(1−m)ql

(
x(s, ωl)

)2
r′(tp)

. (15)

Where r′(tp) is the derivative of r(tp) with respect to tp and it is negative. Given that the

relative gain from continuing the asset x(s, ωl) and x(s, ωh) are increasing in s, this derivative

is negative.
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And the following is the partial derivative of tp with respect to m,

∂tp
∂m

= − qhx(s, ωh) + qlx(s, ωl)

(1−m)2qlx(s, ωl)r′(tp)
. (16)

Given Assumption 1, the unconditional expected relative gain from continuing the asset is non-

negative. Hence, this derivative is non-positive and it equals to zero only when s =
¯
s.

Proof. Proposition 1

The first-order condition of mNn is given in equation (6). I repeat the condition here,

Es

[
ql
(
x(s, ωl) +B

)
∆
(
tp(s,mNn)

)∣∣ s ∈ Nn

]
− kc′(mNn) = 0.

This condition implies that mNn is a constant over the signal space Nn. The uniqueness of mNn

can be proved by the monotonicity of Es

[
ql
(
x(s, ωl) +B

)
∆
(
tp(s,mNn)

)∣∣ s ∈ Nn

]
−kc′(mNn) in

mN .
∂ Es

[
ql
(
x(s, ωl) +B

)
∆
(
tp(s,mNn)

)∣∣ s ∈ Nn

]
− kc′(mNn)

∂mNn

= Es

[
ql
(
x(s, ωl) +B

)∂∆(tp(s,mNn)
)

∂mNn

∣∣∣∣∣ s ∈ Nn

]
− kc′′(mNn)

This derivative is negative since c(m) is convex and the derivative
∂∆
(
tp(s,m)

)
∂m is non-positive for

a given m. I show the latter holds in the following. I repeat the definition of ∆
(
tp(s,m)

)
here,

∆
(
tp(s,m)

)
≡
∫
t≥tp(s,m)

(
gh(t)− gl(t)

)
dt.

Taking derivative with respect to m, I obtain the following,

∂∆
(
tp(s,m)

)
∂m

=
d∆
(
tp(s,m)

)
dtp(s,m)

∂tp(s,m)

∂m

=
(
gl
(
tp(s,m)

)
− gh

(
tp(s,m)

))∂tp(s,m)

∂m

∝
(
r
(
tp(s,m)

)
− 1
)∂tp(s,m)

∂m
.

(17)

Recall that equation (14) pins down the passing threshold tp(s,m), and the ratio r
(
tp(s,m)

)
solves

r
(
tp(s,m)

)
=

mqlx(s, ωl) + qhx(s, ωh)

mqlx(s, ωl)− qlx(s, ωl)
≥ mqlx(s, ωl)− qlx(s, ωl)

mqlx(s, ωl)− qlx(s, ωl)
= 1. (18)

The inequality holds because Assumption 1 implies that qhx(s, ωh) ≥ −qlx(s, ωl) for all s and

equality holds only when s =
¯
s. As a result, the derivative

d∆
(
tp(s,m)

)
dtp(s,m) is non-negative. Given
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the result of Lemma 2 that ∂tp(s,m)
∂m is non-positive, the derivative

∂∆
(
tp(s,m)

)
∂m ≤ 0 and equality

holds only when s =
¯
s.

Proof. Lemma 3

For given passing threshold tp(s,m), the difference in passing probability between gl and gh

is ∆
(
tp(s,m)

)
. Taking derivative with respect to s, I obtain the following

∂∆
(
tp(s,m)

)
∂s

=
d∆
(
tp(s,m)

)
dtp(s,m)

∂tp(s,m)

∂s
.

The proof of Proposition 1 shows that the derivative
d∆
(
tp(s,m)

)
dtp(s,m) is non-negative. Given the

result of Lemma 2 that ∂tp(s,m)
∂s is negative, the derivative

∂∆
(
tp(s,m)

)
∂s ≤ 0 and equality holds

only when s =
¯
s.

Proof. Proposition 2

When s is disclosed, the manipulation level is determined by the first-order condition in

equation (7). I repeat the first-order condition here,

ql
(
x(s, ωl) +B

)
∆
(
tp(s,mD)

)
− kc′(mD) = 0.

The first term of the left-hand side is MBb

(
s, tp(s,mD)

)
. The uniqueness of mD is proved by

the monotonicity of MBb

(
s, tp(s,mD)

)
− kc′(mD) in mD. I omit the proof of the uniqueness

because the proof is similar to the proof of Proposition 1.

Apply the implicit function theorem to the first-order condition, I derive the derivative of

mD with respect to s,

∂mD

∂s
=

∂MBb

(
s,tp(s,mD)

)
∂s

kc′′(mD)−
∂MBb

(
s,tp(s,mD)

)
∂mD

=

ql

(
∆
(
tp(s,mD)

)dx(s,ωl)
ds +

(
x(s, ωl) +B

)∂∆(tp(s,mD)
)

∂s

)
kc′′(mD)− ql

(
x(s, ωl) +B

)∂∆(tp(s,mD)
)

∂mD

.

(19)

The derivative
∂∆
(
tp(s,m)

)
∂m is non-positive as shown in the proof of Proposition 1. Consequently,

the following holds

∂mD

∂s
∝

∂MBb

(
s, tp(s,mD)

)
∂s

∝ ∆
(
tp(s,mD)

)dx(s, ωl)

ds
+
(
x(s, ωl) +B

)∂∆(tp(s,mD)
)

∂s
.

For ease of exposition, I introduce the following notation

F ≡ ∆
(
tp(s,mD)

)dx(s, ωl)

ds
+
(
x(s, ωl) +B

)∂∆(tp(s,mD)
)

∂s
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In the following, I first show that F = 0 holds at some s ∈ (
¯
s, s̄) and then I prove that F = 0 is

unique at s = sD.

When s =
¯
s, Assumption 1 assumes that x(

¯
s, ωh)qh + x(

¯
s, ωl)ql = 0. According to equation

(14), the passing threshold satisfies r
(
tp(

¯
s,m)

)
= 1 which implies that

∂∆
(
tp(s,m)

)
∂s = 0, hence,

the function F is

F |s=
¯
s = ∆

(
tp(

¯
s,mD)

) dx(s, ωl)

ds

∣∣∣∣
s=

¯
s

> 0.

When s = s̄, Assumption 1 implies that x(s̄, ωl) = 0. Hence, the passing threshold is tp(s̄,mD) =

¯
t and ∆(

¯
t) = 0. Hence, the function F is

F |s=s̄ = B
∂∆
(
tp(s,mD)

)
∂s

∣∣∣∣∣
s=s̄

< 0.

By the intermediate value theorem, F = 0 must hold at some value of s ∈ (
¯
s, s̄).

Next, I show that F = 0 is unique at s = sD. When F = 0, the following equation holds,

∆
(
tp(s,mD)

) dx(s,ωl)
ds

x(s, ωl) +B
= −

∂∆
(
tp(s,mD)

)
∂s

.

I drop the indicator D for the manipulation mD. Then F = 0 is equivalent to

∆
(
tp(s,m)

)
−d∆

(
tp(s,m)

)
dtp(s,m)

dx(s,ωl)
ds

x(s, ωl) +B
=

∂tp(s,m)

∂s
. (20)

I first show that the left-hand side is increasing in s. I drop the arguments for tp when no

confusion caused. The left-hand side is equivalent to

LHS ≡ −∆(tp)

∆′(tp)

dx(s,ωl)
ds

x(s, ωl) +B
.

Where ∆′(tp) ≡ d∆(tp)
dtp

. The derivative of LHS with respect to s is

∂LHS

∂s
= −

d
(

∆(tp)
∆′(tp)

)
dtp

∂tp
∂s

dx(s,ωl)
ds

x(s, ωl) +B
−

d

(
dx(s,ωl)

ds
x(s,ωl)+B

)
ds

∆(tp)

∆′(tp)
.

The derivative
d
(

∆(tp)

∆′(tp)

)
dtp

is

d
(

∆(tp)
∆′(tp)

)
dtp

=

(
∆′(tp)

)2 −∆(tp)∆
′′(tp)(

∆′(tp)
)2 .
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By assumption, the decreasing hazard rate gi(t)
1−Gi(t)

implies that gi(t) is decreasing in t. Moreover,

the MLRP assumption implies that r(t) is decreasing in t, that is

dr(t)

dt
=

dgl(t)
dt gh(t)− dgh(t)

dt gl(t)(
gh(t)

)2 < 0.

Recall that at the passing threshold tp, it holds that r(tp) > 1 which is equivalent to gl(tp) >

gh(tp). Hence, it also holds that dgl(tp)
dtp

<
dgh(tp)
dtp

. That is, ∆′′(tp) < 0, which in turn implies

that
d
(

∆(tp)

∆′(tp)

)
dtp

> 0. The derivative
d

(
dx(s,ωl)

ds
x(s,ωl)+B

)
ds is

d

(
dx(s,ωl)

ds
x(s,ωl)+B

)
ds

=
−
(
dx(s,ωl)

ds

)2
+
(
x(s, ωl) +B

)d2x(s,ωl)
ds2(

x(s, ωl) +B
)2 .

Since x(s, ωl) is increasing and weakly concave in s, this derivative is negative. As a result,
∂LHS
∂s > 0.

