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Abstract

This paper estimates consumption and GDP tail risk dynamics over the long run (1900–
2020). Our predictive approach circumvents the scarcity of large macroeconomic crises by
exploiting a rich information set covering 42 countries. This flexible approach does not
require asset price information and can thus serve as a benchmark to evaluate the empirical
validity of rare disasters models. Our estimates covary with asset prices and forecast future
stock returns, in line with theory. A calibration disciplined by our estimates supports the
prediction that macroeconomic tail risk drives the equity premium.

JEL: E44, G12, G17
Keywords: rare disasters, equity premium, return predictability

∗We thank Daniel Andrei, Patrick Augustin, Bo Becker, Jules van Binsbergen, Pierre Collin-Dufresne, Ste-
fano Colonnello, George Constantinides, Max Croce, Magnus Dahlquist, Darell Duffie, Leland Farmer, Xavier
Gabaix, Anisha Ghosh, Eric Ghysels, Anisha Ghosh, François Gourio, Daniel Greenwald, Robin Greenwood, Ben-
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for helpful comments. We also benefitted from useful comments from seminar participants at the Columbia Uni-
versity Macro Lunch, the University of Luxembourg, the University of Chile, the University of Venice, Fundação
Getulio Vargas (Rio), McGill University, and the Stockholm School of Economics and conference participants
at the CEPR ESSFM Gerzensee 2017 meeting, the SAFE Asset Pricing Workshop 2017, NFA 2017, the Paris
December 2017 Finance Meeting, the MFA 2018, and the EFA 2020. A previous version of this paper was titled
“The Time-Varying Risk of Macroeconomic Disasters.”

†Collegio Carlo Alberto and ESOMAS, University of Turin, Piazza Arbarello, 8, 10122 Torino, Italy; +39
(011) 15630834; roberto.marfe@carloalberto.org, http://robertomarfe.altervista.org/

‡University of Luxembourg, 6, rue Richard Coudenhove-Kalergi L-1359 Luxembourg, Luxembourg; +352
466644 5824; julien.penasse@uni.lu, https://sites.google.com/view/jpenasse

Electronic copy available at: https://ssrn.com/abstract=2773874



Many puzzles in macro-finance arise from the inability of theories to reconcile asset prices and

macroeconomic risk quantitatively. A classic example is the equity premium puzzle: averaged

stock returns are far too high to be explained by the observed risk in consumption (Mehra

and Prescott, 1985). A potential resolution of these puzzles is that we do not observe the

risk that agents genuinely care about. As shown in Rietz (1988) and Barro (2006), a small

probability of a macroeconomic disaster can greatly increase the equity premium. Models

in which this probability is time varying can generate a volatile equity premium and thus can

rationalize macro-finance puzzles, including excess volatility and predictability puzzles (Gabaix,

2012; Gourio, 2012; Wachter, 2013). The success of rare disaster models to rationalize asset

pricing puzzles unfortunately relies on assumptions that are difficult to test. With standard

preferences, asset prices are very sensitive to tail risk, meaning key parameters are difficult to

pin down without relying on asset price data (Martin, 2013b). The assumption that tail risk is

time-varying only makes matters worse. For these reasons, disaster risk has been described as

“dark matter for economists” (e.g., Campbell, 2017; Cochrane, 2017; Chen et al., 2022).

This paper proposes a simple approach to measuring time-varying macroeconomic tail risk.

Our approach circumvents the scarcity of large macroeconomic crises by making use of a broad

cross-section of countries and by exploiting the informational content of variables that forecast

the lower quantiles of consumption growth. Our approach delivers the time-varying probability

of a large macroeconomic crisis by combining variables according to their ability to forecast the

conditional distribution of consumption growth. We apply this approach to a large international

panel, exploiting a rich information set that includes macroeconomic, political, and financial

variables. We write our probability estimate as macro risk, or π̂ for short. An attractive feature

of our approach is that it does not impose structural assumptions or require the use of asset

price information. This feature allows us to construct macro risk estimates that do not use asset

price data, denoted by π̂−, which we use as a benchmark with which to evaluate the predictions

of rare disasters models. In particular, backing up a time-varying estimate allows us to directly

test whether asset prices covary with macroeconomic tail risk over time.

We estimate π̂ semiparametrically using a two-step approach, similar to Adrian et al. (2019).

First, we forecast the lower quantiles of consumption growth using quantile regressions. The

dependent variable is consumption growth in a given country i between years t and t+ 3. The

right-hand-side variables consist of 18 time-t macroeconomic, war and political, natural disaster,

financial conditions, and asset price predictors. We use this predictor set to forecast the lower

time-t quantiles of consumption growth. To avoid overfitting, the regressions are pooled across

countries and include a penalization that shrinks the coefficient estimates toward zero. Second,
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we interpolate the conditional quantiles to infer the probability of a large macroeconomic crisis,

which we define as a two-standard-deviation drop in consumption below its long-term growth

path. This approach delivers π̂, the probability of a macroeconomic crisis in country i in year

t + 1. (The variant π̂− excludes asset price predictors). Our data set covers 1900 to 2020,

comprising 42 countries.

Figure 1 shows π̂ for the United States. Macro risk mostly varies between 1% and 5%, with

higher levels during the Knickerbocker Crisis, the Great Depression, the two World Wars, the

Korean War, and the Great Recession of 2009. This time variation is the direct result of the

ability of our model to forecast the lower quantiles of consumption growth. The most reliable

predictors include realized recessions at home and in neighboring countries, world growth, wars

and crises abroad, and the U.S. (or world) dividend-price ratio. We find that the forecasting

model performs remarkably well out of sample and could, therefore, be used to predict crises

in real time. Equally importantly, we document redundancy among predictor variables. For

instance, π̂ and π̂− are highly correlated, and we cannot reject that they have equal forecasting

power. Overall, this redundancy is quite robust across predictor categories, which suggests that

the predictor set approximately spans the information set of investors.

Under this spanning condition, π̂ can be interpreted as the rational expectation probability

of a macroeconomic disaster. It thus provides a benchmark from which to evaluate theories in

which macroeconomic tail risk plays a role. In the second part of the paper, we ask whether

macro risk is related to the equity premium. We find that asset prices tend to be low (high

dividend-price ratio) when π̂ is high (corr. = 0.37). By itself, the U.S. dividend-price ratio—a

standard equity premium proxy in the literature (e.g., van Binsbergen and Koijen, 2010)—

captures a lot of information about future crises. A one-standard-deviation increase in the

D/P ratio yields a 2.3% increase in macro risk. One would expect this result if investors were

shunning stocks when macro risk is high, as predicted by rare disasters models. We find similar

results using the equity premium proxy proposed by Martin (2017). Furthermore, macro risk

directly forecasts international stock returns, confirming the link between tail risk and the

equity premium. In contrast, macro risk is only weakly related to future consumption growth,

meaning that our estimates reproduce the well-known disconnect between the equity premium

and consumption. Importantly, these results hold when we estimate macro risk excluding asset

price predictors, which means they are not the mechanical consequence of asset prices forecasting

macroeconomic risk. We also show that predictability by π̂ is distinct from predictability by

realized recession and realized financial crises, which is useful to distinguish rare disaster risk

from competing theories of asset price fluctuations.
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Next, we ask whether rare disaster models help rationalize the equity premium puzzle and

the other patterns we observe in the data. Following the Mehra and Prescott (1985) approach,

we calibrate consumption dynamics in a consumption-based asset pricing model, derive asset

pricing moments, and compare those moments to their empirical counterparts. A benefit of this

approach is that we can work with estimated consumption dynamics that exclude asset price

information, meaning that consumption parameters are not reverse-engineered to fit the asset

pricing data.

We consider a rare disaster model similar to that of Wachter (2013), in which agents have

recursive preferences. Consumption growth follows an exogenous stream, which is subject to rare

disasters that occur with a time-varying probability. The model generates a high and volatile

equity premium and a low risk-free rate under conservative preferences. It can also reproduce

the option volatility skew, the predictability of stock returns, and the lack of predictability

of consumption growth by asset prices that we observe in the data. An alternative dividend

specification documents that time-varying disaster probability is still responsible for a sizable

component of the equity premium and its dynamics, when its imperfect correlation with the

D/P ratio matches that in the actual data. Importantly, our π estimates reveal a moderately

persistent yet volatile disaster probability π. Chen et al. (2022) demonstrates that models like

Wachter (2013), characterized by high persistence and low volatility in disaster probability π,

tend to over-rely on “dark matter.” This over-reliance often leads to reduced internal refutability

and diminished out-of-sample performance. In contrast, our model’s lower persistence and

higher volatility in estimating disaster probability π do not necessitate significant “dark matter,”

resulting in enhanced internal refutability and stronger out-of-sample robustness.

Related literature

This paper draws inspiration from the seminal study of Barro (2006) and the subsequent

literature that uses international macroeconomic data to measure macroeconomic tail risk.

Nakamura et al. (2013) show that a rare disaster model can rationalize the equity premium

even if crises unfold over several years and are followed by economic recoveries. As noted

above, these claims remain controversial because of the high sensitivity of the equity premium

to disaster risk. Indeed, several papers use asset prices to inform disaster risk estimates and

conclude that rare disasters cannot rationalize equity or options prices (e.g., Julliard and Ghosh,

2012; Backus et al., 2011).

This early literature focused on the unconditional properties of macroeconomic tail risk,

which is sufficient to evaluate models in which disaster risk and the equity premium are constant.

In contrast, we are interested in studying the dynamics of macroeconomic tail risk. This is
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important because variation in macroeconomic tail risk can rationalize puzzles related to the

time-series behavior of equity prices. Furthermore, measuring tail risk dynamics is critical to

comparing rare disasters to alternative mechanisms, such as time-varying risk aversion.

The literature has so far used two approaches to measure time-varying tail risk. One ap-

proach consists in using proxy variables that are likely to capture variation in tail risk. Berkman

et al. (2011) follows that route using international political crises to proxy for disaster risk. They

document that increases in the number of international political crises correlate with increases

in the mean and volatility of world stock market returns, consistent with rare disaster models.

A unique feature of their data is that it contains crises that can be precisely dated, which is

ideal for event studies, i.e., to study relative changes in disaster risk. Manela and Moreira

(2017) propose a news implied volatility index encoding information from the title and abstract

of front-page articles published in the Wall Street Journal. They find that a large fraction of the

variation in their index reflects words associated with war and policy, which can be interpreted

as disaster concerns. A drawback of the proxy approach is that it is not best suited to study

disaster risk in levels, because individual proxies do not span the information set of economic

agents. For instances, many macroeconomic crises begin with other crises that are not political

in nature. Another limitation is that proxies are not directly related to consumption, which

means that additional assumptions are needed to evaluate the rare disaster model quantitatively.

An alternative approach consists in extracting tail risk from option prices. Options provide

a hedge against tail events and are thus informative of the disaster concerns of option market

participants. Siriwardane (2015) extracts a jump risk factor from short-term option prices for

a large panel of U.S. firms. He shows that this factor can proxy for variation in the risk-neutral

probability of a macroeconomic disaster. Under stronger assumptions, Barro and Liao (2021)

back out the physical probability of a macroeconomic crisis using implied volatility surfaces for

seven equity market indices. An important limitation of using option prices is that it requires

structural assumptions about investors’ preferences and the joint behavior of the stock markets

and macroeconomic outcomes. In practice, these assumptions imply that option-based estimates

are highly correlated with equity volatility, and thus likely capture market movements unrelated

to macroeconomic tail risk. We indeed show that while volatility forecasts consumption tail risk,

many other variables exhibit incremental forecasting power. Besides, option-based estimates

that impose disaster model assumptions are subject to the critique that they cannot be used to

falsify the very assumptions they are imposing.

Our paper generalizes the use of proxies by combining and weighing candidate proxies ac-

cording to their ability to forecast the lower quantiles of consumption growth. One benefit of
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our approach is that we do not take a stand on whether option prices or other risk proxies

reflect disaster risk. The fact that π̂ varies over time is the direct consequence of these can-

didate proxies forecasting macroeconomic tail risk. As our set of predictive variables includes

a volatility index, our framework can accommodate volatility information without imposing

structural assumptions, and on a much longer time frame. We find that volatility strongly

forecasts macroeconomic risk, consistent with Manela and Moreira (2017) and Barro and Liao

(2021). However, π̂ delivers superior forecasts, reflecting the incremental forecasting power of

the additional predictors in our data set. Consequently, π̂ and volatility indices are positively

but only imperfectly correlated, confirming that stock volatility varies for reasons others than

macroeconomic tail risk. Likewise, the correlation between π̂ and the number of political crises

proposed by Berkman et al. (2011) is only 0.15, reflecting the fact that many variables beyond

political crises forecast tail risk.1

Our paper is also related to the literature concerned with the estimation of rare disaster

models. As noted in Campbell (2017) and Chen et al. (2022), rare disaster models have powerful

effects on asset pricing moments and consequently standard efficient methods that rely exces-

sively on asset pricing restrictions are often fragile. Several recent papers (see, e.g., Hansen

(2008), Julliard and Ghosh (2012), Chen et al. (2022), Cheng et al. (2022)) develop robust

estimation and testing methods to address these difficulties. We use a method of moments ap-

proach that exclusively targets consumption dynamics moments and then calibrate parameters

that are relevant to asset prices. Our estimation approach can be seen as an extreme case of

robust approaches in that it does not rely on asset pricing moments. Chen et al. (2022) show

that such an approach is especially valuable when asset pricing moments provide most of the

identification strength (i.e., when the dark matter measure is large). Our main contribution

to this literature is that we measure π, which allows us to target moments directly related to

π’s dynamics. In other words, our estimations and quantitative analysis jointly help to uncover

the “dark matter” often embedded in time-varying disaster risk models. We seek the param-

eters that match the following moments: mean consumption growth rate; standard deviation

of consumption growth rate; expected number of crises (2-SD events); autocovariance of the

unobserved disaster probability; variance of the unobserved disaster probability; expected dis-

aster size. Our approach uses one moment condition for each parameter. We fit the model

using rescaled international consumption data and the fitted disaster probability. The inference

method does not assume that the disaster probability is observed and explicitly accounts for

estimation error. The method also accounts for time aggregation, since we estimate the model

1The Online Appendix offers a more detailed comparison with the disaster risk index proposed by Berkman
et al. (2011).
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using three-year consumption data.

Measuring and understanding macroeconomic tail risk is critical for policymakers. A recent

literature explores the possible nonlinear relationship between financial and economic conditions.

Giglio et al. (2016) and Adrian et al. (2019) use quantile regressions to estimate the predictive

U.S. GDP growth distribution conditional on measures of financial market distress. Similar

to Adrian et al. (2019), we use quantile regressions to study the properties of international

consumption growth, but our focus is on evaluating rare disaster models of asset prices.

The rest of this paper is organized as follows. Section I presents our data and methodology.

Section II documents the forecastability of the lower quantiles of consumption growth. Section

III presents macro risk estimates and studies the relationship between macro risk and variables,

such as stock returns and macroeconomic growth. Section IV calibrates a rare disaster model

using macro risk dynamics. Section V concludes. An Online Appendix contains additional

results and proofs.

I. Methodology and Data

We begin by presenting our econometric framework. Models of time-varying disaster risk gen-

erally assume that the left tail of consumption growth is driven by a single state variable. This

variable, which we denote macro risk πi,t, is the probability that a given country i experiences a

macroeconomic crisis at time t. As macroeconomic disasters generally unfold slowly over time,

we will primarily work with consumption growth aggregated over multiple years. We write

H-year consumption growth as

∆c
(H)
i,t ≡ ln

(
Ci,t
Ci,t−H

)
, (1)

where Ct is real consumption per capita. A macroeconomic crisis is defined as a 2 standard

deviation (SD) decline in consumption growth from its long-term growth path:

Crisis
(H)
i,t ≡


1, if ∆c

(H)
i,t < mean(∆c

(H)
i,t )− k × SD(∆c

(H)
i,t ).

0, otherwise.

(2)

We define macro risk as the probability of a macroeconomic crisis between times t+1 and t+H,

π
(H)
i,t ≡ Pr(Crisis

(H)
i,t+H = 1|Ii,t), (3)
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where the probability Pr(.|Ii,t) is taken with respect to information Ii,t available to economic

agents at time t.2 In what follows, we mostly use a three-year window (i.e., H = 3). To ease

notations, we drop the horizon superscript whenever there is no ambiguity. We later study the

sensitivity of our empirical results to this baseline definition.

This definition conforms with the approach in the rare disasters literature to define tail

events as declines in consumption (or GDP) that exceed a fixed threshold value. Using a fixed

threshold amounts to treating the long-term growth rate and volatility in normal times as

constant parameters. Variation in πi,t thus summarizes movements in recession risk, which de-

pends on the level, volatility, and higher moments of the growth process. Our approach slightly

departs from the prior literature, which compares consumption peak to its trough to define

macroeconomic disasters. For example, macroeconomic disasters in Barro and Ursúa (2008)

have variable durations, with an average of three and a half years. We define macroeconomic

crises over a fixed window instead since it is better suited to our forecasting framework.

A. Empirical Implementation

In the spirit of Barro (2006) and subsequent literature, we use international data to supple-

ment the relatively small US sample that is commonly used in empirical work. A difficulty is

that average growth rates and standard deviations tend to differ greatly across countries, even

among industrialized ones. To ensure that international series are approximately comparable,

we standardize the data such that consumption growth in each country has mean zero and unit

standard deviation.3 This assumption is similar to Nakamura et al. (2013), where countries

are allowed to have different long-term growth rates and volatilities. We find that the rescaled

consumption series exhibit a distribution that is comparable to the US series. Formally, we

cannot reject that US and non-US series are from the same continuous distribution, using the

two-sample Kolmogorov-Smirnov test (p-value = 0.11).4

A common concern in the rare disaster literature is that macroeconomic crises are so rare

that even pinning down the unconditional probability of a crisis poses an empirical challenge.

In addition to using international data, we gain traction by modeling the entire left tail of

2Remark that Eq. (3) allows for an arbitrary correlation between consumption growth conditioning on Ii,t.
3To ensure we do not use information that is not available in real time, we standardize consumption growth

using a rolling window approach. Using a rolling window ensures that realized crises have similar magnitudes
over the long run. To maximize the sample size, we initially require only 25 years of observations and then rescale
using a 50-year rolling window.

4To further confirm that US and non-US macroeconomic crises capture similar events, we use the multidi-
mensional two-sample Kolmogorov-Smirnov test, as described by Fasano and Franceschini (1987). We examine
whether consumption growth, GDP growth, and the investment rate have statistically indistinguishable joint
distributions, conditional on realized 2-SD crises. Although the test may not be effective due to the sample
imbalance between the US and the rest of the world, we cannot reject that the conditional distributions are
identical (p-value = 0.64).
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consumption growth. Specifically, we work with a set of variables that have predictive power

for the left tail, allowing us to model variation in the conditional distribution of consumption

growth, summarized by π.

Denote a predictor set available to the econometrician as Xi,t. While πi,t is unobservable,

we assume that πi,t, is a function of the information available at time t: πi,t = f(Xi,t) for some

function f. We compute f semiparametrically using quantile regressions, similar to Adrian et al.

(2019). In a first stage, we estimate conditional quantiles covering the left tail of consumption

growth.5 The quantile regression model of Koenker and Bassett (1978) assumes the conditional

quantile of the dependent variable has an affine form. Specifically, we estimate the model

QXi,t (τ |Xi,t) = Xi,tB, (4)

where QXi,t (τ |Xi,t) is a vector of conditional quantiles of three-year consumption growth given

Xi,t, and τ is a set of probabilities covering the interval [0.01, 0.5]. Each column of the matrix B

contains coefficients with respect to each quantile, which are estimated by minimizing the sum of

absolute errors across quantiles. In a second stage, we fit the log-linear function Q̂Xi,t (τ | Xi,t) ≈

gi,t(τ) for each country and year. This gives us an estimate of the probability of a 2-SD crisis

as π̂i,t = g−1
i,t (−2). (Throughout the paper, we use “hats” to denote the empirical counterparts

of the true unobserved values.)

This approach allows efficient use of consumption data since it exploits variation in the

whole left tail and not only very rare events. We also explore an alternative approach where f

takes the form of a standard normal distribution (i.e., f(Xi,t) = Φ(X ′i,t · b) for some vector b. In

that case, we obtain estimates of π by regressing realized crises (2) on the predictor variables

using probit regressions.6

Our goal is that the vector Xi,t approximates as closely as possible the information set Ii,t

of economic agents. We include as many variables as possible while maximizing the sample

coverage over our international sample. While it is impossible to verify that we cast a wide

enough net in terms of predictive variables, we expect Xi,t to encode much more information

than past realizations of consumption. We also expect to observe “decreasing returns to scale”,

such that the forecasting performance of our model is not too sensitive to small changes in the

predictor set.

Overfitting is an immediate difficulty when working with a large number of predictors. To

5The Online Appendix provides further details on the estimation.
6We also use a probit model to construct alternative estimates that distinguish between global crises, like

world wars, and more local crises, thus allowing different crises to be forecasted by different predictors. We
present the results in the Online Appendix.
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circumvent that difficulty, we exploit the panel structure of our data by restricting regression

coefficients to be equal across countries. This implies that each quantile regression features less

than one free parameter per country. While such homogeneity restrictions are unlikely to be

literally true, they lead to more efficient parameter estimates, at the cost of a hopefully small

bias. Pooled regression models are common in the forecasting literature and typically lead to

improved out-of-sample forecasting performance (see, e.g., Garcia-Ferrer et al. (1987), for an

early application to macro data).7

In addition, we also allow for the quantile minimization problem to include a penalty term

to shrink possibly uninformative predictors. We consider penalties based on the L1 and L2

norms, as well as a combination of the two norms. A penalty based on the L1 norm yields the

quantile equivalent of the LASSO estimator (‘least absolute shrinkage selection operator’) of

Tibshirani (1996). As is well known, the LASSO estimator imposes a sparsity assumption in

that it leads some coefficient estimates to be exactly zero for large enough values of the LASSO

parameter. The L2 norm penalty corresponds to the ridge estimator, in which estimates will

almost never be zero exactly. The ridge estimator tends to dominate the LASSO in settings

with many correlated regressors. The combination of the two penalties yields the elastic net

estimator of Zou and Hastie (2005). Whenever we estimate penalized quantile regressions, we

select the penalization parameters using cross-validation. Namely, we slit the sample into ten

parts, fit the model using nine-tenth of the data, and evaluate the model out-of-sample on the

remaining tenth (i.e., ten-fold cross-validation). We select the penalization parameter(s) that

minimize the out-of-sample quantile loss function averaged over the ten subsamples.

B. Consumption and GDP Data

Our consumption and GDP data were initially constructed by Barro and Ursúa (2010). The data

consist of real per capita consumption expenditures and GDP. The sample covers 42 countries,

and for many of these countries the data are available since the early nineteenth century. We

extend the data to the years 2010–2020 using the World Bank’s World Development Indicators.

(The Online Appendix provides details on data sources and the construction of all variables used

in the analysis.) The data span 1870 to 2020 and comprise 25 OECD countries; 14 countries

from Latin America and Asia; and Egypt, Russia, and South Africa.

Figure 2 gives an overview of the tail events occurring over our sample. The figure shows

a heatmap of negative realizations of consumption growth below −0.5 SD. Small black dots

7The Online Appendix presents a variant in which we relax the homogeneity restrictions for the quantile
loadings on global variables. We show that the corresponding macro estimates remain strongly correlated to the
baseline π̂ (correlation = 0.86). However, this model sharply underperforms out-of-sample, even when overfitting
is accounted for using penalized regressions.
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represent data unavailability, and grey circles represent 2-SD macroeconomic crisis years (see

the Online Appendix for a list of the crises). Data coverage begins at various times across

countries but is generally continuous once it starts, except for Austria, Singapore, and Malaysia.

We do not interpolate missing observations, although our results are unaffected when we do so.

We observe an apparent clustering of tail events, particularly around the two world wars, the

GFC, and the Covid-19 crisis.

