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Abstract

In this paper, we examine how dividend taxes (and bans) and capital requirements

that vary with the state of the economy influence a bank’s optimal capital buffers and

shareholder value. In the model, the bank distributes dividends and issues costly equity

to maximise shareholder value, while its assets generate stochastic income under time-

varying macroeconomic conditions. We solve the bank’s stochastic control problem

and derive the distribution of its capital buffers in closed form. Imposing dividend

taxes (or bans) in bad macroeconomic states generates an intertemporal trade-off, as it

encourages capital buffers accumulation in those states but promotes dividend payouts

in the good ones. Furthermore, the policy undermines financial stability by reducing

the bank’s value and weakening its incentives to recapitalise in both good and bad

states. Coordinating dividend taxes with counter-cyclical capital requirements can

mitigate value losses and ease the trade-off, but it also exacerbates disincentives for

recapitalisation. (JEL: C61; G21; G32; G35; G38)
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1 Introduction

At the height of the COVID-19 crisis, motivated by the observation that banks did not

adjust their dividends during the Great Financial Crisis (Acharya et al., 2011; Cziraki et al.,

2024; Belloni et al., 2024), banking regulators worldwide recommended, and in some cases

enforced, dividend restrictions.1 These unprecedented measures aimed to preserve banks’

credit capacity by ensuring adequate capital buffers and, more critically, preventing systemic

defaults.

Empirical evidence suggests that the short-term outcome of these policies has been two-

sided. On the one hand, Andreeva et al. (2023) and Sanders et al. (2024) find that dividend

restrictions and their announcements have negatively impacted bank equity valuations, con-

sistent with the notion that shareholders demand higher returns in response to lower and

delayed future payouts. On the other hand, Li et al. (2020) and Hardy (2021) argue that

they were effective in improving the balance sheets of banks and, ultimately, in avoiding a

credit crunch. Couaillier et al. (2025) find that dividend policies played a pivotal role in

sustaining bank lending, highlighting that capital buffer releases alone would not have been

sufficient to achieve the same outcome.

From a theoretical standpoint, the problem of evaluating dividend regulation – such as

bans and, more broadly, taxation – during adverse macroeconomic conditions has only re-

cently received attention (see Vadasz, 2022 and Kroen, 2022) and remains poorly understood.

This is because such policies often involve complex interactions with banks’ decision-making

and other forms of regulation. This paper develops a theory to evaluate how dividend taxes

(or bans) contingent on the aggregate state of the economy affect a bank’s optimal recap-

italisation and dividend payout decisions in both the short and long term, as well as their

interaction with traditional capital requirements.

We model the optimal control problem of a bank that holds a fixed amount of loans

1The ECB advised suspensions to start in March 2020; regular payments resumed in the fourth quarter of
2021. The FED imposed restrictions in June 2020, partially easing them in December 2020. The restrictions
ended between June and July 2021, allowing banks to revert to pre-pandemic dividend policies.
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and insured deposits.2 Loans generate stochastic cash flows, whose expected returns and

volatility depend on the aggregate state of the economy, as in Hackbarth et al. (2006).3

The regulator imposes dividend taxes (or bans) and capital requirements, depending on the

aggregate state of the economy. Similarly to Décamps et al. (2011) and Moreno-Bromberg

and Rochet (2014), the bank decides whether to default or, at a cost, to issue equity (and

in what amount) when capital requirements become binding; it retains cash flows as capital

buffers or pays them out as dividends to avoid costly recapitalisation, aiming to maximise

shareholder value.

In the first part of the paper, we solve the bank’s stochastic control problem in closed

form, demonstrating that optimal payouts follow a threshold strategy. In particular, we show

that dividends are paid only when their marginal value, proportional to the state-contingent

dividend tax rate, exceeds that of accumulating additional capital buffers. Otherwise, the

bank takes no action. Notably, adopting state-contingent dividend taxes is equivalent to

imposing a dividend ban when the tax rate is high enough. Next, we show that recapitalising

the bank is optimal if its costs are sufficiently small (“incentive compatible”). If that is the

case, when the capital constraint binds and there are no dividend taxes, the bank injects

equity until the reserves reach the dividend payout threshold. In the presence of dividend

taxes, the optimal recapitalisation target falls below the payout threshold.

Equipped with the bank’s optimal controls, we analytically derive the stationary distri-

bution of its capital buffers, conditional on the aggregate state of the economy. We interpret

this distribution either as a measure of the bank’s “ex-ante” credit capacity or as the cross-

sectional distribution of buffers that a regulator should consider in an economy populated

by an infinite number of identical banks. We use this distribution to evaluate the long-term

outcomes of different policies.

The second part of the paper employs numerical analysis to investigate how dividend

2In principle, the firm we model can represent either a financial or a non-financial company. However,
our model is particularly well suited to financial firms, which are typically subject to capital requirements.

3Chay and Suh (2009) provide empirical evidence that cash flow uncertainty is a key determinant of firms’
dividend payout decisions.
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taxes and capital regulation affect the bank’s optimal decisions and the distribution of cap-

ital buffers, and to derive policy implications. Motivated by the COVID-19 policy case, we

examine a scenario in which dividend taxes are higher during a bad economic state, char-

acterised by high cash flow volatility and low expected returns. To isolate the effects of

dividend taxes, we first consider a-cyclical capital requirements.

Consistent with its scope, the policy encourages the accumulation of reserves in the

targeted state by increasing the corresponding dividend payout threshold. This happens

because higher taxes lower the marginal value of dividends. At the same time, however, the

policy reduces the bank’s value not only in the bad state (“ex-post”) but also in the good state

(“ex-ante”) as shareholders internalise the prospect of lower future returns. Consequently,

the bank finds it optimal to increase dividend payouts (i.e., reduce capital buffers) in the

good state to compensate for these losses partially. These predictions warn that regulatory

uncertainty regarding dividend restrictions can backfire by generating lower capital buffers

in the long run (on this point, see also Attig et al., 2021) and encourage counter-cyclical

equity issuance strategies, as suggested by Baron (2020).

The second finding of the numerical analysis is that imposing higher dividend taxes

(or, equivalently, restrictions) during adverse macroeconomic conditions reduces the bank’s

optimal recapitalisation targets across all states. Additionally, the resulting shareholder

value losses lower the incentive-compatible cost threshold beyond which shareholders are

unwilling to inject equity when capital constraints are binding. This result suggests that

state-contingent tax policies may increase default risk, potentially amplifying concerns about

financial stability.

In the final part of the paper, we examine whether coordinating dividend taxes with

cyclical capital requirements can help mitigate the adverse effects of dividend policy. This

analysis is particularly relevant in light of the findings of Dursun-de Neef et al. (2023),

which demonstrate that the combination of recommendations to suspend dividends and

relax capital requirements was crucial in sustaining lending during the COVID-19 pandemic.
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According to our simulations, coordinating countercyclical capital requirements with di-

vidend taxes can mitigate the adverse effects of the latter by redistributing value losses across

states and reducing the dispersion of the capital buffer distribution in the long run. However,

these benefits come at the cost of creating additional disincentives for recapitalisation.

The rest of the paper is organised as follows. Section 2 situates the paper within the

existing literature. Section 3 introduces the model, and Section 4 provides its analytical

solution. Section 5 analyses the model numerically and discusses its policy implications.

Section 6 concludes.

2 Related literature

Our work is related to recent empirical papers that examine the (primarily short-term)

effects of dividend restrictions during the COVID-19 pandemic. Andreeva et al. (2023) and

Sanders et al. (2024) find that banks subject to dividend suspension policies experienced

a temporary drop in equity valuation but were able to increase their lending to the eco-

nomy. Hardy (2021) show that banks’ CDS spreads declined after this measure, suggesting

an improvement in their safety. Dautovic et al. (2023) find that dividend restrictions were

effective in limiting banks’ pro-cyclical behaviour, thereby improving their capital buffers.

Mücke (2023) show that mutual funds permanently reduced their ownership stakes in banks

under payout restrictions. We complement this literature by providing a theoretical frame-

work that analyses and characterizes the joint effects of dividends and capital regulation on

a bank’s endogenous decisions in both the short and long run.

To the best of our knowledge, only a few papers have theoretically examined the effects

of banks’ dividend regulations. Goodhart et al. (2010) study the impact of dividend restric-

tions on an interbank market, showing that it may reduce defaults and improve welfare.

Lindensjö and Lindskog (2020) solve the optimal control problem of a financial company

facing dividend restrictions, finding that they may increase default risk. Unlike our work,
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these papers abstract from macroeconomic uncertainty.

Other related contributions include Vadasz (2022), which explores the ex-post interven-

tion problem between a regulator and a bank in a two-period game, and Ampudia et al.

(2023), which investigates dividend bans using a quantitative DSGE model with banks.

Similar to our work, these papers highlight the trade-off between the benefits of increased

lending and the losses in bank valuation resulting from policy intervention. We differentiate

substantially by studying the joint effect of dividends and capital regulation on the bank’s

recapitalisation decisions in a traditional corporate finance setting. In this respect, we draw

on the extensive literature that examines the optimal cash management of the firm, such as

Décamps et al. (2011) and Gryglewicz (2011). We depart from these studies by considering

macroeconomic uncertainty, as in Hackbarth et al. (2006) (which, in turn, does not consider

dividend or capital requirements).

Methodologically, we build on the continuous-time stochastic control literature on di-

vidends pioneered by Jeanblanc-Picqué and Shiryaev (1995). In particular, we tackle a

problem that features Markovian regime switching, as in Jiang and Pistorius (2012) and

Ferrari et al. (2022), and consider endogenous equity issuance, as in Løkka and Zervos

(2008). Unlike in Radner and Shepp (1996), cash flows are exogenous. Our solution employs

a guess-and-verify approach, similar to that described in Sotomayor and Cadenillas (2011).

We distinguish ourselves from these studies in three dimensions. First, we consider

macroeconomic uncertainty not only in expected cash flows, as in Reppen et al., 2020, but

also in their volatility. Second, we are the first to incorporate both dividend taxes (or bans)

and capital regulation into an optimal dividend framework. Third, we analytically derive

the stationary distribution of banks’ capital buffers under the optimal control.
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3 Model set up

Time is continuous and indexed by t ∈ [0,∞). As in Guo et al. (2005) and Hackbarth

et al. (2006), we consider a bank subject to aggregate uncertainty on the state of the economy,

modelled via a bi-variate Markov chain It ∈ {1, 2}, with transition intensity λIt . A risk-

neutral manager runs the bank in the best interest of its shareholders.