Now consider the right-hand side of equation (20),

RHS ≡ ∂tp(s,m)

∂s
.

And the derivative of the RHS with respect to s is

∂RHS

∂s
=

∂2tp(s,m)

∂s2
.

Recall that equation (14) determines the passing threshold tp(s,m). I repeat the equation here,

x(s, ωh)qh + x(s, ωl)ql − x(s, ωl)ql(1−m)
(
1− r(tp)

)
= 0.

For ease of exposition, I define

x̃(s, ωl) ≡
x(s, ωl)

x(s, ωh)
.

With this notation, equation (14) is equivalent to,

qh + x̃(s, ωl)ql − x̃(s, ωl)ql(1−m)
(
1− r(tp)

)
= 0.

Hence, by the implicit function theorem, the derivative ∂tp(s,m)
∂s is,

∂tp(s,m)

∂s
=

qh
dx̃(s,ωl)

ds

(1−m)ql
(
x̃(s, ωl)

)2
r′(tp)

.
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Where dx̃(s,ωl)
ds is

dx̃(s, ωl)

ds
=

−x(s, ωl)
dx(s,ωh)

ds + x(s, ωh)
dx(s,ωl)

ds(
x(s, ωh)

)2 > 0.

By the chain rule, the second derivative ∂2tp(s,m)
∂s2

is,

∂2tp(s,m)

∂s2
=
∂
∂tp(s,m)

∂s

∂s
+

∂
∂tp(s,m)

∂s

∂tp

∂tp(s,m)

∂s

=qh

ql(1−m)
(
r′(tp)

)2
x̃(s, ωl)

(
x̃(s, ωl)

d2x̃(s,ωl)
ds2

−
(
dx̃(s,ωl)

ds

)2)
(1−m)2q2l

(
x̃(s, ωl)

)4(
r′(tp)

)3
+ qh

(
dx̃(s,ωl)

ds

)2 (
−(1−m)qlx̃(s, ωl)

(
r′(tp)

)2 − qhr
′′(tp)

)
(1−m)2q2l

(
x̃(s, ωl)

)4(
r′(tp)

)3 < 0.

(21)

Given the assumption that x̃(s, ωl) is weakly log-concave and r(tp) is decreasing in tp (i.e.,

MLRP assumption), the first term is non-positive. Also, the second term is negative since r(tp)

is weakly concave in tp. Hence, ∂RHS
∂s < 0.

I have shown that when F = 0, the left-hand side of equation (20) is increasing in s whereas

the right-hand side of equation (20) is decreasing in s, which implies that F = 0 has a unique

solution sD. And F > 0 for s < sD and F < 0 for s > sD. Recall that ∂mD(s)
∂s is proportionate

to F , hence, mD(s) is increasing in s for s < sD and is decreasing in s for s > sD. Since
∂MBb

(
s,tp(s,mD)

)
∂s is proportionate to F , sD also solves

∂MBb

(
s,tp(s,mD)

)
∂s = 0.

Proof. Proposition 3

I prove this proposition by contradiction.

Suppose that Es

[
mD(s)|s ∈ N

]
> mN for N = [

¯
s, sD].12 Denote Es

[
mD(s)|s ∈ [

¯
s, sD]

]
by

mD,

mD −mN ∝ kc′(mD)− kc′(mN )

≤ Es

[
kc′
(
mD(s)

)∣∣ s ∈ [
¯
s, sD]

]
− kc′(mN )

=

∫ sD

¯
s kc′

(
mD(s)

)
dF (s)∫ sD

¯
s dF (s)

− kc′(mN )

∝
∫ sD

¯
s

(
kc′
(
mD(s)

)
− kc′(mN )

)
dF (s).

The inequality is due to the assumption that kc′(m) is weakly convex in m.

The first-order condition for mD(s) is

MBb

(
s, tp

(
s,mD(s)

))
= kc′

(
mD(s)

)
. (22)

12The proof also applies to cases where N ⊂ [
¯
s, sD].
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And the first-order condition for mN when N = [
¯
s, sD] is

Es

[
MBb

(
s, tp(s,mN )

)
|s ∈ [

¯
s, sD]

]
= kc′(mN ).

I can simplify the difference between mD and mN further,

mD −mN ≤
∫ sD

¯
s

(
MBb

(
s, tp

(
s,mD(s)

))
− E

[
MBb

(
s, tp(s,mN )

)
|s ∈ [

¯
s, sD]

])
dF (s)

≤
∫ sD

¯
s

(
MBb

(
s, tp

(
s,mD(s)

))
− E

[
MBb

(
s, tp(s,mD)

)
|s ∈ [

¯
s, sD]

])
dF (s)

=

∫ sD

¯
s

(
MBb

(
s, tp

(
s,mD(s)

)))
dF (s)− E

[
MBb

(
s, tp(s,mD)

)
|s ∈ [

¯
s, sD]

] ∫ sD

¯
s

dF (s)

=

∫ sD

¯
s

(
MBb

(
s, tp

(
s,mD(s)

))
−MBb

(
s, tp(s,mD)

))
dF (s)

=

∫ sD

¯
s

(
ql
(
x(s, ωl) +B

)(
∆
(
tp(s,mD(s))

)
−∆

(
tp(s,mD)

)))
dF (s)

≤0.

The first line is obtained by using the first-order conditions of mN and mD(s). The second line

is due to the fact that MBb

(
s, tp(s,m)

)
is decreasing in m. This is verified by the following

derivative
∂MBb

(
s, tp(s,m)

)
∂m

= ql
(
x(s, ωl) +B

)∂∆(tp(s,m)
)

∂m
≤ 0. (23)

The derivative
∂∆
(
tp(s,m)

)
∂m is non-positive as shown in the proof of Proposition 1. Then the

assumption that mN < mD implies the second line. The third and fourth line follow from

the definition of conditional expectation. The last inequality is obtained by applying FKG

inequality, which I now explain in details. The manipulation level mD(s) is increasing in s when

s < sD. And the proof of Proposition 1 shows that
∂∆
(
tp(s,m)

)
∂m ≤ 0. This means that the term

∆
(
tp(s,mD(s))

)
is decreasing in s through mD(s). The term ql

(
x(s, ωl) +B

)
is increasing in s.

By FKG inequality, the following holds

Es≤sD

[
ql
(
x(s, ωl) +B

)
∆
(
tp
(
s,mD(s)

))]
≤ Es≤sD

[
ql
(
x(s, ωl) +B

)
∆
(
tp(s,Es≤sD [mD(s)])

)]
.

Where Es≤sD denotes expectation over s conditional on s ≤ sD. This implies that the last

inequality holds and it contradicts to mN < mD.

Next I prove by contradiction that mD ≥ mN for N = [sD, s̄].13 Suppose that the opposite

13The proof also applies to cases where N ⊂ [sD, s̄].
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holds, that is, mD < mN for N = [sD, s̄]. Then the following holds,

mD −mN ∝ log
(
kc′(mD)

)
− log

(
kc′(mN )

)
≥ Es

[
log
(
kc′
(
mD(s)

))∣∣∣ s ∈ [sD, s̄]
]
− log

(
kc′(mN )

)
=

∫ s̄
sD

log
(
kc′
(
mD(s)

))
dF (s)∫ sD

¯
s dF (s)

− log
(
kc′(mN )

)
∝
∫ s̄

sD

(
log
(
kc′
(
mD(s)

))
− log

(
kc′(mN )

))
dF (s)

=

∫ s̄

sD

kc′
(
mD(s)

)
− kc′(mN )

1
kc′(ms)

dF (s)

≥
∫ s̄

sD

kc′
(
mD(s)

)
− kc′(mN )

1
kc′(mN )

dF (s)

∝
∫ s̄

sD

(
kc′
(
mD(s)

)
− kc′(mN )

)
dF (s)

The first inequality holds because c′(m) is weakly log-concave. By the definition of conditional

expectation, I obtain the first equality. I derive the second equality by using the mean value the-

orem, where kc′(ms) ∈
(
kc′
(
mD(s)

)
, kc′(mN )

)
or kc′(ms) ∈

(
kc′(mN ), kc′

(
mD(s)

))
depending

on the relation between kc′(mN ) and kc′
(
mD(s)

)
. I now explain the second inequality.

• If kc′
(
mD(s)

)
< kc′(mN ), then kc′(ms) ∈

(
kc′
(
mD(s)

)
, kc′(mN )

)
. Hence, the following

holds
1
1

kc′(mN )

≥ 1
1

kc′(ms)

≥ 1
1

kc′(mD(s))

.

Which implies that

kc′
(
mD(s)

)
− kc′(mN )

1
kc′(mN )

≤
kc′
(
mD(s)

)
− kc′(mN )

1
kc′(ms)

≤
kc′
(
mD(s)

)
− kc′(mN )

1
kc′(mD(s))

.

• If kc′
(
mD(s)

)
> kc′(mN ), then kc′(ms) ∈

(
kc′(mN ), kc′

(
mD(s)

))
. Hence, the following

holds
1
1

kc′(mN )

≤ 1
1

kc′(ms)

≤ 1
1

kc′(mD(s))

.

Which implies that

kc′
(
mD(s)

)
− kc′(mN )

1
kc′(mN )

≤
kc′
(
mD(s)

)
− kc′(mN )

1
kc′(ms)

≤
kc′
(
mD(s)

)
− kc′(mN )

1
kc′(mD(s))

.