Our baseline crisis definition (2) identifies a large macroeconomic crisis as a decline in the

log consumption two SD below a country’s long-term growth rate. This definition yields 156

crisis years, corresponding to a crisis frequency of 4.1%, which is similar to the 3.6% disaster

frequency reported in Barro and Ursúa (2008). Realized crises are more common in the prewar

period. The United States is a prime example, having experienced several macroeconomic crises,

predominantly in the prewar years (1918–1919; 1930–1931; 2007–2008). Over the sample, the

United States was statistically just as likely as any other country to face a macroeconomic crisis.

Note that the consumption series might be less reliable at the beginning of the sample,

despite the rigorous precautions employed by Barro and Ursúa (2008) and others in assembling

the data. A possible concern therefore is that measurement errors may lead us to exaggerate

tail risk predictability. To see if measurement errors artificially inflate crisis persistence in the

data, we test if realized crises are less autocorrelated after 1945. Reassuringly, Online Appendix

Table A.VII shows that the autocorrelation of crises has not changed after 1945. This indicates

that measurement errors are unlikely to exaggerate crisis predictability.

C. Predictive Variables

We assemble a relatively large annual data set of predictor variables spanning 1900 to 2020.

We group the variables into five categories: macroeconomic; war and political; natural disas-

ter; financial conditions; and asset prices. Table I gives an overview of our sample. We select

variables based on their availability of comparable data for all countries over the most extended

sample available. Many of these variables are binary indicators encoding recessions and other

non-macro crises such as wars and banking crises. These variables naturally capture the possi-

bility that macroeconomic risk increases during periods of stress. For instance, it is generally

accepted that volatility is higher during recessions. Beyond volatility, including a recession indi-

cator allows for capturing the possibility that macroeconomic risk increases during a recession.

A limitation of the data is the potential for look-ahead bias in events such as wars, civil wars,

political crises, and natural disasters. This issue stems from the difficulty agents may face in

recognizing the onset of major upheavals as they unfold in real time. To address this, we delay
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the start of such crises by one year. Additionally, crises in our sample typically span multiple

years, meaning a crisis event in our data usually corresponds to an event that has been ongoing

for at least one year. In the Online Appendix, we investigate an alternative approach where

we substitute crisis indicators with predicted probabilities, calculated in a first step. These

predicted probabilities prove to be very persistent, resulting in a high correlation with the crisis

indicators. Consequently, this alternative approach yields results similar to our original method.

The Online Appendix provides further details.

Macroeconomic predictors

Our sample of macro predictors is aimed at capturing the serial and spatial correlation

in macroeconomic risk. “Recession” is a variable equal to one when a country experienced a

negative growth rate in a given year. Recession events are quite frequent; Table I indicates that

28.20% of country-years are in a recession on average. “Recession abroad” captures the possible

transmission of the realization of a foreign recession. It is constructed as a distance-weighted

average of the recessions that occurred abroad:

Recession abroadi,t =
∑
j 6=i

d−1
j,t Recessionj,t, (5)

where dj,t measures the geographic distance between countries, normalized such that
∑

j 6=i d
−1
j,t =

1, for all j. We also include predictors based on past consumption growth rates and a “world”

growth rate constructed by GDP-weighting consumption growth for the countries in the sample

with available data.

War and Political Predictors

We create three variables encoding wars, civil wars, and political crises, primarily obtained

from Sarkees and Wayman (2010) and the Center for Systemic Peace (CSP). Our wars and civil

wars data consist of armed conflicts that resulted in deaths in battle. We define political crises

as events of power disruption (e.g., a military coup), as well as periods of political instability

(e.g., a country under occupation by a foreign power). We also construct a variable capturing

foreign wars and political crises as in Eq. (5), where Recession is replaced by a variable equal to

one whenever a foreign country enters into one of the three above-mentioned crises. With the

exception of coups and similar events, these data describe spells that typically last for several

years. Though defined based on systematically recorded crisis events, they might inadvertently

contain a hindsight bias, giving the econometrician information that is only available ex-post.

We thus delay the beginning of these crises by one year.
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Natural Disaster Predictors

We create two variables capturing natural disasters. A “natural disaster” indicator equals

one when a major earthquake, tsunami, or volcano eruption occurs in a given country. We focus

on disasters that reached the highest grade in event classifications from the National Centers for

Environmental Information. We also set our “natural disaster” indicator to one for all countries

during the years corresponding to the Great Influenza Epidemic (1919-1920). (We forecast

consumption growth up to 2020 using predictors up to 2017; this approach thus excludes the

Covid-19 pandemic from the predictor data.) We also construct an indicator variable capturing

the most devastating famines that occurred over the sample. To mitigate hindsight bias in the

data, we delay natural disaster indicators by one year; for example, we start the Great Influenza

indicator in 1919, although the pandemic began in 1918.

Financial Condition Predictors

Financial condition predictors include crisis dummies capturing banking, currency, and

sovereign default crises, as well as extensive inflation periods. Our primary data source is

Reinhart and Rogoff (2009), but we also checked the financial crisis indicators obtained from

the Jordà-Schularick-Taylor Macrohistory Database (Jordà et al., 2017). We create a variable

capturing the global financial cycle, proxied for by worldwide credit growth. We compute the

three-year changes in bank loans-to-GDP ratio over three years using data from the Jordà-

Schularick-Taylor (JST) database. Following Mian et al. (2017), we use one more lag that

would be necessary in a standard forecasting regression, i.e., we use credit growth from four

years ago to last year instead of credit growth from three years ago to the current year. The

JST database covers 17 advanced economies, and we construct a GDP-weighed global factor,

which we assign to the 42 countries in our sample.8

Asset Price Predictors

Our primary source for asset price data is Global Financial Data. To maximize the sample

size, we work with the U.S. series to proxy for world variables. Estimates based on individual

country predictors yield similar results, except for shorter periods. Asset pricing theory and

empirical evidence suggest the dividend-price ratio is a natural proxy for the equity premium

(e.g., van Binsbergen and Koijen, 2010). If the equity premium varies in proportion to disaster

concerns, then the equity premium, and thus the dividend-price ratio, should forecast future

8We obtain very similar estimates using local credit growth for the 17 countries where the individual data are
available, see Online Appendix F.
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crises. Our proxy for the world dividend-price ratio is the S&P 500 dividend-price ratio.9 We

also construct a volatility index based on the CBOE VXO index from 1986. We extend the

series back to 1871 using realized volatility as in Bloom (2009); to do so, we use daily data

from 1885 through 1927, and monthly data before 1885, following Schwert (1989). Finally, we

use a yield-curve slope predictor (e.g., Harvey, 1988; Estrella and Mishkin, 1998), based on the

difference between the 10-year Treasury bond and the 1-year short rate.

II. Forecasting Macroeconomic Tail Risk

A. Quantile Regression Estimates

Figure 3 shows conditional quantile regression estimates for three-year consumption growth for

the United States. The estimates are standardized and constructed at the .01, .02, .03, .04, .05,

.075, .1, .15, .2, .3, .4, and .5 quantiles. The solid black line shows π̂, which is interpolated as the

probability of a 2-SD decline in consumption. We observe substantial variation in the quantiles

over time; however, the extreme quantiles appear much more volatile than central quantiles.

This is confirmed in Figure 4, which plots the associated quantile regression estimates for all

predictor variables. The figure shows quantile coefficient curves for univariate and multivariate

regressions. The curves are rarely flat along quantiles; instead, the slope coefficients tend to be

larger in absolute value at the lowest percentiles.

We use a saturated regression to construct π̂, as a large set of variables is desirable to

approximate the information set of economic agents. In a time-series context, a saturated

regression would likely suffer from in-sample overfitting as well as from near-collinearity between

the predictive variables. However, the number of predictor variables (18) remains small relative

to the number of countries (42) in our sample. We also show in the Online Appendix that the

average pairwise correlation among variables is low.10 We nevertheless implement a variable

selection procedure using penalized regressions. The cross-validation procedure tends to select

low values for the penalization parameter, resulting in modest shrinkage. We report ridge

estimates in Figure 4 (dotted black line). These estimates are close to unpenalized estimates

(dotted blue lines); we obtain comparable results with LASSO and elastic net penalizations.

We estimate π̂ using multivariate regressions, but it is interesting to examine univariate

regressions as well as they are easier to interpret. We report these coefficients in red. The

multivariate slopes are generally smaller in magnitudes, which is expected, but tend to keep

9GFD offers a world dividend-price ratio, which is available from 1925. In our sample, the correlation between
the two series is 0.91.

10The collinearity diagnostics of Belsley et al. (2004) further confirm that there are no statistically significant
near linear dependencies in the predictor matrix.
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the same sign as univariate slopes. The slope signs conform with the intuition that adverse

shocks tend to have persistent negative effects. For instance, a country that experiences a

recession in the forecasting year is exposed to more tail risk in the future. The same is true

for non-macroeconomic shocks such as war or political crises, at home or abroad. Low equity

prices (i.e., high dividend-price ratio) are also associated with more risk in the tail. This

pattern is consistent with rare disaster models, which posit a positive relationship between the

equity premium (proxied by the dividend-price ratio) and the likelihood of a macroeconomic

disaster. Also, in line with rare disaster models (Barro and Liao, 2021; Farhi and Gabaix, 2016),

stock volatility and currency crises forecast macroeconomic risk. Interestingly, credit growth is

associated with lower tail risk, which contrasts with the body of evidence that credit growth

forecasts worse macroeconomic outcomes (e.g., Mian et al., 2017). Most of the evidence in the

literature is based on the postwar period and we find the evidence to be much weaker in our

longer sample (see Online Appendix F for an extensive discussion).

To summarize the importance of individual predictors across quantiles, we calculate

“marginal effects.” We define these marginal effects as the increase in π̂ for a unit increase

in the variable of interest.11 Figure 5 reports the marginal effects for each predictor in uni-

variate regressions. To facilitate comparisons, we standardize the variables, so that each bar

represents the effect of a unit standard deviation increase in the predictor. The figure also

shows bootstrapped 90% confidence bands for the null of no predictability.12 Most variables

exhibit substantial forecasting power for the conditional distribution of consumption growth,

which translates into statistically significant marginal effects. For instance, the standardized

effect of a recession at the time of forecasting is 0.014. Given that the standard deviation of the

crisis variable is 0.450 (see Table I), being in a recession raises the future probability of a crisis

by 0.014/0.450 ≈ 3.1%. Among the remaining group of variables, War, War/political crises

abroad, credit growth, and the dividend-price ratio have the larger forecasting power. Being

at war raises the likelihood of a crisis by about twice as much as being in a recession (6.8%).

The predictive power of the U.S. dividend-price ratio is fairly large. A one-standard-deviation

increase in the dividend-price ratio raises the likelihood of a disaster by 2.3%. We return to this

link when we discuss the link between macro risk and the equity premium in Section III.B.

11We shock the predictor variable up and down and report the average of the two marginal effects.
12We bootstrap one-year consumption growth to account for the fact that the dependent variable is aggregated

over three years.
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B. Macroeconomic Risk Estimates

Figure 6 displays π̂, the probability of a consumption crisis three years ahead (solid lines),

together with the realized crisis years (shaded areas) for the 42 countries in our sample. (Figure

1 in the introduction zooms in on U.S. risk.) We construct π̂ using the full set of predictors

and the ridge model, but the unpenalized model and alternative penalized regressions yield

very similar results. Later, we will work with estimates for a specification excluding asset price

predictors, denoted by π̂−.

Macroeconomic tail risk is volatile, countercyclical, and persistent. Crisis probabilities usu-

ally range between 1% and 5%, with occasional spikes, in particular when crises arise, reflecting

the serial correlation in tail risk in the data. Regressing π̂ on time fixed effects yields a 65% R2,

meaning about three-quarters of the variance in country risk is due to common forces. This high

correlation between country risk estimates is a result and not the product of a high pairwise

correlation between predictor variables. Excluding global variables delivers a 62% R2. (In the

Online Appendix, we show that most variables have a low average pairwise correlation, with

the exception of the Recessions and War and Political Crises Abroad variables.) Empirically,

variables that are highly correlated tend to have more forecasting power, which results in a

high correlation between macro risk estimates. We obtain a similar R2 when we regress the

U.S. estimates on the average cross-country probability (see the Online Appendix for a graph-

ical comparison). This strong factor structure is consistent with Lewis and Liu (2016), which

shows that a high degree of common macroeconomic risk is necessary to reproduce the fact that

international asset return correlations are higher than consumption growth correlations.

We assess the forecasting performance of π̂, using the Receiver Operating Characteristic

(ROC) curve, a standard tool to assess the accuracy of binary indicators. Because crises are

binary events, one is interested in converting probabilities into binary forecasts, which requires

choosing a threshold over which to assign a value of one. The ROC curve shows the true positive

rate (i.e., of all the crises that did happen, what fraction did the model predict?) against the false

positive rate (i.e., how often the model wrongly predicts a macroeconomic crisis in t+ 1?). The

curve obtains by varying all possible threshold values. As the threshold increases, the number of

crisis signals drops, so fewer crises are correctly identified and incorrectly signaled. In contrast,

for a lower threshold, more crises are correctly identified; the cost is that the frequency of false

signals also increases. A model with no forecasting power results in a 45-degree line, whereas

a model with a perfect fit would have an elbow-shaped ROC running from (0,0) to (0,1) to

(1,1). The goodness of fit is measured by the area under the ROC curve (AUROC), with 0.5

corresponding to no explanatory power and 1 to a perfect fit. We plot the ROC curve for π̂
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in Figure 7. Figure 7 indicates that our predictive model has substantial forecasting power,

with an AUROC statistic of 0.67. Of course, this remarkable forecasting power could reflect

overfitting, as the curve uses in-sample estimates. We show in Section II.D that probabilities

fitted out-of-sample are similar to in-sample estimates and that the model continues to perform

well in that context.

C. Decomposition of Macroeconomic Risk

To better understand what drives variation in macro risk, we construct risk estimates for each

predictor category. Figure 8 plots the breakdown of US macro risk across four predictor cate-

gories: Macro, War and Political, Financial Conditions, and Asset Prices. We leave out Natural

Disasters predictors, as there was no major famine in the US in our sample (other natural disas-

ters do not have a statistically significant predictive ability). Shaded areas highlight important

events, namely recessions, wars, and banking crises.

The Macro component illustrates how even a small number of variables can capture meaning-

ful patterns in a country’s economic history. The component indicates elevated tail risk during

the two World Wars, the Great Depression and the Great Influenza Pandemic, and finally

during the Great Recession. The US economy experienced a disproportionally large number

of recessions (highlighted by shaded areas) in the late nineteenth century and the beginning

of the twentieth century. This does not however translate into an excessively volatile Macro

component in the early part of the sample, which reflects the impact of other macroeconomic

variables, such as the realization of crises abroad.

The Macro component only imperfectly captures the economic consequences of warfare. The

War and Political component fills this gap. It shows marked spikes during the two World Wars,

as well as the Korean and Vietnam conflicts after 1945. The bottom left panel of Figure 8 shows

the US crisis probability given by the Financial Conditions component. Periods of low credit

growth globally, such as the two World Wars and the recession of 1937-1938, are associated with

increased risk. Banking crises identified in the Reinhart-Rogoff dataset (highlighted) also have

significant importance.

The bulk of the variation in the Asset Prices component in Figure 8 is driven by movements

in the dividend-price ratio. We again observe some redundancy with respect to the remaining

components, with elevated macroeconomic risk during important events in US history, such as

the entry of the United States into WW1 in 1917, the Depression of 1920-21, and the Great

Depression. Around WW2, the Asset Prices component reaches a peak in 1937, then another

one at a critical turning point, in 1941, when the US declared war on Japan. The probability
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rises again during the Korean War, the 1973 oil crisis, the 1981-1982 recession, the 1987 crash,

in 2002 after 9-11, and the Great Financial Crisis.

Figure 8 suggests that the predictor categories capture risks that often overlap. To get a

better sense of the relative importance of each category, we decompose the variance of macro

risk into each component. To do so, we regress π̂i,t on the estimates associated to each category

π̂ci,t (for c = 1, . . . , 5):

π̂i,t = b0 +
5∑
c=1

bcπ̂ci,t + π̂εi,t. (6)

We calculate the contribution of each component and the residual π̂εi,t on the variance of π̂i,t

using

1 =
Cov(π̂i,t, π̂i,t)

Var(π̂i,t)
=

∑
c Cov(bcπ̂ci,t, π̂i,t) + Cov(π̂εi,t, π̂i,t)

Var(π̂i,t)
. (7)

We present the results of this decomposition in Table II. The first column reports the results

for the entire sample. Throughout this table, we report the decomposition for variations of

the baseline specification. The table also reports the AUROC statistics, the volatility of the

estimated macro risk, and the correlation of the various risk estimates with the baseline esti-

mates. In Panel A, we exclude each predictor category in turn. In Panel B, we estimate the

model in subsamples including the periods before and after 1945 and separating OECD and

non-OECD countries. In Panel C, we vary the forecasting horizon and present decompositions

of consumption risk cumulated from one to five years.

Table II indicates that all predictor categories except Natural Disasters contribute to a large

fraction of the variance of π̂. War and Political predictors contribute to about a third of the

variance, followed by Macro and Asset Prices predictors that contribute to about a quarter of

the variance each.

Excluding categories, however, does not result in large forecasting losses. An important

subset, in particular, is the set that excludes Asset Price predictors, which we use to construct

π̂−. We see in column (5) of Panel A that the AUROC statistic for π̂− is 0.67, which is identical

as that for π̂. We show in the Online Appendix that the two estimates are indeed very similar.

We believe this is important in assessing the role of macroeconomic tail risk in asset pricing,

as discussed in Section IV. This redundancy across predictors is not limited to just asset price

predictors. As illustrated in Figure Table II, when any one group of predictors is excluded from

the set of predictors, the forecasting power remains largely the same and the probabilities remain

highly correlated. This is an important result, as it suggests our predictor set approximately

spans the information set of investors.
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In Panel B, we see that the model performs similarly well in the different subsamples, with

AUROCs well above 0.5. There is unsurprisingly more variation between the pre- and postwar

periods. War and Political predictors explain more than half of the variance of π̂ when estimated

in the prewar sample, which is twice more than the postwar period. Correspondingly, excluding

the prewar period results in macro risk estimates that are much less volatile. In contrast, the

results are remarkably similar for the sample consisting of OECD and non-OECD countries.

This suggests that our assumption that coefficients are homogeneous across countries results in

a small bias. Turning to decompositions for alternative forecasting horizons in Panel C, we see

that the model’s forecasting performance remains very similar for crises measured over longer

periods. We also see that the probability estimates are strongly correlated across horizons. This

reflects the slowly unfolding nature of large macroeconomic crises. Interestingly, we do not find

a similar forecasting power for mean consumption growth over longer horizons, as we discuss in

Section III.A.

Overall, we have shown that the contributions of each predictor category and AUROC

statistics are fairly stable. We show in the Online Appendix that the corresponding crisis

probabilities are comparable across subsamples and specifications. In addition, series based on

linear probit and penalized regressions are also very similar. In the next section, we evaluate

the forecasting performance of the model out of sample.

D. Out-of-Sample Predictability

In this section, we evaluate the accuracy of our model in providing early-warning signals of

upcoming crises. We back-test our model by replicating the analysis an econometrician would

have done, using the proposed methodology to forecast crises out-of-sample. To do so, we

employ a backtesting exercise and a sample split exercise.

First, we backtest the model by constructing π̂ in real-time over an expanding window. We

use a 50-year period to train the model (1900-1924). We move to the following year using a

50-year rolling window, so that each year t, we estimate π̂ using data available from t− 50 to t

and use coefficient estimates to forecast realized crises in t+H. We run this test over horizons

H from one to five years. The forecasts are compared over the 1925–2020 period.

Second, we run a sample split forecasting exercise. A limitation of the two out-of-sample

tests outlined above is that they use the early part of the sample to train the forecasting model

and test the forecast on the later portion. Any differences in predictability between the early

and late parts of the sample could be missed by these exercises. In addition, we would like

to provide further evidence that our homogeneity assumption results in a small bias. For this
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exercise, we pick a random sample of 21 countries to train the model and test the model on the

remaining 21 countries. We repeat this operation 100 times and report the averaged statistics.

We report the results of the two exercises in Table III, which shows out-of-sample AUROC

statistics, as well as in-sample statistics evaluated over the same sample. The results are shown

for realized crises defined over horizons of one to five years, for macro risk estimates based

on the quantile regression models as well as the probit model. The forecasting performance

is mechanically higher in sample, but we observe that the model remains quite successful out

of sample. For instance, for the first forecasting test and baseline horizon H = 3, the QR

model achieves an AUROC of 0.69 in sample, which is essentially equal to the out-of-sample

AUROC (0.68). We find similar magnitudes in the remaining tests. The forecasting performance

tends to be stronger at shorter horizons, yet the AUROCs remain significantly above 0.5 for

all horizons. Penalized regressions slightly outperform unpenalized regression forecasts in some

specifications. The probit model often underperforms, which suggests the quantile regression

approach captures important information that is lost when fitting π̂ using only realized crises.

E. Comparison with Option-Based Estimates

We interpret π̂ as an estimate of the rational expectation probability of a macroeconomic crisis.

This estimate is accurate as long as our predictor set approximately spans the information

set of economic agents. Another natural approach to recover the rational expectation crisis

probability is to use asset prices. The prices of derivatives, in particular deep out-of-the-money

options, reveal the probability of a stock market crash, taken from the viewpoint of a risk-neutral

agent, that is, under the risk-neutral measure. Under assumptions about investors’ preferences,

it is possible to recover the physical probability of a stock market crash (see, e.g., Bollerslev

and Todorov, 2011). Imposing further assumptions about the link between stock returns and

consumption, one can compute the physical probability of a consumption crisis. Backus et al.

(2011) tackle the challenge, assuming a constant crisis probability. Siriwardane (2015) does not

impose this assumption, but focuses on the risk-neutral crisis probability, while Barro and Liao

(2021) back out the time-varying probability of a macroeconomic disaster, under the physical

measure.

Barro and Liao produce risk estimates for six countries over the 1994–2018 period, which

we report in Figure 9 (black lines) next to ours (blue lines). The unconditional option-implied

probability equals 6.2%, which is much higher than π̂ over that period. They are also more

volatile, with several large spikes exceeding 20%. The presence of such spikes occurs in part

because of option-based estimates are sampled monthly. In comparison, our yearly estimates
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appear more stable.

The benefit of option-based estimates is that they do not require assumptions about in-

vestors’ information set. The inconvenience is that these estimates rely on structural assump-

tions that may not be satisfied. For instance, the option-based estimates indicate that macroe-

conomic risk was about equally high in the United Kingdom, Germany, or Sweden during the

Long-Term Capital Management crisis of 1998 as during the Great Financial Crisis. Likewise,

using a longer U.S. sample that extends to 1983, Barro and Liao report that the probability of

a macroeconomic disaster reached 89% at the month of the October 1987 stock market crash.

Overall, option-based estimates tend to strongly covary with implied volatility, which indicates

that their model attributes most of the variation in implied volatility to disaster concerns.

If the rare disaster model is literally true, the option-based estimates will contain all relevant

information about future disasters. This is a testable assumption: option-based estimates will

forecast crises, and no additional variable will have additional forecasting power. However, such

a test is not practicable given the short sample over which options are available. To extend the

sample back in time, we can proxy option-implied probabilities with realized volatility.13 We

already presented evidence of the ability of the volatility index to forecast future crises. However,

on a stand-alone basis, the volatility index has weaker forecasting performances than π̂. We find

that the corresponding AUROC statistics 0.55 is considerably smaller than the corresponding

statistics for π̂ (0.67). A Wald test rejects the null that the volatility index has forecasting

performance equal to π̂, meaning that option prices do not fully summarize macroeconomic tail

risk. This is to some extent unsurprising. The rare disaster model assumes that asset prices

are driven by a single state variable. The simple fact that the U.S. dividend-price ratio and the

VIX are not perfectly correlated is by itself a rejection of the model.

In the Online Appendix, we also compare π̂ to the news-based volatility index (NVIX)

proposed by Manela and Moreira (2017). While the NVIX aggregates information from Wall

Street Journal headlines, it is designed to forecast the VIX and should thus reflect the risk

perception and risk attitude of investors. Interestingly, Manela and Moreira (2017) show that

the NVIX has forecasting power for U.S. consumption tail risk. This is consistent with our

findings that volatility forecasts crises. Over the 1889–2016 period, the NVIX weakly forecasts

international disasters, with an AUROC statistic, which is similar to the volatility index (0.55).