The bank holds a fixed amount of insured liabilities, D (deposits) and assets, At. As-

sets include a constant stock of illiquid loans, L, and time-varying liquid reserves (“capital

buffers”), Xt. The book value of the bank equity at time t satisfies the balance sheet identity

Et +D = Xt + L. (1)

Deposits yield the risk-free interest rate ρ ≥ 0, while reserves are not remunerated,

for simplicity. Loans generate operating cash flows according to the following stochastic

differential equation:

µ̄Itdt+ σItdWt, (2)

whereWt is a standard one-dimensional Brownian motion defined in some filtered probability

space (Ω,F ,F := (Ft)t≥0,P). The drift and diffusion terms of (2) are contingent on the state

of the economy It. In particular, we assume that µ̄1 ≥ µ̄2 > 0 and σ2 ≥ σ1 > 0 so that states

It = 1 and It = 2 represent expansions (higher expected returns and lower volatility) and

recessions (lower expected returns and higher volatility), respectively. We will thus refer to

It = 1 as the “good” and to It = 2 as the “bad” state throughout the paper.

The cash flows can be retained as reserves or paid out as dividends. dZt denotes the

time-t dividend payment and is the manager’s first choice variable. The government taxes

dividends depending on It. We denote as βIt ∈ [0, 1] the after-tax value of a 1$ dividend in

State It. Consistent with the paper’s motivation, we focus on counter-cyclical dividend tax

schedules and set β1 = 1 and β1 ≥ β2.
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The regulator requires the bank to hold sufficient equity to repay debtors fully in the case

loans are liquidated at the fire-sale price α ∈ [0, 1]. as in Décamps et al. (2011). Provided

that D > αL, equity must be such that:

ER,It ≥ L (1− α) + ΓIt . (3)

The parameter ΓIt captures additional capital requirements (e.g., those prescribed by regu-

lations such as Basel III) when ΓIt > 0, or subsidies (e.g., state guarantees to cover default

losses partially) when ΓIt < 0. By substituting (3) into (1), the capital requirement can be

expressed as the following minimum level of the reserve:

Xt ≥ D − αL+ ΓIt := xR,It . (4)

Since Xt is stochastic, (4) becomes occasionally binding at random times (τn)n≥1. When

that happens, the manager can either liquidate or recapitalise the bank by issuing equity.

The outcome is captured by the auxiliary variable bn, which takes value 0 (liquidation) or 1

(recapitalisation). This is the bank’s second choice variable. In the event of a liquidation,

shareholders incur no costs but forgo all future dividends. The additional buffer Γ+
It
is rebated

to the shareholders. In the case of recapitalisation, shareholders provide the firm with new

liquidity, Gn, and pay a fixed cost, κ ≥ 0.

For a given equity issuance schedule, liquid reserves up to a (possibly infinite) liquidation

time τℓ := inf{τn ≥ 0 : bn = 0} evolve as follows:



Xτn = Xτ−n
+Gn, n ≥ 0,

dXt = (µ̄It − ρD)︸ ︷︷ ︸
:=µIt

dt+ σItdWt − dZt, t ∈ [τn, τn+1),

(5)
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with initial values I0 = i ∈ {1, 2} and X0 = x ≥ min {xR,1, xR,2}.

Since reserves are not remunerated, the bank retains dividends only to avoid costly re-

capitalisation or liquidation. Formally, the admissible control is a triple of Ft-measurable

stochastic processes A := (Z, b,G) =
(
(Zt)t≥0, (bn, Gn)n≥1

)
such that:

(i) The cumulative dividend (Zt)t≥0 is right-continuous, non-decreasing and such that,

setting Z0− = 0, each increment ∆Zt := Zt−Zt− < Xt−xR,i, ∀t ≥ 0 and i = 1, 2. This

condition ensures that the bank cannot issue dividends and equity simultaneously.

(ii) The auxiliary function (bn)n≥1 is Fτn-measurable and takes values bn = 0 or bn = 1 if

a liquidation or recapitalisation takes place at time τn, respectively.

(iii) The equity issuance (Gn)n≥1 at time τn when bn = 1 is strictly positive and Fτn-

measurable.

Denoting the set of admissible strategies by A, the bank’s gain function is

J(x, i;A) = E

[ˆ τℓ

0

e−δtβItdZt −
ℓ−1∑
n=1

e−δτn(Gn + κ)

]
,∀A ∈ A, (6)

where δ > 0 is a discount rate, with the convention
∑0

n=1 = 0. The bank’s value function

(i.e., shareholder value) is then given by

V (x, i) := sup
A∈A

J(x, i;A) (7)

s.t. (5) (8)

4 Model solution

The first part of this section derives the solution to the bank’s stochastic control problem

analytically. For this purpose, we focus on the “baseline” case in which capital requirements

are a-cyclical, i.e. not contingent on the state of the economy (xR,1 = xR,2 = xR). We will
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consider cyclical capital requirements in Section 5.

The second part of the section derives and analyses the (stationary) distribution of the

bank’s reserves under the optimal control.

4.1 Shareholder value and optimal strategy

To tackle the problem (7), we follow a guess-and-verify approach.4 More specifically, we

formulate a set of optimality conditions for a candidate value function v based on heuristic

considerations. Then, we use verification arguments to prove that v = V .

We expect the value function to solve (in a suitable sense) the following system of

Hamilton-Jacobi-Bellman Variational Inequalities (HJBVI):

max
{
Liv(x, i)− λi [v(x, i)− v(x, 3− i)] , βi − v′(x, i)

}
= 0, i = 1, 2, x > xR, (9)

where v : [xR,∞) × {1, 2} → R, and Li are differential operators acting on functions ϕ ∈

C2(xR,∞) as follows:

Liϕ =
1

2
σ2
i ϕ

′′ + µiϕ
′ − δϕ, i = 1, 2.

Associated with a smooth enough solution to (9), there are the following continuation and

intervention regions for i = 1, 2:

Ci := {x > xR : v′(x, i) > βi} , (10)

Si := {x > xR : v′(x, i) = βi} . (11)

Equipped with these objects, we conjecture that the optimal control has a threshold

structure, as in Sotomayor and Cadenillas (2011), meaning that for each i = 1, 2, there is

a reserve level x̃i below which the bank does not pay dividends. Indeed, we expect that it

4This approach is the most used in the classical corporate finance literature starting from Leland (1994).
For a direct approach to a similar problem, building on the theory of viscosity solutions and stating the
optimality conditions as necessary, we refer to Akyildirim et al. (2014).

10



is optimal to accumulate reserves as long as their marginal value (v′(·, i)) exceeds that of

dividends (βi). Formally, we guess that the above regions are Ci = (xR, x̃i) and Si = [x̃i,∞)

for i = 1, 2, implying that

x̃i = inf {x ≥ xR : v′(x, i) ≤ βi} . (12)

Next, we make some conjectures to construct a sufficiently smooth solution to (9). First,

we assume that v(·, i) ∈ C([xR,∞)) ∩ C2((xR,∞)). Second, we postulate xR < x̃1 < x̃2,

based on the intuition that it is optimal to pay more dividends when assets yield higher

returns and carry less uncertainty. Third, we impose appropriate boundary conditions at

the regulatory threshold xR. The boundary conditions determine whether recapitalisation is

optimal at xR and, if so, the amount of equity to issue.

If the manager liquidates the firm, the shareholders receive the maximum between the

capital buffer and zero (Γ+
i ). Otherwise, the optimal recapitalisation policy (Ĝ) must be

feasible and “incentive-compatible”, i.e. its benefits must be larger than or equal to its costs.

Therefore, we require that Ĝ = argmax {v(xR +G; i)−G− κ}, with v(xR + Ĝ, i) ≥ Ĝ + κ

and Ĝ ∈ G := [0, x̃i − xR]. As either liquidation or recapitalisation must be optimal, we

impose

v(xR, i) = max

{
max
G∈G

{v(xR +G, i)−G− κ} ,Γ+
i

}
for i = 1, 2. (13)

We now construct a function that meets all these conditions.

In the intervals [x̃i,∞), the function must satisfy v′(·, i) = βi. In the interval (x̃1, x̃2), we

define v′(·, 2) as the unique solution to

1

2
σ2
2v

′′′(x, 2) + µ2v
′′(x, 2)− (δ + λ2) v

′(x, 2) + λ2 = 0, (14)

with boundary conditions v′(x̃2, 2) = β2 > 0 (optimality condition), and v′′(x̃2, 2) = 0 (super

contact condition, see Dumas, 1991). In the interval (xR, x̃1), we find the functions v′(·, i)
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as unique solutions to the following system:



1
2
σ2
1v

′′′(x, 1) + µ1v
′′(x, 1)− (δ + λ1) v

′(x, 1) + λ1v
′(x, 2) = 0,

1
2
σ2
2v

′′′(x, 2) + µ2v
′′(x, 2)− (δ + λ2) v

′(x, 2) + λ2v
′(x, 1) = 0.

(15)

with boundary conditions v′(x̃1, 1) = 1 (optimality condition), v′′(x̃1, 1) = 0 (super-contact

condition), v′(x̃−
1 , 2) = v′(x̃+

1 , 2), and v′′(x̃−
1 , 2) = v′′(x̃+

1 , 2) (continuity conditions).

Solving (14) and (15) for v′(·, i) and integrating over the corresponding intervals yields

the following proposition.

Proposition 1 (Solution to the HJBVI system). Recall that δ > 0, λi > 0, µ1 ≥ µ2 > 0,

σ1 ≤ σ2 and assume that β2 > λ2/(λ2 + δ). Then, the following holds.

1. Fix x̃1, x̃2 such that xR < x̃1 < x̃2 and define

v(x, 1) = K1 +


(x− x̃1), x ∈ [x̃1,∞),∑4

j=1 Aj

(
eαj(x−x̃1) − 1

)
, x ∈ [xR, x̃1),

(16)

v(x, 2) = K2+


β2(x− x̃2), x ∈ [x̃2,∞),

λ2(x−x̃2)
δ+λ2

+
∑2

j=1 Ãj

(
eα̃j(x−x̃1) − eα̃j(x̃2−x̃1)

)
, x ∈ [x̃1, x̃2),

λ2(x̃1−x̃2)
δ+λ2

+
∑2

j=1 Ãj(1− eα̃j(x̃2−x̃1)) +
∑4

j=1 Bj

(
eαj(x−x̃1) − 1

)
, x ∈ [xR, x̃1),

(17)

where αj < α2 < 0 < α3 < α4 and α̃1 < 0 < α̃2 are the real roots of

(
δ + λ1 − αµ1 −

σ2
1

2
α2

)
︸ ︷︷ ︸

:=G1(α)

(
δ + λ2 − αµ2 −

σ2
2

2
α2

)
︸ ︷︷ ︸

:=G2(α)

= λ1λ2, (18)

1

2
σ2
2α̃

2 + µ2α̃ = δ + λ2, (19)
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and (A1, A2, A3, A4, Ã1, Ã2) ∈ R6 and (K1, K2) ∈ R2
+ solve the following linear system:5



∑4
j=1Ajαj − 1 = 0,∑4
j=1Ajα

2
j = 0,∑4

j=1Bjαj − λ2

δ+λ2
−
∑2

h=1 Ãhα̃h = 0,∑4
j=1Bjα

2
j −

∑2
h=1 Ãhα̃

2
h = 0,∑2

h=1 α̃hÃhe
α̃h(x̃2−x̃1) − β2 +

λ2

δ+λ2
= 0∑2

h=1 α̃
2
hÃhe

α̃h(x̃2−x̃1) = 0.