Hence, regardless of the difference between kc′
(
mD(s)

)
and kc′(mN ), the second inequality
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holds.

The first-order condition for mD(s) is the same as in equation (22). And the first-order

condition for mN when N = [sD, s̄] is

Es

[
MBb

(
s, tp(s,mN )

)
|s ∈ [sD, s̄]

]
= kc′(mN ).

I further simplify the difference between mD and mN ,

mD −mN ≥
∫ s̄

sD

(
MBb

(
s, tp

(
s,mD(s)

))
− E

[
MBb

(
s, tp(s,mN )

)
|s ∈ [sD, s̄]

])
dF (s)

≥
∫ sD

¯
s

(
MBb

(
s, tp

(
s,mD(s)

))
− E

[
MBb

(
s, tp(s,mD)

)
|s ∈ [sD, s̄]

])
dF (s)

=

∫ s̄

sD

(
MBb

(
s, tp

(
s,mD(s)

)))
dF (s)− E

[
MBb

(
s, tp(s,mD)

)
|s ∈ [sD, s̄]

] ∫ sD

¯
s

dF (s)

=

∫ s̄

sD

(
MBb

(
s, tp

(
s,mD(s)

))
−MBb

(
s, tp(s,mD)

))
dF (s)

=

∫ s̄

sD

(
ql
(
x(s, ωl) +B

)(
∆
(
tp(s,mD(s))

)
−∆

(
tp(s,mD)

)))
dF (s)

≥0.

The second inequality uses the assumption that mN > mD. The last inequality is derived by

using FKG inequality. The manipulation level mD(s) is decreasing in s when s > sD. Hence

∆
(
tp
(
s,mD(s)

))
is increasing in s through mD(s). Given that the term ql

(
x(s, ωl) + B

)
is

increasing in s, FKG inequality implies the last inequality.

Proof. Lemma 4

I first show that MLr

(
s, tp(s,m)

)
is increasing in s for any given m.

∂MLr

(
s, tp(s,m)

)
∂s

= ql
dx(s, ωl)

ds
∆
(
tp(s,m)

)
+ qlx(s, ωl)

∂∆
(
tp(s,m)

)
∂s

.

Lemma 3 shows that for any given m, ∆
(
tp(s,m)

)
is decreasing in s, i.e.,

∂∆
(
tp(s,m)

)
∂s <

0. Since the low fundamental asset has non-positive value, i.e., x(s, ωl) ≤ 0, the derivative
∂MLr

(
s,tp(s,m)

)
∂s > 0. This result implies that the derivative

∂MLr

(
s,tp(s,mNn )

)
∂s > 0 holds for any

no-disclosure set Nn.

Next, consider MLr

(
s, tp(s,mD(s))

)
.

dMLr

(
s, tp(s,mD(s))

)
ds

= ql
dx(s, ωl)

ds
∆
(
tp(s,mD(s))

)
+ qlx(s, ωl)

d∆
(
tp(s,mD(s))

)
ds

= ql
dx(s, ωl)

ds
∆
(
tp(s,mD(s))

)
+ qlx(s, ωl)

d∆
(
tp(s,mD(s))

)
dtp

(
∂tp(s,mD(s))

∂s
+

∂tp(s,mD(s))

∂mD(s)

∂mD(s)

∂s

)
.
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Lemma 2 shows that ∂tp
∂m and ∂tp

∂s are non-positive. Therefore, when ∂mD(s)
∂s is non-negative, the

derivative
dMLr

(
s,tp(s,mD(s))

)
ds is positive.

In the following, I show that the derivative
dMLr

(
s,tp(s,mD(s))

)
ds is non-negative even when

∂mD(s)
∂s is negative. When mD(s) is decreasing in s, it suggests that the bank’s marginal benefit

of manipulation MBb

(
s, tp(s,mD)

)
is also decreasing in s for given mD. Taking into account

the changes in mD(s), the following shows that the total derivative of
dMBb

(
s,tp(s,mD(s))

)
ds is

proportionate to
∂MBb

(
s,tp(s,mD)

)
∂s . I drop the arguments when no confusion caused.

dMBb

(
s, tp

(
s,mD(s)

))
ds

=
∂MB

∂s
+

∂MB

∂tp

(
∂tp(s,mD)

∂s
+

∂tp(s,mD)

∂mD

∂mD(s)

∂s

)
=

(
∂MB

∂s
+

∂MB

∂tp

∂tp(s,mD)

∂s

)
+

∂MB

∂tp

∂tp(s,mD)

∂mD

∂mD(s)

∂s

=

(
∂MB

∂s
+

∂MB

∂tp

∂tp(s,mD)

∂s

)
+

∂MB

∂tp

∂tp(s,mD)

∂mD

 ∂MB
∂s + ∂MB

∂tp

∂tp(s,mD)
∂s

kc′′(mD(s))− ∂MB
∂tp

∂tp(s,mD)
∂mD


=

(
∂MB

∂s
+

∂MB

∂tp

∂tp(s,mD)

∂s

)1 +

∂MB
∂tp

∂tp(s,mD)
∂mD

kc′′(mD(s))− ∂MB
∂tp

∂tp(s,mD)
∂mD


=

(
∂MB

∂s
+

∂MB

∂tp

∂tp(s,mD)

∂s

)
kc′′(mD(s))

kc′′(mD(s))− ∂MB
∂tp

∂tp(s,mD)
∂mD

∝ ∂MB

∂s
+

∂MB

∂tp

∂tp(s,mD)

∂s
.

Since kc′′(mD(s))

kc′′(mD(s))− ∂MB
∂tp

∂tp(s,mD)

∂mD

is positive, the total derivative of MBb

(
s, tp

(
s,mD(s)

))
with

respect to s is proportionate to the partial derivative of MBb

(
s, tp

(
s,mD(s)

))
with respect to

s taking mD(s) as given.

When ∂mD(s)
∂s is negative, the following holds

∂mD(s)

∂s
∝

∂MBb

(
s, tp

(
s,mD

))
∂s

∝
dMBb

(
s, tp

(
s,mD(s)

))
ds

< 0.

The total derivative
dMBb

(
s,tp
(
s,mD(s)

))
ds equals to

dMBb

(
s, tp

(
s,mD(s)

))
ds

= ql
dx(s, ωl)

ds
∆
(
tp(s,mD(s))

)
+ ql

(
x(s, ωl) +B

)d∆(tp(s,mD(s))
)

ds
.

Hence, ∂mD(s)
∂s < 0 implies

d∆
(
tp(s,mD(s))

)
ds

< −
∆
(
tp(s,mD(s))

)
x(s, ωl) +B

dx(s, ωl)

ds
. (24)
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Then the total derivative
dMLr

(
s,tp(s,mD(s))

)
ds is

dMLr

(
s, tp(s,mD(s))

)
ds

= ql
dx(s, ωl)

ds
∆
(
tp(s,mD(s))

)
+ qlx(s, ωl)

d∆
(
tp(s,mD(s))

)
ds

∝ dx(s, ωl)

ds
∆
(
tp(s,mD(s))

)
+ x(s, ωl)

d∆
(
tp(s,mD(s))

)
ds

≥ dx(s, ωl)

ds
∆
(
tp(s,mD(s))

)
+ x(s, ωl)

(
−
∆
(
tp(s,mD(s))

)
x(s, ωl) +B

dx(s, ωl)

ds

)

=
B

x(s, ωl) +B
∆
(
tp(s,mD(s))

)dx(s, ωl)

ds
≥ 0.

The first inequality uses the results in equation (24) and the assumption that x(s, ωl) ≤ 0.

Hence, the derivative
dMLr

(
s,tp(s,mD(s))

)
ds ≥ 0 always holds.

Proof. Proposition 4

I complete the proof in two steps. I first show that a cutoff disclosure rule dominates all

other forms of disclosure. Next, I solve for the optimal cutoff point s∗ and show that s∗ ≤ sD.

Suppose that D = [
¯
s, sD) and N = [sD, s̄]. The regulator’s ex ante expected utility with

this disclosure policy is denoted as U

U =

∫ sD

¯
s

u
(
s,mD(s)

)
dF (s) +

∫ s̄

sD

u(s,mN )dF (s).

In the following, I show that adding more cutoff points to partition the signal space does not

improve the regulator’s ex ante expected utility. First, I show that adding cutoff point in D

does not improve the regulator’s ex ante utility. Without loss of generality, consider a disclosure

policy which partitions the signal space into N2 = [
¯
s, s1], D = (s1, sD) and N1 ≡ N = [sD, s̄].