Again, π̂ exhibit substantial incremental forecasting power, consistent with the interpretation

that equity volatility varies for reasons unrelated to macroeconomic tail risk.

13We show in the Online Appendix that option-implied probabilities and realized volatility indeed strongly
covary, with a correlation coefficient of 0.92. Another caveat is that we use U.S. volatility to proxy for international
volatility, although international option-implied estimates also strongly covary (Barro and Liao, 2021).
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III. Macroeconomic Tail Risk over the Long Run

Having established the forecasting performance of our model, we now document new stylized

facts about macroeconomic tail risk over our historical sample.

A. Consumption and Output Growth

In this section, we study the link between macro risk and macroeconomic growth. We run

predictive regressions of H-year-ahead log of consumption and GDP growth on past country

crisis probabilities π̂i,t:

∆c
(H)
i,t+H = ai + bπ̂i,t + ui,t+H . (8)

Table IV presents estimation results at 1-, 3-, and 5-year-ahead cumulative horizons. For

comparison purposes, we also report similar results for cumulative one-year crises. We report

slope estimates, standard errors, and R2 statistics for the full sample (1900–2020), as well as

individually for the prewar (1900–1945) and postwar (1945–2020) periods.

We use a bootstrap procedure to calculate standard errors and test whether slopes are differ-

ent from zero. In particular, the procedure accounts for the fact that π̂ is a generated regressor.

We begin with the main dependent variable (say, excess returns) sampled at yearly frequency

and standardized consumption growth. We cumulate the dependent variable to the appropriate

horizon. We then construct π̂ by regressing standardized consumption growth on the set of

predictors and interpolating π̂ from the fitted quantiles. We obtain the estimates of interest by

regressing the dependent variable on π̂. Next, we perform 1,000 bootstrap iterations. At each

iteration, we simulate random draws for the dependent variable and standardized consumption

growth. To simulate the dependent variable, we regress the yearly sampled dependent variable

on year fixed effects and keep the fixed effect coefficients and the residuals. We simulate the

yearly sampled dependent variable by drawing without replacement from the fixed effects and

the residuals. As this variable is still sampled yearly, we cumulate the dependent variable to

the appropriate horizon. To simulate standardized consumption growth from the quantiles, we

draw a random uniform vector. The realizations above 0.5 are transformed to follow a stan-

dard normal distribution, while the realizations below 0.5 are interpolated from the conditional

quantile estimates. We use these simulated samples of the dependent variable and standardized

consumption growth to estimate the model and calculate standard errors.

We see that an increase in macro risk predicts a decline in consumption growth, but the effect

dies out after three years, and magnitudes are relatively small. For instance, the full-sample

coefficient for consumption growth is −0.32, meaning that a one-standard-deviation increase
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in π̂ (2.1%) lowers the next-year growth rate by 0.6%. Macro risk holds its forecasting power

over longer horizons for GDP growth, but with similar magnitudes. In contrast, macro risk has

robust forecasting power for future crises for all horizons.

We can relate these results to the well-known disconnect between asset prices and macroe-

conomic outcomes. In particular, Beeler and Campbell (2012) emphasizes the limited ability

of the U.S. dividend-price ratio to forecast future dividends and consumption, meaning that

most of the variation in the dividend-price ratio stems from changes in risk premia. We show

in Section IV that time-varying disaster models can reproduce this feature of the data. Before

turning to the model, we study the relationship between macro risk and the equity premium.

B. Macroeconomic Risk and Equity Premium Proxies

Rare disaster models predict that the equity premium varies over time in tandem with macroe-

conomic tail risk. The reason is that investors shun stocks when the probability of a disaster

increases, effectively raising the equity premium. In what follows, we ask whether this link is

present in the data. Since the equity premium is unobserved, we use three candidate proxies: the

dividend-price ratio and two volatility-based series. The first series, SVIX2, is the risk-neutral

market return variance scaled by the gross risk-free rate. Martin (2017) shows that this index

constitutes a lower bound on the equity premium that can be computed from option prices (the

index is available from Martin’s webpage for the 1996–2012 period). The second volatility series

approximates SVIX2 using realized volatility instead of option prices, which gives us a long time

series. We compute this second proxy as our volatility index squared, which we then multiply

by the real U.S. risk-free rate and scale to have the same mean and standard deviation as the

SVIX2. This longer series provides a reasonable approximation for the SVIX2 (corr. = 0.78).

Figure 10 plots the probability of a macroeconomic crisis in the United States, together

with the S&P 500 dividend-price ratio in Panel A, and with the two volatility proxies (Panel

B). Because we use both the D/P ratio and the volatility index to construct our baseline crisis

probability, π̂, we present π̂− in Figure 10, the variant excluding asset price predictors. We

see that macro risk is positively related to both equity premium proxies. For instance, both

macro risk and the D/P ratio spiked during the Great Depression and the two world wars. The

1990s stock market boom (low D/P) coincided with a marked decline in macroeconomic risk

during the Great Moderation, as previously noted by Lettau et al. (2008). The correlation

coefficient between the two series is about 0.45. The correlation between macro risk and the

SVIX2 appears more muted. For instance, squared volatility did not increase during the two

world wars, in contrast with macro risk and the D/P ratio. This is in line with our earlier
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observation, in Section II.E, of a positive but imperfect association between our volatility index

and macro risk. The SVIX index is also noticeably less persistent, with a half-life of about six

months, as compared with a half-life of 3 years for the D/P ratio. Consequently, our baseline

macro risk measure, which captures the information of the D/P ratio and volatility, exhibits

persistence that lies somewhere in between (a half-life of 1.7 years).

C. Macroeconomic Risk and Stock Returns

We further examine the link between macroeconomic tail risk and the equity premium using

stock returns. We first test whether stock markets fall around macroeconomic crises and then

ask whether macro risk forecasts future stock returns. We obtain stock market and one-year

interest rate data from Global Financial Data, which we use to construct excess stock returns

series. These are generally broad-market and market capitalization indices, such as the S&P

500 and the FTSE All-Share index (for the United Kingdom). However, these data are less

comprehensive than macro series and often contain gaps, in particular during wars. We obtain

total return and short rate data for 40 (of 42) countries, corresponding to a smaller panel of

2,030 year-country observations and 32 realized crises.

We first investigate how stock returns behave around macroeconomic crises. Rare disaster

models unambiguously predict stock markets to crash during crises. The primary reason for

such crashes is the fall in output and consumption, which coincides with lower demand for

equities. However, stock markets may also reflect movement in macro risk. In particular, to the

extent that crises can be anticipated, stock markets may crash before consumption and output

fall. Furthermore, as stock markets attach a risk premium to macroeconomic tail risk, we may

observe above-average returns after crises, when output and consumption return to normal and

macro risk dissipates. Consistent with this reasoning, Barro and Ursúa (2017) find that large

macroeconomic crises tend to coincide with stock market crashes and that crises are more likely,

conditional on a stock market crash. We complement their results with an event-study design,

to characterize the behavior of stock returns and consumption growth around macroeconomic

crises. We adopt a flexible specification with five leads and lags around the year of a large

macroeconomic crisis:

xi,t = ai +
5∑

j=−5

b−jCrisisi,t+j + ui,t, (9)

where xi,t is either the yearly standardized consumption growth or the local currency excess

return in country i in year t. The fitted b coefficients thus give the relative returns during a
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crisis, which occurs over the periods t, t+ 1, and t+ 2.

We report the fitted coefficients in Figure 11. Stock returns are depicted with error bars

and consumption growth is shown with a dotted line. Consumption growth falls on average

for the three crisis years, with the worst year occurring in the third year. These crises tend

to be anticipated by equity markets. Stock prices tend to fall a year before the beginning of a

crisis and remain negative for the two subsequent years. The cumulative decline equals 40.6%.

Stock returns somehow rebound the next two years as the economy is exiting the crisis. The

presence of a stock market decline followed by a rebound is consistent with rare disaster models’

prediction that the equity premium increases when the economy enters a crisis.

We explore this prediction further in Table V, where we forecast stock returns in excess of

the risk-free rate. We expect macro risk to positively forecast stock returns, reflecting the risk

premium attached to periods of above-average risk. The table has a similar layout as Table IV.

We estimate predictive regressions of the cumulative log excess returns on lagged macro risk

over horizons of 1, 3, and 5 years. The top panel uses our baseline π̂ probability; the middle

panel uses the measure excluding asset price predictors, π̂−; the bottom panel shows results for

regressions including time fixed effects.

We see that macro risk strongly predicts future returns. A 1% increase in π̂ forecasts a

0.91-percentage-point larger return the next year, with the forecasts adding up to 2.3% over a

five-year period. The regression coefficient suggests a volatile equity premium. For instance,

given the volatility of macroeconomic risk (2.1%), the 0.91 coefficient implies a volatility for

the one-year equity premium of about 2.1% × 0.91 ≈ 1.9%. This is a large number, albeit

smaller than estimates based on valuation ratios. For example, using the U.S. dividend-price

ratio, Cochrane (2011) estimates that the U.S. equity premium varies by about 5.4% per year.

Remark that π̂ could forecast returns only incidentally because of its correlation with asset

prices, which themselves contain information about future stock returns. This concern is only

valid to the extent that our set of predictor variables is much smaller than the information set

of market participants, in that asset prices carry too large a weight in π̂ than in the true crisis

probability. We address this concern by forecasting returns with π̂−, which is constructed by

excluding these predictor variables. As the point estimates are almost identical, our conclusions

remain unchanged.

Turning to subperiods, Table V indicates that predictability is weaker in the prewar period.

One difference between the two subperiods is that much fewer disasters occurred during the

latter. As we will see in the next section, rare disaster models can qualitatively reproduce this

24

Electronic copy available at: https://ssrn.com/abstract=2773874



feature of the data, with higher predictive coefficients in the absence of disasters.14

In the bottom panel of Table V, we examine the same predictability regressions including

year fixed effects. Before looking at the results, we think it is useful to note that in complete

markets with endogenous trading, all the variation in macro risk would be due to common forces.

In fact, such models predict that consumption growth is perfectly correlated across countries.

This is because, in such economies, agents endogenously share risk and can thus trade away

country-specific risk. Furthermore, as only systematic risk should be priced, adding time fixed

effects should result in insignificant coefficients. Of course, as international financial markets are

clearly not fully integrated, we expect positive and perhaps statistically significant coefficients.

Table V indicates that coefficients remain positive with year fixed effects. In the full sample,

the coefficients are all statistically significant. In subperiods, the estimates are all positive

but less precisely estimated, resulting in fewer statistically significant estimates. Predictability

is relatively weaker after WW2 for short horizons. Interestingly, this weaker predictability is

consistent with more financial market integration after WW2.

Next, we ask whether return predictability reflects actual macroeconomic tail risk or the

realization of tail events. Table VI estimates the same return predictability regressions as

the previous table, replacing the right-hand side variable to include realized recessions and

financial crises. Rare disaster models predict that the equity premium varies over time because

macroeconomic tail risk changes over time. Another plausible theory is that agents sell risky

assets during recessions, causing asset prices to fall. This theory predicts that agents require a

higher risk premium during crises, not because of the risk that their economic situation worsens,

but because their willingness to take on risk has decreased. Models of habit formation, such

as that of Campbell and Cochrane (1999), predict that, during recessions, agents’ consumption

approaches their habit level, effectively raising their risk aversion. In this class of models,

movements in risk aversion rather than movements in risk cause the equity premium to move

over time. This prediction is consistent with the pattern in Figure 11 that stock prices fall and

rebound around crises. Table VI (first row) provides inconclusive support for this prediction,

with insignificant or negative coefficients. In the second row, we add π̂ to the right-hand side

of the forecasting equation, with unchanged results.

Many models based on financial intermediation frictions propose that the price of risk in-

creases during financial crises. The third and fourth rows repeat this forecasting exercise fore-

casting returns with realized financial crises. We see that the coefficients associated with fi-

nancial crises are either insignificant or negative. This is consistent with the evidence in Baron

14Interestingly, Manela and Moreira (2017) also find that NVIX forecasts returns in the postwar sample, but
not in the prewar sample. They also interpret their findings in terms of disaster concerns.
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et al. (2021) that financial crises are not associated with higher future returns.15

IV. Asset Pricing Implications

In this section, we quantitatively evaluate the asset pricing implications of a workhorse equilib-

rium asset pricing model with time-varying macroeconomic tail risk. Our model is a discrete-time

version of the one offered by Wachter (2013) and belongs to the discrete-time affine class pro-

posed in Drechsler and Yaron (2011). We also consider an alternative dividend specification. In

the spirit of Mehra and Prescott (1985), we ask whether a calibrated economy can reproduce

key asset pricing moments. To do so, we take advantage of our methodology, which can pro-

duce macro risk estimates that do not exploit asset price information. Moreover, we investigate

model-implied option prices.

A. Model

We consider a pure exchange closed economy, à la Lucas (1978), in which the log of consumption

growth, ∆ct+1, evolves as follows:

∆ct+1 = µ+ σεt+1 + vt+1, (10)

where εt+1 and vt+1 are two mutually independent shocks. The first shock is a standard normal

random variable, and the second shock captures rare consumption disasters. We model vt+1 as

a compound Poisson shock: vt+1 = Jt+11∆nt+1>0, where nt+1 is a Poisson counting process such

that ∆nt+1 > 0 describes a disaster event occurring at time t + 1. The probability that the

economy encounters a disaster in t+ 1,16 πt, follows a discretized square-root process:

πt+1 − π̄ = ρ(πt − π̄) + ν
√
πtut+1, (11)

where π̄ > 0, 0 < ρ < 1, and ν > 0 are constants and where ut is a standard normal random

variable uncorrelated with εt and vt. Following Cheng et al. (2022), disaster size Jt+1 follows

15Another interesting predictor of equity returns is credit growth. Empirically, credit growth is often associated
to worse macroeconomic outcomes and lower stock returns (Baron and Xiong, 2017). In the Onine Appendix,
we replicate the negative association between credit growth and future returns documented in Baron and Xiong
(2017) and show that both credit growth and π̂ forecast returns in bivariate regressions.

16We slightly abuse the notation since πt is only an approximation of the conditional probability of a disaster
on the unit time interval (i.e., yearly). The Poisson counting process nt+1 has an intensity of πt. The exact
conditional probability of a single disaster occurring over the horizon h is, therefore, πth exp(−πth), while the
probability that a disaster does not occur is exp(−πth). Hence, the residual probability that more than a single
disaster occurs is 1− exp(−πth)(1 +πth). According to our estimates, the latter value is about 0.05% when πt is
at its steady state and less than 1% when πt is at its 99th percentile. So to facilitate this terminology and ease
the notation, we will use πt for the conditional disaster probability and

∑
t ∆nt+1 (instead of

∑
t 1∆nt+1>0) for

the number of disasters.
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a parsimonious shifted negative exponential distribution with a moment-generating function

given by

ϕ(u) = e−uθ(1 + uβ)−1, (12)

where disasters have support from (−∞,−θ). The mean and variance are equal to −(θ + β)

and β2, respectively.

These dynamics are standard and can potentially capture several asset pricing regularities.

This baseline model is most closely related to the continuous-time model of Wachter (2013).

Gabaix (2012) calibrates a richer model that allows for movements in the disaster probability

and the expected disaster size. The literature contains several alternative specifications. For

example, Barro and Jin (2011) considers different laws for disaster size, such as single and

double power laws. Gabaix (2011) and Gourio (2012) introduce time-varying disaster risk in

production economies. Gourio (2008), Nakamura et al. (2013), Branger et al. (2016), and Hasler

and Marfè (2016) consider more complex disaster dynamics, including unfolding consumption

declines and subsequent recovery, as well as disasters leading to economic regime changes.17

We intentionally keep the model simple, tractable, and parsimonious to focus on the time-series

relationship between disaster probability and equilibrium asset prices.

We assume the economy is populated by a representative investor with recursive preferences

(Epstein and Zin, 1989):

Vt =
[
(1− δ)C1−1/ψ

t + δ(Et[V 1−γ
t+1 ])

1−1/ψ
1−γ

]1/(1−1/ψ)
. (13)

In this expression, δ, γ 6= 1, and ψ, respectively, capture time discounting, relative risk aversion,

and the elasticity of intertemporal substitution. To ensure tractability, we focus on the case

of ψ being equal to one. Similar to Collin-Dufresne et al. (2016), we solve for asset prices by

expressing the stochastic discount factor in terms of the investor’s log value function vct =

v0 + vππt, which is affine in disaster probability πt. The stochastic discount factor is given by18

Mt+1 = δe−γ∆ct+1︸ ︷︷ ︸
discounting of

expected utility

× e(1−γ)vct+1

Et[e(1−γ)(∆ct+1+vct+1)]︸ ︷︷ ︸
discounting of

continuation utility

. (14)

17Another strand of the literature maintains a constant disaster probability but assumes that the representative
agent learns about the model parameters or states so that the subjective disaster probability is time-varying (e.g.,
Weitzman, 2007; Koulovatianos and Wieland, 2011; Orlik and Veldkamp, 2014; Johannes et al., 2016; Ghaderi
et al., 2022). Martin (2013a) shows that constant disaster risk spreads across assets in a multiple-tree economy
and leads to endogenous risk premia dynamics.

18The Online Appendix provides details about the solution.
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Note that the stochastic discount factor variance (i.e., the priced risk in the economy) is state-

dependent and increases with the disaster probability. The log of the risk-free rate, rf,t =

− logEt[Mt+1], is affine in the disaster probability:

rf,t = − log δ + µ− γσ2 + πt(ϕ(1− γ)− ϕ(−γ)). (15)

This risk-free rate is stationary and decreases with the disaster probability πt. Consumption

risk increases with the likelihood of a disaster, and so does the demand for safe assets, causing

the risk-free rate to fall. This effect strengthens with relative risk aversion.

We consider two dividend specifications. In the first specification, which we name the levered

consumption model, the log aggregate dividend is proportional to consumption:

∆dt+1 = φ∆ct+1, (16)

as in Abel (1999), Campbell (2003), Wachter (2013), and others. When φ > 1, this ensures, in a

parsimonious way, that dividends fall more than consumption when a disaster hits, as observed

in the U.S. data (Longstaff and Piazzesi, 2004). In the second specification, which we name the

co-integration model, the dividend dynamics follow:

∆dt = ∆ct + ∆st, (17)

st = (1− φ)s̄+ φst−1 + ηzt + κvt, (18)

where st = logDt/Ct is the log dividend share of consumption and zt is a normal random

variable—independent of the other shocks for the sake of simplicity. The term κvt implies

that dividends load more on disaster than consumption, for κ > 0. Although simplistic, this

specification is empirically motivated. First, st allows to break the unit correlation between

consumption and dividend growth rates. Second, st induces co-integration between consumption

and dividends. Third, recent evidence suggests that dividend growth risk decreases with the

length of the horizon (Belo et al., 2015; Marfè, 2017). The assumption of Eq. (16) implies

that dividend growth risk is higher than consumption growth risk at any horizon. Instead, co-

integration preserves the larger dividend risk at short horizons but imposes that consumption

and dividend growth risks are equal in the long run. This produces a downward-sloping dividend

growth risk. Fourth, as documented by Gourio (2008) and Nakamura et al. (2013), disasters

are often followed by recoveries. Co-integration generates dividend recoveries, as the dividend-

consumption ratio increases after disasters, in line with the evidence in Longstaff and Piazzesi
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(2004) and Hasler and Marfè (2016).

In addition, the second dividend specification lets us benchmark our model against an addi-

tional moment. In the previous section, we highlighted the relatively high correlation between

macroeconomic tail risk and the dividend-price ratio. For the United States, the correlation

with π̂− is about 45.2%. Dynamics in Eq. (16) lead to a single state variable, π, which mechani-

cally produces a unit correlation between π and the dividend-price ratio. This assumption could

make us overestimate the correlation between prices and discount rates and, hence, the effect

of disaster risk on the equity premium. Introducing co-integration gives rise to an additional

state variable, st, which breaks the perfect correlation between π and the dividend-price ratio.

To solve for the equity claim price, we log-linearize returns around the unconditional mean

of the log D/P ratio: dt − pt ≡ logDt/Pt. Campbell et al. (1997) and Bansal et al. (2012)

document the high accuracy of such a log-linearization, which we assume to be exact. We use

the Euler equation 1 = Et[Mt+1e
rd,t+1 ] to recover that the log D/P ratio is affine in the disaster

probability:

dt − pt = A0 +Aππt +Asst, (19)

with As = 0 for the levered consumption model (see Eq. (16)). The D/P ratio is stationary

and increases with the disaster probability πt. These dynamics reflect a preference for the early

resolution of uncertainty about time variation in πt. An increase in disaster probability makes it

more likely that crises will affect future consumption. An investor who prefers early resolution

of uncertainty (γ > 1) is worried about current disaster risk and uncertainty in future disaster

risk. Hence, equity prices are low relative to dividends when πt is high (and vice versa). The

substitution effect and the income effect offset each other because the elasticity of intertemporal

substitution is equal to one.

The log of the equity premium is given by

logEt[erd,t+1 ]− rf,t = Ω1γσ
2︸ ︷︷ ︸

nondisaster risk

+ (γ − 1)k1Aπvπν
2πt︸ ︷︷ ︸

disaster probability risk

+ (ϕ(Ω2) + ϕ(−γ)− ϕ(Ω2 − γ)− 1)πt︸ ︷︷ ︸
disaster size risk

, (20)

where Ω1 = Ω2 = φ for the dividend specification of Eq. (16) and Ω1 = 1, Ω2 = 1 + κ(1 −

k1As) for the dividend specification of Eq. (17), with k1 being the endogenous log-linearization

constant. The equity premium is given by three terms. The first term concerns nondisaster

risk and gives rise to the usual consumption-CAPM compensation (Lucas, 1978). The second

term reflects the compensation for the variation in disaster probability and increases with its
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persistence and volatility for γ > 1. The third term is associated with disaster size risk and

increases with disaster size and with its variance. Both the second and third terms increase

with current disaster probability πt.

B. Calibration

In this section, we assess the asset pricing plausibility of the rare disaster model using our

macro risk estimates. In the spirit of Mehra and Prescott (1985), we estimate the parameters

of the time-series processes of aggregate consumption and compare model-implied asset pricing

moments to their empirical counterparts. This approach is similar to the recursive estima-

tion/calibration approach highlighted by Hansen (2008) and Chen et al. (2022). Specifically, we

use a simulated method of moments approach to estimate the parameters of the model (10)–

(12) to match baseline moments of consumption growth data. We next calibrate the nuisance

parameters to target selected asset pricing moments, while keeping the consumption parameter

values equal to their estimates from the baseline moments. Chen et al. (2022) shows that the

recursive estimation approach delivers better out-of-sample performance for models that exhibit

large ‘dark matter’ such as rare disaster models.

We focus on the U.S. economy, consistently with our closed-economy setting, but we estimate

the consumption parameters using international data. To do so, we rescale the standardized

consumption growth series to match the first and second moments of US consumption growth.

We assume the econometrician observes rescaled consumption growth, ∆c
(3)
i,t , together with

a candidate predictor of the left tail of consumption growth zi,t. The econometrician also

observes realized crises defined according to (2) (using a 2-SD threshold). Since we use rescaled

consumption growth, this amounts to imposing country-specific thresholds to define crises based

on the original consumption data for each country. The estimation approach does not rely on

asset pricing data: we set the predictor zi,t = π̂−i,t (i.e., the econometrician does not observe

asset prices). The decision interval of the agent in the model is assumed to be annual, but we

estimate the model using three-year data to match the baseline definition of macroeconomic

crises. In particular, disasters in the model occur instantaneously and we account for the fact

that disasters are measured over three-year periods in the data. Our modeling approach is thus

immune to the measurement issues highlighted by Constantinides (2008), Donaldson and Mehra

(2008), and Julliard and Ghosh (2012).

