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Abstract

The paper studies optimal fees and the conditions for existence of an

equilibrium without forks in a market for cryptocurrencies, of the Bitcoin

type. Once calibrated to the BTC.com high-frequency data, the model

explains the realized volatility of the observed fees, the volatility amplifi-

cation from the prices without to the ones with fees, as well as the relative

stability of the implied optimal policies. The rate of return that investors

would require from an asset with the same drift and di↵usion of the BTC,

but without costs, is a modest 3.5%, while the expected return from the

crypto is 14.7%
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The market for cryptocurrencies - such as the Bitcoin (BTC) - is active and
attracts a lot of attention, from investors as well as regulators. Its size steadily
increases, while cum-fee prices are highly volatile. Fees often have both a fixed
and a variable component.

Given the scarce literature on crypto microeconomics, it is unclear if all the
observed cum-fee prices are equilibrium ones, or whether there is no rational
way to explain the observed prices, gross of fees, and their volatility, as well as
the contemporaneous more tranquil behavior of orders.

A large consensus exists on the fact that market participants on the sell
side, or miners, are rational agents or machines programmed by them. The
main question is whether irrationality on the demand side is the only way to
explain the observed outcomes or whether the joint rational behavior of demand
and supply is able to explain trade, in quantities and prices. The model below
provides a rational explanation of the fees, as compounded on a standard dif-
fusive price, consistent with the rational behavior of both sides and with BTC
market data.

To explain a crypto price - before the fees - a part of the literature looks at
digital currencies in their role of means of payment or stores of value, similar
to money. This is the approach taken by Biais, Bisière, Bouvard, Casamatta
and Menkvield (2022), who support the idea that – at least theoretically – the
intrinsic value of cryptocurrencies comes from the di↵erence between their costs
and benefits as means of payment, with noise generated by sunspots. Another
part of the literature emphasizes the role of cryptocurrencies as risky financial
assets (see for instance Kose, O’Hara and Saleh (2021)). Without denying the
role of cryptos as means of payment, we focus on their value as risky assets.
We take the price behavior before the fees as a given stochastic process, and we
ask ourselves how we can rationalize the observed fees and the corresponding
orders, and whether we can explain their observed variance. We focus on BTC.

The paper shows that, given a streamlined market structure, comprehen-
sive of the main features of a cryptomarket, there is a triple made by a fee, an
optimal sell/buy behavior of users, and an implementation of their orders by
miners, which constitutes an equilibrium without forks. As such, it maximizes
the welfare of both counterparts, and there is no incentive for them to deviate
from it. The equilibrium is such that - as it happens in actual BTC-like crypto
markets - trade, although very frequent, is not continuous, and the time be-
tween two successive trades is not constant. It is a stopping time, which can
be characterized consistently with observations. The equilibrium can be im-
plemented starting from the submission of a couple quantity-fee on the part of
the users, as it often happens in reality. In such an equilibrium, miners, who
have a stock of crypto assets, do not simply choose the highest fee around, but
trade-o↵ the advantages and disadvantages of executing the transaction because
they exchange crypto assets for dollars - or any other non crypto currency - and
get the fees. As a consequence, both the level and the volatility of the fees we
model are consistent with actual data. In particular, they are consistent with
the volatility amplification we observe on actual markets. We resort to the no-
tion of equivalent safe rate to quantify the e↵ect of such an high volatility on
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traders’ utility.
The paper proceeds as follows: in Section 1 we describe a typical cryptomar-

ket, as it emerges from the literature; in Section 2 we build a corresponding
theoretical model and analyze the decisions of market participants; in Section 3
we solve for equilibrium trade and fees. In Section 4 we parametrize the model
using actual Bitcoin data from BTC.com and show how the model can rationally
explain the observed behavior of trades and fees, in level and volatility. Section
5 analyses the equivalent safe rate concept and Section 6 concludes.

1 Basic features of crypto, BTC-alike markets

The microeconomics of cryptocurrencies has been little explored yet. Notable
exceptions are Kose et al. (2021), Haberman, Leshno and Moallemi (2021),
and Halaburda, Haeringer, Gans and Gandal (2021), which give an exhaustive
description of the Bitcoin ecosystem, the market we focus on, examining both
the supply and demand side.

The market is characterized by a ledger, namely a chain of blocks (blockchain)
in which the transactions are registered. The supply side is represented by min-
ers, who register the transactions in the blockchain. To do that, they need to
solve the encoding or hashing puzzle, by putting a costly IT e↵ort. The demand
side is represented by users.

A first feature of the markets is that blockchain is neither a storage for
physical cryptos, nor a file which contains all crypto positions of miners, but
simply a chain of the transactions which have been made. Miners are simply
committed to executing the transactions they receive a bid for as soon as possible
and to attaching transactions to the longest existing chain.

As soon as possible msu be consistent with the fact that miners need to solve
the hashing puzzle, which requires time. The execution cannot be performed
before that.

The reason for attaching transactions to the longest existing chain is to
avoid so-called forks, or bifurcations of the blockchain, which would mine its
validity (see Nakamoto (2008)). To explain that, recall that crypto transactions
need the consensus of the other miners. Consensus makes the market di↵erent
from other bilateral trading mechanisms. The longest chain rule is a way to
guarantee the consensus, and is granted if the miner has chosen the longest
blockchain. Suppose indeed that two miners operate a di↵erent transaction
at the same time. Without the rule, it might well happen that some miners
consent on one of the two transactions, because they receive it first, some on
the other. The blockchain would incur into a so-called fork, which is undesirable.
According to Nakamoto’s suggestion, consensus is restored by maintaining the
longest blockchain, and disregarding the other. So, it is generally understood
that any miner must not only make an e↵ort to encrypt his own transactions
quickly, but also to reach the longest chain.1

1Forks can also be created on purpose, by dishonest miners. In this paper we will not
exhamine dishonest miners, and we suggest that the reader consults Halaburda et al. (2021)
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Miners collect trades in blocks. A second feature of the market is the presence
of block rewards and fees. For each successful addition to the blockchain, the
miner receives a so-called block reward, which is an amount of newly-issued
BTCs, as well as a variable fee, in standard currency, say dollars. The block
reward, which is fixed, is interpreted as being the bulk of the miner reward,
which compensates for the mining costs. There is evidence, reported for instance
in Huberman et al. (2021), that indeed the block reward covers the energy
and hardware cost of mining. Similar evidence is provided by Websites. And
miners tries to influence the power of the miners’ network, by consolidating their
purchasing power.