The regulator’s ex ante expected payoff with such disclosure policy is

U ′ =

∫ s1

¯
s

u
(
s,mN2

)
dF (s) +

∫ sD

s1

u
(
s,mD(s)

)
dF (s) +

∫ s̄

sD

u(s,mN )dF (s).
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The difference in the regulator’s expected utility is

U − U ′ =

∫ sD

¯
s

u
(
s,mD(s)

)
dF (s)−

∫ s1

¯
s

u
(
s,mN2

)
dF (s)−

∫ sD

s1

u
(
s,mD(s)

)
dF (s)

=

∫ s1

¯
s

u
(
s,mD(s)

)
dF (s)−

∫ s1

¯
s

u
(
s,mN2

)
dF (s)

=

∫ s1

¯
s

(
mD(s)−mN2

) du(s,m)

dm

∣∣∣∣
m=m(s)

dF (s)

=

∫ s1

¯
s

(
mD(s)−mN2

)( ∂u(s,m)

∂m

∣∣∣∣
m=m(s)

+
∂u(s,m)

∂tp(s,m)

∂tp(s,m)

∂m

∣∣∣∣
m=m(s)

)
dF (s)

=

∫ s1

¯
s

(
mD(s)−mN2

) ∂u(s,m)

∂m

∣∣∣∣
m=m(s)

dF (s)

=

∫ s1

¯
s

(
mD(s)−mN2

)
MLr

(
s, tp(s,m(s))

)
dF (s)

≥
∫ s1

¯
s

(
mD(s)−mN2

)
MLr

(
s, tp(s,mN2)

)
dF (s)

∝ Es≤s1

[
mD(s)MLr

(
s, tp(s,mN2)

)]
−mN2 Es≤s1

[
MLr

(
s, tp(s,mN2)

)]
≥ Es≤s1

[
mD(s)MLr

(
s, tp(s,mN2)

)]
− Es≤s1

[
mD(s)

]
Es≤s1

[
MLr

(
s, tp(s,mN2)

)]
≥ 0.

The first two lines are derived from simplifications of the differences in expected utility. Apply

the mean value theorem to the second line gives the third line, where m(s) ∈ (mD(s),mN2) if

mD(s) < mN2 or m(s) ∈ (mN2 ,mD(s)) if mN2 < mD(s). The fourth line shows the total deriva-

tive of u(s,m) with respect to m, and it reduces to the fifth line because the passing threshold

tp(s,m) maximizes the regulator’s utility u(s,m) for given signal s and given manipulation m,

hence, ∂u(s,m)
∂tp(s,m) = 0. Equation (11) defines MLr

(
s, tp(s,m)

)
. I now explain the first inequality

in details. The following derivative shows that MLr

(
s, tp(s,m)

)
is weakly increasing in m,

∂MLr

(
s, tp(s,m)

)
∂m

= qlx(s, ωl)
∂∆
(
tp(s,m)

)
∂m

.

The derivative
∂∆
(
tp(s,m)

)
∂m is non-positive as shown in the proof of Proposition 1, hence, this

derivative is non-negative. The following proves the first inequality

• If mD(s) < mN2 , then m(s) ∈ (mD(s),mN2). Hence, the following holds

MLr

(
s, tp(s,mD(s))

)
≤ MLr

(
s, tp(s,m(s))

)
≤ MLr

(
s, tp(s,mN2)

)
,
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which implies that

(
mD(s)−mN2

)
MLr

(
s, tp(s,mD(s))

)
≥
(
mD(s)−mN2

)
MLr

(
s, tp(s,m(s))

)
≥
(
mD(s)−mN2

)
MLr

(
s, tp(s,mN2)

)
.

• If mD(s) > mN2 , then m(s) ∈ (mN2 ,mD(s)). Hence, the following holds

MLr

(
s, tp(s,mD(s))

)
≥ MLr

(
s, tp(s,m(s))

)
≥ MLr

(
s, tp(s,mN2)

)
,

which implies that

(
mD(s)−mN2

)
MLr

(
s, tp(s,mD(s))

)
≥
(
mD(s)−mN2

)
MLr

(
s, tp(s,m(s))

)
≥
(
mD(s)−mN2

)
MLr

(
s, tp(s,mN2)

)
.

Hence, regardless of the difference between mD(s) and mN2 , the first inequality holds. The sec-

ond inequality makes use of the result from Proposition 3, hence, it holds that Es≤s1

[
mD(s)

]
≤

mN2 . Since mD(s) is increasing in s for s ≤ s1 and Lemma 4 shows that MLr

(
s, tp(s,mD(s))

)
is also increasing in s, the last inequality is obtained by FKG inequality. This proof can be

generalized to cases where more than one cutoff points are added on D.

Using the same approach, I show that adding cutoff point in N does not improve the reg-

ulator’s ex ante utility. Consider a disclosure policy which partitions the signal space into

D = [
¯
s, sD), N2 = [sD, s2) and N3 = [s2, s̄]. The regulator’s ex ante expected payoff with such

disclosure policy is

U ′ =

∫ sD

¯
s

u
(
s,mD(s)

)
dF (s) +

∫ s2

sD

u(s,mN2)dF (s) +

∫ s̄

s2

u
(
s,mN3

)
dF (s).

For ease of exposition, I make the following definition in this proof.

p2 ≡ Pr
(
s ∈ [sD, s2)|s ≥ sD

)
=

∫ s2
sD

dF (s)∫ s̄
sD

dF (s)
.

And

p3 ≡ Pr
(
s ≥ s2|s ≥ sD

)
=

∫ s̄
s2
dF (s)∫ s̄

sD
dF (s)

.
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The difference in the regulator’s expected utility is

U − U ′ =

∫ s̄

sD

u
(
s,mN

)
dF (s)−

∫ s2

sD

u(s,mN2)dF (s)−
∫ s̄

s2

u
(
s,mN3

)
dF (s)

=

∫ s2

sD

(
u
(
s,mN

)
− u
(
s,mN2

))
dF (s) +

∫ s̄

s2

(
u
(
s,mN

)
− u
(
s,mN3

))
dF (s)

=

∫ s2

sD

(
mN −mN2

) ∂u(s,m)

∂m

∣∣∣∣
m=m2

dF (s) +

∫ s̄

s2

(
mN −mN3

) ∂u(s,m)

∂m

∣∣∣∣
m=m3

dF (s)

=

∫ s2

sD

(
mN −mN2

)
MLr

(
s, tp(s,m2)

)
dF (s) +

∫ s̄

s2

(
mN −mN3

)
MLr

(
s, tp(s,m3)

)
dF (s)

≥
∫ s2

sD

(
mN −mN2

)
MLr

(
s, tp(s,mN2)

)
dF (s) +

∫ s̄

s2

(
mN −mN3

)
MLr

(
s, tp(s,mN3)

)
dF (s)

∝ mN

(
p2 Es∈[sD,s2)

[
MLr

(
s, tp(s,mN2)

)]
+ p3 Es≥s2

[
MLr

(
s, tp(s,mN3)

)])

−

(
p2mN2 Es∈[sD,s2)

[
MLr

(
s, tp(s,mN2)

)]
+ p3mN3 Es≥s2

[
MLr

(
s, tp(s,mN3)

)])

≥
(
p2mN2 + p3mN3

)(
p2 Es∈[sD,s2)

[
MLr

(
s, tp(s,mN2)

)]
+ p3 Es≥s2

[
MLr

(
s, tp(s,mN3)

)])

−

(
p2mN2 Es∈[sD,s2)

[
MLr

(
s, tp(s,mN2)

)]
+ p3mN3 Es≥s2

[
MLr

(
s, tp(s,mN3)

)])
≥ 0.

The derivations follow the previous proof. Notice that the second inequality is obtained by

generalizing the result from Proposition 3. And the last inequality is derived by applying FKG

inequality. This proof can be applied to cases where more than cutoff points are added on N .

I have shown that the disclosure policy with D = [
¯
s, sD] and N = [sD, s̄] dominates all other

forms of disclosure. Next, I solve for the optimal cutoff point. Denote the regulator’s ex ante

utility with the optimal disclosure policy by U∗,

U∗ =

∫ s∗

¯
s

u
(
s,mD(s)

)
dF (s) +

∫ s̄

s∗
u(s,mN )dF (s).

First, the optimal cutoff point s∗ ≤ sD must hold. Otherwise, by the previous proof, the

regulator can gain by not disclosing the signals s ∈ [sD, s
∗]. But such disclosure policy features

two no-disclosure sets which is dominated by the disclosure policy with single no-disclosure set

[sD, s̄]. Hence, s∗ ≤ sD must hold.

Take derivative of U∗ with respect to the cutoff point s∗, the first-order condition determines
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the optimal cutoff point,

(
u
(
s∗,mD(s

∗)
)
− u(s∗,mN )

)
f(s∗) +

∂mN

∂s∗

∫ s̄

s∗
MLr

(
s, tp(s,mN )

)
dF (s) = 0. (25)

This condition is equivalent to equation (12) in the proposition.

Proof. Proposition 5

The no-disclosure set N is [s∗, s̄]. The bank’s manipulation mN for s ∈ N is then determined

by the following first-order condition

FN ≡ Es

[
MBb

(
s, tp(s,mN )

)
|s ∈ [s∗, s̄]

]
− kc′(mN ) = 0.

By the implicit function theorem,

∂s∗

∂k
= −

∂FN
∂k
∂FN
∂s∗

=
c′(mN )

∫ s̄
s∗ dF (s)

f(s∗)
(
Es≥s∗

[
MBb

(
s, tp(s,mN )

)]
−MBb

(
s∗, tp(s∗,mN )

)) .
Also, by the implicit function theorem, I derive the derivative ∂mN

∂s∗ ,

∂mN

∂s∗
=

f(s∗)∫ s̄
s∗ dF (s)

Es≥s∗
[
MBb

(
s, tp(s,mN )

)]
−MBb

(
s∗, tp(s

∗,mN )
)

kc′′(mN )− Es≥s∗

[
∂MBb

(
s,tp(s,mN )

)
∂mN

] .