The model for consumption features six parameters: µ, σ, π̄, ρ, ν, and β. We use six moment

conditions that target each parameter. To ensure that estimation error is accounted for in the

estimation, we calculate macro risk moments using the econometrician’s estimate of πi,t. In
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a first step, the econometrician uses the predictor zi,t to construct this estimate, which we

denote π̂zi,t. For simplicity, we use ordinary least squares, such that the left-hand side variable

is the realized crisis indicator (2) and the right-hand side variable is zi,t. We view this as a

simple way to tackle estimation error (i.e., π̂zi,t is affine in π̂−i,t). In a second step, we calculate

the six moment conditions, two of which depend on π̂zi,t: E(∆ci,t+3), E(∆c2
i,t+3), E(Crisisi,t),

E(π̂zi,tπ̂
z
i,t−1), E(π̂z 2

i,t ), and E(∆ci,t+3Crisisi,t). We calculate the model’s population moment

using a long sample of 107 observations, substituting π̂i,t for πi,t in the simulation. As the

model is exactly identified, we seek the parameters such that the observed moments equal the

model-implied moments (up to simulation precision).

We find that this approach delivers an excellent fit of the distribution of three-year consump-

tion growth, as can be seen in Figure 12. Consumption growth is left-skewed with a skewness

of −0.57 and leptokurtic with a kurtosis of 4.91. Correspondingly, realized 2-SD crises are

more frequent (4.1%) than the corresponding percentile for the normal distribution (2.3%). In

contrast, the frequency of 2-SD booms is slightly lower than the normal percentile (2.1%). The

model reproduces the skewness and, by design, the proportion of left-tail events observed in the

data.

Table VII presents the point estimates, along with the associated standard errors Newey

and West (1987) corrected using one lag in parentheses. Consumption growth parameters in

“normal times” belong to the usual range of values: the long-term consumption growth rate

is 2.3%, and consumption volatility is 2.8%. The subsequent rows show that the key disaster

risk parameters that we estimate from the data are close to the calibrated parameters reported

by Wachter (2013) and subsequent literature. Disaster risk is both persistent (ρ = 0.74) and

volatile, with a scale parameter ν of about 0.22. These two parameters contribute to the

unconditional volatility of disaster risk, which is
√
ν2π̄/(1− ρ2) = 6%.19

The mean disaster size is β̂ + θ̂ = 12.2% with a 6.6% standard deviation (the minimum

disaster size is θ = 2σ = 5.6%). This is considerably smaller than the estimates found in

previous calibrations in the literature. For instance, Barro and Jin (2011) estimates a mean

size that is more than double (21.5%). There are two reasons for this discrepancy. First, our

estimated disaster size corresponds to one-year contractions, while the size estimates in the

literature are typically based on cumulative multiyear contractions (see Constantinides, 2008,

Donaldson and Mehra, 2008, and Julliard and Ghosh, 2012). The corresponding three-year size

targeted in our estimation is indeed larger (15.9%). Second, consumption tends to be more

19Wachter (2013) choose a more persistent ρ = 0.92 (using our notation), which is set to match the autocorre-
lation of the price-dividend ratio and is not estimated from macroeconomic data. The scale parameter is lower
than in our setup (ν = 0.067). Altogether, these parameters imply a smaller volatility of disaster risk (3.2%).
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volatile in international data. We rescale international consumption data to match the mean

and standard deviation of the US moments, thereby conservatively eliminating this effect.

We complete the calibration by setting the dividend parameters and the preference pa-

rameters. Evidence from the Depression era suggests that macroeconomic crises have a much

larger effect on dividends than on consumption (Longstaff and Piazzesi, 2004). Then, concern-

ing the levered consumption model, we follow Wachter (2013), who argues that a value of

φ = 2.6 is conservative and captures well the increased risk of dividends relative to consump-

tion in both normal times and disaster periods. Concerning the co-integration model, we set

s̄ = log(0.10), φ = 0.90, η = 0.30, and κ = 4 to capture the high persistence of the log D/P ratio,

the correlation between disaster probability and the log D/P ratio, and the high level of short-

term shareholders remuneration.20 Lastly, we calibrate the parameters δ and γ to fit the main

asset pricing moments. We find that reasonable values of relative risk aversion are sufficient to

generate a high equity premium that conforms with the data. Hereafter, we consider the pair

(δ = 99%, γ = 5) as our baseline calibration.

C. Asset Pricing Results

Tables VIII and IX show that this calibration leads to a relatively good fit of the main un-

conditional moments of asset prices. Panel A reports historical asset pricing moments and the

distribution of their model counterparts. In particular, we report several percentiles from 1,000

simulated paths of the economy of length equal to 1,000 years. (We choose 1,000 years to

approximate the statistical power of the panel regressions in Section II.) To avoid generating

a negative probability of disaster, we simulate monthly series and then convert them to an-

nual frequency.21 In our calibration, the median risk-free rate is about 1.8% with 1.5% median

volatility. In the levered consumption model, the median equity premium is 6.2%, and the

median return volatility is 23.1%. These moments are slightly lower in the co-integration model

(5.5% and 21.6% respectively). In the levered consumption model, the median D/P ratio is

3.4%, with 1.6% median volatility. These figures are slightly higher in the co-integration model

(5.7% and 3.4% respectively). Overall, these moments line up well with their empirical coun-

terparts. However, in the levered consumption model, the D/P ratio has a median first-order

autocorrelation of the D/P ratio of 0.65, which is lower than in the data (about 0.78). This is the

direct consequence of the persistence parameter ρ being smaller than in standard calibrations

20Belo et al. (2015) document that the volatility of aggregate dividends plus net repurchases is about 27% at
the one-year horizon and then decreases substantially, a pattern that is captured by the dynamics of Eq. (17).

21Simulations of πt at a monthly frequency (i.e., πt+4 = (1 − ρ4)π̄ + ρ4πt + ν
√
πt4ut for 4 = 1/12) have

a negligible likelihood (less than 0.1%) of realizations lower than zero, which we replace by a small positive
threshold.
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directly targeting the D/P ratio persistence. Instead, the co-integration model is calibrated to

capture well the persistence of the D/P ratio and the correlation between the log D/P ratio and

the disaster probability π (about 50.3% vs 45.2%). Indeed, the co-integration model relaxes the

correlation between the log D/P ratio and π because the former is an affine function of both π

and the log dividend share of consumption s.22

Variation in macroeconomic tail risk contributes to generating a high equity premium.

Agents who prefer an early resolution of uncertainty dislike not only bad news but also the

possibility of more bad news in the future. They thus require compensation for any uncertainty

associated with variation in the probability of a crisis. In particular, the equity premium and

return variance can be decomposed into three terms associated with normal times, variation in

the probability of a crisis, and severity of a crisis. Table X reports these values. Variation in

macroeconomic tail risk generates the bulk of return variance in both the levered consumption

model and the co-integration model (82% and 68% respectively). In the former case, it also

commands a large fraction of the equity premium (about 74%), whereas it decreases substan-

tially in the latter (about 45%). This is due to the fact that (i) we assume that normal risk

of s is not priced for the sake of exposition and (ii) the co-integration model is calibrated in

such a way to match the empirical imperfect correlation between π and the D/P ratio, which

is instead mechanically one in the levered consumption model.

To further understand the role of risk in the equity premium, we report in Panel B of

Tables VIII and IX the same moments, in a restricted simulated sample without disasters.

There were indeed few realized disasters in the U.S. postwar economy and a common argument

is that the high U.S. equity premium reflects a peso problem. For our model, we see that the

equity premium is indeed slightly higher in this restricted sample (the median is about 1%

higher than in the unrestricted case for both model specifications). However, return volatility

and other moments are essentially unchanged. The only exception concerns the correlation

between π and the D/P ratio in the co-integration model, which is somewhat higher in the

restricted case. This happens because s is not hit by disasters anymore and, in turn, induces

less variation to the D/P ratio. As a consequence, in absence of disasters, s weakens to a lesser

extent the correlation between π and the D/P ratio.

Next, we investigate the extent of predictability implied by the model. Tables IV and V

showed that πt is a good predictor of excess returns, but not of consumption growth. We run

similar regressions for either cumulative excess returns or cumulative consumption growth rates,

22This correlation depends on the log D/P ratio sensitivities with respect to each state variable. Of the two
sensitivities, only the one with respect to π depends on γ, because π is a priced state variable. As a result, the
correlation is positive and increases with risk aversion, and γ = 5 reproduces the correlation we observe in the
data.
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using horizons between 1 and 5 years. Figure 13 reports the 5th, 50th, and 95th percentiles

of the predictive slope coefficients from the model simulations, together with their empirical

counterparts, reproduced from Tables IV and V. Estimates for the levered consumption model

and the co-integration model are in the upper and lower panels respectively and are very similar.

In the left panels, we observe that disaster probability is a reliable predictor of excess returns.

The distribution of the slope coefficients supports the positive values across all horizons, meaning

that the model reproduces the equity return predictability we observe in the data. Indeed, the

point estimates from Table V (also reported in Figure 13) display a similar pattern and belong

to the interval produced by the model simulations at each horizon. In the right panels of Figure

13, we observe weaker evidence of consumption growth predictability, as in the data. Point

estimates for the disaster probability are negative but close to zero, which is not surprising

given the consumption dynamics of Eq. (10). The empirical counterparts from Table IV (also

reported in Figure 13) exhibit a similar pattern.

Figure 13 also plots the median predictive slopes from the model simulations when realized

disasters are turned off. In this case, the consumption growth predictability coefficients collapse

to zero; indeed, disaster probability cannot predict consumption growth at all in the absence of

realized disasters. In contrast, excess return slope coefficients are slightly larger in the absence

of realized disasters and thus compare well with the postwar data coefficients (Table V).

Predictability results can be understood in light of the persistence of both consumption

and dividend growth and excess returns. Tables A.XI and A.XII report these autocorrelations

(from the first to the tenth yearly lag) from the model simulations described above. Table

A.XI considers the levered consumption model where dividend growth dynamics are propor-

tional to consumption growth dynamics. The model captures the lack of autocorrelation in

consumption and gives rise to a negative autocorrelation of excess returns, quite in line with

actual data. Thus, even if our estimates of disaster risk are somehow less persistent than cali-

brated disaster risk in Wachter (2013), the model leads to time-variation in risk premia in spite

of unpredictable consumption growth. Table A.XII considers the cointegration model where

dividend growth dynamics are enriched by the stationary variation of the dividend share of

consumption. This specification of the model captures the additional empirical regularity of

negative autocorrelation in dividend growth. Overall, although stylized, persistence predicted

by the model accords well with the data and reassures on the model mechanism beyond the

other model predictions discussed so far.

Finally, we also investigate the asset pricing predictions of a levered consumption model

with CRRA preferences, such that the representative agent is indifferent regarding the timing
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of uncertainty resolution. In turn, the main implication of introducing CRRA preferences is

that the disaster probability π is no longer a priced state variable (i.e., the representative agent

stops fearing the variation of π: vπ = 0). Nevertheless, the log equity premium still moves with

π because changes in π induce changes in the disaster component of consumption risk, which

increases with π. Table A.XIII in the Online Appendix reports the historical asset pricing

moments and the distribution of their model counterparts. We keep all parameter values from

the previous analysis of the levered consumption model. The model produces a risk-free rate

(7.5%) and an equity premium (2.0%) that are, respectively, above and below their empirical

counterparts. Changing the relative risk aversion coefficient can improve the fit of one moment,

but only at the cost of deteriorating the fit of the other. In addition, the risk-free rate becomes

almost twice more volatile than in the data.

D. Model-Implied Option Prices

In this section, we investigate model-implied option prices. Equity index options provide valu-

able insights as their prices indicate how investors perceive the likelihood of rare events. In

particular, the prices of options for different strikes offer information about the market per-

ception of equity crashes. Backus et al. (2011) connect the risk-neutral distribution of equity

returns implied by options to the actual distribution of consumption growth, casting doubt on

the plausibility of disaster risk models. Indeed, they document that (i) options prices imply

smaller disaster probabilities than have been estimated from macroeconomic data and (ii) a

consumption-based model provides a poor description of implied volatility when calibrated on

macroeconomic data on disasters (e.g., Barro (2006), Nakamura et al. (2013)). While Backus

et al. (2011) makes use of a rare disaster model with a constant probability and CRRA prefer-

ences, more recently Seo and Wachter (2019) argues that a time-varying disaster model under

recursive preferences can reconcile these tensions. They show that the Wachter (2013) model

can in fact reproduce the implied volatility level and skew observed in the data. In what fol-

lows, we thus examine the option prices implied by our calibration, which is disciplined by our

estimates for π and a more conservative disaster size distribution.

Figure 14 illustrates our results. We depict prices as implied volatilities and plot them

against a measure of moneyness, with higher strike prices on the right side. The measure of

moneyness is computed as the proportionate difference between the strike and price: (strike −

price) / price. A value of zero corresponds to an at-the-money option (strike = price). We use

options with both a 3-month and a 1-year maturity, with deviations from return lognormality

(i.e., flat volatility smiles) that are more discernible at the shorter maturities.
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The upper panels of Figure 14 compare the implied volatilities predicted by our model

with the empirical evidence from S&P 500 index options. Implied volatilities typically average

around 20% and decrease with moneyness, the so-called volatility skew, with a steeper slope at

short maturity. The levered consumption model (see Eq. (16)) leads to a very good fit of the

data at both 3-month and 1-year maturity. Instead, the co-integration model (see Eq. (17))

predicts lower implied volatilities with a steeper slope than in the data for in-the-money put

options, in particular for the 3-month maturity. In both cases, the model helps filling the gap

documented by Backus et al. (2011) between actual option prices and those generated by a

CRRA consumption-based model with a constant probability of disasters. In particular, the

volatility skew produced by the levered consumption model compares well with the skew in Seo

and Wachter (2019). This points to the importance of a time-varying disaster probability and

highlights (i) the plausibility of disaster risk estimated from macroeconomic data and (ii) the

sensitivity with respect to the dividend dynamics.23

To further inspect the model mechanism, the lower panels of Figure 14 consider two alter-

native model specifications. Either we shut down time-variation in the disaster probability (and

increase the relative risk aversion to 7.5 to keep a sizeable equity premium) or we shut down

the preference for the early resolution of uncertainty (by adopting CRRA preferences). In both

cases, we observe that the level of implied volatility drops substantially and the volatility skew

is more pronounced than in actual data. Therefore, we conclude that the joint assumption of

time-varying disaster risk and preference about the resolution of uncertainty, initially proposed

by Wachter (2013), is key to generate model-implied option prices that conform well with the

data.

E. Summary of the Calibration Analysis

Overall, our model supports the idea that macroeconomic tail risk is a key driver of the equity

premium. In particular, the proposed calibration—where we embed our estimates of macroe-

conomic tail risk that make use of macroeconomic data only—indicates that the model can

generate a large and volatile equity premium. Moreover, model-implied options can generate a

realistic volatility skew, meaning that macroeconomic tail risk helps rationalizing how market

23As an additional exercise, we compare the sample moments of an empirical measure of the volatility skew—
that is a measure of return non-gaussianity implied in option prices—with its model counterpart. The latter is
obtained by plugging in the estimates of π̂− over the same sample. Table A.XIV in the Online Appendix reports
the results. In accord with the visual inspection of Figure 14, the levered consumption model provides a good
fit of the mean and slightly underestimates the standard deviation of the volatility skew observed in actual data,
whereas the co-integration model overestimates both moments. Results are quite insensitive to using π̂− from
either the current or the previous year. Since π̂− is estimated at yearly frequency, the sample is too short for a
proper empirical assessment, but these figures are quite reassuring about the model predictions concerning option
prices.
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participants price extreme events. We acknowledge that other aspects of the model are overly

simplistic. In the levered consumption model, macroeconomic tail risk πt is the only state

variable, which means that all equilibrium quantities are perfectly correlated, and the model

cannot explain the empirical wedge between risk and return. We emphasized in Section III.B

that macroeconomic tail risk and the dividend-price ratio are positively but imperfectly corre-

lated. The co-integration model actually reproduces this feature of the data, and still generates

a sizeable equity premium and return predictability, but the fit of the volatility skew partially

deteriorates.24

V. Conclusion

A major criticism of the rare disaster paradigm is its reliance on an elusive state variable, which

has been referred to as “dark matter for economists” (Campbell, 2017; Cochrane, 2017; Chen

et al., 2022). In this paper, we propose an approach to measure macroeconomic tail risk over

the long run. Our estimates capture the predictable variation in the lower tail of consumption

growth, making use of and summarizing the information content of a rich set of predictive

variables. The framework does not impose structural assumptions and does not require asset

pricing information, both of which are key to test the empirical validity of the rare disaster

paradigm.

We find that the lower quantiles of consumption growth are predictable by lagged recessions

at home and abroad, wars and related disasters, and asset prices, among other variables. By

combining the information in our predictive variables, we obtain country crisis probabilities

that capture the rich economic history of the 42 countries present in our sample. Reflecting the

predictive ability of its components, the crisis probabilities increase in periods of economic and

political distress and covary with asset prices, as implied by rare disaster models.

We calibrate a rare disaster model using our estimates of macro risk dynamics. In doing so,

we are careful to avoid asset price information, a step that ensures our calibration has not been

reverse-engineered to fit asset pricing data. The model generates a high and volatile equity

premium for a representative agent whose coefficient of relative risk aversion is 5 and whose

elasticity of intertemporal substitution is 1. These results support prior calibrations of rare

disasters model set to match asset pricing moments.

Our approach is inspired by the long tradition in finance of estimating the equity premium

24Section II.E also showed that many variables beyond option prices have forecasting power for future crises,
which we interpret as evidence of an imperfect correlation between macroeconomic tail risk and equity volatility.
While the co-integration model still produces a unit correlation with volatility, a richer model, for instance,
assuming conditional heteroskedasticity in the dynamics of st, could break this perfect correlation.
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using predictive regressions. Similar forecasting models are typical in the context of forecasting

recessions and other crises. We show that this type of forecasting model can measure eco-

nomic “dark matter,” such as disaster risk. We leave to further research the study of other

similar objects, such as long-run growth (Bansal and Yaron, 2004), which our framework can

accommodate as well. Finally, we note that rare disaster models can rationalize other regu-

larities observed in the markets for bonds and currencies (Gabaix, 2012; Gourio, 2013; Farhi

and Gabaix, 2016), and offer the possibility of connecting macroeconomic aggregates with asset

prices in production economies (Gabaix, 2011; Gourio, 2012; Kilic and Wachter, 2018; Isoré

and Szczerbowicz, 2017). An empirical evaluation of these models would be a fruitful area for

further research.
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Table I: Predictive Variables

Variable Description Mean S.D. Min Max

Macroeconomic Predictors
Recession One-year consumption growth rate < 0 0.282 0.450 0.000 1.000
Recession abroad Distance-weighted average of foreign 0.230 0.161 0.000 0.890

recessions
Consumption Consumption growth 0.019 0.063 −0.557 0.487
Consumption (world) GDP-weighted consumption growth 0.018 0.039 −0.213 0.116

War and Political Predictors
War Interstate war 0.040 0.195 0.000 1.000
Civil war Intrastate or non-state war 0.059 0.235 0.000 1.000
Political crisis Political crisis 0.013 0.115 0.000 1.000
War/political crisis abroad Distance-weighted average of foreign 0.096 0.117 0.000 0.761

war/political crises

Natural Disaster Predictors
Natural disaster Major earthquake, tsunami, volcano 0.070 0.255 0.000 1.000

eruption, and the Great Influenza
Famine Major famine 0.008 0.091 0.000 1.000

Financial Conditions Predictors
Banking crisis Banking crisis 0.088 0.284 0.000 1.000
Currency crisis Exchange rate depreciation ≥ 15% 0.144 0.351 0.000 1.000
Sovereign default Sovereign default 0.093 0.291 0.000 1.000
Hyperinflation Annual inflation rate ≥ 20% 0.099 0.299 0.000 1.000
Credit growth (world) GDP-weighted 3-year change 0.019 0.042 −0.132 0.084

in total bank loans to GDP

Asset Price Predictors
Dividend-price ratio (US) S&P 500 dividend-price ratio 0.040 0.016 0.011 0.093
Stock volatility (US) S&P 500 realized volatility 0.200 0.073 0.050 0.507
Yield curve (US) 10-year–1-year Treasury spread 0.001 0.017 −0.053 0.038

Notes. We report descriptive statistics for the predictive variables (see Section I.C and the Online
Appendix for detailed descriptions of each variable).
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Table II: Variance Decompositions for Macro Risk

(1) (2) (3) (4) (5)

Panel A: Predictor Categories
Macro 0.37 − 0.61 0.51 0.39
War and Political 0.28 0.48 − 0.38 0.27
Natural Disasters 0.00 0.01 0.01 0.01 0.00
Financial conditions 0.28 0.36 0.31 − 0.28
Asset Prices -0.02 0.06 0.03 0.05 −
Residual 0.09 0.10 0.04 0.05 0.05
N 3767 3767 3767 3767 3767
Countries 42 42 42 42 42
AUROC 0.67 0.67 0.65 0.64 0.67
σ(π̂′)× 100 2.05 1.59 1.65 1.59 1.79
ρ(π̂, π̂′) 1.00 0.92 0.90 0.88 0.99

Panel B: Subsamples
Full sample Pre-1945 Post-1945 OECD Ex-OECD

Macro 0.37 -0.01 0.15 0.35 0.37
War and Political 0.28 0.56 0.06 0.26 0.30
Natural Disasters 0.00 0.01 0.01 0.02 0.00
Financial conditions 0.28 0.11 0.55 0.29 0.16
Asset Prices -0.02 0.04 0.08 -0.01 0.07
Residual 0.09 0.28 0.15 0.09 0.09
N 3767 994 2773 2585 1182
Countries 42 31 42 25 17
AUROC 0.67 0.75 0.76 0.66 0.73
σ(π̂′)× 100 2.05 5.24 1.65 1.88 1.23
ρ(π̂, π̂′) 1.00 0.61 0.39 0.97 0.77

Panel C: Horizons
H = 3 H = 1 H = 2 H = 4 H = 5

Macro 0.37 0.56 0.38 0.37 0.08
War and Political 0.28 0.10 0.20 0.06 0.02
Natural Disasters 0.00 0.03 0.02 0.01 0.02
Financial conditions 0.28 0.15 0.18 0.43 0.60
Asset Prices -0.02 0.06 0.06 0.05 0.16
Residual 0.09 0.09 0.17 0.07 0.12
N 3767 3767 3767 3722 3674
Countries 42 42 42 42 42
AUROC 0.67 0.84 0.78 0.65 0.65
σ(π̂′)× 100 2.05 3.07 2.82 1.82 1.51
ρ(π̂, π̂′) 1.00 0.88 0.96 0.89 0.71

Notes. This table presents variance decompositions of macro risk on the five predictor categories and a
residual (see Eq. (7)). The table also reports the AUROC statistics, the volatility of the corresponding
macro estimates, and their pairwise correlations with the baseline model estimates. Panel A compares
the results for the full sample with results for predictor subsets where each predictor category is excluded
in turn. Panel B shows subsample results comparing pre- and post-WW2 data, OECD and non-OECD
countries. Panel C gives results for estimates constructed using consumption risk cumulated from one
to five years.
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Table III: Out-of-Sample Crisis Predictability

Model In Sample Out of Sample
H 1 2 3 4 5 1 2 3 4 5

Panel A: Expanding Window
Unpenalized 0.87∗∗∗ 0.81∗∗∗ 0.69∗∗∗ 0.71∗∗∗ 0.72∗∗∗ 0.83∗∗∗ 0.76∗∗∗ 0.68∗∗∗ 0.65∗∗∗ 0.67∗∗∗

LASSO 0.86∗∗∗ 0.82∗∗∗ 0.67∗∗∗ 0.70∗∗∗ 0.72∗∗∗ 0.83∗∗∗ 0.75∗∗∗ 0.66∗∗∗ 0.65∗∗∗ 0.67∗∗∗

Ridge 0.86∗∗∗ 0.82∗∗∗ 0.67∗∗∗ 0.70∗∗∗ 0.72∗∗∗ 0.83∗∗∗ 0.78∗∗∗ 0.67∗∗∗ 0.65∗∗∗ 0.67∗∗∗