The way in which this fixed component is interpreted is usually the following,
as proposed for instance by Budish (2018). Suppose that there are N identical
miners. The probability of winning the hashing puzzle is considered to be 1/N .
If, in a reference currency (say, the dollar), each miner has a cost c to solve the
puzzle - the hashing cost - and receives a block reward ✓, whose dollar value is
e✓, if e is the exchange rate dollar to BTC. The participation constraint of the
representative miner is e✓/N � c. The equilibrium number of miners N⇤ is the
one which makes this inequality constraint an equality: N⇤ = e✓/c. 2

The second part of the miner revenue is the fee, which is proportional ei-
ther to the quantity transacted or to the value of the transaction in a reference
currency. According to Easley, O’Hara and Basu (2019), ”the endogenous de-
velopment of transactions fees reflects an important step in the evolution of
the Bitcoin blockchain from being a mining-based set of rules towards being
a market-based system capable of adapting to changing economic conditions.”
We share that opinion and focus our analysis below on fees, to explain market
equilibria.

A related feature of the standard, blockchain crypto market is that users can
place an order - ask for a quantity of crypto or tokens - with a fee attached or
without the fee attached.

If no fee is attached to the quantity of crypto demanded (sold or bought)
by users, the miner can choose the fee at which he is willing to execute the
transaction. The usual relation between demand and supply, in which the de-
mand chooses the quantity and the supply decides at which price - in this case
at which fee - to satisfy the given order, is at play.

The case in which the quantity demanded is accompanied by a fee is less
trivial. The standard reasoning in the literature is that miners choose the highest
fee around. This however does not reflect the fact that miners can net the orders
received from di↵erent users, but supply the net balance. As a consequence,

and the references therein for that.
2These markets is that they are permissionless, or free-entry markets. The purpose of the

Bitcoin market however is to gradually reduce the reward, so as to make it vanish - and have
no further issued coins - in the future. Reducing the reward means to have a di↵erent number
of active miners. We will maintain the description of the block reward as the one which
covers the mining costs, below. However, at least if we accept Budish (2018) interpretation,
in which the block reward covers expected costs, as we do below, there is no reason why the
number of miners should vary, as long as the value of the block reward does not vary in a way
decorrelated with the hashing cost.
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each bulk of trades increases the amount of traditional currency of the miner
- because of the fee - but also his net amount of crypto asset, because of the
block reward and net trade. Both matter to him. He does not simply choose
the highest fee around, but evaluates the trade o↵ between its net accrual of
depletion of crypto and accrual of traditional currency. As a consequence, in
our model we substitute the choice of the highest fee around with the evaluation
of the overall impact of the trade. By so doing, we end up with miners choosing
the optimizing fee, which is not necessarily the highest one.

Easley et al. (2019) build a model in which miners choose the highest fee
around and users increase the o↵ered fee till their order is executed. Each user
trades-o↵ the cost of waiting for the transaction to be executed and the level of
the fee he is willing to pay. Miners execute first transactions with higher fees.
The user-miner game results in two equilibria: one with fees and one without
fees, from which it is not profitable to deviate. The equilibria we observe at
present - as we show in the empirical part - are of the first type.

2 A BTC market model

We examine a market model whose features stylize the above description. The
market is populated by N⇤ identical miners, where N⇤ is such that the expected
block reward is equal to the hashing cost c, and a continuum of users, also named
investors. Investors di↵er in risk aversion. Let i denote a specific investor.
This Section specifies the objective of users as well as miners, and solves their
optimization problems.

The intuition is as follows. Rational miners know that, because trading is
costly for users, they will never submit orders continuously in time, but - as
known from the previous literature on costly trade, starting from the seminal
proof of Constantinides (1979) - they should change the ratio of crypto to non-
crypto in their portfolios only if it becomes to high or too low, beyond the
tolerance bounds. We argue that miners execute the users order as soon as
the hashing puzzle is solved, if the demanded quantity happens to restore the
ratio of risky to riskless asset of the users within some appropriate tolerance
bounds. If this is not the case, they solve the puzzle and wait till the optimal
sell or buy ratio for the user is reached. We also show below that, if miners
optimally execute orders when either the lower or the upper ratio is reached,
they can maximize both their own and the counterpart’s welfare, guaranteeing
an equilibrium.

Users and miners trade the non-crypto asset - to be understood as a safe asset
or cash, dollars to take an example - versus the cryptocurrency. The interest
rate r on cash is exogenous, and can be either positive or zero, r � 0. The
price of the non-crypto asset is S0(t) at time t. Let its initial level be S0(0) = 1.
Then

S0(t) = exp(rt)

is the non-crypto price at t, at which it is traded against the crypto.
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We denote with S(t) the price of the crypto asset - say, BTC - at time t, in
the reference currency. If the latter is the dollar, S is the exchange rate dollar to
BTC, or the price in dollars of a BTC. We take S(t) to be a Geometric Brownian
motion with parameters ↵+ r > 0 and � > 0:

dS(t)/S(t) = (↵+ r) dt+ �dZ(t)

where dZ is a Brownian motion. Let the filtration generated by it be the model’s
underlying one.

We motivate such choice because it is the standard, basic model for risky
assets.3 Our idea is that of verifying, in the model implementation, if the crypto
price does evolve as a lognormal. Within this idea, � is the intrinsic volatility,
which we will compare to the overall, realized volatility of the cum-fee price, to
see whether the market structure generates volatility amplification.

Investors cannot trade the crypto among themselves, but have to go through
miners. Miners are the one who encript the investors’ order in the blockchain,
and get both a block reward and a fee for that.

The block reward per transaction, which we denote with ⇥(t), is a quantity
of crypto asset. Based on the Bitcoin rules described above and modelled by
Halaburda et al. (2021), it may for instance be the case that⇥(t) = c(t)N⇤/S(t),
where c(t) is the hashing cost - in dollars - that the miners pay per transaction
at t. In what follows, we will search for equilibria in which the representative
miner trades with probability 1, so that ⇥(t) = c(t)/S(t).

For the sake of simplicity, we identify each block with the transaction with
a single investor i. One user trades at a time. The fee for each block, which
we denote with ✏i 2 [0, 1], makes the price at which investor i sells the crypto
to the miner (the bid of the latter) smaller than the underlying or ask price,
that miners o↵er to sell the currency. They are respectively (1 � ✏i)S and S.4

Following the description summarized above of the actual functioning of the
BTC market, the fee may formally chosen by the users. Any miner can then
choose the best fee around, that we are going to characterize below. It will not
necessarily be the highest one around.