With this derivative, I further reduce the first-order condition in equation (25) to the following

(
u
(
s∗,mD(s

∗)
)
− u(s∗,mN )

)
+
(
Es≥s∗

[
MBb

(
s, tp(s,mN )

)]
−MBb

(
s∗, tp(s

∗,mN )
)) Es≥s∗

[
MLr

(
s, tp(s,mN )

)]
kc′′(mN )− Es≥s∗

[
∂MBb

(
s,tp(s,mN )

)
∂mN

] = 0.

(26)

Which is equivalent to,

Es≥s∗
[
MBb

(
s, tp(s,mN )

)]
−MBb

(
s∗, tp(s

∗,mN )
)

=
(
u
(
s∗,mD(s

∗)
)
− u(s∗,mN )

)kc′′(mN )− Es≥s∗

[
∂MBb

(
s,tp(s,mN )

)
∂mN

]
−Es≥s∗

[
MLr

(
s, tp(s,mN )

)] .

(27)
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With this equation, I reduce the derivative ∂s∗

∂k to the following,

∂s∗

∂k
=

−Es≥s∗
[
MLr

(
s, tp(s,mN )

)]
c′(mN )

∫ s̄
s∗ dF (s)

f(s∗)
(
kc′′(mN )− Es≥s∗

[
∂MBb

(
s,tp(s,mN )

)
∂mN

]) 1(
u
(
s∗,mD(s∗)

)
− u(s∗,mN )

)
∝ 1(

u
(
s∗,mD(s∗)

)
− u(s∗,mN )

) .
The derivative is positive if mD(s

∗) ≤ mN and it is negative if mD(s
∗) > mN .

Similarly, I derive the following derivative by the implicit function theorem,

∂s∗

∂B
= −

∂FN
∂B
∂FN
∂s∗

=
−Es≥s∗

[
ql∆
(
tp(s,mN )

)] ∫ s̄
s∗ dF (s)

f(s∗)
(
Es≥s∗

[
MBb

(
s, tp(s,mN )

)]
−MBb

(
s∗, tp(s∗,mN )

)) .
Apply the result in equation (27), the above partial derivative becomes

∂s∗

∂B
=

−Es≥s∗
[
MLr

(
s, tp(s,mN )

)]
Es≥s∗

[
ql∆
(
tp(s,mN )

)] ∫ s̄
s∗ dF (s)

f(s∗)
(
kc′′(mN )− Es≥s∗

[
∂MBb

(
s,tp(s,mN )

)
∂mN

]) −1(
u
(
s∗,mD(s∗)

)
− u(s∗,mN )

)
∝ −1(

u
(
s∗,mD(s∗)

)
− u(s∗,mN )

) .
The derivative is negative if mD(s

∗) ≤ mN and it is positive if mD(s
∗) > mN .
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B Cost of inefficiencies

In this appendix, I derive the regulator’s optimal disclosure policy assuming that the bank’s

asset should be liquidated ex ante. That is, I replace Assumption 1 by the following

Assumption B.1. The bank’s asset is ex ante worth liquidating: Eω

[
x(s, ω)

]
∈ [qlx(

¯
s, ωl), 0]

for s ∈ [
¯
s, s̄].

For given bank’s report t with conjectured manipulation level m̂ and the signal s, the reg-

ulator’s pass/fail decision still follows equation (4). As in Lemma 1, the regulator’s pass/fail

decision is characterized by a cutoff rule on the bank’s report t. That is, the regulator passes

the bank if and only if the bank’s report t is higher than the threshold tp(s, m̂).

Lemma B.1. For given level of manipulation m, the passing threshold tp(s,m) is decreasing in

s. For given signal s, the passing threshold is increasing in m.

Proof. The proof follows the proof of Lemma 2. The only difference is that Assumption B.1

assumes that qhx(s, ωh) + qlx(s, ωl) < 0. This assumption implies that ∂tp
∂m in equation (16) is

positive.

Compared to Lemma 2, the effect of the signal s on the regulator’s choice of the pass-

ing threshold remains unchanged. However, the effect of manipulation is the opposite due to

Assumption B.1, which assumes that inefficient continuation is more costly than inefficient liq-

uidation. Despite the bank’s manipulation still increasing the report similarity between low

and high fundamental asset, the regulator is more concerned about the inefficient continuation.

Hence, when the regulator is facing a report that is less informative, the regulator would raise

the passing threshold in order to avoid inefficient continuation.

The regulator’s choice of passing threshold determines the difference in passing probability

between low and high fundamental asset ∆
(
tp(s,m)

)
. The following lemma shows that this

difference in passing probability becomes larger as the signal increases.

Lemma B.2. For given manipulation level m, ∆
(
tp(s,m)

)
is increasing in s.

Proof. The proof is similar to the proof of Lemma 3. The only difference is that Assumption

B.1 implies that qhx(s, ωh) ≤ −qlx(s, ωl) for all s. As a result, the ratio r
(
tp(s,m)

)
is less than

1, which then implies that ∆
(
tp(s,m)

)
is increasing in s.

Anticipating the regulator’s pass/fail decision, the bank chooses the manipulation level. The

bank’s manipulation choice depends on whether the regulator discloses the regulatory signal s.
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Proposition B.1. When s is disclosed, the level of manipulation mD(s) is unique and it is

increasing in s for all s. When s is not disclosed, the level of manipulation mNn is unique and

it is a constant over s for s ∈ Nn.

Recall that when the bank observes the signal s, its manipulation incentive is determined

by the increases in the passing probability after manipulation ∆
(
tp(s,m)

)
and the gain from

passing the test with the low fundamental asset ql
(
x(s, ωl)+B

)
. As the signal s increases, both

forces become stronger, leading the bank to manipulate more. When the bank does not observe

the signal s, its manipulation choice is a constant over the signals in Nn.

Similar to Proposition 3, the following proposition compares the expected manipulation level

under different disclosure policies.

Proposition B.2. Es

[
mD(s)|s ∈ N

]
≤ mN for any N ⊆ S.

Proof. The proof follows the proof of Proposition 3 when mD(s) is increasing in s.

This result states that the disclosure of regulatory signal reduces the expected manipulation

level across signals. The rationale for this result is rooted in the interactions between the bank’s

manipulation choice and the regulator’s passing threshold choice when the signal s is disclosed.

As manipulation increases with the signal s, the regulator increases the passing threshold tp(s,m)

according to Lemma B.1. This response of the passing threshold reduces the bank’s passing

probability, and, more importantly, narrows the difference in passing probability between the

high and low fundamental asset, decreasing the bank’s manipulation incentive. In the absence

of the disclosure of the signal s, such interactions between the bank’s manipulation choice and

the regulator’s passing threshold choice are muted. Hence, the expected manipulation level is

lower when s is disclosed. The same rationale also forms the basis for Proposition 3.

I now analyze the regulator’s disclosure policy about the regulatory signal s. Similar

to Lemma 4, I derive how the regulator’s marginal loss caused by the bank’s manipulation,

MLr

(
s, tp(s,m

∗)
)
, changes with the signal s.

Lemma B.3. If the following condition holds,

d

ds

 d∆
(
s,tp(s,m∗)

)
ds

∆
(
s, tp(s,m∗)

)
 ≤ 0, (28)

then MLr

(
s, tp(s,m

∗)
)

is decreasing in s for s < sr and increasing in s for s > sr, where

m∗ = {mD(s),mNn} and sr ∈ (
¯
s, s̄) is the unique solution for

dMLr

(
s,tp(s,m∗)

)
ds = 0.
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Proof. The derivative of MLr

(
s, tp(s,m

∗)
)

with respect to s is given by the following,

dMLr

(
s, tp(s,m

∗)
)

ds
= ql

(
x(s, ωl)

d∆
(
s, tp(s,m

∗)
)

ds
+∆

(
s, tp(s,m

∗)
)dx(s, ωl)

ds

)
.

When s =
¯
s, Assumption B.1 assumes that x(

¯
s, ωh) = 0. According to equation (14), the

passing threshold is tp(
¯
s,m∗)

)
= t̄ which implies that ∆

(
tp(

¯
s,m∗)

)
= 0, hence, the derivative

dMLr

(
s,tp(s,m∗)

)
ds is

dMLr

(
s, tp(s,m

∗)
)

ds

∣∣∣∣∣
s=

¯
s

= qlx(
¯
s, ωl)

d∆
(
s, tp(s,m

∗)
)

ds

∣∣∣∣∣
s=

¯
s

< 0.

When s = s̄, Assumption B.1 implies that x(s̄, ωh)qh + x(s̄, ωl)ql = 0. According to equation

(14), the passing threshold satisfies r
(
tp(s̄,m

∗) = 1, which implies that
d∆
(
s,tp(s,m∗)

)
ds

∣∣∣∣
s=s̄

= 0.

Hence, the derivative
dMLr

(
s,tp(s,m∗)

)
ds is

dMLr

(
s, tp(s,m

∗)
)

ds

∣∣∣∣∣
s=s̄

= ql∆
(
s̄, tp(s̄,m

∗)
)dx(s, ωl)

ds

∣∣∣∣
s=s̄

> 0.