Elastic 0.86∗∗∗ 0.82∗∗∗ 0.67∗∗∗ 0.70∗∗∗ 0.72∗∗∗ 0.83∗∗∗ 0.77∗∗∗ 0.69∗∗∗ 0.64∗∗∗ 0.67∗∗∗

Probit 0.87∗∗∗ 0.83∗∗∗ 0.68∗∗∗ 0.73∗∗∗ 0.74∗∗∗ 0.82∗∗∗ 0.71∗∗∗ 0.60∗∗∗ 0.60∗∗∗ 0.62∗∗∗

Panel B: Sample Split
Unpenalized 0.85∗∗∗ 0.79∗∗∗ 0.70∗∗∗ 0.69∗∗∗ 0.69∗∗∗ 0.81∗∗∗ 0.73∗∗∗ 0.63∗∗∗ 0.57 0.57
LASSO 0.85∗∗∗ 0.73∗∗∗ 0.67∗∗∗ 0.67∗∗∗ 0.67∗∗∗ 0.81∗∗∗ 0.72∗∗∗ 0.60∗∗∗ 0.61∗∗∗ 0.57
Ridge 0.85∗∗∗ 0.79∗∗∗ 0.67∗∗∗ 0.67∗∗∗ 0.68∗∗∗ 0.81∗∗∗ 0.75∗∗∗ 0.62∗∗∗ 0.61∗∗∗ 0.59
Elastic 0.84∗∗∗ 0.78∗∗∗ 0.69∗∗∗ 0.67∗∗∗ 0.68∗∗∗ 0.80∗∗∗ 0.73∗∗∗ 0.63∗∗∗ 0.59 0.59
Probit 0.86∗∗∗ 0.80∗∗∗ 0.69∗∗∗ 0.71∗∗∗ 0.69∗∗∗ 0.76∗∗∗ 0.70∗∗∗ 0.59 0.58 0.57

Notes. This table reports Area under the Receiver Operating Characteristic (AUROC) statistics for the
prediction of future crises based on π̂. Crises are defined as 2-SD cumulative declines in consumption
growth measured over H = 1, . . . , 5 years. In each case, π̂ is estimated on a training sample of a given
horizon and tested out of sample. The table reports AUROC in both samples. We evaluate estimates
constructed with quantile regressions model with no penalization and LASSO, Ridge, and Elastic net
penalized regression models and with the probit model. Panel A gives results where π̂ is constructed
out-of-sample using an expanding window after a 50-year training period (1900-1924). The forecasts are
compared over the 1925–2020 period. Panel B gives results for a variant where crises are identified out
of sample. Panel C gives results for the full historical sample (1900-2020), for repeated estimations of
the model trained on 21 countries picked randomly and tested on the remaining 21 countries. We report
statistical significance based on bootstrapped AUROC confidence bands.
∗, ∗∗, and ∗∗∗ indicate statistical significance at 10%, 5%, and 1% levels, respectively.
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Table IV: Macro Risk Weakly Forecasts Consumption Growth

Full sample (1876-2020) Prewar (1876-1945) Postwar (1945-2020)
H 1 3 5 1 3 5 1 3 5

Consumption growth

∆c
(H)
i,t+h = ai + bπ̂i,t + ui,t+H

b −0.32∗∗∗−0.46∗∗ −0.16 −0.34∗∗∗−0.78∗∗∗−0.41 −0.13 0.13 0.23
(0.06) (0.18) (0.26) (0.10) (0.27) (0.43) (0.10) (0.22) (0.32)

N 3,835 3,835 3,745 1,052 995 933 2,783 2,840 2,812
R2 0.022 0.012 0.001 0.021 0.032 0.005 0.005 0.001 0.003

GDP growth

∆y
(H)
i,t+h = ai + bπ̂i,t + ui,t+H

b −0.34∗∗∗−0.67∗∗∗−0.67∗∗ −0.40∗∗∗−0.84∗∗∗−0.67 −0.16 −0.37 −0.53∗

(0.06) (0.17) (0.26) (0.09) (0.26) (0.43) (0.10) (0.22) (0.31)
N 3,830 3,828 3,747 1,052 995 936 2,778 2,833 2,811
R2 0.028 0.028 0.016 0.030 0.038 0.012 0.007 0.009 0.012

Crises

Crisis
(H)
i,t+h = ai + bπ̂i,t + ui,t+H

b 1.23∗∗∗ 2.73∗∗∗ 3.21∗∗∗ 1.51∗∗∗ 4.09∗∗∗ 5.25∗∗∗ 0.63∗ 1.17 1.70
(0.23) (0.60) (0.93) (0.35) (0.93) (1.46) (0.35) (0.76) (1.08)

N 3,835 3,835 3,745 1,052 995 933 2,783 2,840 2,812
R2 0.046 0.058 0.046 0.054 0.107 0.088 0.013 0.013 0.018

Notes. This table presents slope coefficients, standard errors, and adjusted R2 statistics for predictive
panel regressions of cumulative consumption growth on crisis probabilities. Observations are over the
sample of 42 countries, from 1900 to 2020. Results are reported for the full sample, as well as for
subsamples covering the pre- and post-WW2 periods. Standard errors in parentheses are bootstrapped
to account for cross-sectional correlation and time aggregation. The bootstrap simulates the estimated
π̂ when it is used as a regressor to account for estimation error.
∗, ∗∗, and ∗∗∗ indicate statistical significance at 10%, 5%, and 1% levels, respectively.
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Table V: Macro Risk Forecasts Excess Stock Returns

Full sample (1876-2020) Prewar (1876-1945) Postwar (1945-2020)
H 1 3 5 1 3 5 1 3 5∑H

h=1 ri,t+h − rfi,t+h = ai + bπ̂i,t + ui,t+H

b 0.91∗∗ 1.91∗ 2.32 0.98∗∗ 2.02 1.91 1.36∗∗ 2.35∗ 2.94
(0.37) (0.98) (1.44) (0.47) (1.36) (2.04) (0.62) (1.35) (1.88)

N 1,753 1,707 1,661 641 601 561 1,112 1,106 1,100
R2 0.014 0.020 0.019 0.032 0.036 0.018 0.013 0.019 0.026∑H

h=1 ri,t+h − rfi,t+h = ai + bπ̂−i,t + ui,t+H

b 1.00∗∗∗ 2.31∗∗ 2.86∗ 1.02∗ 2.13 2.32 1.70∗∗ 3.31∗∗ 3.60∗

(0.39) (1.02) (1.55) (0.51) (1.33) (2.16) (0.72) (1.45) (1.98)
N 1,753 1,707 1,661 641 601 561 1,112 1,106 1,100
R2 0.016 0.026 0.026 0.032 0.037 0.024 0.017 0.031 0.035∑H

h=1 ri,t+h − rfi,t+h = ai + at + bπ̂i,t + ui,t+H

b 0.71∗∗ 1.84∗∗∗ 2.85∗∗∗ 1.07∗∗ 1.83∗ 2.26∗ 0.42 1.89∗ 3.21∗∗

(0.30) (0.69) (1.00) (0.42) (0.95) (1.40) (0.41) (0.97) (1.40)
N 1,753 1,707 1,661 641 601 561 1,112 1,106 1,100
R2 0.012 0.029 0.046 0.034 0.073 0.094 0.011 0.039 0.067

Notes. This table presents slope coefficients, standard errors, and adjusted R2 statistics for
predictive panel regressions of cumulative excess returns on crisis probabilities. Observations
are over the sample of 42 countries, from 1900 to 2020. Results are reported for the full
sample, as well as for subsamples covering the pre- and post-WW2 periods. Standard errors in
parentheses are bootstrapped to account for cross-sectional correlation and time aggregation.
The bootstrap simulates the estimated π̂ when it is used as a regressor to account for estimation
error.
∗, ∗∗, and ∗∗∗ indicate statistical significance at 10%, 5%, and 1% levels, respectively.
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Table VI: Excess Return Predictability: Inspecting the Mechanism

Full sample (1876-2020) Prewar (1876-1945) Postwar (1945-2020)
H 1 3 5 1 3 5 1 3 5∑H

h=1 ri,t+h − rfi,t+h = ai + b Recessioni,t + ui,t+H

b 0.02 −0.06∗ −0.10∗ 0.02 0.03 0.01 0.04∗ −0.13∗∗ −0.17∗∗

(0.01) (0.03) (0.05) (0.02) (0.04) (0.06) (0.02) (0.05) (0.07)
N 2,129 2,079 2,031 1,017 973 931 1,112 1,106 1,100
R2 0.002 0.004 0.008 0.003 0.001 0.000 0.004 0.013 0.015∑H

h=1 ri,t+h − rfi,t+h = ai + bπ̂i,t + c Recessioni,t + ui,t+H

b 0.91∗∗ 2.09∗∗ 2.45∗ 1.00∗∗ 2.01 1.92 1.27∗ 2.43∗ 3.03∗

(0.37) (0.94) (1.43) (0.49) (1.26) (2.01) (0.67) (1.32) (1.78)
c −0.00 −0.09∗∗ −0.13∗∗ −0.00 0.00 −0.02 0.01 −0.13∗∗∗−0.18∗∗

(0.02) (0.04) (0.06) (0.02) (0.04) (0.07) (0.02) (0.05) (0.07)
N 1,753 1,707 1,661 641 601 561 1,112 1,106 1,100
R2 0.014 0.028 0.032 0.032 0.036 0.019 0.014 0.034 0.043∑H

h=1 ri,t+h − rfi,t+h = ai + bFinCrisisi,t + ui,t+H

b 0.02 −0.17∗∗∗−0.28∗∗∗ 0.04 −0.17∗∗∗−0.23∗∗ 0.01 −0.16∗ −0.32∗∗

(0.02) (0.05) (0.08) (0.03) (0.06) (0.09) (0.03) (0.09) (0.13)
N 2,129 2,079 2,031 1,017 973 931 1,112 1,106 1,100
R2 0.001 0.016 0.029 0.004 0.022 0.026 0.000 0.012 0.033∑H

h=1 ri,t+h − rfi,t+h = ai + bπ̂i,t + c FinCrisisi,t + ui,t+H

b 0.97∗∗ 2.08∗ 2.27 0.96∗ 1.95 1.96 2.16∗∗ 2.82∗∗ 2.82
(0.44) (1.01) (1.50) (0.49) (1.34) (2.05) (0.97) (1.34) (1.81)

c −0.02 −0.21∗∗∗−0.31∗∗∗ 0.01 −0.23∗∗∗−0.31∗∗∗ −0.09∗ −0.21∗∗ −0.31∗∗

(0.03) (0.06) (0.09) (0.05) (0.08) (0.11) (0.05) (0.09) (0.13)
N 1,753 1,707 1,661 641 601 561 1,112 1,106 1,100
R2 0.015 0.042 0.051 0.032 0.068 0.059 0.020 0.039 0.056

Notes. This table presents slope coefficients, standard errors, and adjusted R2 statistics for predictive
panel regressions of cumulative excess returns on crisis probabilities, realized recessions, and financial
crises. Observations are over the sample of 42 countries, from 1900 to 2020. Results are reported
for the full sample, as well as for subsamples covering the pre- and post-WW2 periods. Standard
errors in parentheses are bootstrapped to account for cross-sectional correlation, time aggregation, and
generated predictor. The bootstrap simulates the estimated π̂ when it is used as a regressor.
∗, ∗∗, and ∗∗∗ indicate statistical significance at 10%, 5%, and 1% levels, respectively.
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Table VII: Estimation of the Disaster Risk Model

Estimate Standard Error

Normal times:

Average growth in consumption µ 0.023 0.022

Volatility of consumption growth σ 0.028 0.006

Disaster probability:

Long-term disaster probability π̄ 0.034 0.044

Persistence ρ 0.738 0.017

Volatility parameter ν 0.219 0.014

Disaster size:

Shape parameter β 0.066 0.017

Shifting parameter θ 0.056 -

Notes. The table presents GMM estimates (one-lag Newey and West (1987) standard errors in
parentheses) of consumption dynamics in the time-varying disaster model. The log consumption
growth evolves according to

∆ct = µ+ σεt + vt,

where µ and σ are constants, εt is a standard normal random variable, vt = Jt1∆nt>0, and ∆nt
follows a Poisson distribution with time-varying probability πt:

πt − π̄ = ρ(πt−1 − π̄) + ν
√
πt−1ut.

Finally, Jt follows a shifted negative exponential distribution that takes a minimum value of −θ
and parameter β, such that its mean and variance are −(θ + β) and β2.
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Table VIII: Asset Pricing Moments: Levered Consumption Model

Data Model

1871-2015 1946-2015 2.5% 5% 50% 95% 97.5%

Panel A: Unrestricted Model

Average risk-free rate 2.17 1.26 1.57 1.64 1.84 2.02 2.05

Standard deviation of risk-free rate 4.51 3.14 1.14 1.18 1.46 1.84 1.92

Average excess return 6.00 6.82 5.58 5.66 6.21 6.80 6.94

Standard deviation of excess return 18.5 16.5 20.5 20.9 23.1 25.7 26.5

Average dividend yield 4.13 3.33 3.16 3.19 3.37 3.68 3.77

Standard deviation of dividend yield 1.57 1.42 0.98 1.05 1.62 3.52 4.42

Autocorrelation of dividend yield 78.4 90.0 48.3 52.7 65.0 75.6 77.8

Panel B: Restricted Model (No Realized Disasters)

Average risk-free rate 2.17 1.26 1.57 1.61 1.84 2.03 2.05

Standard deviation of risk-free rate 4.51 3.14 1.12 1.16 1.46 1.82 1.92

Average excess return 6.00 6.82 6.85 6.94 7.44 8.06 8.18

Standard deviation of excess return 18.5 16.5 19.5 19.8 22.2 24.6 25.1

Average dividend yield 4.13 3.33 3.15 3.18 3.37 3.68 3.74

Standard deviation of dividend yield 1.57 1.42 0.98 1.03 1.61 3.32 4.11

Autocorrelation of dividend yield 78.4 90.0 50.9 53.8 65.5 75.9 77.6

Notes. Panel A reports unconditional moment statistics from S&P 500 real returns and three-month
U.S. Treasury real rates, as well as percentiles of the same moments from model simulations. Panel B
reports the same quantities from a restricted model in which disasters do not realize. Parameters are
from Table VII. Additional parameters are γ = 5, δ = 99% and φ = 2.6.
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Table IX: Asset Pricing Moments: Co-Integration Model

Data Model

1871-2015 1946-2015 2.5% 5% 50% 95% 97.5%

Panel A: Unrestricted Model

Average risk-free rate 2.17 1.26 1.57 1.63 1.83 2.01 2.04

Standard deviation of risk-free rate 4.51 3.14 1.13 1.19 1.46 1.83 1.92

Average excess return 6.00 6.82 4.67 4.75 5.46 6.15 6.28

Standard deviation of excess return 18.5 16.5 19.3 19.6 21.6 23.7 24.0

Average dividend growth 3.61 6.06 1.50 1.53 1.82 2.07 2.11

Standard deviation of dividend growth 12.5 6.4 30.4 30.7 32.4 34.4 34.9

Average dividend yield 4.13 3.33 4.92 5.01 5.67 6.36 6.46

Standard deviation of dividend yield 1.57 1.42 2.56 2.70 3.39 4.78 5.42

Autocorrelation of dividend yield 78.4 90.0 67.5 70.8 78.5 83.7 84.7

Corr. div. yield and disaster probability 45.2 23.2 30.4 32.6 50.3 64.3 66.1

Panel B: Restricted Model (No Realized Disasters)

Average risk-free rate 2.17 1.26 1.57 1.63 1.83 2.00 2.03

Standard deviation of risk-free rate 4.51 3.14 1.16 1.19 1.47 1.85 1.92

Average excess return 6.00 6.82 5.75 5.89 6.58 7.43 7.64

Standard deviation of excess return 18.5 16.5 18.8 19.0 20.8 23.1 23.6

Average dividend growth 3.61 6.06 2.09 2.11 2.30 2.50 2.53

Standard deviation of dividend growth 12.5 6.4 28.1 28.3 29.5 30.6 30.8

Average dividend yield 4.13 3.33 5.60 5.71 6.38 7.22 7.41

Standard deviation of dividend yield 1.57 1.42 2.86 3.00 3.95 6.45 7.81

Autocorrelation of dividend yield 78.4 90.0 65.3 69.3 78.5 83.7 84.4

Corr. div. yield and disaster probability 45.2 23.2 40.1 43.0 59.3 72.2 74.5

Notes. Panel A reports unconditional moment statistics from S&P 500 real returns and three-month
U.S. Treasury real rates as well as percentiles of the same moments from model simulations of the co-
integration model. Panel B reports the same quantities from a restricted model in which disasters do not
realize. Parameters are from Table VII. Additional parameters are γ = 5, δ = 99%, φ = 0.90, η = 0.30,
and κ = 4.
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Table X: Premium and Return Variance Decomposition

Levered Consumption Co-Integration

Equity Premium:

Normal Risk 0.12 0.06

Time-varying Disaster Probability 0.74 0.45

Disaster Severity 0.14 0.49

Return Variance:

Normal Risk 0.10 0.24

Time-varying Disaster Probability 0.82 0.68

Disaster Severity 0.08 0.08

Notes. This table reports the relative contribution of the three components of the equity
premium and the return variance at the steady state for both the levered consumption model
and the cointegration model.
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Figure 1: U.S. Macroeconomic Risk
Notes. This figure shows the probability of a severe macroeconomic crisis, π̂, in the United
States. A crisis is defined as a two-standard deviation drop in three-year consumption growth
below the average growth rate. According to this definition, the United States experienced
crises in 1918, 1919, 1930, 1931, 2007, and 2008.
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Figure 2: Timeline
Notes. This figure shows a heatmap of three-year consumption growth. Consumption growth in
each country is standardized to have a zero mean and unit standard deviation. Only realizations
less than −0.5 are shown. 2-SD macroeconomic crises are highlighted in grey. Small black dots
indicate data unavailability.

50

Electronic copy available at: https://ssrn.com/abstract=2773874



Figure 3: U.S. Consumption Growth Quantiles

Notes. This figure shows the conditional distribution of three-year consumption growth in the
United States. The solid black line shows macro risk, π̂, which is interpolated as the probability
of a 2-SD decline in consumption and is depicted in Figure 1.
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Figure 4: Quantile Regression Estimates
This figure shows quantile regression coefficient estimates for three-year consumption growth on
the set of predictive variables. Each plot reports quantile slope coefficient against the .01, .02,
.03, .04, .05, .075, .1, .15, .2, .3, .4, and .5 quantiles. The red dots report univariate regression
estimates, together with their 95% confidence bands. The blue lines report the multivariate
regression estimates. The dotted black lines report multivariate ridge estimates.
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Figure 5: Marginal effects for Univariate Quantile Regressions

Notes. This figure shows marginal effects calculated from the QR model based on univariate
regressions. The marginal effect is defined as the impact of a one standard deviation increase in
a predictive variable on the unconditional probability of a macroeconomic crisis. The horizontal
error bars depict 90% confidence intervals for the null of no predictability.
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Figure 6: Country Crisis Probabilities, π̂i

Notes. The shaded areas represent realized crisis-years.
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Figure 7: Receiver Operating Characteristic (ROC) Curve
Notes. The ROC curve assess the accuracy of binary forecasts (in this case in-sample π̂i esti-
mates). Each dot corresponds to a given threshold rule, with darker dots representing higher
thresholds. The x-axis indicates how often the model wrongly predict a macroeconomic crisis
in t+ 1; the y-axis gives the fraction of predicted disaster among all crises that did happen.
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Figure 8: US Macroeconomic Risk by Predictor Categories

Notes. This figure shows macro risk estimates for four out of five predictive variables groups.
The predictive variables associated with each group are listed in Table I. Shaded areas high-
light important predictors in each category: recessions (Macro), wars (War and Political), and
banking crises (Financial Conditions).
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Figure 9: Comparison with Option-Based Estimates

Notes. This figure compares macro risk (blue) and option-based estimates (black lines), which
are constructed following Barro and Liao (2021) using over-the-counter options prices for the
following equity-market indices: S&P 500 (the United States), FTSE (the United Kingdom),
DAX (Germany), Nikkei (Japan), OMX (Sweden), and SMI (Switzerland).
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Figure 10: Macro Risk and the Equity Premium

Notes. This figure plots the U.S. macro risk estimates constructed without asset price informa-
tion, π̂−, against two equity premium proxies: the S&P 500 dividend-price ratio and the Martin
(2017) bound on the equity premium, SV IX2. We extend the latter to our longer historical
sample, substituting our realized volatility index squared for the risk-neutral volatility in the
true index, multiplied by the real risk-free rate.
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Figure 11: Macroeconomic Crises and Stock Returns

Notes. This figure reports the local currency average excess stock return and consumption
growth around a macroeconomic crisis, obtained as the regression coefficients in Eq. (9).

Figure 12: Consumption distribution

Notes. This figure shows the distribution of three-year consumption growth in the data together
with the model-implied distribution. International consumption series are rescaled to have the
same mean and standard deviation as consumption growth in the United States.
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Figure 13: Model-Implied Predictability

Notes. This figure shows predictive slopes from the regression of either future cumulative excess
returns (left) or consumption growth (right) on either actual or model-implied macro risk as a
function of the horizon. Model-implied slopes are the median from the simulations of both the
baseline model (we also report the 5th and 95th percentiles) and the restricted model in which
disasters are not realized. Slopes with actual data correspond to point estimates from panel
regressions (Tables IV and V).
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Figure 14: Model-Implied Option Prices

Notes. This figure shows the model implied volatility for put options with either one-quarter
or one-year maturity as a function of relative moneyness, (strike - price) / price, in comparison
with the typical evidence from S&P 500 index options. Option prices are computed by Monte
Carlo simulations. The upper panels report the implied volatility for the levered consumption
model and the co-integration model. The lower panels report the implied volatility for a levered
consumption model with either a constant probability of disasters (and an increased relative
risk aversion γ = 7.5) or CRRA preferences.
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Appendix A. Data Appendix

Geographic distances

Our “Disaster abroad” variable is distance-weighted. We measure the distance between two
countries as the population-weighted average distance in kilometers between large cities’ of each
country pair (Mayer and Zignago, 2011).

GDP

We primarily work with consumption and GDP expressed per capita, but we sometimes need
GDP levels to value-weight series. We thus obtain population data from the Maddison database
(Inklaar et al., 2018), with the exception of pre-1950 Icelandic population data, which we
downloaded from populstat.info (accessed on November 29, 2019). We interpolate the remaining
small portion of the data that is missing (Shape-preserving piecewise cubic interpolation).

Wars.

The data for war and civil wars come from Sarkees and Wayman (2010), which extends from
1816 to 2007. “Wars” correspond to the events listed as interstate wars, while “Civil wars”
correspond to the events classified as either intrastate or nonstate wars. We use Wikipedia
pages listing wars involving each country in our sample to extend the data from 2008 to 2015.1

Political Crises.

We use data from the Center for Systemic Peace (CSP): Integrated Network for Societal
Conflict Research. The constraint on the executive variable is constructed by the Polity IV
project by coding the authority characteristics of governments across the globe from 1800 to
2016. The scale ranges from 1 (weak constraints on executive power) to 7 (strong constraints
on executive power). The variable measures the extent of institutional constraints on executive
power. We define political crises as a four or more decline in constraints on executive, or a
collapse or interruption in authority (coded separately as “-66” and “-77” in the Polity IV data
set).

Sovereign Defaults.

We utilize external default dummies assembled by Carmen Reinhart and Kenneth Ro-
goff (RR, see Reinhart and Rogoff (2009)). The data cover the period 1800–2014. We use
Wikipedia’s list of sovereign debt crises to complete our data up to 2015.2

Hyperinflation.

Our hyperinflation dates primarily come from RR, who define inflation crises as periods
with annual inflation rate exceeding 20%. The data cover the period 1800–2010. We extend the
sample to 2015 using inflation data from the World Development Indicators as well as Global
Financial Data.

Currency crises.

We use currency crises dates from RR, which are defined as annual depreciation against
the U.S. dollar (or the relevant anchor currency) of 15% or more. The data cover the period
1800–2010; we use exchange rate data from WDI and the Federal Reserve Bank of St. Louis to
calculate crisis dates until 2015.