µ2β2 − (δ + λ2)K2 + λ2(K1 + x̃2 − x̃1) = 0,

µ1 − (δ + λ1)K1 + λ1

(
K2 +

λ2

δ+λ2
(x̃1 − x̃2)

)
= 0,

(20)

with Bj = Ajλ
−1
1 G1(αj). Moreover, assume that



∑4
j=1Ajα

3
j > 0,∑4

j=1Bjα
3
j > 0,∑4

j=1Ajα
3
je

αj(xR−x̃1) > 0,∑4
j=1Bjα

3
je

αj(xR−x̃1) > 0.

(21)

Then, v′′(·, i) < 0 in (xR, x̃i) and (16) and (17) solve (9) in a classical sense.

2. Consider the framework in Point 1 and assume that

4∑
j=1

Bjαje
αj(xR−x̃1) − 1 > 0. (22)

5Assuming that a solution to this system exists.
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Then, x∗
2 ∈ (xR, x̃2] is the unique solution of

1[xR,x̃1](x
∗
2)

4∑
j=1

Bjαje
αj(x

∗
2−x̃1) + 1(x̃1,x̃2](x

∗
2)

(
λ2

δ + λ2

+
2∑

h=1

α̃hÃhe
α̃h(x

∗
2−x̃1)

)
− 1 = 0.

(23)

3. Consider the framework in Points 1 and 2 and set Γ+
i = 0. Moreover, assume that

x̃1, x̃2 solve the following algebraic system:



∑4
j=1Aj

(
eαj(xR−x̃1) − 1

)
+ (x̃1 − xR) + κ = 0,

λ2x̃1

δ+λ2
−
∑2

j=1 Ãj(1− eα̃j(x̃2−x̃1))−
∑4

j=1Bj

(
eαj(xR−x̃1) − 1

)
+

−
(

λ2x̃1

δ+λ2
+
∑2

j=1 Ãj(1− eα̃j(x̃2−x̃1)) +
∑4

j=1Bj

(
eαj(x

∗
2−x̃1) − 1

))
1(xR,x̃1)+

−
(

λ2x∗
2

δ+λ2
+
∑2

j=1 Ãj

(
eα̃j(x

∗
2−x̃1) − eα̃j(x̃2−x̃1)

))
1(x̃1,x̃2) − (x∗

2 − xR) + κ = 0.

(24)

Then, (16) and (17) satisfy the boundary conditions (13).

Proof. See Appendix A.1.

If we suppose that all the above assumptions hold, then v equals the value function. In

that case, we can use this proposition to determine the bank’s optimal strategy by solving a

system of algebraic equations. The procedure is as follows.

The bank only pays dividends in the state i when its reserves reach x̃i. For a given

x∗
2 ∈ (xR, x̃2], the payout thresholds solve the system in (24). When reserves reach xR,

liquidation is never optimal (τ̂l = ∞ or, equivalently, b̂n = 1), provided that κ is sufficiently

small to ensure that (13) is positive. If that is the case, the optimal recapitalisation in state

i injects equity until the reserves reach the target level x∗
i . Therefore, Ĝ(i) = x∗

i − xR.

Since v(·, i) is differentiable, we can use (13) and the boundary condition v(x̃1, 1) = 1 to

obtain that x∗
1 = x̃1 and x∗

2 ∈ (xR, x̃2] as the unique solution of (23). In other words, the

bank finds it optimal to recapitalize exactly to its dividend payout threshold in the good

state and below the payout threshold in the bad state (x∗
2 ≤ x̃2) because the marginal value
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Figure 1: One possible path of the bank’s controlled reserves.

of dividends (β2) is less than one. Since v is concave, v(x̃2, 2) = β2 ≤ v(x∗
2, 2) = 1, and each

state has unique payout threshold and recapitalisation target.

For a given Ĝ(i), the following condition defines the maximum cost level that ensures

that recapitalisation is incentive-compatible:

κ̄ = xR +min {v(x∗
1, 1)− x∗

1, v(x
∗
2, 2)− x∗

2} . (25)

To visualize the optimal strategy, Figure 1 displays one possible path of the bank’s

controlled reserves process X̂t. The process evolves as an arithmetic Brownian motion until

it hits the requirement threshold xR or a dividend payout threshold x̃i. In the former case,

recapitalisation generates a jump to x̃1 or x
∗
2, depending on whether i = 1 or 2. The process

is “reflected” at the boundary in the latter case. When a state change occurs, dividends are

immediately paid if the current reserve level is above the payout threshold of the incoming

state.

The next theorem verifies that v is indeed the value function and formally expresses the
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optimal strategy we described above.

Theorem 1 (Verification). Let all the assumptions of Proposition 1 hold and let v(·, i) be

the functions constructed therein. Moreover, let (x, i) ∈ (xR,∞) × {1, 2}. Then, v(x, i) =

V (x, i) and the control Â = (Ẑ, (b̂, Ĝ)) ∈ A such that


b̂n = 1,

Ĝn = x∗
I
τ̂−n

− xR,

Ẑt = Ẑτn + sups∈[τ̂n,t)

[
x∗
I
τ̂−n

+
´ s
τ̂n
(µIrdr + σIrdWr)− x̃I

τ̂−n

]+
, t ∈ [τ̂n, τ̂n+1),

(26)

where τ̂0 := 0 and τ̂n is defined recursively as τ̂n+1 = inf{t ≥ τ̂n : X̂t− = xR} being X̂t the

associated state process, is optimal.

Proof. See Appendix A.2.

Remark 1. (Dividend tax threshold) The solution structure described in Proposition 1

and Theorem 1 holds under the parametric restriction that dividend taxes are not too high,

i.e. β2 > λ2/(λ2 + δ). In contrast, when β2 ≤ λ2/(λ2 + δ), an inspection of the conditions

set shows that the solution structure used to obtain them breaks down. The same conditions

suggest that the guess should feature an alternative structure, with x̃2 = ∞. The correct

structure has C2 = (xR,∞), regardless of the value of β2 ∈ [0, λ2/(λ2 + δ)). A detailed

discussion of this case appears in Appendix A.4.

Remark 1 clarifies that, when taxes are excessively high in the bad state, the bank finds it

optimal to postpone dividend payments until the good state materializes. Therefore, setting

β2 ≤ λ2/(δ + λ2) is equivalent to imposing a dividend ban in the bad state. The level of β2

that triggers the “ban-like” behaviour increases with the probability of transitioning from

the bad state to the good state (λ2) and decreases with the manager’s impatience (δ).
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4.2 Capital buffers distribution

This section derives the probability density function (pdf) of the bank reserves process in

state i = 1, 2, denoted as π(x, i).6 We will use this object to evaluate the effects of dividend

taxes and capital regulation on the bank’s capital buffers in Section 5.

Since the dynamics of reserves obey the controlled process (26), standard arguments

can be applied to show that π(x, i) satisfies the following system of Kolmogorov Forward

Equations (KFE) over the interval (xR, x
∗
2) ∪ (x∗

2, x̃1):
σ2
1

2
π′′(x, 1)− µ1π

′(x, 1) + λ1 (π(x, 2)− π(x, 1)) = 0,

σ2
2

2
π′′(x, 2)− µ2π

′(x, 2) + λ2 (π(x, 1)− π(x, 2)) = 0,

(27)

with boundary conditions π(x∗−
2 , i) = π(x∗+

2 , i) (value matching), π′(x∗−
2 , 1) = π′(x∗+

2 , 1)

(smooth pasting). By the same logic, in the interval (x̃1, x̃2) the density function in state 2

satisfies

σ2
2

2
π′′(x, 2)− µ2π

′(x, 2)− λ2π(x, 2) = 0, (28)

with boundary conditions π(x̃−
1 , 2) = π(x̃+

1 , 2) and π′(x̃−
1 , 2) = π′(x̃+

1 , 2). These conditions

imply that π(·, i) is C1 in all interior regions when both i = 1, 2, except for π(·, 2) at x∗
2,

which is the mass point where reserves accumulate after each recapitalisation when i = 2.

To characterize the pdf at x̃1 and x̃2, we impose the following reflecting barriers:7

σ2
i

2
π′(x̃i, i)− µiπ(x̃i, i) = 0, for i = 1, 2. (29)

Consequently, we set π(·, i) = 0 in the interval (x̃i,∞) for i = 1, 2.

To characterize the pdf at the regulatory threshold, we impose that the reserves process

is “absorbed” at xR, in the sense that it is immediately and irreversibly transported to

6Throughout this section, we consider the case x∗
2 ≤ x̃1 ≤ x̃2. Analogous formulas can be derived when

x∗
2 > x̃1.

7For a formal derivation of reflecting barriers for controlled diffusion process, we refer to Cox and Miller
(1965), Chapter 5.
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the interior states x∗
i (see Yaegashi et al., 2019, for a discussion of similar conditions in a

uni-variate setting). Thus, we set π(xR, i) = 0 for i = 1, 2. Finally, we impose

2∑
h=1

λ3−h

λ1 + λ2

ˆ ∞

xR

π(x, h)dx = 1, (30)

where λh/(λ1 + λ2) = 1 − P {i = h}, because π(x, i) is a pdf. Solving (27) and (28) under

these conditions yields the following.

Proposition 2. (Capital buffers probability density function) Fix x̃1, x̃2, and x∗
2

such that xR < x∗
2 < x̃1 < x̃2.