Let us examine what drives purchases, sales and the crypto equilibrium
quantity and bid price.

Denote with C0(0) and C(0) = 0 the initial aggregate quantity of cash and
crypto tokens, namely the number with which the market opens up at time 0.
The number of crypto tokens at time t does not remain fixed but, as described
above, new enscriptions are done and orders are appended to the blockchain,

3In the mans of payment view of Biais et al. (2022), ↵+ r would be the net transactional
benefits of the cryptocurrency, per unit of time, i.e. the benefits that a fiat money cannot
provide, such as the possibility to trade even when other currencies are in disarray, net of the
costs of limited convertibility. The Brownian term �dZ would take the place of the sunspot,
crash risk in Biais et al. It would lead not only to crashes, but also to exogenous positive
increases in price.

4One could model separately the bid and ask fee. For the simplicity of the solution, we
take the equivalent approach of modelling simply the fee as the percentage di↵erence between
the bid and ask price.
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depending on the request from investors. This means that the quantity in the
hands of all investors is

C(t) = L(t)� U(t)

where L(t) and U(t) are respectively the cumulative quantities of crypto for
non-crypto cash purchased from and sold to miners by investors between 0
and t. We denote with Li(t), Ui(t) the individual processes, so that L(t)=
R

i
Li(t)diandsimilarlyforU(t), C(t), C0(t).
The dollar value of non-crypto and crypto tokens in the users’ hands at t is

respectively S0(t)C0(t) and S(t)C(t).5

Investor - and consequently all investors together, since only one trades -
have to satisfy a budget constraint, namely to finance the value of their net
trade of cryptos, �S(t)dL(t) + (1 � ✏i)S(t)dU(t), with that of the net trade of
non-crypto, namely S0(t)dC0(t). The aggregate budget constraint is

S0(t)dC0(t) = �S(t)dL(t) + (1� ✏i)S(t)dU(t) (1)

So, dC0(t), the change in the quantity of dollars in the hands of users, is a
function of aggregate crypto sales ((1�✏i)S(t)dU(t)) and purchases (�S(t)dL(t)).

It follows from the assumed dynamics of prices and quantities that the dollar
value of aggregate cash and crypto in the hands of users follows the following
SDEs:

d
⇥

S0(t)C0(t)
⇤

= r
⇥

S0(t)C0(t)
⇤

dt+ S0(t)dC0(t)

= r
⇥

S0(t)C0(t)
⇤

� S(t)dL(t) + (1� ✏i)S(t)dU(t)

d [S(t)C(t)] = (↵+ r) [S(t)C(t)] dt

+� [S(t)C(t)] dZ + S(t)dL(t)� S(t)dU(t)

The number of crypto tokens in the hands of miners is di↵erent, since they
also receive the block reward ⇥. It is

�C(t) +⇥⇥N (t)

where N (t) is the total number of transactions executed up to t.
We assume that investors are perfectly rational and maximize the long-

run rate of growth of expected utility of their terminal wealth, which is the
liquidation value of cash and cryptos:

Wi(T ) = Ci0(T ) exp(rT )� (1� ✏i)S(T )Ui(T ) + S(T )Li(T )

Investors’ wealth evidently depends on their cumulative positions in the crypto
and cash, Ci(T ) and C0

i (T ), and most specifically on purchases separately from
sales, as well as on the fees applied by miners.

5Note that in the dollar-to-BTC interpretation, since S(t) is the exchange rate between
dollars and BTCs, or the price in dollars of a BTC, so that all the values are in dollars.
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Investors are assumed to have an infinite-horizon power utility, W 1��i/(1�
�i). We also assume that they are risk averse and non-myopic: �i > 0, �i 6= 1
and, to model the long-run nature of their goal, that their horizon tends to
infinity. Their objective is

max lim
T!1

inf
1

T
lnE

⇥

Wi(T )
1��i

⇤1/(1��i)
(2)

This means that they maximize the rate of growth - the ln - of the expected
utility of wealth E

⇥

Wi(T )
1��i

⇤

under risk aversion, per unit of time (1/T ).6

Another way to read the objective function is to say that investors maximize
the equivalent safe rate (ESR) of growth of their utility, or the rate that would
produce the same expected utility they get under transaction fees.

The instruments investors have for optimizing are the timing and amount of
purchases and sales, or the processes Li and Ui.

Miners issue the crypto for cash, getting the rewards ⇥ and charging the fee
✏i as soon as they serve investor i. We model perfectly rational miners, who
stand ready to encrypt all orders from investors in the blockchain, and maximize
the rate of growth of expected utility of their final wealth, which is again power,
non-myopic, when the horizon becomes infinite. We assume that miners are risk
averse, non-myopic, 0 < � 6= 1:

max lim
T!1

inf
1

T
lnE

⇥

V (T )1��
⇤1/(1��)

(3)

Because their positions in cash and BTC are opposite to the users’ ones, but
they also have the cumulated block rewards, which we assume to deserve no
interest rate, net of the costs to encrypt the transactions, their wealth is

V (T ) = �C0(T ) exp(rT ) + (1� ✏i)S(T )U(T )� S(T )L(T )

+
X

1dL(⌧i)>0U(⌧i)>0,⌧iT [⇥(⌧i)S(⌧i)� c(⌧i)] .

where 1E is the indicator function of the event E, ⌧i are the stopping times
where trade is carried out, and the sum is extended to all ⌧i  T .

Since the block reward ⇥ is meant to cover the hashing costs, whose dollar
value at ⌧i is c(⌧i), the sum is zero and we get V (T ) = �W (T ), where W is the
aggregate wealth over investors i.

The instrument miners have for optimizing is the accepted fee level ✏i .

2.1 Optimization for user i

In Sections 2.1 and 2.2 we discuss the solution for users and miners assuming
that users do not submit a fee, while in Section 2.3 we examine the case in which
they also submit the fee.