By the intermediate value theorem,
dMLr

(
s,tp(s,m∗)

)
ds = 0 must hold at some value of s ∈ (

¯
s, s̄).

Next, I show that
dMLr

(
s,tp(s,m∗)

)
ds = 0 is unique at s = sr. When

dMLr

(
s,tp(s,m∗)

)
ds = 0, the

following equation holds,

x(s, ωl)
d∆
(
s, tp(s,m

∗)
)

ds
+∆

(
s, tp(s,m

∗)
)dx(s, ωl)

ds
= 0.

This is equivalent to
d∆
(
s,tp(s,m∗)

)
ds

∆
(
s, tp(s,m∗)

) = −
dx(s,ωl)

ds

x(s, ωl)
.

The left-hand side is positive for s ∈ (
¯
s, s̄). In addition, the condition in equation (28) ensures

that it is weakly decreasing in s. The right-hand side is also positive for s ∈ (
¯
s, s̄). And

the assumption that x(s,ωl)
x(s,ωh)

is weakly log-concave in s implies that x(s, ωl) is also weakly log-

concave.14 Hence, the right-hand side is weakly increasing in s. As a result,
dMLr

(
s,tp(s,m∗)

)
ds = 0

is unique and the solution is denoted as sr.

This result shows that under certain condition, the regulator’s marginal loss from manipu-

lation has U-shape. That is, the marginal loss MLr

(
s, tp(s,m

∗)
)

first decreases in s and then

14I provide the proof of this statement in the following. The weakly log-concavity of x(s,ωl)
x(s,ωh)

implies
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increases in s. The condition in equation (28) means that ∆
(
s, tp(s,m)

)
is weakly log-concave

in s which ensures that ∆
(
s, tp(s,m)

)
is not too convex in s.

Following the intuition of Proposition 4, the optimal disclosure policy should minimize the

part of the regulator’s loss that cannot be controlled by the optimal pass/fail decision. For given

level of manipulation, the disclosure policy should allocate less manipulation to cases where the

regulator is more susceptible to it. In addition, the optimal disclosure policy should minimize

the expected level of manipulation. To fix the idea, I decompose the regulator’s ex ante utility

difference between disclosure UD and no disclosure UN for a given set of signals S′,

UD − UN =

∫
S′

(
u
(
s,mD(s)

)
− u(s,mN )

)
dF (s)

=

∫
S′

(
mD(s)−mN

)
MLr

(
s, tp

(
s,m(s)

))
dF (s)

=Es∈S′

[
mD(s)MLr

(
s, tp

(
s,m(s)

))]
−mN Es∈S′

[
MLr

(
s, tp

(
s,m(s)

))]
=Es∈S′

[
mD(s)MLr

(
s, tp

(
s,m(s)

))]
− Es∈S′

[
mD(s)

]
Es∈S′

[
MLr

(
s, tp

(
s,m(s)

))]
+ Es∈S′

[
mD(s)

]
Es∈S′

[
MLr

(
s, tp

(
s,m(s)

))]
−mN Es∈S′

[
MLr

(
s, tp

(
s,m(s)

))]
=Es∈S′

[
mD(s)MLr

(
s, tp

(
s,m(s)

))]
− Es∈S′

[
mD(s)

]
Es∈S′

[
MLr

(
s, tp

(
s,m(s)

))]
︸ ︷︷ ︸

Distribution effect

+
(
Es∈S′

[
mD(s)

]
−mN

)
Es∈S′

[
MLr

(
s, tp

(
s,m(s)

))]
︸ ︷︷ ︸

Expected level effect

Where mN is the bank’s manipulation response when N = S′ and m(s) is the manipulation

level that satisfies the mean value theorem. This decomposition shows the two effects of the

disclosure of regulatory signal s on the regulator’s ex ante payoff. The first two terms capture

the "distribution effect", which measures the extent to which disclosure can allocate more ma-

nipulation to cases where the regulator suffers less from it. The last two terms are the "expected

that
(

x(s,ωl)
x(s,ωh)

)/
d

x(s,ωl)

x(s,ωh)

ds is weakly increasing in s.

d

 x(s, ωl)

x(s, ωh)

/
d x(s,ωl)
x(s,ωh)

ds

/ ds

=

(
x(s, ωh)

)2((dx(s,ωl)
ds

)2
− x(s, ωl)

d2x(s,ωl)
ds2

)
−
(
x(s, ωl)

)2((dx(s,ωh)
ds

)2
− x(s, ωh)

d2x(s,ωh)
ds2

)
(
x(s, ωl)

dx(s,ωh)
ds − x(s, ωh)

dx(s,ωl)
ds

)2 ≥ 0.

Given that x(s, ωh) > 0 for all s and it is weakly concave in s, it holds that x(s, ωh) is log-concave in

s. Hence, the term
(

dx(s,ωh)
ds

)2
− x(s, ωh)

d2x(s,ωh)
ds2 is positive. Consequently, the non-negative derivative

above implies that
(

dx(s,ωl)
ds

)2
− x(s, ωl)

d2x(s,ωl)
ds2 must be non-negative, which proves that x(s, ωl) is

weakly log-concave in s.
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level effect", which captures the impact of disclosure on the expected level of manipulation.

The following proposition characterizes the optimal disclosure policy. It shows that the optimal

disclosure policy still follows a single cutoff rule.

Proposition B.3. Suppose that condition (28) holds. The optimal disclosure policy follows a

cutoff rule where D = (s∗, s̄] and N = [
¯
s, s∗]. That is, the regulator discloses the signal s when

s > s∗ and does not disclose the signal s when s < s∗, where s∗ ∈ [sr, s̄] solves

(
u
(
s∗,mD(s

∗)
)
− u(s∗,mN )

)
f(s∗) =

∂mN

∂s∗

∫ s∗

¯
s

MLr

(
s, tp(s,mN )

)
dF (s). (29)

Proof. A single cutoff disclosure policy is optimal because the regulator’s marginal loss caused

by the bank’s manipulation MLr

(
s, tp(s,m)

)
has U-shape across s. The proof of the optimality

of a cutoff disclosure policy is similar to the proof of Proposition 4, hence, omitted. In what

follows, I solve the optimal cutoff point s∗. The regulator’s ex ante utility with the optimal

disclosure policy is U∗,

U∗ =

∫ s∗

¯
s

u(s,mN )dF (s) +

∫ s̄

s∗
u
(
s,mD(s)

)
dF (s).

Where the optimal cutoff point s∗ solves the following,

(
u(s∗,mN )− u

(
s∗,mD(s

∗)
))

f(s∗) +
∂mN

∂s∗

∫ s∗

¯
s

MLr

(
s, tp(s,mN )

)
dF (s) = 0.

The rationale for the optimality of a cutoff disclosure policy is similar to that of Proposition

4. Disclosing the signal s benefits the regulator when the bank’s manipulation strategy features

reducing manipulation in cases where the regulator is more vulnerable to it. Proposition B.1

shows that as s increases, the bank manipulates more. Additionally, Lemma B.3 indicates that

for relatively high values of s, the regulator is less susceptible to manipulation as s increases.

Consequently, disclosing s may benefit the regulator when s exceeds a certain threshold, i.e,

s ≥ sr. No disclosure at all may be optimal, provided that the expected level of manipulation

in this case is sufficiently low.
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C Real activity

In this appendix, I discuss an extension in which the bank exerts costly effort to improve the

fundamental of the asset, and such effort is reflected in the bank’s report. Although, similar to

the baseline model, the bank is able to improve the report in the sense of first-order stochastic

dominance, such improvement in report arises endogenously from the improvement in the asset’s

fundamental. As a result, the disclosure of the regulatory information now affects the real activity

of the bank, i.e., effort choice. The purpose of this extension is to show that full disclosure may

be optimal when the bank’s effort improves the asset’s fundamental value.

The model is as follows. Suppose that the bank can exert effort m to improve the fundamental

of the asset. To keep the notation consistent, I continue to use m to denote the bank’s effort.

The effort m determines the probability that the asset’s fundamental value is ωh. That is, when

the bank exerts effort m and the regulator’s signal is s, the relative gain from continuing the

asset is x(s, ωh) with probability m and x(s, ωl) with probability 1−m.

The fundamental of the asset determines the report distribution in the same way as in the

baseline model. That is, the report t is drawn from a distribution with density gi(t) when the

fundamental is ωi, where i = {h, l}. Since the bank’s effort determines the asset fundamental,

it also determines the report distribution. With effort m, the bank’s report distribution is gh(t)

with probability m and gl(t) with probability 1 − m. Notice that Assumption 1 no longer

holds, since the expected relative gain from continuing the asset for given s is now endogenously

determined by the bank’s effort. I assume that x(s, ωl) ≤ x(s̄, ωl) ≡ 0 and x(s, ωh) ≥ x(
¯
s, ωh) ≡

0. All other elements of the model remain the same as in Section 2. The following analysis

focuses on how the regulator should disclose the regulatory signal to affect the bank’s effort

choice. I solve the model backwards.

After observing the signal s and the bank’s report t, the regulator’s pass/fail decision remains

the same as in the baseline model. The regulator passes the bank if and only if the expected

gain from passing the bank exceeds that from failing the bank. That is,

Eω[x(s, ω)|t, m̂] ≥ 0.