8 Then, the pdf of the bank’s reserves in state i = 1, 2 equals

π(x, 1) =


P1e

r1x + P2e
r2x + P3e

r3x + P4e
r4x, x ∈ (xR, x

∗),

P̃1e
r1x + P̃2e

r2x + P̃3e
r3x + P̃4e

r4x, x ∈ (x∗, x̃1),

0, x ∈ (x̃1,∞),

π(x, 2) =



Q1e
r1x +Q2e

r2x +Q3e
r3x +Q4e

r4x, x ∈ (xR, x
∗),

Q̃1e
r1x + Q̃2e

r2x + Q̃3e
r3x + Q̃4e

r4x, x ∈ (x∗, x̃1),

H1e
s1x +H2e

s2x, x ∈ (x̃1, x̃2),

0, x ∈ (x̃2,∞),

in which r1 < r2 < 0 < r3 < r4 and s1 < 0 < s2 are the real roots of

(
λ1 + rµ1 −

σ2
1

2
r2
)

︸ ︷︷ ︸
:=F1(r)

(
λ2 + rµ2 −

σ2
2

2
r2
)

︸ ︷︷ ︸
:=F2(r)

= λ1λ2, (31)

σ2
2

2
s2 − µ2s = λ2, (32)

8Similar expressions can be obtained for the case in which xR < x̃1 < x∗
2 < x̃2.
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and the constants (P1, P2, P3, P4, P̃1, P̃2, P̃3, P̃4, H1, H2) ∈ R10 solve the linear system



∑4
j=1 P̃j

(
σ2
1

2
rj − µ1

)
erj x̃1 = 0,∑2

h=1Hh

(
σ2
2

2
sh − µ2

)
eshx̃2 = 0,∑4

j=1 Pje
rjxR = 0,∑4

j=1Qje
rjxR = 0,∑4

j=1 e
rjx

∗
2

(
Pj − P̃j

)
= 0,∑4

j=1 e
rjx

∗
2rj

(
Pj − P̃j

)
= 0,∑4

j=1 e
rjx

∗
2

(
Qj − Q̃j

)
= 0,∑2

h=1Hhe
shx̃1 −

∑4
j=1 Q̃je

rj x̃1 = 0,∑2
h=1Hhshe

shx̃1 −
∑4

j=1 Q̃jrje
rj x̃1 = 0,

∑2
h=1 λ3−h

´ x̃i

xR
π(x, i)dx− λ1 − λ2 = 0,

(33)

where Qj = λ−1
1 F1(rj)Pj and Q̃j = λ−1

1 F1(rj)P̃j.

Proof. See Appendix A.3.

5 Policy implications

In this section, we parameterize the model and numerically analyse its policy implications

by examining the effects of dividend taxes on optimal controls, shareholder value, and the

resulting capital buffer distribution. We then extend the baseline model to incorporate

counter-cyclical capital requirements and examine their interaction with dividend regulation.

5.1 Parameters

We normalize the stock of deposits D = 1 and choose L to match the US bank deposit-to-

loan ratio in Q4 2022 (about 1.5385), according to S&P Global. According to FRED, we set
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Parameter Meaning Value

µ1 CF drift, good state 0.05
µ2 CF drift, bad state 0.02
σ1 CF vol, good state 0.25
σ2 CF vol, bad state 0.3
κ recapitalisation cost 0.087
δ Discount rate 0.03
xR Capital requirement 0.0769
ρ Return on deposits 0.0043
α Haircut 0.6
β2 Dividend regulation 0.87
L
D

Loan-to-deposit ratio 1.5385
1/λ1 Avg duration, good state 10
1/λ2 Avg duration, bad state 6.7
Γ1,Γ2 Capital buffers 0

Table 1: Baseline parameters

the rate of return on deposits at ρ = 0.0043. Consistently, we obtain xR = 1−0.6×1.5385 =

0.0769. We calibrate the fixed recapitalisation cost κ = 0.087 to yield a price-to-book ratio

at the dividend payout threshold in the good state (v(x̃1, 1)/(L+x̃1−D)) of about 1.04. This

is the value observed across US commercial banks, according to the NYU Stern database.

The drift and diffusion parameters, µ̄i and σi, and the discount rate δ are similar to Guo

et al. (2005). The intensities of regime changes λi and the hair cut α come from Hackbarth

et al. (2006). Lastly, we set β2 = 0.87, corresponding to a 10 p.p. increment in the dividend

tax rate from 0.3 in the good regime to 0.4 in the bad one.9

5.2 The effects of dividend taxes

5.2.1 Bank’s optimal control and shareholder value

To evaluate the effect of state-contingent dividend taxes, we compare the bank’s optimal

control and shareholder value when β2 < β1 = 1 with the “no-policy” scenario where β2 =

β1 = 1. The red dotted and solid blue lines in Figure 2 display v(x, i) in the good (panel (a))

9After normalizing the value of β1 = 1, the parameter β2 can be obtained by solving: 1− 0.3 = 1−0.4
β2

.
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Figure 2: Optimal controls and shareholder value in the good (Panel (a)) and bad (Panel (b))
states when β2 = 1 (solid blue) and β2 = 0.87 (dotted red).

and bad (panel (b)) states as a function of the reserve level in these two cases. The black

crosses and the blue (red) diamonds on the x axis show the regulatory threshold (xR) and

the optimal dividend payout (x̃i) in the good (bad) state. The red star in panel (b) indicates

the optimal recapitalisation target. Four key patterns emerge from the comparison.

First, dividend taxes reduce shareholder value blueat all levels of x and economic states.

This is expected because the policy introduces an additional distortion beyond the capital

requirement. The value losses are more severe in percentage terms for any reserve value in the

bad state than in the good state, as the policy affects the latter only indirectly. Furthermore,

value losses are always more severe when capital buffers are lower, except in the bad state,

where they increase slightly after reaching a tipping point around x = 1.

Second, we discuss the effects of dividend taxes on the banks’ optimal control. On the

one hand, consistent with its intended purpose, the policy encourages the accumulation

of additional capital buffers (i.e., fewer dividend payments) in the bad state, shifting x̃2

from approximately 0.95 to 1.7. The higher the tax, the more willing the bank is to delay

dividend payments. This outcome is apparent in Table 2, which shows the optimal x̃i and
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β2 x̃1 x̃2 x∗
2

1.000 0.820 0.950 0.950
0.990 0.819 0.941 0.815
0.970 0.814 1.061 0.747
0.950 0.811 1.142 0.724
0.900 0.804 1.421 0.667
0.870 0.804 1.700 0.655
0.850 0.800 2.663 0.649
0.834 0.800 17.024 0.649

Table 2: Optimal dividend threshold and recapitalisation target as functions of β2.

x∗
2 as functions of β2.

10 On the other hand, the policy “backfires” in the good state, where

the bank reduces x̃1 from 0.82 to 0.80. The reason is that the bank compensates for the

tax in the bad state by anticipating dividends in the good one. However, notice that there

is a significant asymmetry in the magnitude of the threshold shifts between the good and

bad states. In our numerical analysis, enforcing dividend restrictions reduces the payout

threshold in the good state by only 2.5%, while it increases it by more than 30% in the bad

state.

Third, dividend taxes reduce the bank’s optimal recapitalisation targets (x∗
i ) in every

state. In the good state, this result directly follows the change in the payout dividend

threshold x̃1 because it coincides with the recapitalisation target (x̃1 = x∗
1). In contrast,

x̃2 > x∗
2 in the bad state because the marginal cost of paying dividends (β2) is always lower

than that of injecting liquid reserves and v′′(x, 2) < 0 (see (23)). Notably, x∗
2 decreases with

β2 (up to a limit value as β2 → δ+λ2

λ2
) and lies below the payout threshold in the good state

x̃1. Hence, dividend taxes reduce the bank’s willingness to issue equity when reserves hit the

regulatory threshold, xR.

Fourth, the overall influence of the dividend tax policy on the bank’s capital buffers ex-

ante (i.e., independent of i) is ambiguous because the ways it affects its optimal control are

conflicting: while the increase in x̃2 yields higher capital buffers, the reduction in x̃1 and

10Note that, consistent with Remark 1, the last rows of the table highlight that the bad-state payout
threshold x̃2 “explodes” when β2 → λ2/(δ + λ2) (≈ 0.33̄ with our parameters).
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Figure 3: Capital buffers distribution and optimal controls in the good (Panel (a)) and bad (Panel
(b)) states when β2 = 1 (blue) and β2 = 0.87 (red).

x∗
2 may curb them. To determine which effect prevails, the following section analyses the

impact of the policy on the bank’s stationary capital buffers distribution.

5.2.2 Long-run capital buffers and recapitalisation incentives

This section uses the probability density function derived in Proposition 2 to construct a

proxy for the bank’s long-run “credit capacity”. We use such a proxy to evaluate how credit

capacity is influenced by dividend policies, both conditionally and unconditionally on the

aggregate state of the economy. Although the model features a fixed loan supply, the long-

run capital buffers are the amount of available resources that could potentially support new

lending. From this point onward, we use the terms “long-run capital buffers” and “credit

capacity” interchangeably.

As a first step in the analysis, we examine the shape of the bank’s capital buffer distribu-

tion, π(x, i), across different reserve levels x and aggregate states i. For this purpose, Figure

3 displays π(x, i) and the optimal control when β2 = β1 = 1 (blue) and β2 < β1 = 1 (red).

As a first observation, higher dividend taxes in the bad state do not substantially alter

the shape of the pdf in the good state (panel (a)). However, they transfer some probability

density to lower reserve levels because the reduction of β2 shifts the optimal dividend payout
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threshold x̃1 to the left, even though the probability of i = 1 remains unchanged. In contrast,

the tax policy largely affects the shape of the pdf in the bad state (panel (b)). In particular,

the dispersion of π(x, 2) increases sharply because a lower β2 shifts x̃2 to the right, widening

the support of the reserves’ distribution. Additionally, dividend taxes generate a steep mass

point at the recapitalisation target x∗
2 because x∗

2 < x̃1 < x̃2.
11

To evaluate the long-run effect of the dividend tax policy, we use π(x, i) to define the

following measure of the bank’s credit capacity, conditional on state i:

Eπ
i [x] :=

ˆ x̃i

xR

xπ(x, i)dx. (34)

We also define the dispersion of the credit capacity as Vπ
i [x] := Eπ

i [x
2]−Eπ

i [x]
2. Consistently,

we define the bank’s unconditional (or ex-ante) credit capacity as

Eπ [x] =
2∑

h=1

Eπ
h [x]

λ3−h

λ1 + λ2︸ ︷︷ ︸
=P{i=h}

, (35)

with dispersion Vπ [x] = Eπ [x2] − Eπ [x]2. Table 3 collects the value of these objects using

the parameters in Table 1 and different levels of β2. The analysis delivers the following

implications.

First, state-contingent dividend taxes reduce the bank’s credit capacity in the good state

but enhance it in the bad state. However, the loss in the former is always more than

offset by the gains in the latter (Columns 1 and 2). As a result, imposing dividend taxes

increases overall credit capacity (Column 3). Second, higher dividend taxes slightly reduce

the dispersion of reserves in the good state but significantly increase it in the bad state.