1For example, https://en.wikipedia.org/wiki/List_of_wars_involving_Argentina (as of November 28,
2017). This yields a single new civil war: the Sinai Insurgency (Egypt, 2011–2015), and extended periods for two
other civil wars, namely, the Second Sri Lanka Tamil (Sri Lanka, 2006–2009) and unrest in Colombia (1989–2015).

2Accessed on November 28, 2017, at https://en.wikipedia.org/wiki/List_of_sovereign_debt_crises. In
our sample of countries, we find one default in 2015 (Greece).
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Financial Crises.

We use banking crisis dates constructed by RR, which covers the period 1800–2010. Bank-
ing crises correspond to events characterized by substantial bank runs and closure, merging,
takeover, or large-scale government assistance of an important financial institution. We use
Wikipedia’s list of banking crises to complete our data to 2015.3

Natural Disasters.

We obtain data on international earthquakes, tsunamis, and volcano eruptions from the
National Centers for Environmental Information. We focus on major events, the highest grade
in event classifications. This corresponds to events that have caused at least 1,000 deaths,
destroyed at least 1,000 houses or equivalent damages in monetary terms. When the database
does not report precise numbers, we use the highest descriptive score (4), which corresponds to
natural disasters of commensurable intensity. We also obtain the dates and location of major
famines from the website Our World in Data (accessed on November 11, 2019).

Financial data.

The data come from Global Financial Data (GFD). We compute local currency excess
returns by subtracting the continuously compounded 3-month short-term interest rate from
the total equity return (in logs). Returns are calculated from the end of the previous year to
the end of the current year. To eliminate the influence of outliers, we drop the 99.5th and 0.5th
percentiles of stock excess returns. The former is GFD’s country Treasury-bill yields. Our world
variables are based on that U.S. series, which has the longest time coverage. Our baseline global
dividend-price ratio is the Standard & Poor’s 500 D/P ratio computed by GFD, which starts
in 1871. Our volatility index is a composite of multiple time series. From 1986 onward, we use
the CBOE VXO index of percentage implied volatility, on a hypothetical at the money S&P100
option 30 days to expiration. Following Bloom (2009), we use actual returns volatilities to extend
the volatility series back in time. We estimate the annual standard deviation of stock returns
using the daily returns to the Standard and Poor’s S&P 500 from 1928 through 1985. The
estimates from 1885 through 1927 use daily returns on the Dow Jones composite portfolio, as in
Schwert (1989). Finally, since daily stock return data are not available before 1885, we compute
the volatility through Schwert (1989)’s generalization of the Officer (1973) moving standard
deviation estimator using monthly S&P 500 returns. The volatility indices are normalized to
have the same mean and variance as the VXO index when they overlap from 1986 onward.
Finally, we use the one-year interest rates in the United States from Robert Shiller to proxy
for the short-term risk-free rate. The term spread subtracts the one-year interest rate to the
10-year Treasury bond yield.

3Accessed on November 28, 2017, at https://en.wikipedia.org/wiki/List_of_banking_crises. In our
sample of countries, we find one default in 2015 (Greece). We find no evidence of sovereign defaults for Iceland
and Switzerland over our sample period. We extend the Spanish and Icelandic financial crises from 2008 to 2012.
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Table A.I: Predictor Variables: Correlation Matrix
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Recession 1.00

Recession abroad 0.32 1.00

Consumption -0.64 -0.27 1.00

Consumption (world) -0.19 -0.41 0.20 1.00

War 0.09 0.17 -0.11 -0.19 1.00

Civil war -0.01 -0.05 0.01 -0.00 0.04 1.00

Political crisis 0.10 0.19 -0.13 -0.09 0.09 0.04 1.00

War/political crisis abroad 0.13 0.38 -0.13 -0.38 0.35 0.02 0.27 1.00

Natural disaster -0.01 0.01 0.01 -0.16 0.07 0.08 0.01 0.14 1.00

Famine 0.05 0.05 -0.03 -0.02 0.13 0.03 0.07 0.10 0.06 1.00

Banking crisis 0.09 0.08 -0.08 0.01 -0.06 0.08 -0.02 -0.05 0.04 -0.03 1.00

Currency crisis 0.09 0.06 -0.06 -0.01 0.02 0.09 0.07 0.03 0.07 0.08 0.09 1.00

Sovereign default 0.08 0.12 -0.05 -0.07 0.07 0.11 0.13 0.11 0.02 0.23 0.02 0.23 1.00

Hyperinflation 0.08 0.09 -0.04 -0.08 0.05 0.10 0.06 0.13 0.08 0.11 0.06 0.45 0.26 1.00

Credit growth (world) -0.08 -0.23 0.07 0.29 -0.18 -0.02 -0.14 -0.47 -0.17 -0.08 0.07 -0.03 -0.09 -0.07 1.00

Dividend-price ratio (US) 0.20 0.40 -0.09 -0.43 0.17 -0.05 0.11 0.29 0.03 0.05 -0.03 0.04 0.11 0.08 -0.24 1.00

Stock volatility (US) 0.10 0.23 -0.07 -0.21 -0.02 -0.01 -0.02 -0.03 0.04 -0.03 0.10 0.04 0.05 0.01 0.08 0.17 1.00

Yield curve (US) 0.01 0.18 -0.03 0.09 0.02 0.02 0.04 0.15 -0.03 0.03 0.04 0.04 0.09 -0.02 -0.17 -0.19 0.11 1.00

Notes. The average absolute correlation between variables equals 0.11

Table A.II: Predictor Variables: Pairwise Correlations Across Countries

Mean Min 25% 75% Max

Recession 0.09 -0.27 0.01 0.19 0.53

Recession abroad 0.74 0.21 0.64 0.90 0.99

Consumption 0.08 -0.54 -0.05 0.20 0.78

Consumption (world) 1.00 1.00 1.00 1.00 1.00

War 0.22 -0.13 -0.03 0.42 1.00

Civil war 0.03 -0.51 -0.07 0.09 1.00

Political crisis 0.12 -0.07 -0.03 -0.01 1.00

War/political crisis abroad 0.78 0.02 0.70 0.92 1.00

Natural disaster 0.46 -0.24 0.20 0.77 1.00

Famine 0.21 -0.05 -0.03 0.55 1.00

Banking crisis 0.13 -0.23 -0.06 0.27 0.89

Currency crisis 0.07 -0.25 -0.05 0.17 0.66

Sovereign default 0.12 -0.33 -0.09 0.30 0.82

Hyperinflation 0.10 -0.35 -0.04 0.21 1.00

Credit growth (world) 1.00 1.00 1.00 1.00 1.00

Dividend-price ratio (US) 1.00 1.00 1.00 1.00 1.00

Stock volatility (US) 1.00 1.00 1.00 1.00 1.00

Yield curve (US) 1.00 1.00 1.00 1.00 1.00

A4

Electronic copy available at: https://ssrn.com/abstract=2773874



Appendix B. Quantile regression approach

We search for the vector β that minimizes the quantile loss function

B̂ = arg min
B

∑
q=Q

T−h∑
t=1

ρτq(∆ci,t+h −Xi,tB) + λ1

N∑
j=1

|bj |+ λ2

N∑
j=1

b2j , (B1)

where ρτq(x) = x (τq − Ix<0) is the quantile loss function and λ1 and λ2 are parameters. These
parameters penalize the number of parameters and thus allow us to include shrinkage in the
quantile estimation.

Setting λ1 = 0 and λ2 = 0 yields the standard quantile regression (QR) estimator of B.
Setting λ1 6= 0 and λ2 = 0 yields the quantile equivalent of the LASSO estimator (‘least
absolute shrinkage selection operator’) of Tibshirani (1996). As is well known, the LASSO
estimator imposes a sparsity assumption in that it uses a L1 penalty, leading some coefficient
estimates to be exactly zero for large enough values of λ1. Setting λ1 = 0 and λ2 6= 0 yields
the ridge estimator that shrinks the estimates of bj towards zero. As the ridge estimator uses
a L2 penalty, the ridge estimates will almost never be zero exactly. As a result, uninformative
predictors can still inflate the forecast error variance. However, the ridge tends to dominate the
LASSO in settings with many correlated regressors. Finally, setting λ1 6= 0 and λ2 6= 0 yields
the elastic net estimator of Zou and Hastie (2005).

We estimate B̂ using the .01, .02, .03, .04, .05, .075, .1, .15, .2, .3, .4 and .5 quantiles. These
quantiles always cover the 2-SD threshold in our sample. We use ten-fold cross-validation to
select the penalization parameters that minimize the out-of-sample quantile loss function.

In a second step, we smooth the conditional quantile estimates Xi,tB̂ using a log-linear
function. We fit the function Q̂Xi,t (τ | Xi,t) ≈ gi,t(τ) = log(a1,t+bi,tτ). This gives us an estimate

of macro risk, π̂i,t = g−1
i,t (−k). we fit the function Q̂Xi,t (τ | Xi,t) ≈ gi,t(τ) = log(a1,t + bi,tτ),

where g has a log-linear form. We obtain π̂i,t = g−1
i,t (−k). Finally, we interpolate π̂i,t as

π̂i,t = g−1
i,t (−2).
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Table A.III: Marginal Effects: Excluding Predictor Categories

(1) (2) (3) (4) (5) (6)

Recession 0.006∗∗ −0.004 0.000 0.010∗∗∗ −0.002
Recession abroad 0.008∗∗∗ 0.011∗∗∗ 0.010∗∗∗ 0.007∗∗ 0.012∗∗∗

Consumption 0.008∗∗∗ 0.005∗ 0.006∗∗ −0.001 −0.006∗∗

Consumption (world) −0.002 −0.002 −0.003 0.008∗∗∗ 0.007∗∗

War 0.003 −0.000 0.008∗∗∗ −0.002 0.001
Civil war 0.006∗∗ 0.014∗∗∗ −0.002 0.009∗∗∗ 0.010∗∗∗

Political crisis 0.002 0.009∗∗∗ 0.006∗∗ 0.003 0.002
War/political crisis abroad 0.011∗∗∗ −0.002 0.002 −0.003 0.002
Natural disaster −0.003 0.007∗∗ 0.007∗∗ 0.002 −0.001
Famine 0.003 0.002 −0.004 0.010∗∗∗ −0.004∗

Banking crisis 0.006∗∗ 0.012∗∗∗ 0.006∗∗ 0.010∗∗∗ 0.001
Currency crisis 0.002 0.002 0.002 0.001 0.012∗∗∗

Sovereign default 0.001 0.003 0.004 −0.002 0.009∗∗∗

Hyperinflation −0.002 −0.002 0.003 0.002 0.003
Credit growth (world) 0.000 −0.003 −0.001 0.008∗∗∗ 0.005∗

Dividend-price ratio (US) 0.010∗∗∗ 0.003 −0.002 0.006∗∗ 0.006∗

Stock volatility (US) 0.006∗∗ 0.003 0.011∗∗∗ 0.003 0.002
Yield curve (US) −0.003 0.005∗ 0.008∗∗∗ 0.004 0.007∗∗∗

Notes. This table shows the standardized marginal effects for the multivariate quantile regression. The
marginal effect is defined as the impact of a one standard deviation increase in a predictive variable on
the unconditional probability of a macroeconomic crisis.
∗, ∗∗, and ∗∗∗ indicate statistical significance at 10%, 5%, and 1% levels, respectively, based on boot-
strapped p-values.

Table A.IV: Marginal Effects: Subsamples

Full sample Pre-1945 Post-1945 OECD Ex-OECD

Recession 0.006∗∗ 0.004 0.006∗∗ 0.007∗ 0.006
Recession abroad 0.008∗∗∗ 0.006 0.005∗∗ 0.009∗∗ 0.008∗∗

Consumption 0.008∗∗∗ 0.012∗∗∗ 0.008∗∗∗ 0.006∗ 0.013∗∗∗

Consumption (world) −0.002 0.001 0.006∗∗∗ −0.000 −0.005
War 0.003 0.005 −0.002 0.001 0.005
Civil war 0.006∗∗ 0.003 0.007∗∗∗ 0.004 0.008∗∗

Political crisis 0.002 −0.004 0.004∗ 0.001 −0.001
War/political crisis abroad 0.011∗∗∗ 0.033∗∗∗ −0.004 0.012∗∗ 0.005
Natural disaster −0.003 −0.004 −0.002 −0.002 −0.005
Famine 0.003 0.004 0.000 0.002 0.004
Banking crisis 0.006∗∗ 0.002 0.007∗∗ 0.006∗ 0.004
Currency crisis 0.002 0.004 0.002 0.004 −0.003
Sovereign default 0.001 −0.002 −0.000 0.004 0.001
Hyperinflation −0.002 −0.008∗∗ 0.001 −0.003 0.003
Credit growth (world) 0.000 0.005 0.005∗ 0.000 −0.002
Dividend-price ratio (US) 0.010∗∗∗ −0.002 0.006∗ 0.009∗∗ 0.009∗

Stock volatility (US) 0.006∗∗ −0.000 0.001 0.004 0.005
Yield curve (US) −0.003 0.006 −0.004 −0.001 −0.005

Notes. This table shows the standardized marginal effects for the multivariate quantile regression. The
marginal effect is defined as the impact of a one standard deviation increase in a predictive variable on
the unconditional probability of a macroeconomic crisis.
∗, ∗∗, and ∗∗∗ indicate statistical significance at 10%, 5%, and 1% levels, respectively, based on boot-
strapped p-values.
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Table A.V: Marginal Effects: Horizons

H = 3 H = 1 H = 2 H = 4 H = 5

Recession 0.006∗∗ 0.008∗∗ 0.007∗∗ 0.001 0.002
Recession abroad 0.008∗∗∗ 0.006 0.008∗∗ 0.008∗∗∗ 0.008∗∗∗

Consumption 0.008∗∗∗ 0.003 0.004 0.002 0.003
Consumption (world) −0.002 −0.001 −0.000 −0.004 −0.001
War 0.003 0.003 0.003 0.002 0.003
Civil war 0.006∗∗ 0.001 0.003 0.006∗∗ 0.006∗∗

Political crisis 0.002 0.002 0.002 −0.001 −0.003
War/political crisis abroad 0.011∗∗∗ 0.008∗∗ 0.011∗∗∗ 0.003 −0.001
Natural disaster −0.003 −0.000 −0.002 −0.002 −0.002
Famine 0.003 0.005∗∗ 0.004∗ −0.000 −0.002
Banking crisis 0.006∗∗ 0.004 0.006∗ 0.005∗ 0.004
Currency crisis 0.002 0.004 0.001 0.003 0.002
Sovereign default 0.001 0.000 0.000 −0.000 −0.002
Hyperinflation −0.002 0.000 −0.001 −0.002 0.001
Credit growth (world) 0.000 −0.001 −0.001 −0.005 −0.011∗∗∗

Dividend-price ratio (US) 0.010∗∗∗ 0.012∗∗∗ 0.011∗∗∗ 0.012∗∗∗ 0.011∗∗∗

Stock volatility (US) 0.006∗∗ 0.006∗ 0.007∗∗ 0.005∗ 0.004
Yield curve (US) −0.003 −0.002 −0.004 −0.002 −0.002

Notes. This table shows the standardized marginal effects for the multivariate quantile regression. The
marginal effect is defined as the impact of a one standard deviation increase in a predictive variable on
the unconditional probability of a macroeconomic crisis.
∗, ∗∗, and ∗∗∗ indicate statistical significance at 10%, 5%, and 1% levels, respectively, based on boot-
strapped p-values.
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Appendix C. Crisis events

Table A.VI lists the 156 crises in our sample.
Table A.VII tests whether the autocorrelation of realized crises has changed after 1945. To
do so, we construct a crisis indicator yi,t, which is equal to one if the one-year normalized
consumption growth is below a given cutoff and zero otherwise. To get an idea of persistence
across the left side of the consumption distribution, we consider several cutoffs from 1 to 2.5. We
regress yi,t on its value the previous year as well as on its past value interacted with a dummy
variable that is equal to one if the observation is after 1945. A negative coefficient indicates a
decrease in persistence after 1945. The table indicates that none of the interaction coefficients
is statistically significant. Regardless of the cutoff value, crises have not become significantly
less persistent after 1945. This indicates that measurement errors are unlikely to exaggerate
crisis predictability.
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Table A.VI: List of Crises

Year Disasters

1912 Canada (−0.12), Germany (−0.17) 1974 Chile (−0.46)

1913 Canada (−0.14), France (−0.24), Germany
(−0.28), Netherlands (−0.15)

1975 Portugal (−0.08)

1914 France (−0.19), Germany (−0.38), Netherlands
(−0.18), Russia (−0.19), Sweden (−0.06), Turkey
(−0.37), United Kingdom (−0.08)

1976 Peru (−0.14)

1915 Germany (−0.31), Russia (−0.36), Sweden
(−0.07), Turkey (−0.56), United Kingdom (−0.16)

1977 Peru (−0.19)

1916 Finland (−0.36), Germany (−0.27), Netherlands
(−0.43), Norway (−0.08), Russia (−0.73), United
Kingdom (−0.18)

1981 Mexico (−0.08)

1917 Finland (−0.18), Russia (−0.68) 1982 Chile (−0.29), Mexico (−0.12)

1918 Russia (−0.72), United States (−0.11) 1983 Philippines (−0.08), Venezuela (−0.29)

1919 Canada (−0.22), Denmark (−0.06), United States
(−0.15)

1985 Brazil (−0.11), Malaysia (−0.16)

1920 Denmark (−0.22), Norway (−0.07) 1987 Argentina (−0.13), Brazil (−0.12), Norway
(−0.05), Peru (−0.25)

1921 New Zealand (−0.19) 1988 Argentina (−0.17), Peru (−0.35)

1929 Australia (−0.22), Brazil (−0.22), Italy (−0.06) 1989 Peru (−0.22)

1930 Canada (−0.22), Chile (−0.47), Finland (−0.20),
Peru (−0.15), United States (−0.21)

1990 Finland (−0.11)

1931 Canada (−0.20), Chile (−0.40), United States
(−0.17)

1991 Finland (−0.14)

1934 Italy (−0.06), Spain (−0.49) 1992 Finland (−0.07)

1935 Spain (−0.61) 1993 Mexico (−0.10)

1936 Spain (−0.56) 1997 Colombia (−0.10)

1938 Denmark (−0.23), Japan (−0.20), United King-
dom (−0.11)

1998 Colombia (−0.10)

1939 Denmark (−0.29), Egypt (−0.16), Finland
(−0.26), France (−0.49), Japan (−0.22), United
Kingdom (−0.15)

1999 Turkey (−0.12)

1940 Belgium (−0.72), Denmark (−0.22), Egypt
(−0.18), France (−0.65), Italy (−0.10), Japan
(−0.23), Netherlands (−0.63), Russia (−0.77),
Sweden (−0.17), Switzerland (−0.13), United
Kingdom (−0.16)

2000 Argentina (−0.26)

1941 France (−0.75), Italy (−0.24), Japan (−0.18), Ko-
rea (−0.09), Netherlands (−0.62), Russia (−0.77),
Switzerland (−0.12), Taiwan (−0.23)

2001 Taiwan (0.02)

1942 Austria (−0.42), Italy (−0.18), Japan (−0.34),
Korea (−0.23), Netherlands (−0.53), Taiwan
(−0.51)

2007 Iceland (−0.28), Italy (−0.05), Spain (−0.09),
United Kingdom (−0.02), United States (−0.02)

1943 Germany (−0.30), Italy (−0.24), Japan (−0.71),
Korea (−0.47), Taiwan (−0.86)

2008 Denmark (−0.06), Iceland (−0.29), Spain (−0.09),
United Kingdom (−0.04), United States (−0.02)

1944 Korea (−0.30), Taiwan (−0.54) 2009 Greece (−0.14), Spain (−0.09), United Kingdom
(−0.04)

1948 India (−0.19) 2010 Greece (−0.23)

1950 Korea (−0.46), Singapore (−0.20) 2011 Greece (−0.19), Italy (−0.08), Portugal (−0.09)

1952 Egypt (−0.18) 2012 Italy (−0.08)

1972 Chile (−0.26) 2013 Austria (−0.02)

1973 Chile (−0.47) 2018 Argentina (−0.26), Australia (−0.03), Austria
(−0.09), Belgium (−0.07), Canada (−0.06),
France (−0.05), Germany (−0.04), Italy (−0.08),
Mexico (−0.11), Norway (−0.06), Singapore
(−0.09), Spain (−0.12), Switzerland (−0.04),
United Kingdom (−0.11)

Notes. This table lists crises based on consumption data in our panel of 42 countries from 1900-2020. Disaster sizes are
indicated in parentheses.
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Table A.VII: Persistence in Realized Crises Before and After 1945

Cutoff: 1 1.5 2 2.5

yi,t−1 0.243∗∗∗ 0.238∗∗∗ 0.209∗∗∗ 0.239∗∗

(0.04) (0.05) (0.07) (0.09)

yi,t−1 × 1t>1945 0.067 −0.091 −0.096 −0.143

(0.07) (0.08) (0.09) (0.11)

R2 0.081 0.038 0.029 0.036

N 4,762 4,762 4,762 4,762

Notes. This table reports regression results for crisis indicators, constructed based on one-year
normalized consumption growth falling below cutoffs ranging from 1 to 2.5. The indicators are
regressed on its value from the previous year and its past value interacted with a post-1945
dummy variable. A negative coefficient indicates decreased persistence after 1945.
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Appendix D. Macro Risk: Alternative Estimates and Figures

In the baseline model, we estimate π̂ using quantile regression with a Ridge penalization. A crisis
is defined as a 2 standard-deviation drop in three-year consumption growth, and 0 otherwise.
We present alternative estimates below.

Excluding Asset Price Predictors

In the spirit of Mehra and Prescott (1985), and subsequent literature, we estimate our model
without relying on asset pricing data. Figure A.I shows macro risk estimates excluding asset
price predictors, π̂− , which we use in the estimation of the disaster risk model parameters.

Horizon And Threshold Sensitivities

Figure A.II shows sensitivity results for U.S. macro risk with respect to the forecasting horizon.
Figure A.III shows sensitivity results for U.S. macro risk with respect to the crisis threshold.

Unpenalized And Probit Models

Figure A.IV shows US estimates for unpenalized regressions as well as LASSO and Elastic Net
penalizations.
Figure A.V shows US estimates constructed using a probit regression model.

Heterogeneous Loadings Model

Our baseline model imposes the homogeneity restriction that all countries have the same loading
on individual predictors. Figure A.VI shows an estimate for an alternative model where the
countries’ exposures to global variables are allowed to be heterogeneous. To do so, we write
down an alternative model in which the countries’ exposures to global variables are allowed to
differ. The conditional quantiles QXi,t (τ |Xi,t) are thus given by:

QXi,t (τ |Xi,t) = XL
i,tB

L +XG
t B

G
i , (D1)

where we partitioned the predictor vector Xi,t into local XL
i,t and global components XG

t (i.e.,
world consumption growth, global credit growth, and the three asset price predictors). The
model above can be cast into our common slope model by expanding the predictor set to
include interactions with country fixed effects. We find that this alternative model generates
very similar estimates in-sample, but has limited out-of-sample forecasting power, likely due to
overfitting of the individual loading parameters.

Subsample Sensitivities and GDP-Based Estimates

Figure A.VII shows US estimates constructed using the pre- and post-WW2 samples.
Figure A.VIII shows US estimates training the model using OECD and non-OECD countries.
Figure A.IX compares U.S. macro risk estimates and the cross-country average.
Figure A.X shows estimates based on GDP data.
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Figure A.I: Excluding Asset Price Predictors

Notes. This figure compares our baseline U.S. macro risk based with estimates excluding asset
price predictors, π̂−.

Figure A.II: Horizon sensitivity

Notes. This figure compares U.S. macro risk against the probabilities of macroeconomic crises
one and five years ahead.
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Figure A.III: Threshold Sensitivity

Notes. This figure compares our baseline U.S. macro risk estimate to alternative estimates
constructed using crisis thresholds of 1.5, and 2.5 standard deviations from average consumption
growth rates.

Figure A.IV: Penalized Regression Estimates

Notes. This figure compares U.S. macro risk against penalized regression estimates.
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Figure A.V: Probit Estimates

Notes. This figure compares U.S. macro risk against probit estimates.