Where m̂ is the regulator’s conjecture about the bank’s effort. The conditional expectation is

Eω[x(s, ω)|t, m̂] = x(s, ωh) Pr(ω = ωh|t, m̂) + xm̂(s, ωl) Pr(ω = ωl|t, m̂)

= x(s, ωh)
m̂gh(t)

m̂gh(t) + (1− m̂)gl(t)
+ x(s, ωl)

(1− m̂)gl(t)

m̂gh(t) + (1− m̂)gl(t)
.
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The pass/fail decision still features a threshold tp(s, m̂) on the bank’s report. The bank passes

the test if and only if the report t satisfies t ≥ tp(s, m̂). The passing threshold tp(s, m̂) solves

Eω[x(s, ω)|tp, m̂] = 0, which indicates that the regulator is indifferent between passing and failing

the bank when the bank’s report is tp(s, m̂).

Lemma C.1. For given level of effort m, the passing threshold tp(s,m) is decreasing in s. For

given signal s, the passing threshold tp(s,m) is decreasing in m.

Proof. The proof is similar to the proof of Lemma 2. The regulator chooses the passing threshold

based on the signal s and the conjecture about the bank’s manipulation m̂. I drop the ·̂ for

simplicity. The passing threshold is determined by

Eω[x(s, ω)|tp,m] = x(s, ωh)
mgh(tp)

mgh(tp) + (1−m)gl(tp)
+ x(s, ωl)

(1−m)gl(tp)

mgh(tp) + (1−m)gl(tp)
= 0.

Since the density function gl(t) and gh(t) have full support, the condition reduces to

x(s, ωh)mgh(tp) + x(s, ωl)(1−m)gl(tp) = 0.

This is equivalent to

x(s, ωh)m+ x(s, ωl)(1−m)r(tp) = 0.

Apply implicit function theorem, I derive the following two partial derivatives.

∂tp
∂s

= −
m
(
x(s, ωl)

dx(s,ωh)
ds − x(s, ωh)

dx(s,ωl)
ds

)
(1−m)

(
x(s, ωl)

)2
r′(tp)

.

Where r′(tp) is the derivative of r(tp) with respect to tp and it is negative. Given that the

relative gain from continuing the asset x(s, ωl) and x(s, ωh) are increasing in s, this derivative

is negative.

And the following is the partial derivative of tp with respect to m,

∂tp
∂m

= − x(s, ωh)

(1−m)2x(s, ωl)r′(tp)
.

This derivative is non-positive and it equals to zero only when s =
¯
s.

This result echoes to Lemma 2. The explanation for the first result is the same as in Lemma

2. However, the effect of effort is different from that of manipulation. Effort improves the relative

gain from continuing the asset x(s, ω), which endogenously increases relative cost of inefficient
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liquidation. Consequently, the regulator decreases the passing threshold to pass the bank more

often.

Anticipating the regulator’s pass/fail decision, the bank chooses the effort level. Suppose

that the bank observes the regulator’s private signal s. The bank’s payoff is

V (s, m̂,m) = m
(
x(s, ωh)+B

) ∫
t≥tp(s,m̂)

gh(t)dt+(1−m)
(
x(s, ωl)+B

) ∫
t≥tp(s,m̂)

gl(t)dt−kc(m).

The first-order condition with respect to m determines the bank’s effort choice. In equilibrium,

the regulator’s conjecture about the effort is consistent with the bank’s choice. Hence, the

equilibrium effort mD(s) is determined by

(
x(s, ωh)+B

) ∫
t≥tp
(
s,mD(s)

) gh(t)dt−(x(s, ωl)+B
) ∫

t≥tp
(
s,mD(s)

) gl(t)dt−kc′
(
mD(s)

)
= 0. (30)

The first two terms are the bank’s marginal benefit of exerting effort. I modify the definition of

MBb in equation (8) to the following

MBb

(
s, tp(s,m)

)
≡
(
x(s, ωh) +B

) ∫
t≥tp(s,m)

gh(t)dt−
(
x(s, ωl) +B

) ∫
t≥tp(s,m)

gl(t)dt

=
(
x(s, ωh)− x(s, ωl)

) ∫
t≥tp(s,m)

gh(t)dt+
(
x(s, ωl) +B

)
∆
(
tp(s,m)

)
.

(31)

Where ∆
(
tp(s,m)

)
is defined in equation (5) and it captures the difference in the passing

probability between the low and high fundamental asset. The first term of MBb,
(
x(s, ωh) −

x(s, ωl)
) ∫

t≥tp(s,m) g
h(t)dt, is the bank’s gain from improving the asset’s fundamental from low

to high, provided that the bank passes the test. This term captures the effect of effort on the

relative gain from holding the asset. The second term,
(
x(s, ωl) +B

)
∆
(
tp(s,m)

)
, is identical to

equation (8) and it captures the bank’s gain from having the low fundamental asset pass the test

after the effort makes its report resemble that of the high fundamental asset. This term captures

the effect of effort on the bank’s report. This effect is identical to the effect of manipulation in

the baseline model.

Lemma C.2. For given signal s, if

(
x(s, ωh)− x(s, ωl)

)
gh(

¯
t) ≥

(
x(s, ωl) +B

)(
gl(

¯
t)− gh(

¯
t)
)
, (32)

then MBb

(
s, tp(s,m)

)
is increasing in m. Otherwise, MBb

(
s, tp(s,m)

)
is increasing in m for

m < mr(s) and it is decreasing in m for m > mr(s), where mr(s) solves
∂MBb

(
s,tp(s,m)

)
∂m = 0.
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Proof. Take partial derivative of MBb

(
s, tp(s,m)

)
with respect to m, I obtain the following

∂MBb

(
s, tp(s,m)

)
∂m

=
(
−
(
x(s, ωh)− x(s, ωl)

)
gh(tp) +

(
x(s, ωl) +B

)(
gl(tp)− gh(tp)

))∂tp(s,m)

∂m

=
(
−
(
x(s, ωh)− x(s, ωl)

)
+
(
x(s, ωl) +B

)(
r(tp)− 1

))
gh(tp)

∂tp(s,m)

∂m
.

If condition (32) holds, then the following also holds

−
(
x(s, ωh)− x(s, ωl)

)
+
(
x(s, ωl) +B

)(
r(
¯
t)− 1

)
≤ 0.

Since the ratio r(t) ≡ gl(t)
gh(t)

is decreasing in t, the following also holds for all tp ≥
¯
t,

−
(
x(s, ωh)− x(s, ωl)

)
+
(
x(s, ωl) +B

)(
r(tp)− 1

)
≤ −

(
x(s, ωh)− x(s, ωl)

)
+
(
x(s, ωl) +B

)(
r(
¯
t)− 1

)
≤ 0.

Together with the result that ∂tp(s,m)
∂m is negative, this implies that

∂MBb

(
s,tp(s,m)

)
∂m is positive,

suggesting that MBb

(
s, tp(s,m)

)
is increasing in m in this case.

If condition (32) does not hold, then I show that
∂MBb

(
s,tp(s,m)

)
∂m = 0 has a unique solution.

Since r(tp) is decreasing in tp and tp(s,m) is decreasing in m, the first term in
∂MBb

(
s,tp(s,m)

)
∂m

is monotonically increasing in m, i.e., −
(
x(s, ωh)− x(s, ωl)

)
+
(
x(s, ωl) +B

)(
r(tp(s,m))− 1

)
is

monotonically increasing in m. When m = 1, the passing threshold is tp(s, 1) =
¯
t. As a result,

−
(
x(s, ωh) − x(s, ωl)

)
+
(
x(s, ωl) + B

)(
r(
¯
t) − 1

)
> 0 when m = 1. When m = 0, the passing

threshold is tp(s, 0) = t̄. Since r(t̄) < 1 holds, it implies that −
(
x(s, ωh)−x(s, ωl)

)
+
(
x(s, ωl)+

B
)(
r(t̄)−1

)
< 0. Hence, by the intermediate value theorem, the solution for

∂MBb

(
s,tp(s,m)

)
∂m = 0

exists. Moreover, since −
(
x(s, ωh)− x(s, ωl)

)
+
(
x(s, ωl) +B

)(
r(tp(s,m))− 1

)
is monotonically

increasing in m, the solution is unique. I denote the unique solution for
∂MBb

(
s,tp(s,m)

)
∂m = 0

as mr(s). For m < mr(s), the marginal benefit MBb

(
s, tp(s,m)

)
is increasing in m. And for

m > mr(s), the marginal benefit MBb

(
s, tp(s,m)

)
is decreasing in m.

This result shows that the bank’s marginal benefit of exerting effort is nonmonotonic in

the level of effort m. The intuition is as follows. The first component of MBb

(
s, tp(s,m)

)
is(

x(s, ωh)−x(s, ωl)
) ∫

t≥tp(s,m) g
h(t)dt, and it represents the bank’s gain from improving the asset

fundamentals. As the effort m increases, the bank is more likely to have the high fundamental

asset. In response, the regulator passes the bank more often by lowering the passing threshold.
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Consequently, the first term
(
x(s, ωh)−x(s, ωl)

) ∫
t≥tp(s,m) g

h(t)dt is increasing in the amount of

effort, incentivizing the bank to exert more effort. This term captures the bank’s incentive to

exert effort to improve the fundamental of the asset.