For any specific trade, if the fee is not chosen by the user, his problem is
similar to the portfolio one formalized by Gerhold, Guasoni, Muhle-Karbe and

6The exponent 1/(1� �i) does not a↵ect the trading policy.
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Schachermayer (2011). Given a power utility and a lognormal underlying, the
user decision problem with a long horizon entails two processes Li and Ui that
increase only when ✓(t)

.
= S(t)Ci(t)/S

0(t)C0
i (t), which here represents the ratio

of BTC to dollars (crypto to non-crypto asset) in portfolio for user i, overpasses
respectively a constant lower and a constant upper barrier or tolerance bound,
denoted as li and ui, li  ui. The trading policy consists in setting the ratio
back to the closest bound.

It follows that

dWi = S0(t)C0
i (t)rdt+ S0(t)dC0

i + dS(Li(t)� Ui(t))

+S(t)dLi(t)� S(t)dUi(t)

where the changes in the crypto quantities dUi and dLi are di↵erent from zero
only when ✓ = ui and li respectively. At that point in time, also the quantity
of cash dC0

i changes, and because of the self-financing constraint (1), it equates
in absolute value the terms in dLi and dU%i, excluding the fees.

dWi = S0(t)C0
i (t)rdt+ dS(Li(t)� Ui(t))� ✏iS(t)dUi(t)

In what follows, for the sake of simplicity, we restrict our formulas to pa-
rameter combinations which make both barriers positive, i.e. 0 < li  ui. To
this end, we restrict the parameters so that the optimal crypto holdings would
be positive in the absence of fees. We posit:

0 < ✓⇤i =
↵

�i�2 � ↵
< 1 (4)

We indeed know since Merton that, in the absence of a fee, investors would keep
at all times a position in crypto to non crypto equal to

li = ui =
↵

�i�2 � ↵
(5)

and that, when the fees are positive, this position must stay between the toler-
ance bounds li and ui.

The function Ki is the value function of the problem,

lim
T!1

Ki(S
0(t)C0

i (t), S(t)Ci(t), t;T )
.
= max lim

T!1
inf

1

T
lnE

⇥

Wi(T )
1��i

⇤1/(1��i)

if there exists a constant �i - an artificial discount rate - which makes Ki itself,
once discounted, finite and stationary. The discount rate � is defined by the
requirement that, once K is discounted, the resulting value function

J(S0(t)C0
i (t), S(t)Ci(t), t;T ) = exp�(1��i)(r��i)(T�t) K(S0(t)C0

i (t), S(t)Ci(t), t;T )

is stationary:

lim
T!1

J(S0(t)C0
i (t), S(t)Ci(t), t;T ) = J(S0(t)C0

i (t), S(t)Ci(t))
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Given that the utility function is power, we can safely assume that

J(S0(t)C0
i (t), S(t)Ci(t)) =

⇥

S0(t)C0
i (t)

⇤1��i
Ii (✓)

and solve for I. According to both Dumas-Luciano (1991) and Gerhold et al.
(2011), the problem (2) under (1) reduces to solving for the function I the ODE

�(1� �i)�iIi (✓) + ↵I 0i (✓) ✓ + �2I 00i (✓)
✓2

2
= 0 (6)

- with � > 0, to be specified in the solution - under the so-called value-matching
and smooth-pasting BCs, which require continuity of the first and second deriva-
tives of the value function at the tolerance bounds, respectively

⇢

(1 + li)I
0
i(li)� (1� �i)Ii(li) = 0

( 1
1�✏i

+ ui)I
0
i(ui)� (1� �i)Ii(ui) = 0

(7)

and
(

(1 + li)I
00

i (li) + �iI
0
i(li) = 0

( 1
1�✏i

+ ui)I
00

i (ui) + �iI
0
i(ui) = 0

(8)

If we substitute the BCs at li (respectively, ui) in equation (6) we get a second
degree equation in the barriers li, ui which is solved respectively by

li(✏i) =
↵� �(✏i)

�i�2 � ↵+ �(✏i)
(9)

ui(✏i) =
1

1� ✏i

↵+ �(✏i)

�i�2 � ↵� �(✏i)
(10)

where � parametrizes the departure of li and ui from the value that the ratio
of crypto to non-cripto assets would have if there were no fees (the Merton’s
model), ↵/(�i�

2 � ↵). The departure of the allocation from what it would be
without fees is a function of the fees themselves, and therefore we write �(✏i).
Since the function Ii depends on ✓, as well as on the policy, parametrized by
�(✏i), we also write Ii(✓, ✏i). Let us transform the unknown function Ii into w
as follows:

Ii(✓, ✏i) = exp(1��i)
R ln ✓/li(✏i)
0 w(x)dx (11)

where x = ln(✓/li). The I function that solves (6) is the solution of the Riccati
equation in w, with the value matching BCs - which correspond to (7) above -
written in terms of w itself, and valid at x = 0 and x = ln(ui/li):

7

w0(x) + (1� �i)w(x)
2 +

✓

2↵

�2
� 1

◆

w(x)� �i
↵2 � �2

�2
i �

4
= 0

w(0) =
↵� �

�i�2

w(ln(ui/li)) =
↵+ �

�i�2

7Guasoni et al. give both the heuristic and formal proof of that and the analytical expres-
sion of I for small costs.

10



The last system is solved as follows: the Riccati equation gives a solution
for the unknown function w, the BC at the lower boundary x = 0 is its initial
condition, while the BC at the upper boundary x = ln(ui/li) serves to determine
�.8 The value of �i which makes the value function stationary is then � =
(µ2 � �2)/(2�i�

2). It obtains from the di↵erential equation after substituting
the BCs (both value matching and smooth pasting at ui) in it.

It is shown in Gerhold et al. (2011) that, if ↵
�i�2 6= 1, a condition which is

always true when the Merton’s ✓i is positive, as assumed here, � is an analytic

function of ✏i. It is of the order of magnitude ✏
1/3
i and, up to O(✏

4/3
i ), it can be

approximated by

� = �i�
2

✓

3

4�i
K⇤2(1�K⇤)2

◆1/3

✏
1/3
i + �2

✓

5� 2�i
10

K⇤(1�K⇤)� 3

20

◆

✏i

where K⇤ = ↵
�i�2 .

Note that the solution makes sense for � < ↵.