Figure A.VI: Relaxing the Homogeneity Restriction

Notes. This figure compares our baseline U.S. macro risk estimate to an alternative model
where the countries’ exposures to global variables are allowed to be heterogeneous. The figure
shows estimates based on a Ridge penalization.
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Figure A.VII: Subsamples: before/after World War 2

Notes. This figure compares our baseline U.S. macro risk estimate to alternative estimates
constructed from separate regressions for the pre- and post-WW2 samples. Marginal effect
estimates are reported in Table A.IV.

Figure A.VIII: Subsamples: OECD versus non-OECD countries

Notes. This figure compares our baseline U.S. macro risk estimate to alternative estimates
constructed from separate regressions for the OECD sample only and another excluding the
OECD sample. The corresponding estimates of marginal effect are reported in Table A.IV.
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Figure A.IX: US Estimates vs. Cross-Country Average

Notes. This figure compares U.S. macro risk against the arithmetic average of individual country
estimates.

Figure A.X: Crisis definition: consumption vs. GDP crises

Notes. This figure compares our baseline U.S. macro risk based on consumption data to an
alternative estimate based on GDP data.
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Local And Global Risks Decomposition

A potential concern is that our econometric setup does not distinguish between local and global
crises, which could be predicted by different sets of variables. To address this concern, we use
a probit approach as it allows us to work with realized crises that we can classify as global
or local. We assume a country is in a global crisis if normalized consumption falls by more
than two standard deviations and more than 20% of countries experience 2-SD crises at the
same time. Other 2-SD crises in which less than 20% of countries are affected are considered
local crises. During a global crisis, if a country’s consumption does not exceed two standard
deviations, that country is not considered to be in crisis. This allows us to maintain the same
crisis frequency, and thus this approach remains consistent with our baseline method. Roughly,
this rule corresponds to treating the two world wars and the Covid crisis as global crises and
the remaining crises as local crises. Empirically, global crises and local crises are uncorrelated
(corr. = −0.02).

Equipped with global and local crises, we construct the two crisis probabilities of interest.
We forecast global crises with global variables and local crises with local variables. (We find
that not imposing this assumption yields similar results). Figure A.XI displays a stacked area
plot that decomposes global, π̂G, and local π̂L crisis probabilities for the United States. We
note that World War II, the Great Depression following 1929, the 2008 crisis, and to a lesser
extent World War I, are the periods with the highest global risks (π̂G). In contrast, US-specific
macro risk (π̂L) dominates in the second half of the twentieth century. We also find that the
correlation between the two probabilities is positive but low (corr. = 0.19).

Figure A.XI: Local and Global Risks Decomposition

Notes. This figure presents a stacked area plot decomposing US macro risk into global (π̂G)
and local (π̂L) components. The decomposition utilizes a probit model, distinguishing crises as
either local or global. Global crises are defined by instances where more than 20% of countries
are in a crisis, characterized by a consumption drop of more than two standard deviations.
Crises affecting less than 20% of countries are classified as local.

We next ask if our baseline approach (where we pool local and global predictors to estimate
by quantile regressions consumption growth conditional distributions) could be biased. By
construction, there is no overlap between local and global crises, which means that the sum of
the two crisis probabilities (π̂w + π̂j) should be comparable with π̂. Figure A.XII compares the
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sum of the two probabilities and π̂. We see that the two probabilities are to a large extent similar
and highly correlated; this is true for the US but also globally (corr. = 0.80). This result is
not sensitive to the choice of decomposition. We have tried with alternative thresholds defining
a global crisis at 10% and 40%, for example, and the sum of global and local probabilities
remain similar to our baseline π̂. We therefore conclude that the potential bias is not materially
important in our baseline setup.

Figure A.XII: Robustness to Local and Global Risks Distinction

Notes. This figure compares our the probit U.S. macro risk estimate to the sum of global and
local risk estimates constructed by separating global and local crises.
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Two-Stage Quantile Regression Approach

We next consider an alternative approach where we replace binary crisis indicators (wars, natural
disasters, political crises, etc.) with crisis probabilities, constructed in a preliminary stage. In
the first stage, we construct the time t probability of such non-macro crises between t+ 1 and
t+ 3, which we use to forecast consumption quantiles in the second stage. This approach gives
us an alternative variable for each type of non-macro crisis that we can include in Xi,t. Our
predictive set contains j = 1 . . . 10 binary indicators encoding non-macro crises. Let us denote

by q
(j)
t the probability of a type j crisis within three years (t + 1 to t + 3). For each j, we

estimate q
(j)
t using a probit regression with our baseline set of predictors, Xi,t and where the

dependent variable equals one if there is at least one type j crisis between t + 1 and t + 3.
To avoid overfitting, we estimate the model using a LASSO penalization tuned with 10-fold
cross-validation.

We present the estimation results of non-macro crises in Figure A.XIII for the United States.
The blue lines indicate the penalization estimates and the dashed red lines indicate the non-
penalized estimates. We also highlight in gray the realization of crises. The average pairwise
correlation between the indicators and the probabilities is 0.60. This correlation is unsurprising.
Events such as financial crises and wars tend to persist over time. Consequently, the best
predictor of a crisis is the realization of a crisis state in the past (see e.g., Mueller and Rauh
(2022) for a similar observation in the context of predicting wars).

Figure A.XIII: Probabilities of Non-Macro Crises in the United States

Notes. This figure presents the estimation results of non-macro crises in the United States. It
shows crisis probability estimates for each of the ten non-macro crises, such as wars, natural
disasters, and political crises. Each probability is constructed with a probit model, where the
dependent variable is an indicator equal to one for crises occurring between t+ 1 and t+ 3. The
blue lines represent 10-fold cross-validation LASSO estimates, while the dashed red lines depict
non-penalized estimates. Areas shaded in gray signify the actual realization of crises.

Equipped with these new predictors, we can then re-estimate the main model for π̂. This
alternative specification replaces the binary indicators represented in gray in Figure A.XIII with
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the crisis probabilities q
(j)
i,t represented in blue. We present the estimates π̃ for the US in Figure

A.XIV, compared as usual to our baseline π̂. These estimates are very similar: this is true for
the US as for the rest of the countries in our sample (corr. = 0.92).

Figure A.XIV: Forecasting using non-macro crisis probability estimates

Notes. This figure compares our baseline U.S. macro risk estimate to an alternative estimate
constructed from replacing non-macro crisis indicators with non-macro probabilities constructed
from probit estimates.
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Macro Risk and Market Volatility

Figure A.XV compares the U.S. option-implied crisis probability in Barro and Liao (2021)
together with the volatility index. The volatility index is an element in our predictor set (see
Section I.C), which we show here scaled to be comparable with Barro and Liao’s option-implied
probability.
Figure A.XVI compares π̂ to an alternative estimate constructed solely from the volatility index.
Figure A.XVII compares π̂ to Manela and Moreira (2017)’s NVIX.

Figure A.XV: Option-Based Estimates and the Volatility Index

Notes. This figure shows the U.S. option-implied crisis probability in Barro and Liao (2021)
together with the volatility index.
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Figure A.XVI: Baseline vs. Volatility Index

Notes. This figure compares our baseline U.S. macro risk estimate to an alternative estimate
constructed using the volatility index.

Figure A.XVII: Macro Risk and News Implied Volatility

Notes. This figure compares our baseline U.S. macro risk estimate to the News implied volatility
index (NVIX) proposed by Manela and Moreira (2017). The NVIX series spans the 1889–2007
to 2016–2003 period and was downloaded from Asaf Manela’s website in February 2022.
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Appendix E. Comparison with Berkman et al. (2011)

Berkman et al. (2011) uses international political crises such as wars and other violent acts to
proxy for macroeconomic tail risk. Specifically, they use the number of international crises in
a given month as their main proxy. Figure A.XVIII shows the number of international crises
used in Berkman et al. (2011) together with π̂ for the United States. The correlation between
the two series is positive (0.15), but there are also marked differences between the two measures
over several episodes. For instance, there are relatively few international political crises in the
interwar periods, whereas π̂ rises to about 10% (a fivefold increase) in the wake of the 1929
crash. In contrast, π̂ declines at the beginning of the Great Moderation in the 1980s, while
political risk spikes after the Soviet intervention in Afghanistan in 1979, a major crisis at the
time.

To better understand the two series, we compare the raw datasets. Berkman et al. (2011)
relies on a database of major international political crises from the International Crisis Behavior
project (ICB), which covers the 1918–2006 period. Our wars and political crises data comes
from Sarkees and Wayman (2010) and from the Center for Systemic Peace (CSP), which we
extended to 2019 using online sources (see Appendix A). Both datasets have strengths and
weaknesses. The ICB database is sampled monthly and crises are defined on a narrative-based
approach. As noted in Berkman et al. (2011), this data is best suited for event studies since the
timing of the crises are likely to be closely aligned with the news to which investors react. Our
yearly dataset has the advantage of starting earlier, which allows us to cover the First World
War and the late nineteenth-century crises in our analysis.

Figure A.XIX shows the number of wars and political crises in the paper and in the ICB
dataset. Following Berkman et al. (2011), we calculate the number of political crises as the sum
of crises that start or are ongoing in a given month and plot the average number of international
crises per month. Once again, the two series are positively but fairly weakly correlated (the
correlation is 0.15). To a large extent, our wars and political crises data reflect the number of
countries involved in armed conflicts. Therefore, we see peaks in the number of crises around the
two world wars, as well as the Korean and Vietnam Wars. The ICB dataset primarily focuses on
perceived crises, and thus includes many crises that did not translate into armed conflicts. The
largest number of crises is actually in 1919, a year marked by substantial international tension
in the wake of the First World War. The number of recorded crises during the Second World
War is modest in comparison. Likewise, in the postwar period, the ICB data reflect crises such
as the Berlin Blockade in July 1948, the Berlin crisis in 1961, the Cuban Missile Crisis in 1962,
and many other crises, that did not always translate into major conflicts.

Berkman et al. (2011) shows that political crises have forecasting power for future crises.
We next compare the forecasting power of ICB crises with wars and political crises in our
dataset. To do so, we map the number of crises to a disaster probability using our quantile
regression approach. The AUROC is positive but relatively low (0.53), similar to the AUROC
for individual predictors such as options. Interestingly, the number of wars and political crises
in Figure A.XIX delivers a higher AUROC of 0.66. This exercise confirms that the crises
in Berkman et al. (2011) are best suited for event studies than for constructing an objective
measure of disaster risk.
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Figure A.XVIII: Comparison with Berkman et al. (2011)

Notes. This figure compares π for the United States with the number of wars and political
crises in the paper and in the ICB dataset used in Berkman et al. (2011).

Figure A.XIX: Wars and Political Crises Comparison

Notes. This figure shows the number of wars and political crises in the paper and in the ICB
dataset used in Berkman et al. (2011).
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Appendix F. Understanding the Marginal Contribution of
Credit Growth

There is ample evidence in the literature that credit growth tends to be associated with worse
macroeconomic outcomes. However, in our setting, we find credit growth to have little incre-
mental forecasting power when conditioning on the full set of predictor variables. As a result,
our estimates are essentially insensitive to credit variables; Figure A.XX below illustrates this
insensitivity for the US. We use global credit growth to maximize sample size, but using lo-
cal credit growth (like is common in the literature) or excluding credit growth deliver very
similar estimates, with pairwise correlations close to unity across specifications. This is a gen-
eral pattern in the paper: we use many predictors, such that individual predictors tend to be
redundant.

Figure A.XX: Macro Risk Sensitivity to Credit Growth Variables

Notes. This figure compares π̂ with two alternative specifications constructed either using local
credit growth for the subset of countries where the data are available or excluding credit growth.

We explain further why macro risk is insensitive to credit growth below. In particular, we
document that the predictive power of local credit growth is relatively weak in the long Jordà-
Schularick-Taylor (JST) sample (Jordà et al., 2017). We also show below that our macro risk
estimates π̂ and credit growth jointly predict equity returns.

We first revisit the negative association between credit and consumption and GDP docu-
mented in the literature (Jordà et al., 2017; Mian et al., 2017). In particular, Mian et al. (2017)
(MSV) presents regression results for output growth that are close to the quantile regressions
we use in the paper. MSV shows that lagged 3-year credit growth forecasts 3-year GDP growth
in an unbalanced panel of 30 countries from 1960 to 2012. We replicate this result using the
same time period as MSV in Table A.VIII.

Table A.VIII examines the relationship between lagged 3-year credit growth and future
GDP growth, consumption growth, as well as consumption crises. We begin with the MSV
specification using their replication dataset and continue with the JST dataset following your
suggestion. The first column replicates MSV’s baseline result using their replication data. We
confirm that the growth of the debt-to-GDP ratio negatively predicts future GDP growth (the
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coefficient is identical to the one reported in column 1 from Table 3 in MSV). MSV uses GDP
growth, while we use per capita GDP growth, following Barro and Ursúa (2008). In the second
column, we replicate this result using our per capita GDP series and the debt-to-GDP ratio
from the JST dataset we use in the paper. These two specifications include country fixed effects
as per MSV, whereas we do not use fixed effects (since consumption growth is standardized).
The third column shows that MSV’s result is not sensitive to the inclusion of fixed effects. The
fourth column replaces the GDP growth rate with the growth rate of standardized consumption,
which is the main variable we use in the paper. The fifth column uses the global credit growth
predictor from our paper. Again, we document a negative association. Finally, the last two
columns use the same set of two predictive variables but replace the dependent variable with a
binary indicator that equals one when a crisis occurs, that is, when standardized consumption
is below −2. We observe a positive and significant coefficient in both columns, meaning that
both local and global credit growth are associated with increased macroeconomic tail risk.

Table A.VIII: Credit Expansion and Future Growth (MSV Sample, 1960–2012)

∆3y
MSV
it+3 ∆3yit+3 ∆3yit+3 ∆3cit+3 ∆3cit+3 1∆3cit+3<−2 1∆3cit+3<−2

∆3d
MSV
it−1 −0.119∗∗∗ – – – – – –

(0.03) – – – – – –

∆3d
JST
it−1 – −0.233∗∗∗ −0.214∗∗∗ −3.035∗∗∗ – 0.456∗∗ –

– (0.04) (0.04) (0.59) – (0.20) –

∆3dt−1 – – – – −5.851∗∗ – 0.804∗∗

– – – – (2.49) – (0.34)

FE X X
R2 0.087 0.178 0.177 0.163 0.043 0.065 0.019

N 695 570 570 570 717 570 717

Notes. This table presents the results of a replication and robustness analysis based on the
original findings by Mian et al. (2017) (MSV). The sample period is 1960 to 2012. The table
showcases various specifications for predicting three-year future output growth (denoted ∆3y),
standardized consumption growth (denoted ∆3c), and crisis indicators (denoted 1∆3cit+3<−2).
The independent variables are debt-to-GDP ratios constructed at the country or global level.
Country variables are denoted with a subscript i. The MSV and JST superscripts in the first
column and the first two rows indicate that we use data from MSV or JST, respectively. The
first two columns include country fixed effects as per MSV.

MSV uses a shorter sample (1960 to 2012) than ours. We show the results of the same
regression using our sample (1875 to 2020) in Table A.IX. We observe that the predictive power
of all variables is weaker for both GDP and consumption growth (columns 1-4). This is con-
sistent with the evidence in Jordà et al. (2017) that the negative effects of credit growth are
mostly present in the post–World War II period. We note that the OLS coefficient for global
credit growth in column 4 is positive but insignificant. Similarly, the univariate 50% quantile
regression coefficient we report in Figure 4 is positive but also insignificant. Regarding the pre-
dictability of realized crises (columns 5-6), we observe that the coefficient is either insignificant
or has the opposite sign, meaning that credit growth is associated with lower tail risk.4 This is
again in line with the quantile regression coefficients reported in Figure 4. The corresponding
multivariate marginal effect (not shown) is approximately zero and insignificant. In conclusion,

4These results are inconsistent with Baron et al. (2023) who find that credit growth is associated with more
tail risk. The difference is likely due to the different sample and credit growth variable. Baron et al. (2023)
standardize credit growth, censor credit growth at zero, and exclude observations around the two World Wars.
Following this approach delivers a positive but insignificant coefficient.
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the relationship between credit growth and our macro risk estimates, π̂, is generally weak in
our long sample. This explains why the inclusion of either local or global credit growth, or the
exclusion of credit growth altogether, does not significantly affect our estimation.

Table A.IX: Credit Expansion and Future Growth (Main Sample, 1875–2020)

∆3yit+3 ∆3yit+3 ∆3cit+3 ∆3cit+3 1∆3cit+3<−2 1∆3cit+3<−2

∆3d
JST
it−1 −0.069∗∗ −0.068∗∗ −1.887∗∗∗ – 0.003 –

(0.03) (0.03) (0.60) – (0.12) –

∆3dt−1 – – – −0.427 – −0.378∗

– – – (1.31) – (0.20)

FE X
R2 0.005 0.005 0.029 0.000 0.000 0.006

N 1,819 1,819 1,819 3,764 1,819 3,764

Notes. This table extends the replication and robustness analysis introduced in Table A.VIII
above, using the sample period specified in the paper (1875 to 2020).

We also show π̂ and credit growth jointly predict returns. Table A.X presents regression
results for stock returns. In the top panel, we use local credit growth. Similarly to Baron and
Xiong (2017), we observe a negative association between credit growth and future returns. In
the bottom panel, we look at a bivariate specification in which we include credit growth and
our baseline π̂. We observe that both variables approximately retain their predictive power. In
other words, the evidence that macro risk is associated with higher future excess returns is not
inconsistent with the negative association with credit growth documented in the literature.

Table A.X: Credit Expansion and Future Returns

Full sample (1876-2020) Prewar (1876-1945) Postwar (1945-2020)
H 1 3 5 1 3 5 1 3 5∑H

h=1 ri,t+h − rfi,t+h = ai + b∆3d
JST
it−1 + ui,t+H

b −0.27∗∗∗−0.67∗∗∗−0.84∗∗∗ −0.22∗ −0.79∗∗ −1.40∗∗∗ −0.37∗∗∗−0.75∗∗ −0.66
(0.08) (0.22) (0.33) (0.12) (0.34) (0.48) (0.11) (0.30) (0.42)

N 1,921 1,900 1,878 843 825 807 1,078 1,075 1,071
R2 0.012 0.023 0.024 0.011 0.040 0.092 0.018 0.023 0.012∑H

h=1 ri,t+h − rfi,t+h = ai + bπ̂i,t + c∆3d
JST
it−1 + ui,t+H

b 0.86∗∗ 1.87∗ 2.36∗ 1.03∗∗ 1.71 1.06 1.40∗∗ 2.49∗ 3.93∗∗

(0.36) (0.97) (1.36) (0.46) (1.35) (2.11) (0.65) (1.30) (1.75)
c −0.21∗∗∗−0.49∗∗ −0.59∗ −0.05 −0.55∗ −1.29∗∗ −0.37∗∗∗−0.59∗∗ −0.29

(0.08) (0.23) (0.33) (0.12) (0.33) (0.49) (0.11) (0.29) (0.45)
N 1,661 1,628 1,594 583 553 523 1,078 1,075 1,071
R2 0.024 0.038 0.037 0.038 0.063 0.105 0.031 0.042 0.048

Notes. This table presents slope coefficients, standard errors, and adjusted R2 statistics for predictive
panel regressions of cumulative excess returns on credit growth, following Baron and Xiong (2017).
Observations are over the sample of 42 countries, from 1900 to 2020. Results are reported for the full
sample, as well as for subsamples covering the pre- and post-WW2 periods. Bootstrapped standard
errors are shown in parentheses.
∗, ∗∗, and ∗∗∗ indicate statistical significance at 10%, 5%, and 1% levels, respectively.

A27

Electronic copy available at: https://ssrn.com/abstract=2773874



Appendix G. The Levered Consumption Model

The dynamics of consumption belong to the affine class and are given by

∆ct = µ+ σεt + vt,

πt = (1− ρ)π̄ + ρπt−1 + ν
√
πt−1ut.

Therefore, the following expectation has exponential affine solution (Drechsler and Yaron, 2011):

Et[eu1∆ct+1+u2πt+1 ] = eg0(u)+g1(u)′[∆ct,πt]′ , u = (u1, u2)′ ∈ R2,

where

g0(u) =
(
µ− σ2

2

)
u1 + π̄(1− ρ)u2 + 1

2σ
2u2

1,

g1(u) =
[
0, 1

2ν
2u2

2 + ρu2 + ϕ(u1)− 1
]′
.

The representative agent has recursive utility of the form

Vt =
[
(1− δ)C1−1/ψ

t + δ(Et[V 1−γ
t+1 ])

1−1/ψ
1−γ

]1/(1−1/ψ)
.

Normalized utility obtains if we take the limit as ψ → 1, divide by Ct, rearrange, and then take
the logarithm:

vct =
δ

1− γ
log(Et[e(1−γ)(∆ct+1+vct+1)]).

Hypothesizing an affine form for vct,

vct = v0 + vc∆ct + vππt,

we can substitute to obtain

v0 + vc∆ct + vππt =
δ

1− γ
log(Et[e(1−γ)(∆ct+1+v0+vc∆ct+1+vππt+1)])

and then compute the expectation on the right-hand side:

v0 + vc∆ct + vππt =
δ

1− γ
(
(1− γ)v0 + g0([(1− γ)(1 + vc), (1− γ)(vπ)]′)

+ g1([(1− γ)(1 + vc), (1− γ)vπ]′)′[∆ct, πt]
′).

Finally, we solve for the coefficients:

vc : vc = 0,

vπ : vπ = vπδρ+ δ(1− γ)v2
πν

2/2 + δ
1−γ (ϕ(1− γ)− 1),

v0 : v0 = v0δ + µδ + vπδ(1− ρ)π̄ − δγσ2/2.

To derive asset prices, we first solve for the stochastic discount factor:

Mt+1 = δ
e−γ∆ct+1+(1−γ)vct+1

Et[e(1−γ)(∆ct+1+vct+1)]

= δe−γ∆ct+1+(1−γ)vct+1−(1−γ)v0−g0([1−γ,(1−γ)vπ ]′)−g1([1−γ,(1−γ)vπ ]′)[∆ct,πt]′ .

Since the risk-free rate satisfies e−rf,t = Et[Mt+1], we obtain

e−rf,t = δe(1−γ)v0+g0([−γ,(1−γ)vπ ]′)+g1([−γ,(1−γ)vπ ]′)[∆ct,πt]′

× e−(1−γ)v0−g0([1−γ,(1−γ)vπ ]′)−g1([1−γ,(1−γ)vπ ]′)[∆ct,πt]′
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and therefore
rf,t = − log δ + µ− γσ2 + πt(ϕ(1− γ)− ϕ(−γ)).

Recall that dividends can be expressed as ∆dt = φ∆ct. Stock returns are therefore given by

rd,t+1 = log Pt+1+Dt+1

Pt
= log Pt+1/Dt+1+1

Pt/Dt
+ log Dt+1

Dt

= log(e−dt+1+pt+1 + 1) + dt − pt + ∆dt+1

≈ k0 − k1(dt+1 − pt+1) + dt − pt + ∆dt+1

for some endogenous constants k0 and k1 to be derived later. We posit an affine form for the
logarithm of the D/P ratio:

dt − pt = A0 +Ac∆ct +Aππt.

The Euler equation for the stock (i.e., the claim asset on Dt) is 1 = Et[Mt+1e
rd,t+1 ]. We now

plug in Mt+1, the log-linearized rd,t+1, and our affine guesses for dt − pt and dt+1 − pt+1:

1 = Et[δe−γ∆ct+1+(1−γ)vct+1−(1−γ)v0−g0([1−γ,(1−γ)vπ ]′)−g1([1−γ,(1−γ)vπ ]′)[∆ct,πt]′

× ek0−k1(A0+Ac∆ct+1+Aππt+1)+(A0+Ac∆ct+Aππt)+φ∆ct+1 ].