Hence, bank credit capacity dispersion increases overall (Columns 5-7).

The relatively small negative impact of dividend taxes on credit capacity in the good

state compared to their large positive effects in the bad state, and overall, suggests that the

11Notice that, due to the regime-switching, the pdf of x in state 2 displays a small but interior mass point
even when β2 = 1, coinciding with the dividend payout threshold x̃1 in State 1.
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β2 Eπ
1 [x] Eπ

2 [x] Eπ [x] Vπ
1 [x] Vπ

2 [x] Vπ [x] κ̄
1.00 0.6007 0.6525 0.6214 0.0372 0.0387 0.0389 0.1351
0.95 0.5758 0.7473 0.6444 0.0284 0.0609 0.0485 0.1187
0.90 0.5698 0.8289 0.6734 0.0280 0.1015 0.0735 0.1090
0.87 0.5677 0.8913 0.6971 0.0279 0.1496 0.1017 0.1057
0.85 0.5669 0.9448 0.7181 0.0278 0.2118 0.1357 0.1043

Table 3: Bank’s long-run capital buffers, capital buffers dispersion, and the maximal incentive-
compatible recapitalisation cost for different dividend tax parameters β2.

benefits of the policy outweigh its costs. Indeed, one can verify that dividend taxes make

recapitalisation events less frequent in each state i and overall. To this aim, Table 4 reports

a numerical approximation of the average waiting time between subsequent recapitalisation

events, formally defined as τ̂(i) := inf{t ≥ τn : X̂t = xR,i, X̂τn = x∗
i } (state-contingent) and

τ̂ :=
∑2

i=1 τ̂(i) · λ3−i/(λ1 + λ2) (ex-ante) for different values of β2.
12 Despite the tax, the

average recapitalisation time is longer in the good state than in the bad state. However, the

effect of adjusting the recapitalisation policy to a lower level on credit capacity is sizable.

Specifically, if we were to ignore the bank’s endogenous response in terms of the recapital-

isation threshold x∗
2 and instead keep it fixed at x̃2, credit capacity would be nearly 20%

higher.

The global evaluation of the dividend tax policy becomes even less straightforward when

noticing that, as a result of value losses, higher dividend taxes reduce the maximal equity

issuance cost that is incentive-compatible (κ̄, see (25)). The last column of Table 3 displays

this phenomenon, showing that, for example, a 10% increase in dividend taxes is associated

with a 28% reduction in the level of κ̄.

It is relevant to stress that all the figures reported in the table exceed the baseline

cost level adopted in our parametrisation (κ = 0.087), ensuring that the bank always finds

it optimal to recapitalise when x = xR. We nevertheless interpret this tightening of the

incentive-compatibility constraint as evidence that dividend restrictions may endogenously

12The numbers are obtained by averaging 5,000 Monte Carlo simulations of the bank’s reserves process
under the optimal strategy (26).
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β2 τ̂(1) τ̂(2) τ̂

1.000 11.89 11.56 11.76
0.970 12.44 11.99 12.26
0.870 13.06 12.66 12.90
0.834 13.12 12.74 12.97

Table 4: Average waiting time (years) between subsequent recapitalisations for different levels of
β2.

increase default risk.

5.2.3 Comparative statics

Table 5 presents a comparative static analysis which shows that our results hold qualitat-

ively under substantial variations in the main parameters of the model. A higher drift in the

good or bad states lowers the payout thresholds because it releases the bank’s precautionary

motive (Rows 3-4). Higher levels of cash flow volatility generate the opposite effect (see, e.g.,

Row 2). Decreasing the probability of visiting the bad state (λ1) fosters dividend payouts

without the tax while mitigating the additional payout incentive in the good state induced

by the tax. Moreover, it increases the maximum incentive-compatible cost level while leaving

the optimal recapitalisation target unaffected. The probability of transitioning from the bad

to the good state (λ2) has similar effects on x̃1, x
∗
2, and κ̄, while also leading to a further

postponement of dividends in the bad state (Row 6).

Another aspect worth highlighting concerns the effects of a change in the regulatory

parameter defined in (3), Γi, for i = 1, 2. The last two rows of the Table 5 examine the

cases where Γ1 = Γ2 = Γ = ±0.05.13 Figure 4 displays the effect of changing Γ on the value

function.

As intuition suggests, tighter (looser) capital requirements are associated with higher

(lower) recapitalisation thresholds and lower (higher) bank valuations. Furthermore, changes

in Γ do not affect the maximum incentive-compatible recapitalisation costs. This occurs be-

13This analysis will also serve as a benchmark when we discuss cyclical capital regulation in Section 5.3.2.)
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x̃1 x̃2 x∗
2 κ̄

β2 1.00 0.87 1.00 0.87 1.00 0.87 1.00 0.87
Baseline 0.821 0.801 0.954 1.700 0.954 0.655 0.135 0.106
σ2 = 0.35 0.827 0.811 1.051 1.938 1.051 0.710 0.118 0.087
µ1 = 0.07 0.794 0.776 0.952 1.698 0.952 0.653 0.288 0.251
µ2 = 0.03 0.820 0.798 0.941 1.651 0.941 0.637 0.194 0.157
λ1 = 0.05 0.816 0.806 0.954 1.700 0.954 0.655 0.186 0.160
λ2 = 0.2 0.821 0.804 0.950 3.324 0.950 0.672 0.164 0.141

Γ1 = Γ2 = 0.05 0.871 0.851 1.007 1.750 1.007 0.705 0.133 0.106
Γ1 = Γ2 = −0.05 0.769 0.751 0.923 1.650 0.923 0.605 0.133 0.106

Table 5: Comparative statics analysis.

Figure 4: Shareholder value in the good (left panels) and the bad states (right panels) for different
combinations of Γ when β2 = 1 (top panels) and β2 = 0.87 (bottom panels).
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cause shareholder value shifts in the opposite direction of the change in capital requirements.

Although relatively straightforward, these effects are significant as they suggest regulators

can mitigate shareholder value losses–one of the adverse impacts of the dividend tax policy–

by adjusting capital requirements simultaneously. We explore this aspect further in the next

section.

5.3 Coordinating dividend taxes and capital regulation

This section extends the model to incorporate counter-cyclical capital requirements and

discusses how this modification affects the structure of the solution. It then explores numer-

ically the policy challenge of coordinating dividend taxation and capital regulation. This

analysis is motivated by the fact that, while recommending dividend suspensions, the ECB

temporarily eased capital requirements for banks during the COVID-19 crisis (Matyunina

and Ongena, 2022).

While our framework can accommodate pro-cyclical capital requirements, we focus on

the special case in which they are counter-cyclical. This choice is justified by the Basel III

framework and by the extensive literature that shows how pro-cyclical buffers may destabilise

financial institutions and thus exacerbate crises (see, for example Repullo and Suarez, 2013;

Valencia and Bolanos, 2018, and the references therein). In the supplementary material, we

demonstrate how to incorporate pro-cyclical capital requirements into our model. There,

we also show that, consistent with the aforementioned literature, counter-cyclical capital

requirements can mitigate the unintended consequences of dividend taxes, whereas pro-

cyclical requirements can only exacerbate them.

5.3.1 Solution structure with counter-cyclical capital requirements

To model counter-cyclical capital requirements, we consider Γ1 > Γ2 or, equivalently,

xR,1 > xR,2. This assumption requires adjusting the solution structure of the model by

considering the additional region x ∈ (xR,2, xR,1) in the state space, as shown in Figure
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Figure 5: Solution structure with counter-cyclical capital requirements.

5. The regulator requires the bank to immediately recapitalise (or liquidate) in this region

should the economy shift from state 2 to state 1. Accordingly, we set

v(x, 1) = max {v(x̃1, 1)− (x̃1 − x)− κ, 0} , (36)

and find v(x, 2) as the unique solution of

1

2
σ2
2v

′′(x, 2) + µ2v
′(x, 2)− (δ + λ2) v(x, 2) + λ2v(x, 1) = 0, (37)

with boundary conditions v(x+
R,1, 2) = v(x−

R,1, 2) and v′(x+
R,1, 2) = v′(x−

R,1, 2).

Since the bank always finds it optimal to recapitalize when κ is small enough (see (36)),

in the remaining regions (i.e., when x > xR,1), the value function equals the one described

in Section 4.1 after setting xR,1 = xR. Hence, we can still characterise the model’s solution

analytically by solving a system of algebraic equations. We report on the details in the

supplementary material.

5.3.2 The effects of counter-cyclical capital requirements

We now numerically examine the effects of counter-cyclical capital requirements on the

bank’s optimal controls and their interaction with dividend taxes. We adopt as a benchmark

the a-cyclical case discussed in Section 4 (Γ1 = Γ2 = Γ), assuming that the regulator sets Γi

to maintain a constant mean capital requirement xR across states. In particular, we choose
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xR,1 xR,2 x̃1 x̃2 x∗
2 Eπ

1 [x] Eπ
2 [x] Eπ [x] Vπ

1 [x] Vπ
2 [x] Vπ [x] κ̄

0.077 0.077 0.801 1.700 0.655 0.568 0.891 0.697 0.028 0.150 0.102 0.106
0.087 0.062 0.806 1.688 0.643 0.571 0.884 0.696 0.028 0.148 0.099 0.102
0.097 0.047 0.812 1.677 0.631 0.579 0.868 0.694 0.028 0.150 0.097 0.098
0.117 0.017 0.824 1.656 0.609 0.600 0.847 0.693 0.027 0.151 0.092 0.087

Table 6: Bank optimal controls, credit capacity and dispersion, and maximal incentive-compatible
recapitalisation costs for different levels of Γ (xR,1 and xR,2).

Γ1 = Γ > 0 and Γ2 = −Γ1, such that14

xR = (D − αL+ Γ)︸ ︷︷ ︸
=xR,1

λ2

λ1 + λ2︸ ︷︷ ︸
=P{i = 1}

+(D − αL− Γ)︸ ︷︷ ︸
=xR,2

λ1

λ1 + λ2︸ ︷︷ ︸
=P{i=2}

. (38)

Table 6 reports the bank’s optimal controls, credit capacity and dispersion, and the

maximal incentive-compatible recapitalisation cost for different levels of Γ. Row 1 displays

the benchmark case where Γ = 0. We obtain the following predictions.

First, adopting counter-cyclical capital requirements increases the bank’s credit capacity

in the good state (Columns 3 and 6), while reducing it in the bad state (Columns 4 and

6) and overall (Column 8), relative to the benchmark. When both dividend taxes and

capital regulation are used, the bank’s unconditional credit capacity remains higher than

when dividend regulation is not applied (i.e., β2 = β1 = 1). Therefore, coordinating the two

policies enables the imposition of dividend taxes without curtailing credit capacity in the

good state. Table 6 supports this claim.