2.2 Optimization for the miner

The miner - representative of the N⇤ ones - has to solve his own problem. He can
do that by fixing the fee for the next trade, whenever the order comes without
the latter, as we assume in this Section. We will see in Section 2.3 how he can
implement an equilibrium when the order of the first user comes with its own
fee.
For any specific trade with user i the dynamics of the miner’s wealth V is the
opposite of the one for his counterpart. Wi , with the exception of the addition

8For small fees, the Riccati equation has an explicit solution

w(x) = (�i � 1)�1

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

h

a⇥ tanh(tanh�1(b/a� ax)) +
⇣

↵

�2 �
1

2

⌘i

if �i 2 (0, 1) , ↵

�i�
2 < 1 or �i > 1, ↵

�i�
2 > 1

h

a⇥ tanh(tanh�1(b/a+ ax)) +
⇣

↵

�2 �
1

2

⌘i

if �i > 1, ↵

�i�
2 2

1

2

⇣

1�

p

1� 1/�i, 1 +
p

1� 1/�i

⌘

h

a⇥ cotan(cotan�1(b/a� ax)) +
⇣

↵

�2 �
1

2

⌘i

otherwise

(12)

where

a = a(✏i) =

v

u

u

t

�

�

�

�

�

(�i � 1)

✓

↵2 � �2

�i�4

◆

�

✓

1

2
�

↵

�2

◆

2
�

�

�

�

�

b = b(✏i) =

✓

1

2
�

↵

�2

◆

� (�i � 1)

✓

↵� �

�i�2

◆

and � is the solution to the equation

w(ln(ui/li))) =
↵+ �

�i�2
.

The di↵erent functional forms depend on �i and ↵

�i�
2 , because they entail a di↵erent discrim-

inant for the Riccati equation. They hold under the restriction � < ↵.
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of the crypto block rewards. We assume that a single user at a time comes, so
that dL(t) = dLi(t), and similarly for dU . It follows that

dV (t)

= �S0(t)C0(t)rdt� S0(t)dC0(t) + dS(U(t)� L(t))� S(t)dL(t) + S(t)dU(t)

+S(t)⇥(t)1{dU(t)>0}U{dL(t)>0}.

Let K be the miner’s value function, i.e.

lim
T!1

K(S0(t)C0(t), S(t)C(t), t;T )
.
= max lim

T!1
inf

1

T
lnE

⇥

V (T )1��
⇤1/(1��)

It is easy to show, as in the investor’s case, that, if we aim at a stationary value
function, we must discount K at a rate � > 0. We can guess the discounted
value function

J(S0(t)C0(t), S(t)C(t), t;T ) =

exp�(1��)(r��)(T�t) K(S0(t)C0(t), S(t)C(t), t;T )

and assume that it has a stationary limit:

lim
T!1

J(S0(t)C0(t), S(t)C(t), t;T ) =

J(S0(t)C0(t), S(t)C(t))

=
�

�S0(t)C0(t)
��

I(✓).

In the tolerance region for the user I must satisfy the following di↵erential
equation, because of the equation which moves the asset price S:

�(1� �)�sI (✓) + ↵I 0 (✓) ✓ + �2I 00 (✓)
✓2

2
= 0 (13)

with continuity of the function at the boundaries. The latter is established
by letting the value matching conditions be satisfied when trading, i.e. at the
boundaries chosen by the counterpart:

⇢

(1 + li)I
0(li)� (1� �)I(li) = 0

( 1
1�✏i

+ ui)I
0(ui)� (1� �)I(ui) = 0

(14)

The value function of the miner must be maximized with respect to the
choice of ✏i, considering that the boundary itself - chosen by his counterpart -
depends on ✏i through �. At that boundary the change in the miner’s value
function can be approximated as

(�S0C0)
��1 [(�I (ui)� lI 0(ui))(�(1� ✏i)SdU) + I 0(ui)(SdU)]

If we write down the usual FOC for maximization with respect to ✏i we get

@ui

@✏i

n

(��)I 0 (ui)� I
00

(ui) [ui(1� ✏i) + 1]
o

� I 0 (ui) (1� ✏i) = 0 (15)
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@ui

@✏i
=

@ui

@�

@�

@✏i
. (16)

For small ✏i,

@ui

@✏i
= � �i�

2

(1� ✏i) (�i�2 � ↵� �(✏i))
2

@�

@✏i

and, up to O(✏
1/3
i )

@�

@✏i
=

1

3
�i�

2

✓

3

4�i
K⇤2(1�K⇤)2

◆1/3

✏
�2/3
i + �2

✓

5� 2�i
10

K⇤(1�K⇤)� 3

20

◆

So, the miner’s problem consists in solving (13) subject to (14) and (15), with
respect to the function I and the constants ✏i and � respectively, for given ui.
The solution technique can be envisaged following the user’s one: solve the ODE
(13) using the value matching conditions at 0 and ln(ui/li) as initial condition
for the Riccati equation and equation in ✏i. If we operate the substitution of
the unknown function from I to w, analogous to (11), the ODE for I becomes
a Riccati in the function w, and its value matching BCs become analogous to
the user one, so that also the solution is analogous to the user one.
Given ✏i and ui, the technique for solving for � consists in substituting (14) and
(15) in (13). By so doing, we obtain a unique positive solution for �, provided
that the condition in the following theorem holds.

Theorem 1 A unique positive solution for the miner’s problem exists if

✏i > �

2

6

4

�

5�2�i

10 K⇤(1�K⇤)� 3
20

�

1
3�i

⇣

3
4�i

K⇤2(1�K⇤)2
⌘1/3

3

7

5

�3/2

Proof. We prove first that there is a unique solution for �, then that, under the
stated hypotheses, it is positive. Substituting both (14) and (15) in the ODE
(13) at ui, we get the unique solution

� = ↵ui
1� ✏i

1 + ui(1� ✏i)
+

u2
i�

2(1� ✏i)

2

�@ui

@✏i
�is � (1� ✏i)

(1 + @ui

@✏i
)((ui(1� ✏i) + 1)

(17)

The solution is positive i↵

↵ > ui

�@ui

@✏i
�is � (1� ✏i)

(1 + @ui

@✏i
)2
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A su�cient condition for that is that @ui/@✏i > 0, since in that case the right
hand side of the equation is negative. For small fees, the derivative has the
required sign i↵

✏i > �

2

6

4

�

5�2�i

10 K⇤(1�K⇤)� 3
20

�

1
3�i

⇣

3
4�i

K⇤2(1�K⇤)2
⌘1/3

3

7

5

�3/2

Note that equation (14) for ✏i does not admit a null solution ✏i = 0, since the
derivative of � - and therefore of ui - tends to infinity as ✏i tends to zero. The
only way for (15) to be satisfied in that case would be if both the first and
second derivative of the value function at ui were zero, which is inconsistent
with the BCs.