However, the second component
(
x(s, ωl) +B

)
∆
(
tp(s,m)

)
may decrease with the effort m,

depending on how ∆
(
tp(s,m)

)
changes with m. Lemma C.1 shows that the passing threshold

tp(s,m) is decreasing in effort m, meaning that the bank is more likely to pass the test when

exerting more effort. When the level of effort is very low (high), the regulator will set the passing

threshold very high (low) which makes the bank less (more) likely to pass the test regardless of the

fundamental of the asset. In such cases, the difference in the passing probability between the low

and high fundamental asset is small. When the level of effort is intermediate, the regulator will

set the passing threshold at an intermediate level which makes the passing probability depend

crucially on the fundamental of the asset. Hence, the difference in the passing probability

between the low and high fundamental asset ∆
(
tp(s,m)

)
is first increasing and then decreasing

in the effort level m, which then makes the term
(
x(s, ωl) + B

)
∆
(
tp(s,m)

)
follow the same

pattern. This term captures the bank’s incentive to exert effort only when it leads to higher

probability of passing the test for the low fundamental asset.

The condition (32) captures the cases when the bank’s effort choice is solely driven by the first

component. This condition depends on the bank’s private benefit of passing the test. When the

private benefit B is relatively small, the first effect ("improving the asset fundamental") always

dominates the second effect ("improving the report") and determines the bank’s effort choice.

One implications of Lemma C.2 is that the first-order condition in equation (30) may be

nonmonotonic in m, hence, the interior solution of mD(s) may not exist and the solution of

mD(s) may not be unique. One sufficient condition for the interior solution of mD(s) to exist is

x(s, ωh)− x(s, ωl) < kc′(1), ∀s. (33)

This condition means that the effort is costly such that the bank does not have incentive to

improve the fundamental to x(s, ωh). In the following analyses, I assume this condition holds.

To avoid having multiple equilibria for the effort mD(s), I also assume that the bank chooses

the highest effort level when it is indifferent. The solution mD(s) must satisfy the second order

condition.

For the purpose of this extension, I focus on the case when condition (32) is satisfied for all

s.

Proposition C.1. When s is disclosed, the effort level mD(s) is increasing in s if condition
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(32) holds for all s.

Proof. Apply the implicit function theorem to the first-order condition of mD(s), I obtain the

following

∂mD

∂s
= −

∂MBb

(
s,tp(s,mD)

)
∂s

∂MBb

(
s,tp(s,mD)

)
∂mD

− kc′′(mD)

∝
∂MBb

(
s, tp(s,mD)

)
∂s

.

Where the derivative
∂MBb

(
s,tp(s,mD)

)
∂s is as follows. I drop the arguments for tp when no confu-

sion is caused.

∂MBb(s, tp)

∂s
=
dx(s, ωh)

ds

(
1−Gh(tp)

)
− dx(s, ωl)

ds

(
1−Gl(tp)

)
+
(
−
(
x(s, ωh)− x(s, ωl)

)
+
(
x(s, ωl) +B

)(
r(tp)− 1

))
gh(tp)

∂tp(s,m)

∂s
.

When condition (32) holds for all s, the following also holds for all tp ≥
¯
t,

−
(
x(s, ωh)− x(s, ωl)

)
+
(
x(s, ωl) +B

)(
r(tp)− 1

)
≤ −

(
x(s, ωh)− x(s, ωl)

)
+
(
x(s, ωl) +B

)(
r(
¯
t)− 1

)
≤ 0.

Since dx(s,ωh)
ds ≥ dx(s,ωl)

ds and ∂tp(s,m)
∂s < 0, the derivative ∂MBb(s,tp)

∂s is positive for all s. Hence,
∂mD(s)

∂s is positive for all s.

Now consider the effort choice when the bank does not observe the regulator’s signal s. The

equilibrium effort mN solves,

Es

[
MBb

(
s, tp(s,mNn)

)∣∣ s ∈ Nn

]
− kc′(mNn) = 0. (34)

The effort mN is unique and it is a constant over the regulator’s signal s.

Proposition C.2. When s is not disclosed, the effort level mNn is unique and it is a constant

over s for s ∈ Nn.

Proof. The proof is shown in equation (34).

The following proposition compares the expected effort level when the bank observes the

signal with the expected effort level when the bank does not observe the signal.

Proposition C.3. If condition (32) holds for all s, then Es

[
mD(s)|s ∈ N

]
≥ mN for any

N ⊆ S.
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Proof. I omit the proof because it is similar to the proof of Proposition 3.

The intuition is as follows. When condition (32) is satisfied, the effort mD(s) is increasing

in s if s is disclosed. In response, the regulator lowers the passing threshold tp, which makes the

test more lenient regardless of the asset fundamental. Such endogenous response of the passing

threshold has two opposite effects on the bank’s incentive to exert effort. One the one hand,

an easier test allows the bank to pass even without exerting effort, which then decreases the

bank’s incentive to exert effort. On the other hand, an easier test increases the likelihood that

the bank’s effort is realized, i.e., the bank passes the test after increasing the asset fundamental.

This effect increases the bank’s incentive to exert effort. Notice that this second effect is missing

in the baseline model. Depending on the magnitude of the two forces, the bank may increase

or decrease effort. When condition (32) holds, the second effect dominates. As a result, the

interactions between the regulator’s pass/fail decision and the bank’s effort choice increase the

expected level of effort, compared to the case when such interactions are absent, i.e., when s is

not disclosed.

Consider the regulator’s disclosure policy. For given signal s and equilibrium effort m∗, the

regulator’s payoff is

u(s,m∗) =

∫
t≥tp(s,m∗)

Eω[x(s, ω)|t,m∗]gm∗(t)dt

= m∗x(s, ωh)

∫
t≥tp(s,m∗)

gh(t)dt+ (1−m∗)x(s, ωl)

∫
t≥tp(s,m∗)

gl(t)dt.

Where gm∗(t) is the unconditional distribution of report t when the bank’s effort is m∗. That

is,

gm∗(t) = m∗gh(t) + (1−m∗)gl(t).

Taking derivative of u(s,m) with respect to m, I obtain the marginal effect of the bank’s effort

on the regulator. I modify the definition of MLr in equation (11) to the following,

MLr

(
s, tp(s,m)

)
≡ x(s, ωh)

∫
t≥tp(s,m)

gh(t)dt− x(s, ωl)

∫
t≥tp(s,m)

gl(t)dt

=
(
x(s, ωh)− x(s, ωl)

) ∫
t≥tp(s,m)

gh(t)dt+ x(s, ωl)∆
(
tp(s,m)

)
.

Lemma C.3. If condition (32) holds for all s, then for any disclosure set D or no-disclosure

set Nn, MLr

(
s, tp(s,m

∗)
)

is increasing in s for m∗ = {mD(s),mNn}.
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Proof. For given m, the derivative of MLr

(
s, tp(s,m)

)
with respect to s is

∂MLr

(
s, tp(s,m)

)
∂s

=
dx(s, ωh)

ds

(
1−Gh(tp)

)
− dx(s, ωl)

ds

(
1−Gl(tp)

)
−
(
x(s, ωh)g

h(tp)− x(s, ωl)g
l(tp)

)∂tp(s,m)

∂s

> 0.

This derivative is positive because dx(s,ωh)
ds > dx(s,ωl)

ds by assumption. This result implies that
∂MLr

(
s,tp(s,mNn )

)
∂s > 0 for any no-disclosure set Nn.

Next, consider MLr

(
s, tp(s,mD(s))

)
dMLr

(
s, tp

(
s,mD(s)

))
ds

=
dx(s, ωh)

ds

(
1−Gh(tp)

)
− dx(s, ωl)

ds

(
1−Gl(tp)

)
−
(
x(s, ωh)g

h(tp)− x(s, ωl)g
l(tp)

)dtp(s,mD(s)
)

ds
.

Where the total derivative
dtp
(
s,mD(s)

)
ds is

dtp
(
s,mD(s)

)
ds

=
∂tp
(
s,mD(s)

)
∂s

+
∂tp
(
s,mD(s)

)
∂m

∂mD(s)

∂s
.

When condition (32) holds for all s, the derivative ∂mD(s)
∂s is positive. Hence, the total derivative

dtp
(
s,mD(s)

)
ds remains negative. As a result,

dMLr

(
s,tp
(
s,mD(s)

))
ds > 0.

Different from the baseline model, the term MLr is now positive, capturing the regulator’s

marginal benefit from the bank’s effort. Nevertheless, the intuition for the disclosure of s remains

the same. As argued in the baseline model, disclosure is less likely to be optimal when the changes

in effort m and changes in the regulator’s marginal utility change MLr

(
s, tp(s,m

∗)
)

are driven

by the the difference in the passing probability between the low and high fundamental asset

∆(tp(s,m)). This continues to be the case in this extension with effort choice. However, the

presence of effort exertion increases the likelihood of disclosure. This is because the regulator’s

disclosure about the signal s not only informs the bank about the gain from passing the test

but also provides information about the extent to which exerting effort can improve such gain.

Hence, disclosure is more useful to align the interests of the regulator and the bank regarding

when effort is more desirable.

Proposition C.4. If condition (32) holds for all s, the optimal disclosure policy is full disclosure

policy, i.e., D = [
¯
s, s̄].

Proof. The proof follows the proof of Proposition 4.
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