Then we rearrange terms and solve the expectation as follows:

1 = δe−g0([1−γ,(1−γ)vπ ]′)−g1([1−γ,(1−γ)vπ ]′)[∆ct,πt]′+k0−k1A0+(A0+Ac∆ct+Aππt)

× Et[e−γ∆ct+1+(1−γ)vππt+1−k1(Ac∆ct+1+Aππt+1)+φ∆ct+1 ]

= δe−g0([1−γ,(1−γ)vπ ]′)−g1([1−γ,(1−γ)vπ ]′)[∆ct,πt]′+k0−k1A0+(A0+Ac∆ct+Aππt)

× eg0([φ−γ−k1Ac,(1−γ)vπ−k1Aπ ]′)+g1([φ−γ−k1Ac,(1−γ)vπ−k1Aπ ]′)[∆ct,πt]′ .

Finally, we solve for the coefficients of the D/P ratio and the log-linearization constants:

k0 = −k1 log(k1)− (1− k1) log(1− k1),

log k1 = log(1− k1)−A0 −AcE[∆ct]−AπE[πt].

The coefficients satisfy

Ac : Ac = 0,

Aπ : Aπ = g1([1− γ, (1− γ)vπ]′)[0, 1]′ − g1([φ− γ − k1Ac, (1− γ)vπ − k1Aπ]′)[0, 1]′,

A0 : A0 = − log δ − k0 + k1A0 − g0([φ− γ − k1Ac, (1− γ)vπ − k1Aπ]′) + g0([1− γ, (1− γ)vπ]′).

Note that one must solve simultaneously for k1 and Aπ and then for k0 and A0. Hence the
equity premium is given by

logEt[erd,t+1 ]− rf,t
= log(Et[erd,t+1 ]Et[Mt+1])

= logEt[er
J
d,t+1 ] + logEt[MJ

t+1]− logEt[er
J
d,t+1MJ

t+1]− covt[r
C
d,t+1,m

C
t+1]

= [φ,−k1Aπ]

[
σ2 0
0 ν2πt

]
[γ, (γ − 1)vπ]′ + πt[ϕ(φ) + ϕ(−γ)− ϕ(φ− γ)− 1],

where the superscripts C and J denote (respectively) the normal and nonnormal components.
The return variance can be expressed as

vart[rd,t+1] = [φ,−k1Aπ]

[
σ2 0
0 ν2πt

]
[φ,−k1Aπ]′ + φ2

(
∂2

∂u2ϕ(u)
∣∣
u=0

)
πt.

Finally, the risk-neutral return variance satisfies

varQt [rd,t+1] = [φ,−k1Aπ]

[
σ2 0
0 ν2πt

]
[φ,−k1Aπ]′ + φ2

(
∂2

∂u2ϕ(u)
∣∣
u=−γ

)
πt

(Drechsler and Yaron, 2011).
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Appendix H. The Co-Integration Model

The dynamics of consumption and dividends belong to the affine class and are given by

∆ct = µ+ σεt + vt,

∆dt = ∆ct + ∆st,

st = (1− φ)s̄+ φst−1 + ηzt + ṽt,

πt = (1− ρ)π̄ + ρπt−1 + ν
√
πt−1ut,

where εt, zt, and ut and mutually independent standard normal random variables and

vt = Jt1∆nt>0,

ṽt = κJt1∆nt>0,

for κ > 0. Therefore, the following expectation has exponential affine solution (Drechsler and
Yaron, 2011):

Et[eu1∆ct+1+u2πt+1+u3st+1 ] = eg0(u)+g1(u)′[∆ct,πt,st]′ , u = (u1, u2, u3)′ ∈ R3,

where

g0(u) =
(
µ− σ2

2

)
u1 + π̄(1− ρ)u2 + s̄(1− φ)u3 + 1

2

(
σ2u2

1 + η2u2
3

)
,

g1(u) =
[
0, 1

2ν
2u2

2 + ρu2 + ϕ(u1) + ϕ(κu3)− 2, φu3

]′
.

The representative agent has recursive utility of the form

Vt =
[
(1− δ)C1−1/ψ

t + δ(Et[V 1−γ
t+1 ])

1−1/ψ
1−γ

]1/(1−1/ψ)
.

Normalized utility obtains if we take the limit as ψ → 1, divide by Ct, rearrange, and then take
the logarithm:

vct =
δ

1− γ
log(Et[e(1−γ)(∆ct+1+vct+1)]).

Hypothesizing an affine form for vct,

vct = v0 + vc∆ct + vππt + vsst,

we can substitute to obtain

v0 + vc∆ct + vππt + vsst =
δ

1− γ
log(Et[e(1−γ)(∆ct+1+v0+vc∆ct+1+vππt+1+vsst+1)])

and then compute the expectation on the right-hand side:

v0 + vc∆ct + vππt + vsst =
δ

1− γ
(
(1− γ)v0 + g0([(1− γ)(1 + vc), (1− γ)vπ, (1− γ)vs]

′)

+ g1([(1− γ)(1 + vc), (1− γ)vπ, (1− γ)vs]
′)′[∆ct, πt, st]

′).
Finally, we solve for the coefficients:

vc : vc = 0,

vs : vs = 0,

vπ : vπ = vπδρ+ δ(1− γ)v2
πν

2/2 + δ
1−γ (ϕ(1− γ)− 1),

v0 : v0 = v0δ + µδ + vπδ(1− ρ)π̄ − δγσ2/2.
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To derive asset prices, we first solve for the stochastic discount factor:

Mt+1 = δ
e−γ∆ct+1+(1−γ)vct+1

Et[e(1−γ)(∆ct+1+vct+1)]

= δe−γ∆ct+1+(1−γ)vct+1−(1−γ)v0−g0([1−γ,(1−γ)vπ ,(1−γ)vs]′)−g1([1−γ,(1−γ)vπ ,(1−γ)vs]′)[∆ct,πt,st]′ .

Since the risk-free rate satisfies e−rf,t = Et[Mt+1], we obtain

e−rf,t = δe(1−γ)v0+g0([−γ,(1−γ)vπ ,(1−γ)vs]′)+g1([−γ,(1−γ)vπ ,(1−γ)vs]′)[∆ct,πt,st]′

× e−(1−γ)v0−g0([1−γ,(1−γ)vπ ,(1−γ)vs]′)−g1([1−γ,(1−γ)vπ ,(1−γ)vs]′)[∆ct,πt,st]′

and therefore
rf,t = − log δ + µ− γσ2 + πt(ϕ(1− γ)− ϕ(−γ)).

Stock returns are therefore given by

rd,t+1 = log Pt+1+Dt+1

Pt
= log Pt+1/Dt+1+1

Pt/Dt
+ log Dt+1

Dt

= log(e−dt+1+pt+1 + 1) + dt − pt + ∆dt+1

≈ k0 − k1(dt+1 − pt+1) + dt − pt + ∆dt+1

for some endogenous constants k0 and k1 to be derived later. We posit an affine form for the
logarithm of the D/P ratio:

dt − pt = A0 +Ac∆ct +Aππt +Asst.

The Euler equation for the stock (i.e., the claim asset on Dt) is 1 = Et[Mt+1e
rd,t+1 ]. We now

plug in Mt+1, the log-linearized rd,t+1, and our affine guesses for dt − pt and dt+1 − pt+1:

1 = Et[δe−γ∆ct+1+(1−γ)vct+1−(1−γ)v0−g0([1−γ,(1−γ)vπ ,(1−γ)vs]′)−g1([1−γ,(1−γ)vπ ,(1−γ)vs]′)[∆ct,πt,st]′

× ek0−k1(A0+Ac∆ct+1+Aππt+1+Asst+1)+(A0+Ac∆ct+Aππt+Asst)+∆ct+1+∆st+1 ].

Then we rearrange terms and solve the expectation as follows:

1 = δe−g0([1−γ,(1−γ)vπ ,(1−γ)vs]′)−g1([1−γ,(1−γ)vπ ,(1−γ)vs]′)[∆ct,πt,st]′+k0−k1A0+(A0+Ac∆ct+Aππt+Asst)

× Et[e−γ∆ct+1+(1−γ)vππt+1+(1−γ)vsst+1−k1(Ac∆ct+1+Aππt+1+Asst+1)+∆ct+1+∆st+1 ]

= δe−g0([1−γ,(1−γ)vπ ,(1−γ)vs]′)−g1([1−γ,(1−γ)vπ ,(1−γ)vs]′)[∆ct,πt,st]′+k0−k1A0+(A0+Ac∆ct+Aππt+(As−1)st)

× eg0([1−γ−k1Ac,(1−γ)vπ−k1Aπ ,1+(1−γ)vs−k1As]′)+g1([1−γ−k1Ac,(1−γ)vπ−k1Aπ ,1+(1−γ)vs−k1As]′)[∆ct,πt,st]′ .

Finally, we solve for the coefficients of the D/P ratio and the log-linearization constants:

k0 = −k1 log(k1)− (1− k1) log(1− k1),

log k1 = log(1− k1)−A0 −AcE[∆ct]−AπE[πt]−AsE[st].

The coefficients satisfy

Ac : Ac = 0,

Aπ : Aπ = g1([1− γ, (1− γ)vπ, (1− γ)vs]
′)[0, 1, 0]′

−g1([1− γ − k1Ac, (1− γ)vπ − k1Aπ, 1 + (1− γ)vs − k1As]
′)[0, 1, 0]′,

As : As = g1([1− γ, (1− γ)vπ, (1− γ)vs]
′)[0, 0, 1]′ − 1

−g1([1− γ − k1Ac, (1− γ)vπ − k1Aπ, 1 + (1− γ)vs − k1As]
′)[0, 0, 1]′,

A0 : A0 = − log δ − k0 + k1A0 − g0([1− γ − k1Ac, (1− γ)vπ − k1Aπ, 1 + (1− γ)vs − k1As]
′)

+g0([1− γ, (1− γ)vπ, (1− γ)vs]
′).
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Hence the equity premium is given by

logEt[erd,t+1 ]− rf,t
= log(Et[erd,t+1 ]Et[Mt+1])

= logEt[er
J
d,t+1 ] + logEt[MJ

t+1]− logEt[er
J
d,t+1MJ

t+1]− covt[r
C
d,t+1,m

C
t+1]

= [1,−k1Aπ, 1− k1As]

[
σ2 0 0
0 ν2πt 0
0 0 η2

]
[γ, (γ − 1)vπ, (γ − 1)vs]

′

+ πt[ϕ(1 + κ(1− k1As))− ϕ(1 + κ(1− k1As)− γ) + ϕ(−γ)− 1],

where the superscripts C and J denote (respectively) the normal and nonnormal components.
The return variance can be expressed as

vart[rd,t+1] =[1,−k1Aπ, 1− k1As]

[
σ2 0 0
0 ν2πt 0
0 0 η2

]
[1,−k1Aπ, 1− k1As]

′

+ (1 + κ(1− k1As))
2
(
∂2

∂u2ϕ(u)
∣∣
u=0

)
πt.

Finally, the risk-neutral return variance satisfies

varQt [rd,t+1] =[1,−k1Aπ, 1− k1As]

[
σ2 0 0
0 ν2πt 0
0 0 η2

]
[1,−k1Aπ, 1− k1As]

′

+ (1 + κ(1− k1As))
2
(
∂2

∂u2ϕ(u)
∣∣
u=−γ

)
πt,

(Drechsler and Yaron, 2011).

Appendix I. The Levered Consumption Model with CRRA
Preferences

Under CRRA preferences of the represenative agent the stochastic discount factor simplifies to:

Mt+1 = δe−γ∆ct+1 .

Since the risk-free rate satisfies e−rf,t = Et[Mt+1], we obtain

e−rf,t = δeg0([−γ,0]′)+g1([−γ,0]′)[∆ct,πt]′

and therefore
rf,t = − log δ + γµ− γ(1 + γ)σ2 − πtϕ(1− γ).

Recall that dividends can be expressed as ∆dt = φ∆ct. Stock returns are therefore given by

rd,t+1 = log Pt+1+Dt+1

Pt
= log Pt+1/Dt+1+1

Pt/Dt
+ log Dt+1

Dt

= log(e−dt+1+pt+1 + 1) + dt − pt + ∆dt+1

≈ k0 − k1(dt+1 − pt+1) + dt − pt + ∆dt+1

for some endogenous constants k0 and k1 to be derived later. We posit an affine form for the
logarithm of the D/P ratio:

dt − pt = A0 +Ac∆ct +Aππt.

The Euler equation for the stock (i.e., the claim asset on Dt) is 1 = Et[Mt+1e
rd,t+1 ]. We now

plug in Mt+1, the log-linearized rd,t+1, and our affine guesses for dt − pt and dt+1 − pt+1:

1 = Et[δe−γ∆ct+1−g0([1−γ,0]′)−g1([1−γ,0]′)[∆ct,πt]′

× ek0−k1(A0+Ac∆ct+1+Aππt+1)+(A0+Ac∆ct+Aππt)+φ∆ct+1 ].
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Then we rearrange terms and solve the expectation as follows:

1 = δe−g0([1−γ,0]′)−g1([1−γ,0]′)[∆ct,πt]′+k0−k1A0+(A0+Ac∆ct+Aππt)

× Et[e−γ∆ct+1−k1(Ac∆ct+1+Aππt+1)+φ∆ct+1 ]

= δe−g0([1−γ,0]′)−g1([1−γ,0]′)[∆ct,πt]′+k0−k1A0+(A0+Ac∆ct+Aππt)

× eg0([φ−γ−k1Ac,−k1Aπ ]′)+g1([φ−γ−k1Ac,−k1Aπ ]′)[∆ct,πt]′ .

Finally, we solve for the coefficients of the D/P ratio and the log-linearization constants:

k0 = −k1 log(k1)− (1− k1) log(1− k1),

log k1 = log(1− k1)−A0 −AcE[∆ct]−AπE[πt].

The coefficients satisfy

Ac : Ac = 0,

Aπ : Aπ = g1([1− γ, 0]′)[0, 1]′ − g1([φ− γ − k1Ac,−k1Aπ]′)[0, 1]′,

A0 : A0 = − log δ − k0 + k1A0 − g0([φ− γ − k1Ac,−k1Aπ]′) + g0([1− γ, 0]′).

Note that one must solve simultaneously for k1 and Aπ and then for k0 and A0. Hence the
equity premium is given by

logEt[erd,t+1 ]− rf,t
= log(Et[erd,t+1 ]Et[Mt+1])

= logEt[er
J
d,t+1 ] + logEt[MJ

t+1]− logEt[er
J
d,t+1MJ

t+1]− covt[r
C
d,t+1,m

C
t+1]

= [φ,−k1Aπ]

[
σ2 0
0 ν2πt

]
[γ, 0]′ + πt[ϕ(φ) + ϕ(−γ)− ϕ(φ− γ)− 1],

where the superscripts C and J denote (respectively) the normal and nonnormal components.
The return variance can be expressed as

vart[rd,t+1] = [φ,−k1Aπ]

[
σ2 0
0 ν2πt

]
[φ,−k1Aπ]′ + φ2

(
∂2

∂u2ϕ(u)
∣∣
u=0

)
πt.

Finally, the risk-neutral return variance satisfies

varQt [rd,t+1] = [φ,−k1Aπ]

[
σ2 0
0 ν2πt

]
[φ,−k1Aπ]′ + φ2

(
∂2

∂u2ϕ(u)
∣∣
u=−γ

)
πt

(Drechsler and Yaron, 2011).
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Table A.XI: Autocorrelations: Levered Consumption Model

Lag Data Model

Estimate SE 2.5% 5% 50% 95% 97.5%

Panel A: Consumption

1 0.10 0.12 −0.05 −0.04 0.02 0.08 0.10

2 0.10 0.10 −0.05 −0.04 0.01 0.07 0.09

3 −0.10 0.08 −0.05 −0.05 0.01 0.07 0.08

4 −0.01 0.13 −0.06 −0.05 0.01 0.06 0.07

5 −0.12 0.09 −0.06 −0.05 0.00 0.06 0.07

6 0.09 0.08 −0.06 −0.05 0.00 0.06 0.07

7 −0.07 0.07 −0.05 −0.05 0.00 0.06 0.07

8 −0.17 0.07 −0.06 −0.05 0.00 0.05 0.06

9 −0.07 0.08 −0.06 −0.05 0.00 0.06 0.07

10 0.09 0.08 −0.06 −0.05 0.00 0.05 0.07∑
1st to 5th lag −0.03 0.05

Panel B: Dividends

1 0.30 0.12 −0.05 −0.04 0.02 0.08 0.10

2 −0.06 0.10 −0.05 −0.04 0.01 0.07 0.09

3 −0.20 0.07 −0.05 −0.05 0.01 0.07 0.08

4 −0.19 0.13 −0.06 −0.05 0.01 0.06 0.07

5 −0.18 0.08 −0.06 −0.05 0.00 0.06 0.07

6 −0.01 0.09 −0.06 −0.05 0.00 0.06 0.07

7 0.05 0.07 −0.05 −0.05 0.00 0.06 0.07

8 0.07 0.08 −0.06 −0.05 0.00 0.05 0.06

9 0.07 0.06 −0.06 −0.05 0.00 0.06 0.07

10 0.10 0.06 −0.06 −0.05 0.00 0.05 0.07∑
1st to 5th lag −0.33 0.05

Panel C: Excess Returns

1 0.02 0.09 −0.19 −0.18 −0.11 −0.03 −0.02

2 −0.19 0.06 −0.16 −0.15 −0.08 −0.01 0.00

3 0.08 0.10 −0.14 −0.12 −0.06 0.01 0.02

4 −0.04 0.13 −0.12 −0.11 −0.04 0.02 0.03

5 −0.18 0.07 −0.10 −0.09 −0.03 0.03 0.04

6 0.08 0.08 −0.09 −0.08 −0.02 0.04 0.06

7 0.14 0.07 −0.08 −0.07 −0.02 0.04 0.05

8 −0.04 0.09 −0.08 −0.07 −0.01 0.05 0.06

9 0.05 0.08 −0.07 −0.06 −0.01 0.05 0.06

10 0.14 0.07 −0.07 −0.06 −0.01 0.05 0.06∑
1st to 5th lag −0.31 −0.32

Notes. Panel A reports unconditional moment statistics from S&P 500 real returns and three-month
U.S. Treasury real rates as well as percentiles of the same moments from model simulations of the levered
consumption model. Panel B reports the same quantities from a restricted model in which disasters do
not realize. Parameters are from Table VII. Additional parameters are γ = 5, δ = 99%, and φ = 2.6.
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Table A.XII: Autocorrelations: Co-Integration Model

Lag Data Model

Estimate SE 2.5% 5% 50% 95% 97.5%

Panel A: Consumption

1 0.10 0.12 −0.05 −0.04 0.02 0.08 0.10

2 0.10 0.10 −0.05 −0.05 0.01 0.07 0.08

3 −0.10 0.08 −0.06 −0.05 0.01 0.07 0.09

4 −0.01 0.13 −0.05 −0.04 0.00 0.07 0.08

5 −0.12 0.09 −0.06 −0.05 0.00 0.06 0.08

6 0.09 0.08 −0.06 −0.05 0.00 0.06 0.07

7 −0.07 0.07 −0.06 −0.05 0.00 0.06 0.07

8 −0.17 0.07 −0.06 −0.05 0.00 0.05 0.07

9 −0.07 0.08 −0.06 −0.05 0.00 0.05 0.06

10 0.09 0.08 −0.06 −0.05 0.00 0.05 0.06∑
1st to 5th lag −0.03 0.04

Panel B: Dividends

1 0.30 0.12 −0.11 −0.10 −0.04 0.01 0.02

2 −0.06 0.10 −0.10 −0.09 −0.04 0.01 0.02

3 −0.20 0.07 −0.10 −0.09 −0.04 0.02 0.02

4 −0.19 0.13 −0.10 −0.09 −0.04 0.02 0.03

5 −0.18 0.08 −0.09 −0.08 −0.03 0.02 0.04

6 −0.01 0.09 −0.09 −0.08 −0.03 0.03 0.04

7 0.05 0.07 −0.09 −0.08 −0.02 0.03 0.03

8 0.07 0.08 −0.09 −0.08 −0.02 0.03 0.04

9 0.07 0.06 −0.08 −0.07 −0.02 0.03 0.04

10 0.10 0.06 −0.09 −0.07 −0.02 0.03 0.04∑
1st to 5th lag −0.31 −0.19

Panel C: Excess Returns

1 0.02 0.09 −0.17 −0.15 −0.09 −0.02 0.00

2 −0.19 0.06 −0.13 −0.13 −0.06 0.01 0.02

3 0.08 0.10 −0.12 −0.11 −0.05 0.02 0.03

4 −0.04 0.13 −0.10 −0.09 −0.03 0.03 0.04

5 −0.18 0.07 −0.09 −0.08 −0.02 0.04 0.05

6 0.08 0.08 −0.08 −0.07 −0.02 0.04 0.05

7 0.14 0.07 −0.08 −0.07 −0.01 0.04 0.05

8 −0.04 0.09 −0.07 −0.06 −0.01 0.05 0.06

9 0.05 0.08 −0.07 −0.06 −0.01 0.04 0.06

10 0.14 0.07 −0.07 −0.06 −0.01 0.05 0.06∑
1st to 5th lag −0.31 −0.25

Notes. Panel A reports unconditional autocorrelations of consumption and dividend growth and excess
returns of the S&P 500 real returns on the three-month U.S. Treasury real rate as well as percentiles
of the same moments from model simulations of the co-integration model. Panel B reports the same
quantities from a restricted model in which disasters do not realize. Parameters are from Table VII.
Additional parameters are γ = 5, δ = 99%, φ = 0.90, η = 0.30, and κ = 4.
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Table A.XIII: Asset Pricing Moments: The CRRA Case

Data Model

1871-2015 1946-2015 2.5% 5% 50% 95% 97.5%

Panel A: Unrestricted Model

Average risk-free rate 2.17 1.26 6.67 6.81 7.50 8.19 8.28

Standard deviation of risk-free rate 4.51 3.14 4.00 4.15 5.23 6.45 6.74

Average excess return 6.00 6.82 1.27 1.38 2.05 2.74 2.90

Standard deviation of excess return 18.5 16.5 11.4 11.6 12.9 14.4 14.6

Average dividend yield 4.13 3.33 4.90 4.91 4.95 4.99 5.00

Standard deviation of dividend yield 1.57 1.42 0.26 0.27 0.33 0.38 0.40

Autocorrelation of dividend yield 78.4 90.0 62.1 63.5 71.2 78.1 79.3

Panel B: Restricted Model (No Realized Disasters)

Average risk-free rate 2.17 1.26 6.60 6.76 7.51 8.12 8.20

Standard deviation of risk-free rate 4.51 3.14 4.13 4.24 5.17 6.46 6.77

Average excess return 6.00 6.82 2.49 2.62 3.30 4.08 4.25

Standard deviation of excess return 18.5 16.5 10.1 10.3 11.2 12.3 12.6

Average dividend yield 4.13 3.33 4.89 4.90 4.95 4.99 4.99

Standard deviation of dividend yield 1.57 1.42 0.27 0.27 0.32 0.39 0.40

Autocorrelation of dividend yield 78.4 90.0 62.4 63.6 71.1 78.0 79.3

Notes. Panel A reports unconditional moment statistics from S&P 500 real returns and three-month
U.S. Treasury real rates as well as percentiles of the same moments from model simulations of the CRRA
model. Panel B reports the same quantities from a restricted model in which disasters do not realize.
Parameters are from Table VII. Additional parameters are γ = 5, δ = 99%, and φ = 2.6.
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Table A.XIV: Option-Implied Volatility Skew

Data Levered Consumption Co-Integration

π−t π−t−1 π−t π−t−1

Mean (%) 3.71 3.57 3.56 8.12 8.06

Standard Deviation (%) 0.83 0.29 0.28 1.26 1.26

Notes. This table reports the sample mean and standard deviation of the option-implied
volatility skew, defined as the difference in implied volatility of options with moneyness equal
to -0.05 and 0.05 respectively (where moneyness is (strike − price) / price). Data represents
the daily sample of S&P 500 index put options between 1/4/1996 and 12/29/2017. The model-
implied measures of the option-implied volatility skew are obtained by plugging in our yearly
estimates of π̂−, either from the current or the previous year, on the sample 1996-2017. The
levered consumption and co-integration models and their calibration are described in Section
IV.
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