2.3 Fee choice

Let us discuss now the fee level choice, ". We have seen up to now how the op-
timal choice of the miner may include the fee, if the user’s order comes without
it. In that case he solves the hashing puzzle and executes the order straight
away.
If the order of the user comes with a fee "⇤, the miner is willing to execute the
trade only if it entails the exchange described by the boundaries li(�("

⇤)) or
ui(�("

⇤)), as determined by (9) and (10), depending on whether the order is a
buy or sell one. If this is not the case, he waits until the first time the ratio ✓

of the user reaches either li(�("
⇤)) or ui(�("

⇤)). He will wait until one of them
is reached, even if he finishes the hashing before, to reach an equilibrium.
The SDESs and then ODEs for the two parties are not a↵ected by this waiting

time. Since ln(✓i)(t) is distributed as a Brownian motion with drift �↵ � �2

2
and di↵usion �, the expected time for the miner to get an order at the upper
barrier ui is

mini
R1

0

q

(ui�✓i(t))2

2⇡�2x3 exp



� (�↵��
2

2 �ui+✓i(t))
2

2�2x

�

dx

The expected time to get an order at the lower barrier is

mini
R1

0

q

(li�✓i(t))2

2⇡�2x3 exp



� (�↵��
2

2 �li+✓i(t))
2

2�2x

�

dx

The expected time to implement the trade with fee "⇤ is the maximum
between the hashing time and the two minima above.
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3 Equilibrium

An equilibrium in the previous market is a triple (✏i, li, ui), with ✏i 2 [0, 1], such
that, assuming for simplicity that ✓i(0) = li or ✓i(0) = ui for all users

9

• the incoming investor’s optimization problem is solved

• the miner’s one is solved too

• and the market for the cryptocurrency against dollars clears

Based on the above discussion, we can state that

Theorem 2 Under the hypothesis in Theorem 1, the crypto market has a single
equilibrium, corresponding to the ✏i 2 (0, 1) such that users solve the ODE (6)
with value matching and smooth pasting BCs (7) and (8), miners solve their
ODE (13) under the value matching BCs (14) and FOC (15). The order may
come with or without a fee. In the former case the order is executed as soon
as the hashing puzzle is solved and the incoming user’s ratio of BTC to dollars
overcomes the tolerance bounds

li =
↵� �(✏i)

�i�2 � ↵+ �(✏i)

ui =
1

1� ✏i

↵+ �(✏i)

�i�2 � ↵� �(✏i)

where, up to O(✏
4/3
i

�(✏i) = �i�
2

✓

3

4�i
K⇤2(1�K⇤)2

◆1/3

✏
1//3
i + �2

✓

5� 2�i
10

K⇤(1�K⇤)� 3

20

◆

✏i)

K⇤ = ↵/�i�
2.

In the latter case ✏i is chosen so as to satisfy (15).

Proof. The user optimization problem has a unique solution if ODE (6) with
value matching and smooth pasting BCs (7) and (8) holds. We proved that the
same is true for the miner if the conditions of Theorem 1 hold. The market for
both assets clears since we posited that the position of the one party in both
asset is the opposite of the other party’s one.

The equilibrium does not admit forks because miners are identical (a repre-
sentative one exists).

Nor an equilibrium with zero neither one with 100% fees exist:

Corollary 3 Under the conditions of the previous theorem, an equilibrium with
zero or maximum fees (100%) does not exist.

Proof. Lack of existence of an equilibrium with ✏i = 0% has been proved in
the previous Section. With ✏i = 100% the value matching condition for the user
cannot be satisfied.

9We could also start from a position for the investor at time 0 di↵erent from the inter-
vention one. In that case, as observed in Dumas and Luciano (1991), the conditions should
be modified to take the initial adjustment to the barrier into consideration.
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4 Empirical analysis

The empirical analysis of the BTC market consists in calibrating the model to
its actual fees and prices, in order to show for which variables there is volatility
amplification.

4.1 Data

The inputs for the empirical analysis are as follows. The transaction fee and
volume data are public, and come from the BTC.com website. We take all the
daily ”blocks of transactions”, which correspond to our transactions10. They
come at high frequency, approximately a block of transactions each 5 minutes
from June 1 to July 7 2022. This makes a total of 37 days, since the market is
open 24/7, and approximately 4500 transaction blocks. For each block of trans-
actions we have the timing (up to the second), fee in BTC and total transaction
volume in BTC. The volume is the number of BTC transacted, dL or dU in our
terminology. We compute the percentage fee ✏i as a percentage of the BTC fee
to the transaction volume.
We take the monthly exchange rate $/BTC from Yahoo Finance over the period
October 2014 - June 2023. Over the same time span, we take as riskless rate
the T-bill one, from the FED, at the beginning of each month.

4.2 Preliminary statistical analysis

First of all, we verify that log returns on the BTC price in dollars are normal, and
compute the corresponding drift and di↵usion. Figure 1 presents the histogram
of returns, the theoretical Gaussian distribution which best fits it (upper left),
the comparison between the corresponding distributions (lower left), the qq-
plot of the monthly returns, which shows no departure from Gaussianity (upper
right), and the probabilities of the Gaussian best fit distribution compared to
the empirical ones (lower right), over the period under exam.

The Jarque-Bera test provides a p-value of 0.9211, which, together with the
plot, is a clear evidence of Gaussianity.

The corresponding ↵ parameter, computed by taking the average log return
over the same time span, in excess of the monthly, variable riskless rate over the
same period, and annualizing it, is 0.11742. The riskless rate in turn is com-
puted by taking the beginning-of-the month rate on the T-Bills, as described
above, over the same time span used for the $/BTC exchange rate, and annu-
alizing it. It varies over the period under exam and its average is r = 0.031028.
As a result, the return on BTC is ↵+ r = 14.8%.

The standard deviation of the exchange rate obtains from the same data.
The daily or intrinsic volatility is �/

p
365 = 0.72904/

p
365 = 0, 03816, which is

already very high.

10In principe we should distinguish buy and sell orders. Block data come without that
specification. This is not a problem for us, since we simplified the model so as to have the
di↵erence between the sell and buy price.
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Figure 1: Distribution fit for monthly returns

The Figure presents the histogram of monthly returns on BTC and the
theoretical Gaussian distribution which best fits it in the upper left plot, with
the values of returns on the horizontal axis and frequencies or their density on
the vertical; the comparison between the corresponding distributions, with the
values of returns and the cumulative frequencies or density in the lower left
plot; the qq-plot of returns, with empirical and theoretical quantiles on the

axes,in the upper right plot; the pp-plot of returns with empirical and
theoretical best-fit probabilities in the lower right plot.