The second effect of the policy is to reduce the dispersion of capital buffers, even after

accounting for its (lower) expected value. For example, our simulations show that the coef-

ficient of variation of the reserves distribution (
√

Vπ [x]/Eπ [x]) decreases by approximately

3.2% when xR,1 = 0.117 and xR,2 = 0.017, compared to when xR,1 = xR,2 = 0.077.

14The appendix examines a simpler case where the regulator relaxes capital requirements only in the bad
state (i.e., xR,1 = xR and xR,2 = xR,1−Γ2 with Γ2 > 0). As expected, the policy lowers the dividend payout
threshold, diminishes recapitalisation incentives, and reduces average credit capacity and dispersion across
states. Furthermore, it enhances the bank’s value in both states.
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Figure 6: Effect of counter-cyclical capital requirements on shareholder value in the good (Panel
(a)) and bad (Panel (b)) states.

Figure 6 displays the model’s third prediction by showing the bank’s value function for

Γ = 0 (xR,1 = xR,2 = 0.077) and Γ = 0.05 (xR,1 = 0.117, xR,2 = 0.017).15 The plot reveals

that relaxing the capital requirement in the bad state helps mitigate shareholder value losses,

which can be substantial when dividends are taxed (panel (b)), as discussed in the previous

sections. However, the gain comes at the cost of reducing bank value in the good state (panel

(a)). These outcomes arise because tighter (looser) capital requirements curb (encourage)

banks’ precautionary motives in the good (bad) state, leading them to anticipate (delay)

their dividend payments (columns 3 and 4).

These results suggest that coordinating dividend taxes (or bans) with counter-cyclical

capital regulation can mitigate some of the adverse effects of the former policy. From a

policy standpoint, this provides a theoretical foundation for the regulator’s decision to pair

dividend restrictions with looser capital requirements during the COVID-19 crisis. However,

the positive outcomes of policy coordination come with a cautionary note. Specifically, the

model’s fourth policy prediction shows that adopting counter-cyclical capital requirements

15Computing plots for different values of Γ produces qualitatively similar results.
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x̃1 x̃2 x∗
2 Eπ

1 [x] Eπ
2 [x] Eπ [x] Vπ

1 [x] Vπ
2 [x] Vπ [x] κ̄

0.801 1.700 0.655 0.568 0.891 0.697 0.028 0.150 0.102 0.106
0.801 1.700 0.954 0.570 0.910 0.706 0.028 0.150 0.102 0.106
0.801 1.700 1.70 0.570 1.212 0.827 0.028 0.150 0.102 0.106

Table 7: Bank optimal controls, credit capacity and dispersion, and maximal incentive-compatible
recapitalisation costs for different levels of Γ (xR,1 and xR,2).

xR,1 xR,2 τ̂(1) τ̂(2) τ̂

0.077 0.077 13.06 12.66 12.90
0.087 0.062 13.11 12.97 13.05
0.097 0.047 13.22 12.94 13.10
0.117 0.017 13.38 12.84 13.16

Table 8: Average waiting time (years) between each subsequent recapitalisation, in each State i
and overall, for different levels of Γ when β2 = 0.87.

lowers the optimal recapitalisation target in the bad state (x∗
2). Moreover, the maximal

incentive-compatible recapitalisation cost, κ̄ (see Columns 5 and 12), decreases. These effects

occur because, although the policy increases the bank’s value for all states above xR, it

reduces the value at xR,2 < xR, which plays a critical role in determining the optimal

recapitalisation (see (13)).

The final step of the analysis assesses the effect of counter-cyclical capital regulation on

the average waiting time (in years) after each recapitalisation. Table 8 presents a numerical

approximation of these quantities conditional on each state i and overall for various levels

of Γ when β2 = 0.87. According to these simulations, coordinating counter-cyclical dividend

taxes and capital requirements can effectively reduce the frequency of recapitalisation (see

columns 3-5). However, when the policy becomes excessively cyclical, its effectiveness during

downturns diminishes (see column 4). This occurs because when xR,2 becomes too low, the

positive effect on capital buffers from a higher x̃1 in the good state is partially offset by the

increasingly negative impact of having lower x̃2 and x∗
2 in the bad state (see Table 6).
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6 Conclusion

We have modelled and solved the optimal control problem of a bank which takes di-

vidends and re-capitalisation decisions under macroeconomic uncertainty, cyclical capital

requirements, and dividend taxes (or bans). Our framework provides several testable policy

implications, complementing recent empirical literature on the (short-term) effects of bank

dividend suspension policies in the EU and the US.

First, the model predicts that state-contingent dividend taxes (or bans) negatively affect

shareholder value not only during crises (ex post) but also in good times (ex ante). Second,

taxing dividends in bad macroeconomic states incentivises the bank to pay out more in good

times, reducing its corresponding capital buffers (credit capacity). This creates a trade-

off between maintaining capital buffers (credit capacity) in good versus bad macroeconomic

conditions. Third, dividend taxes may lead to dispersion in the bank’s capital buffers over the

long term. Furthermore, they may undermine financial stability by diminishing the bank’s

recapitalisation incentives. Policymakers can coordinate dividend restrictions with counter-

cyclical capital requirements to reallocate value losses and credit capacity between good and

bad states. However, lower capital requirements could potentially exacerbate disincentives

for recapitalisation.

Similar to other studies in the literature, our tractability assumptions carry a few lim-

itations. For example, our bank’s optimisation problem does not include investments and

assumes fixed loans and deposits. As a result, even though our analysis of credit capacity

proxies the potential support the bank may provide to the real economy under different

policies, it does not fully capture how that interacts with its risk-taking incentives. Another

limitation is that the bank’s optimal responses in our model perfectly anticipate the policy

the regulator will enact in each possible state. A non-trivial extension of the model could

consider the case where, if the economy deteriorates, the regulator may refrain from inter-

vening with some probability. Although such extensions are beyond the scope of this paper,

they open promising avenues for future research.
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Finally, we believe this paper can serve as a first step towards understanding the general

equilibrium implications of the joint adoption of dividend and capital regulations by focusing

on the endogenous response of a single bank to a system-wide restriction. Although we

interpret the stationary distribution of reserves (capital buffers) as representing heterogeneity

across similar banks, analysing how a pool of heterogeneous banks responds to this policy mix

is a complex and interesting research question that naturally follows from our contribution.
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Ampudia, M., M. A. Muñoz, F. Smets, and A. Van der Ghote (2023). System-wide dividend

restrictions: Evidence and theory. Working paper.

Andreeva, D., P. Bochmann, and J. Schneider (2023). Evaluating the impact of dividend

restrictions on euro area bank market values. ECB Working Paper .

Attig, N., S. El Ghoul, O. Guedhami, and X. Zheng (2021). Dividends and economic policy

uncertainty: International evidence. Journal of Corporate Finance 66, 101785.

Baron, M. (2020). Countercyclical bank equity issuance. The Review of Financial Stud-

ies 33 (9), 4186–4230.

Belloni, M., M. Grodzicki, and M. Jarmuzek (2024). Why european banks adjust their

dividend payouts? Journal of Banking Regulation 25 (3), 284–304.

Chay, J.-B. and J. Suh (2009). Payout policy and cash-flow uncertainty. Journal of Financial

Economics 93 (1), 88–107.
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A Proofs and derivations

A.1 Proof of Proposition 1

1. We divide the proof into the following steps.

(i) Integrating v′(·, i) = βi in [x̃i, x] yields the expression of v(·, i) in the interval

[x̃i,∞) with Ki := v(x̃i, i) > 0.

(ii) In the interval (x̃1, x̃2), our guess is that v(·, 1) solves (14). Hence, it has the

following structure:

v′(x, 2) =
λ2

δ + λ2

+
2∑

h=1

α̃hÃhe
α̃h(x−x̃1). (39)

with α̃i as in (19). By imposing v(·, 2) ∈ C2 at x = x̃2, we obtain that v′(x̃2, 2) =
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β2 and v′′(x̃2, 2) = 0, that reflect in the conditions

2∑
h=1

α̃hÃhe
α̃h(x̃2−x̃1) = β2 −

λ2

δ + λ2

,

2∑
h=1

α̃2
hÃhe

α̃h(x̃2−x̃1) = 0. (40)

(iii) To show that v′′(·, 2) < 0 in (x̃1, x̃2), we set u(s) = v′(x̃2 − s, 2) and w(s) =

v′′(x̃2 − s, 2). Then, from (14) and the related boundary conditions, we have that


u′(s) = −w(s), u(0) = β2,

w′(s) = 2
σ2
2
[µ2w(s)− (δ + λ2)u(s) + λ2] , w(0) = 0.

Given that (δ + λ2)β2 > λ2, an analysis of this system shows that w′(s) < 0 for

s > 0. This means that v′′′(·, 2) > 0 in (x̃1, x̃2). We verify our claims by taking

into account that v′′(x̃2, 2) = 0.

(iv) In the interval (xR, x̃1), the functions v
′(·, i) satisfy the coupled ODE system (44)

with boundary conditions

v′(x̃1, 1) = 1, v′′(x̃1, 1) = 0, v′(x̃1, 2) =
λ2

λ2 + δ
+

2∑
h=1

α̃hÃh, v′′(x̃1, 2) =
2∑

h=1

α̃2
hÃh.

(41)

By plugging in (41) the guesses

v′(x, 1) =
4∑

j=1

Ajαje
αj(x−x̃1), v′(x, 2) =

4∑
j=1

Bjαje
αj(x−x̃1), (42)

and matching coefficients, we obtain the characteristic equations

Aj

(
αjµ1 +

σ2
1

2
α2
j − (δ + λ1)

)
+ λ1Bj = 0

and

Bj

(
αjµ2 +

σ2
2

2
α2
j − (δ + λ2)

)
+ λ2Aj = 0,
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for j = 1, 2, 3, 4. Solving the first equation yields Bj. Substituting Bj in the latter

equation and rearranging yields (18). To verify that (18) has four real roots, let

us define

f(θ) :=

(
δ + λ1 − θµ1 −

σ2
1

2
θ2
)

︸ ︷︷ ︸
:=G1(θ)

(
δ + λ2 − θµ2 −

σ2
2

2
θ2
)

︸ ︷︷ ︸
:=G2(θ)

−λ1λ2,

and let θij be the roots of Gi(θj). It is straightforward to verify that f(0) > 0,

f(∞) > 0, f(−∞) > 0, and f(θij) = −λ1λ2 < 0 for i = 1, 2 and j = 1, 2, 3, 4.