The drift and standard deviation of the crypto satisfy the hypothesis of
Theorem 1, so that we expect a unique equilibrium.
Let us examine now the fees. Actual fees are di↵erent, because ach time the
miner can trade with a di↵erent user i.
We take the time series of the high frequency fees from the BTC.com website.
Once we get rid of the negligible transactions, we get a time series for ✏i with
4418 data points, which confirms that the fee is never 0 or 100%, consistently
with Corollary 3. The fee behavior is highly erratic, even at first sight, as one
can see from Figure 2. In Figure 2, fees are in basis points:

Figure 3 is an histogram of the same fees, in basis points, which reveals high
skewness and kurtosis.

To give the fee statistics, we give the range over over the 37-days period of
the daily statistics:11

11We compute the daily realized variance of the fees using the rRVar function from the
highfrequency package in R. Let ri,t be a vector of intraday returns over M transactions;

then the daily Realized Variance is computed as RV art =
PM

i=1
r2i,t.
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Figure 2: Time Series of Fees

The Figure has time on the horizontal axis and the observed fee in basis points
on the vertical.

Figure 3: Histogram of Fees

The Figure has buckets for the fees (the first starting at ✏i > 0) on the
horizontal axis and the corresponding frequencies on the vertical.

VARIABLE minimum maximum
daily fee minimum 1.289619e-07 2.143819e-06
daily fee maximum 5.359737e-05 0.000731819
average 4.579043e-06 4.105258e-05
realized variance 162.568 449.5017
skewness 1.101843 11.33901
kurtosis 3.567268 138.2703
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In Figure 4 we deepen the analysis on the distribution of fees over a single
day (here, June 3), through a Cullen Frey graph. Bootstrapping the returns one
can infer that the range of couples square of skewness - kurtosis they admit is
between zero and 3, 1 and 9 respectively. The graph also shows that both the
uniform, Gaussian and logistic distribution are unable to capture such couples,
while the lognormal, gamma and exponential underestimate the kurtosis with
respect to the skewness intrinsic in the data. The beta distribution, varying its
parameters, is instead able to reproduce all the couples in the grey zone, and
therefore the couples corresponding to the data. Similar plots hold for the other
days. We conclude that the best-fit distribution for the fees is a beta.

Figure 4: Cullen Frey Graph for fees - June 3

The Figure represents the kurtosis as a function of the squared asymmetry in
correspondence to the observed fees and the bootstrapped ones, on June 3, as
well as the couples kurtosis-squared-asymmetry for some fitted distributions.

The latter are single points for all distributions but the beta, which
encompasses a whole family of distributions, and is therefore represented by

the grey zone, when its parameters vary.

Figure 5 reproduces the analysis carried over returns over the June 3 fees: it
presents the histogram of fees, the theoretical beta distribution which best fits
it (upper left), the comparison between the corresponding distributions (lower
left), the qq-plot of the fees, which shows high departure from Gaussianity
(upper right), and the probabilities of the beta best fit distribution compared
to the empirical ones (lower right), the beta parameters are m = 1.476931 and
n = 70965.9.

Let us now compare the intrinsic volatility, which is �/
p

(365), and repre-
sents the volatility of the price before the fees, S, with the one of the cum-fee
price, (1� ✏i)S, which depends also on the realized vol of ✏i.

12 The former is

12To compute the variance of (1� ✏i)S, we assumed independence of S and ✏i and we used
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Figure 5: Distribution fit for fees - June 3

The Figure presents the histogram of fees and the theoretical beta distribution
which best fits it in the upper left plot, with the values of fees on the horizontal
axis and frequencies or their density on the vertical; the comparison between
the corresponding distributions, with the values of returns and the cumulative
frequencies or density in the lower left plot; the qq-plot of fees, with empirical
and theoretical quantiles on the axes,in the upper right plot; the pp-plot with

empirical and theoretical best-fit probabilities in the lower right plot.

3.816%, while the latter ranges from 196 to 326%, 2 orders of magnitude greater.
Volatility amplification is at work and makes overall volatility higher then the
intrinsic one, as in Biais et al. (2022). While in Biais volatility amplification is
generated by sunspots, in our model the market structure is modeled, the fees
are endogenous and the market interaction in equilibrium is responsible for the
volatility amplification.

Also, Figure 6 shows that the realized volatility itself is highly unstable over
time: not only there is volatility amplification, but it changes day after day in a
remarkable way. In the Figure, the horizontal axis contains the dates bewteen
June 1 and July 7, while the vertical axis plots the daily realized variance.

4.3 Transaction behavior and equilibrium

This Section studies the transaction behavior consistent with the BTC market
data at hand, assuming for simplicity that all investors are equal, or that there
exists a representative user, with a moderate risk aversion �i = 4. At th end of

either the max or min of the realized variance of ✏i and of the intraday average of (1� ✏i) in
all computations.
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Figure 6: Realized Variance of Fees

The Figure represents the daily relaized variance of the fees as a function of
time, over the observation period.

the Section we increase it to 10, to perform a robustness check. In the absence of
fees, the optimal allocation to BTC with respect to dollars of the representative
user, ✓⇤, would be ↵/(�i�

2 � ↵) = 0.058459. Because the risk tolerance is high,
the intrinsic vol is so high that the optimal exposure to the BTC would be low
even without costs.

To perform our analysis, we then compute the departure from the optimal al-
location above, �, in correspondence to all realizations of ✏ in the high-frequency
time series. We use the first order approximation13

�2/3�2

✓

3

4

◆1/3

K⇤2/3(1�K⇤)2/3✏
1/3
i (18)

where, in correspondence to the base risk aversion parameter, K⇤ = ↵/(�i�
2) =

0.05523. The statistics of the departure are as follows:
VARIABLE minimum maximum

daily departure minimum 0.0008907159 0.002273255
daily departure maximum 0.006647116 0.01588742
average 0.0024426 0.005179375
realized variance 18.06312 49.94463

The departure is again very volatile, since it depends on the fees.
We compute the corresponding transaction barriers li and ui using the formulas

13The second order approximation is hardly distinguishable from the first, given the order
of magnitude of the fees in the sample.
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in Theorem 2. Figure 7 presents their time series, which immediately shows
that the barriers are quite stable in value, around the optimal ratio:

Figure 7: Time Series of Barriers

The Figure has time on the horizontal axis, the upper and lower barrier
implicit in each transaction on the vertical, separated by an horizontal line

representing the optimal allocation without costs.