Then, by continuity and using that θi1θ
i
2 = −2 (δ + λi) /σ

2
i < 0, (18) has four

different four roots, two positive and two negative. Then, (41) reads as



∑4
j=1Ajαj = 1,∑4
j=1Ajα

2
j = 0,∑4

j=1Bjαj =
λ2

δ+λ2
+ Ã1α̃1 + α̃2Ã2,∑4

j=1Bjα
2
j = Ã1α̃

2
1 + α̃2

2Ã2.

(43)

We obtain then the expressions of v(·, i) by integrating (41) in [x, x̃1] and using

that, by value matching,

v(x̃1, 2) = K2 +
λ2(x̃1 − x̃2)

δ + λ2

+
2∑

j=1

Ãj

(
1− eα̃j(x̃2−x̃1)

)

and having also set K1 := v(x̃1, 1) > 0.

(v) To show that v′′(·, i) < 0 in (xR, x̃1) under (21) we use that, in this interval, the
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functions u(·, i) := v′′′(·; i) solve the following ODE system:



1
2
σ2
1u

′′(x, 1) + µ1u
′(x, 1)− (δ + λ1)u(x, 1) + λ1u(x, 2) = 0,

1
2
σ2
2u

′′(x, 2) + µ2u
′(x, 2)− (δ + λ2)u(x, 2) + λ2u(x, 1) = 0.

(44)

The Feynman-Kac representation of u provides

u(x, i) = E
[
e−δτu(Xx,i,◦

τ , I iτ )
]
, (45)

where τ = inf{t ≥ 0 : Xx,i,◦
t /∈ (xR, x̃1)}, being Xx,i,◦

t the solution to

dXt = µItdt+ σItdWt, Xx,i,◦
0 = 0.

Condition (21) entails u(xR, i) > 0 and u(x̃1, i) > 0 for all i = 1, 2. Thus, from

(45) we get u(·, i) > 0. Hence, v′′(·, i) is strictly increasing on (xR, x̃1) for i = 1, 2.

Since v′′(x̃−
1 , 1) = 0 and v′′(x̃−

1 , 2) < 0, we get that v′′ is negative on (xR, x̃1) and

the claim follows.

(vi) Here we show that

v′(x̃1, 2) <
λ1 + δ

λ1

. (46)

In the interval (xR, x̃1), the function v′(·; 1) solve

1

2
σ2
1v

′′′(x, 1) + µ1v
′′(x, 1)− (δ + λ1) v

′(x, 1) + λ1v
′(x, 2) = 0. (47)

By (21), we have v′′′(x̃−
1 , 1) > 0. Recalling also that v′′(x̃1, 1) = 0 and v′(x̃1, 1) = 1,

plugging all these information into (47), and passing to the limit as x → x̃−
1 , we

get λ1v
′(x̃1, 2) > (λ1 + δ), which verifies the claim.
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(vii) To identify the free parameters K1 and K2, we impose the following conditions:

Liv(x̃i, i)− λi [v(x̃i, i)− v(x̃i, 3− i)] = 0, i = 1, 2,

which are obtained by passing the equality Liv(x, i)−λi [v(x, i)− v(x, 3− i)] = 0

to the limit as x → x̃−
i . Since v′(x̃i, i) = βi and v′′(x̃i, i) = 0, they rewrite as

µ2β2 − (δ + λ2)K2 + λ2(K1 + x̃2 − x̃1) = 0, (48)

and

µ1 − (δ + λ1)K1 + λ1

(
K2 +

λ2

δ + λ2

(x̃1 − x̃2)

)
= 0, (49)

which completes the system (20).

(viii) Next, we show that the solution constructed in Points (i)-(vii) solves (9). Most

of the work has already been done. Indeed, looking at the previous steps, we

see that we have constructed v such that all the following are met: (a) v(·, i) ∈

C2((xR,∞);R); (b) v′(x, i) = βi in [x̃i,∞); (c) Liv(·, i)−λi(v(·, i)−v(·, 3−i)) = 0

in (xR, x̃i); (d) v(·, i) are concave, which entails v′(·, i) ≥ βi for i = 1, 2. So, it

remains to show that

H(x, i) := Liv(x, i)− λi(v(x, i)− v(x, 3− i)) ≤ 0, ∀x ∈ [x̃i,∞), i = 1, 2.

First, we prove thatH(x, 2) ≤ 0 in [x̃2,∞). Indeed, by (48), we haveH(x̃2, 2) = 0.

Recalling that v′(x, i) = βi for x ≥ x̃2 and using that β2 > λ2/(λ2 + δ), we have

H ′(x, 2) = −(λ2 + δ)β2 + λ2 < 0, ∀x ≥ x̃2.

Next, we prove thatH(x, 1) ≤ 0 in [x̃1,∞). Indeed, by (49), we haveH(x̃1, 1) = 0.

Recalling that v′(x, 1) = 1 for x ∈ [x̃1,∞) and using concavity of v(·, 2) and (46),
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we get

H ′(x, 1) = −(λ1 + δ) + λ1v
′(x, 2) < 0, ∀x ≥ x̃1.

2. The fact that (23) admits a unique solution in (xR, x̃1] is due to the structure of v(·, 1)

defined in Point 1 (notably the strict concavity of v(·, 1) in that interval) and the fact

that v′(x̃2) = β2 ≤ 1 together with (22) entailing v′(x̃+
R, 2) > 1.

3. This is immediate as (24) is nothing but the rewriting of (13) given the structure

determined in the previous points.

A.2 Proof of Theorem 1

We only sketch the proof, as a rigorous argument would be highly technical. We refer to

two papers that deal with similar problems and provide complete proofs: Løkka and Zervos

(2008), in the case of no regime switching and no recapitalisation; and Ferrari et al. (2022),

in the case of regime switching but with no recapitalisation or dividend taxes.

As a first step, we prove that v(x, i) ≥ V (x, i). Let A = (Z, (b,G)) ∈ A be an arbitrary

control and define τ0 := 0 and, recursively on n ≥ 0, τn+1 = inf{t ≥ τn : Xt− = xR}, being

Xt the associated state process. Then, we have, by verification arguments in the interval

[0, τ1) (see Ferrari et al., 2022)

v(x, i) ≥ E

[ˆ τ−1

0

e−δtβItdZt + e−δτ1v(xR, Iτ1)

]
. (50)

By using (50) and (13) we get

v(x, i) ≥ E

[ˆ τ−1

0

e−δtβItdZt + e−δτ1 (v(xR +G1; Iτ1)−G1 − κ)

]
.
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Iterating the argument yields

v(x, i) ≥ E

[ˆ τ−n

0

e−δtβItdZt −
n∑

k=1

e−δτk (Gk + κ) + e−δτnv(xR, Iτn)

]
.

Letting n → ∞ and observing that τn → ∞, we get v(x, i) ≥ J(x, i;A). By arbitrariness of

A, we conclude this part of the proof.

As a second step, we take A = Â into Step 1. Then, by construction, all previous

inequalities become equalities, which allows us to conclude that v(x, i) = J(x, i; Â). Together

with Step 1, this last condition entails J(x, i; Â) = v(x, i) = V (x, i), which verifies our first

claim.

A.3 Proof of Proposition 2

To obtain π(·, i) over the intervals (xR, x̃i) for i = 1, 2, we plug in (27) the following

guess. In the region (xR, x̃1) we guess and verify that the density takes the form:

π(x, 1) =
4∑

j=1

Pje
rjx, π(x, 2) =

4∑
j=1

Qje
rjx.

Matching coefficients and solving for Pj and Qj yields the characteristic equation (31) and

the relationship Qj = λ−1
1 F1(rj)Pj. Similarly, we obtain π(·, 2) over the interval (x̃1, x̃2) and

(32) by plugging in (28) the guess

π(x, 2) =
2∑

j=1

Hje
sjx

and matching coefficients. Using these equations to impose the boundary and mass preser-

vation conditions as they appear in the main text yields (33).
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A.4 Solution structure with dividend bans

First, we show that when β2 ≤ λ2/(λ2 + δ), the solution structure in Proposition 1 does

not hold. For this purpose, we solve the linear system (40) to obtain

 Ã1

Ã2

 =

(
β2 −

λ2

δ + λ2

) eα̃1(x̃1−x̃2)

α̃1(α̃2−α̃1)

− eα̃2(x̃1−x̃2)

α̃2(α̃2−α̃1)

 .

Plugging these coefficients in (39) and rearranging, we get

v′(x, 2) =
λ2

δ + λ2

+
e−α̃1(x̃2−x) − e−α̃2(x̃2−x)

α̃2 − α̃1︸ ︷︷ ︸
>0

(
β2 −

λ2

δ + λ2

)
︸ ︷︷ ︸

≤0

.

which violates the optimality condition that v′(x, 2) > β2 in (x̃1, x̃2).

Second, we build an alternative solution of (9) in which x̃2 = ∞, and show that it is

consistent with the parametric restriction β2 ≤ λ2/(λ2 + δ). Following the same steps of

Section 4.1, we look for a function v such that, for i = 1, 2, the following hold:

a) v(·, i) ∈ C([xR,∞)) ∩ C1((xR,∞));

b) The associated continuation and intervention regions have the following structure:

C2 = (xR,∞), C1 = (xR, x̃1); S1 = [x̃1,∞);

c) v(·, 1) ∈ C2(C1) and v(·, 2) ∈ C2(C2 \ {x̃1}).

Accordingly, we have x̃1 = inf {x > xR : v′(x, 1) ≤ 1} and x̃2 = ∞. The boundary conditions

at xR are specified as in the main text.

Following the same approach of Appendix A.1, we now construct a function that fulfils

all these guesses and translates them into a list of algebraic requirements. In the interval
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[x̃1,∞), we set v′(·, i) = 1 and

v′(x, 2) =
λ2

δ + λ2

+ α̃1Ã1e
α̃1(x−x̃1),

where α̃1 < 0 is the negative root of (19) and Ã1 < 0. In the interval (xR, x̃1), we set the

functions v′(·, i) as unique solutions to the system (15). This entails the same structure as

in (42), whose coefficients solve the following linear system:



∑4
j=1 Ajαj = 1,∑4
j=1 Ajα

2
j = 0,∑4

j=1 Bjαj =
λ2

δ+λ2
+ Ã1α̃1,∑4

j=1 Bjα
2
j = α̃2

1Ã1.

By integrating v′(·, i) we get

v(x, 1) = K1 +


(x− x̃1), x ∈ [x̃1,∞),∑4

j=1Aj

(
eαj(x−x̃1) − 1

)
, x ∈ [xR, x̃1),

v(x, 2) = K2 +


λ2

δ+λ2
(x− x̃1) + Ã1

(
eα̃1(x−x̃1) − 1

)
, x ∈ [x̃1,∞),∑4

j=1Bj

(
eαj(x−x̃1) − 1

)
, x ∈ [xR, x̃1).

Under similar assumptions as Proposition 1 and using that v(·, i) is differentiable, one

gets that G(1)∗ = x̃1 − xR and G(2)∗ = x∗
2 − xR, where x∗

2 ∈ (xR,∞) is the unique solution

of

1[xR,x̃1]

4∑
j=1

Bjαje
αj(x

∗
2−x̃1) + 1(x̃1,∞)

(
λ2

δ + λ2

+ α̃1Ã1e
α̃1(x∗

2−x̃1)
)
− 1 = 0.

To pin down the remaining coefficients (K1 > 0, K2 > 0, and Ã1 < 0) and the dividend

threshold (x̃1 > xR) we enforce that L1v(x̃1, 1)−λ1 [v(x̃1, 1)− v(x̃1, 2)] = 0 and L2v(x̃2, 2)−
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λ2 [v(x̃1, 2)− v(x̃1, 1)] = 0 as x → x̃−
1 , which rewrites as


µ2

∑4
j=1Bjαj +

σ2
2

2

∑4
j=1Bjα

2
j − (δ + λ2)K2 + λ2K1 = 0,

µ1 − (δ + λ1)K1 + λ1K2 = 0,

and impose the two boundary conditions in (13).
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B Supplementary material (for online publication)

B.1 Solution structure with counter-cyclical capital requirements

Let us fix x̃1, x̃2 such that xR,2 < xR,1 < x̃1 < x̃2, Then, the model’s solution structure

encompasses the following four regions: (i) x ∈ (xR,2, xR,1), (ii) x ∈ (xR,1, x̃1), (iii) x ∈

(x̃1, x̃2), and (iv) x ∈ (x̃2,∞).

In Region (i), under the assumption that κ is small enough (i.e., it is always optimal to

recapitalize), we set

v(x, 1) = v(x̃1, 1)− (x̃1 − x)− κ > 0. (51)

Given (51) and (37), we guess and verify that v(·, 2) has the following form:

v(x, 2) =
µ2λ2

(δ + λ2)
2 +

λ2

δ + λ2

(v(x̃1, 1)− (x̃1 − x)− κ) + C1e
α̃1(x−x̃1) + C2

α̃2(x−x̃1),

where (C1, C2) ∈ R2 are two constants coefficients given below and α̃1 and α̃2 are the real

roots of (19).We find v(·, i) in Regions (ii)-(iv) by using (16) and (17) with xR = xR,1.

By using these equations to impose the usual boundary (value matching, smooth pasting,
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and super-contact) conditions, we get the following linear system:



∑4
h=1Ahαh − 1 = 0,∑4
h=1Ahα

2
h = 0,∑4

h=1Bhαh −
∑2

h=1 Ãhα̃h − λ2

δ+λ2
= 0,∑2

h=1 Ãhα̃
2
he

α̃h(x̃2−x̃1) = 0,∑4
h=1Bhα

2
h −

∑2
h=1 Ãhα̃

2
h = 0,

λ2

δ+λ2
+
∑2

h=1 Ãhα̃he
α̃j(x̃2−x̃1) − β2 = 0,

µ2λ2

(δ+λ2)
2 +

∑2
h=1

[
Che

α̃h(xR,1−x̃1) − Ãh(1− eα̃h(x̃2−x̃1))
]
−K1+

+ λ2

δ+λ2
(K1 − (x̃1 − xR,1)− κ)− λ2(x̃1−x̃2)

δ+λ2
−
∑4

h=1Bh

(
eαh(xR,1−x̃1) − 1

)
= 0,

λ2

δ+λ2
+
∑2

h=1 α̃he
α̃h(xR,1−x̃1) −

∑4
j=1Bjαje

αj(xR,1−x̃1) = 0,

µ2β2 − (δ + λ2)K2 + λ2(K1 + x̃2 − x̃1) = 0,

µ1 − (δ + λ1)K1 + λ1

(
K2 +

λ2

δ+λ2
(x̃1 − x̃2)

)
,

whose solution (if it exists) yields (A1, A2, A3, A4, Ã1, Ã2, C1, C2) ∈ R8 and (K1, K2) ∈ R2
+.

By using these coefficients to compute v(·, i), we can obtain the recapitalisation target x∗
2

and the payout thresholds x̃1 = x∗
1 and x̃2 by imposing the boundary conditions (13) and the
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optimality condition v′(x∗
2, 2) = 1, which requires to solve the following non-linear system:



1[xR,2,x̃1]
λ2

δ+λ2
+
∑2

h=1

[
1[xR,2,xR,1)Che

α̃h(x−x̃1) + 1(xR,1,x̃1]Ãhα̃h

(
eα̃h(x

∗
2−x̃1)

)]
+

+1(x̃1,∞)

∑4
h=1Bhαhe

αh(x
∗
2−x̃1) − 1 = 0∑4

h=1Ah

(
eαh(xR,1−x̃1) − 1

)
+ x̃1 − x+ κ = 0

µ2λ2

(δ+λ2)
2 +

λ2

δ+λ2
(K1 + x− x̃1 − κ) +

∑2
h=1Che

α̃h(xR,1−x̃1)+

+1[xR,2,xR,1)

[
µ2λ2

(δ+λ2)
2 +

λ2

δ+λ2
(K1 − x̃1 + x∗

2 − κ) +
∑2

h=1Che
α̃h(x∗

2−x̃1)
]
−

+1(xR,1,x̃1]

[
K2 +

λ2(x∗
2−x̃2)

δ+λ2
+
∑2

h=1 Ãh

(
eα̃h(x

∗
2−x̃1) − eα̃h(x̃2−x̃1)

)]
−

+1(x̃1,∞)

[
K1 +

λ2(x̃1−x̃2)
δ+λ2

+
∑2

h=1 Ãh(1− eα̃h(x̃2−x̃1)) +
∑4

h=1Bh

(
eαh(x

∗
2−x̃1) − 1

)]
+

+(x∗
2 − x) + κ = 0.

B.2 Solution structure with pro-cyclical capital requirements

Pro-cyclical capital requirements associate with the parametric condition Γ1 < Γ2 or,

equivalently, xR,1 < xR,2. Thus, modelling this case requires us to expand the support of

the bank’s reserves to include the region x ∈ (xR,1, xR,2). The rest of the state space when

x > xR,2 is that described in Section 4.1 after setting xR,2 = xR.

When x ∈ (xR,1, xR,2) and there is a random transition from State 1 to State 2, the

regulatory constraint x > xR,2 is not satisfied. Thus, we assume the regulator requires the

bank to immediately recapitalise or default and, following the logic of Section 5.3.1, set

v(x, 2) = max
{
v(x∗

2, 2)− (x∗
2 − x)− κ,Γ+

2

}
. (52)

Given (52), one can find v(x, 1) as the unique solution of

1

2
σ1
1v

′′(x, 1) + µ1v
′(x, 1)− (δ + λ1) v(x, 1) + λ1v(x, 2) = 0,

with boundary conditions v(x+
R,2, 1) = v(x−

R,2, 1) and v′(x+
R,2, 1) = v′(x−

R,2, 1).
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x (i = 1)

x (i = 2)
xR,2 x∗

2 x̃2

xR,1 x̃1
xd

Change of state

recapitalisation

C1 S1

C2 S2

Figure 7: Solution structure with pro-cyclical capital requirements.

Unlike the case of counter-cyclical capital requirements, the parametric condition (36)

does not ensure that the bank is always willing to recapitalise after a change of state. In

other words, there may be some reserves level xd ∈ (xR,1, xR,2) such that (52) equals zero.

Figure 7 visually represents this issue.

To adapt the solution structure, we split the region x ∈ (xR,1, xR,2) into the following two

sub-intervals: x ∈ (xR,1, xd) and x ∈ (xd, xR,2). In the former, we find v(x, 1) by solving

1

2
σ1
1v

′′(x, 1) + µ1v
′(x, 1)− (δ + λ1) v(x, 1) + λ1 (v(x

∗
2, 2)− v(x∗

2, 2)− x∗
2 + x) = 0

with boundary conditions v(x+
R,2, 1) = v(x−

R,2, 1) and v′(x+
R,2, 1) = v′(x−

R,2, 1). In the latter,

we solve

1

2
σ1
1v

′′(x, 1) + µ1v
′(x, 1)− (δ + λ1) v(x, 1) = 0

with boundary conditions v(x+
d , 1) = v(x−

d , 1) and v′(x+
d , 1) = v′(x−

d , 1). We find the en-

dogenous threshold xd by finding the reverse level so that (52) equals zero, which yields

xd = κ+ x∗
2 − v(x∗

2, 2).

B.3 Counter-cyclical capital requirements: comparative statics

Table 9 reports the bank’s optimal control, its credit capacity and dispersion, and the

maximal incentive-compatible recapitalisation cost for different levels of Γ2 (xR,2).

The results of this analysis are broadly consistent with those of the mean-preserving
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xR,1 xR,2 x̃1 x̃2 x∗
2 Eπ

1 [x] Eπ
2 [x] Eπ [x] Vπ

1 [x] Vπ
2 [x] Vπ [x] κ̄

0.077 0.069 0.799 1.691 0.646 0.565 0.968 0.726 0.028 0.162 0.130 0.104
- 0.057 0.797 1.687 0.637 0.564 0.958 0.722 0.027 0.163 0.119 0.102
- 0.049 0.795 1.674 0.629 0.562 0.950 0.717 0.027 0.163 0.118 0.101
- 0.037 0.794 1.666 0.622 0.561 0.941 0.713 0.027 0.163 0.116 0.099
- 0.027 0.792 1.657 0.612 0.559 0.932 0.709 0.027 0.163 0.115 0.098

Table 9: Bank’s optimal control, credit capacity and dispersion, and the maximal incentive-
compatible recapitalisation cost for different levels of Γ2 (xR,2).

Figure 8: Effect of counter-cyclical capital requirements on shareholder value in the good (Panel
(a)) and bad (Panel (b)) states.

counter-cyclical capital requirements discussed in the main text. However, the policy’s effects

are more straightforward, as it does not impose tighter capital requirements in the good

state. Specifically, relaxing capital requirements in the bad state lowers the dividend payout

threshold in both states (Columns 2 and 3). At the same time, it diminishes the bank’s

recapitalisation incentives (see Columns 5 and 12). Consequently, the policy reduces the

average credit capacity and its dispersion across states. Figure 8 reports v(x, i) for different

values of Γ2 (corresponding to Row 3 and 5 of Table 9) in State 1 (Panel (a)) and 2 (Panel

(b)), showing that relaxing capital requirements increases bank value in both states.
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