We get the following statistics for them and for the distance from the no-cost
allocation:

VARIABLE minimum maximum
li minimum 0.05015355 0.05496866
li maximum 0.05726331 0.05799071
average 0.05573876 0.05717459
realized variance 0.01605102 0.106425
ui minimum 0.05892946 0.05965927
ui maximum 0.06197758 0.06694763
average 0.0597492 0.06120004
realized variance 0.01441195 0.085363

VARIABLE minimum maximum
✓⇤ � li minimum 0.05015355 0.05496866
✓⇤ � li maximum 0.003491207 0.008306324
average 0.001285275 0.002721112
ui � ✓⇤ minimum 0.0004695869 0.001199398
ui � ✓⇤ maximum 0.003517712 0.008487765
average 0.001289333 0.00274017

The vol of li stays within 12.6 and 32.6%, the one of ui within 12 and 29%,
only one order of magnitude bigger than the one of the price before the fees.
These statistics confirm that the barriers, as a result of the optimizing behavior
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of the user, are much more stable - less volatile - than the fees and cum-fee price.
As a result of the barriers staying quite constant, we can expect a number of
daily transactions quite constant, and an expected time to next trade with low
volatility, as the actual market shows. Figure 8 is indeed a time series of the
number of block transactions executed per day, which stays quite flat in the
observation period

Figure 8: Number of transactions per day

The Figure is taken from BTC.com and represents the number of (block)
transactions per day over the observation period.

Figure 9 confirms the message from Figure 8 and our motivation for that.
It represents the time within the single transactions. It shows how long (in
seconds) one has to wait to see the next trade, over the observation period

Figure 9: Seconds within transactions, observed

The Figure is taken from BTC.com and represents the time between successive
(block) transactions over the observation period.

On top of the computations above for the barriers and their volatility, we
can look at turnover measures. Indeed, we can measure the e↵ect of the fees on
the turnover of both the BTC and overall wealth.
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The BTC turnover up to T for users - called Share-turnover or ShTu , is
defined, similarly to Gerhold et al. for stocks, as the ratio of the traded number
of BTCs to the total number of BTC held, up to T . Under our assumption of
homogeneous investors, it depends on the fees because the barriers and trade
do.

ShTu(✏i, T ) = lim
T!1

1

T

Z T

0

dL(t) + dU(t)

C(t)
dt

Similarly, the wealth turnover can be defined as the ratio of the traded value
of wealth to the total liquidation value of wealth

WeTu(✏i, T ) = lim
T!1

1

T

Z T

0

S(t)dL(t) + (1� ✏i)S(t)dU(t)

C0(t) exp(rt) + (1� ✏i)C(t)S(t)
dt

It di↵ers from the BTC turnover first of all because it is given in terms of values
and not pure quantities, and it keeps into consideration that proportional fees
have to be paid to liquidate also final wealth.

For small fees, the previous measures can be approximated by

ShTu = 2�1/3 (1�K⇤)
4/3

K⇤4/3�2�
1/3
i ✏

�1/3
i

WeTu = K⇤ShTu

Applying this formula as if any given realization of ✏ in the data would be
replicated in the future, from the latter we have the time series of the turnovers
in Figure 10:

Figure 10: Time Series of ShTu and WeTu

Share Turnover Wealth Turnover

Each plot in the Figure has time on the horizontal axis and the turnover
measure

for each single transaction on the vertical one

Computing the average on a single day we obtain for the turnovers the
following statistics:
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VARIABLE minimum maximum
daily ShTu minimum 0.1448992 0.3463267
daily ShTu maximum 1.012677 2.584521
average 0.7311611
daily ShTu minimum 0.008002935 0.01912799
daily ShTu maximum 0.05593124 0.1427458
average 0.04038281

Even though the minimum and maximum turnover vary with the fee, their
average is quite low. This confirms that, even with highly volatile fees, the
trade behavior is quite stable, no matter how you measure it. The optimizing
behavior of agents seems to be at work, and they seem to react to volatile fees
by adjusting trade not to incur in too high costs.

5 Equivalent safe rate

The last quantity we define and calibrate to data, under the symplifying assump-
tion of homogeneous investors with moderate risk aversion, is the equivalent safe
rate (ESR), namely the rate on an hypothetical safe asset which would give to
users the same utility level as the equilibrium transaction policy in cryptos, with
fees. This ESR has been shown by Gerhold et al. (2011) to be
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Considering the approximation (18) of �, the ESR can be approximated by
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By computing the ESR first for each transaction, and then taking the average
over the observation period, we get 0.03504638. As a combined result of quite
stable trading policies, and fees low in value but high in variance, we have quite
a modest ESR. Users would give away BTCs, whose expected return in price is
14.8%, with a high volatility on top (�) for a safe asset which returns a much
more humble 3.5%.

As a final robustness check, let us increase the risk aversion of users from
4 to 10. Not only the ESR is almost una↵ected, but also the trading behavior
and its stability do remain, as the following statistics show.

(i) ESR, average of averages is now 0.03309855
(ii) min ranges ShTu goes from 0.06068604 to 0.145047,WeTu from 0.001340702

to 0.003204441
(iii) max ranges ShTu goes from 0.4241251 to 1.082438,WeTu from 0.009369953

to 0.02391368.
(iv) average ShTu 0.3062217.
This is done as a robustness check for the analysis.
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6 Summary and conclusions

We have formalized and studied a single equilibrium in a market for cryptocur-
rencies, of the Bitcoin type. The equilibrium is characterized through its optimal
trading policies and fees. Trade is carried out discountinuously in time. Trading
times either correspond to the hashing time or the maximum between it and
the first time that the incoming user’s ratio of BTC to riskless assets reaches
the tolerance bounds corresponding to the declared fee, if he declares it. If the
miner declares the fees, he adjusts it to the actual ratio of the user. We have cal-
ibrated the model to BTC.com high-frequency data and explained the volatility
amplification from the prices without the fees to the ones with fees, which is
two orders of magnitude greater. We have also explained the relative stability
of the implied optimal policies. The equivalent safe rate is a modest 3.5%, since
quiet trading with extremely volatile prices, once the fees are included, do erode
utility from the expected return on BTCs of 14.8%.
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