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dividends using vector autoregressions, imposing the restrictions implied by the Campbell-Shiller
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about return predictability while imposing the restrictions. We highlight that persistence in

dividend growth induces “dividend momentum,” a previously overlooked channel for return

predictability. By combining Bayesian shrinkage and the CS restrictions, we obtain more plausible
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1 Introduction

The predictability of aggregate stock returns remains one of the key empirical questions in financial

economics. Early influential work by Campbell and Shiller (1988a,b) and Cochrane (2008b) employed

vector autoregressions (VARs) that exploit the identity linking returns, dividend growth, and the

price-dividend ratio to establish that valuation ratios forecast returns at long horizons. This finding

has important implications for our understanding of time variation in discount rates. It is also

critical for the optimal dynamic allocation problem faced by long-horizon investors (see Campbell

and Viceira, 2002; Campbell et al., 2003). However, the practical relevance of return predictability

has been undermined by its failure to produce robust out-of-sample forecasts (Viceira, 2008; Goyal

and Welch, 2008). As a consequence, the literature has devoted considerable attention to Bayesian

predictive regressions that incorporate prior beliefs weighted against return predictability (Kandel

and Stambaugh, 1996; Stambaugh, 1999; Wachter and Warusawitharana, 2009, 2015; Pástor and

Stambaugh, 2009, 2012).

In this paper, we revisit stock return predictability in a dynamic multivariate setting by proposing

a Bayesian approach to inference that explicitly incorporates Campbell-Shiller (CS) cross-equation

restrictions within a VAR framework that jointly models returns, dividend growth, and the price-

dividend ratio. Our key methodological innovation is the combination of exact enforcement of the

CS identity with Bayesian shrinkage priors that reflect skepticism about return predictability, all

within a joint multivariate system. Standard Bayesian conjugate priors cannot be directly applied

to models with linear restrictions on covariance matrices as implied by CS; hence, we develop a

scalable importance sampling algorithm to generate posterior distributions under these constraints.

This approach substantially improves inference precision, avoids the common misspecification that

results from excluding dividend growth from the VAR, and provides a robust estimation framework

applicable even in higher-dimensional settings. Our results show that combining empirical shrinkage

with enforcement of CS constraints is a promising approach for studying predictability in small

samples.

Applying our method to S&P 500 data from 1947 to 2024, we uncover a previously overlooked

channel of predictability that we label “dividend momentum.” We document that dividend growth

displays significant autocorrelation even after controlling for valuation ratios, implying persistent
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positive shocks that simultaneously boost dividends, realized returns, and future expected returns.

These results hold not only for annual data but also for quarterly and monthly systems, where

we explicitly model seasonality in dividend growth. Economically, dividend momentum differs

fundamentally from the standard return momentum observed at higher frequencies (see, e.g.,

Moskowitz et al., 2012). Rather than reflecting short-term sentiment or behavioral biases, dividend

momentum captures a persistent improvement in expected economic conditions that simultaneously

raises current dividends, contemporaneous returns, and future expected returns. In fact, our analysis

indicates that the dividend growth shock associated with the dividend momentum channel is linked

to prolonged boom–bust cycles in economic activity, which first manifest as an increase in dividend

growth and only later appear in broader measures of economic performance.

Crucially, we show that combining Bayesian shrinkage toward limited predictability with the

exact CS restrictions significantly enhances out-of-sample forecasting performance. In stark contrast

to prior literature, which generally finds negligible or negative out-of-sample predictive performance,

our approach consistently outperforms naive benchmarks, achieving approximately 30 percent

improvements at the five-year horizon. Moreover, in asset allocation exercises, incorporating

dividend momentum into investment strategies leads to more realistic and less volatile equity

allocations, resulting in economically meaningful improvements in risk-adjusted portfolio returns.

Relation to the literature Our paper contributes to the extensive literature on return pre-

dictability using valuation ratios (Fama and French, 1988; Lewellen, 2004), in particular the classic

VAR analyses of Campbell and Shiller (1988a,b); Cochrane (2008b) and their implications for

dynamic asset allocation (Campbell and Viceira, 1999; Campbell et al., 2003). Within a VAR

framework, we uncover a novel source of return predictability—dividend momentum—stemming from

autocorrelation in dividend growth, and examine its implications for portfolio choice. Our findings

complement studies that document persistent expected dividend growth using latent-variable systems

(Van Binsbergen and Koijen, 2010; Chen et al., 2012; Koijen and Nieuwerburgh, 2012). Unlike the

latent-variable approach, which imposes additional assumptions on dividend-return dynamics and

correlation structures (Cochrane, 2008a), we rely solely on the minimal restrictions implied by the CS

identity, allowing dividend momentum to emerge naturally from the data. Dividend momentum also

differs from dividend persistence as emphasized in the long-run risk literature (Bansal and Yaron,
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2004; Schorfheide et al., 2018), where the price-dividend ratio fully captures dividend persistence.

Instead, our finding aligns with consumption-CAPM frameworks that incorporate time-varying

expected dividend growth, such as Menzly et al. (2004).

Methodologically, our approach is closely related to Bayesian studies that use informative

priors to study return predictability (Kandel and Stambaugh, 1996; Stambaugh, 1999; Avramov,

2002; Wachter and Warusawitharana, 2009, 2015; Pástor and Stambaugh, 2009, 2012). However,

following Cochrane (2008b), we depart from traditional predictive regressions and adopt a general

VAR framework, analyzing returns, the price-dividend ratio, and dividend growth as a system

whose dynamics are jointly constrained by the CS identity. We also build on the broader Bayesian

econometrics literature on informative priors for VARs (Doan et al., 1984; Sims, 1993; Del Negro and

Schorfheide, 2004; Giannone et al., 2015, 2019), extending these methods to accommodate dynamic

linear restrictions that arise naturally in asset pricing (Campbell and Shiller, 1988a,b). In doing so,

our methods generalize to many applications in macro-finance where similar identities appear—such

as those linking bond returns and interest rates (see Campbell et al., 1997); consumption, wealth,

and returns (see Campbell and Mankiw, 1989; Lettau and Ludvigson, 2001; Gourinchas and Rey,

2019); interest rate differentials and the real exchange rate (see Engel and West, 2005; Froot and

Ramadorai, 2005; Engel, 2016); net foreign assets, net exports, and foreign portfolio returns (see

Gourinchas and Rey, 2007); or government debt, surpluses, and interest rates (see Cochrane, 2019;

Jiang et al., 2024)—all of which feature stationary but highly persistent predictors of asset returns.

2 A VAR model with Campbell-Shiller restrictions

In this section, we describe a basic macro-finance VAR model and the cross-equation restrictions

among the VAR coefficients implied by CS identity for returns. We discuss a common practice of

omitting one of the variables as means to impose the CS restrictions. Finally, we reconcile the VAR

and the latent variables approach proposed by Van Binsbergen and Koijen (2010).

2.1 The Basic Macro-Finance VAR

The classic macro-finance VAR approach of Campbell and Shiller (1988a,b) studies the joint dynamics

of log dividend growth, the log price-dividend ratio, and log returns (see also Campbell, 1991;
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Cochrane, 2008b). We focus on a minimalistic VAR that contains only the three key variables above

and uses only one lag. However, none of this paper’s conclusions will be affected if we add more

variables or lags to the VAR. The VAR(1) in y′t = [∆dt+1, pdt+1, rt+1] is written:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∆dt+1

pdt+1

rt+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

yt+1

=
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Φ1
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∆dt

pdt

rt
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yt

+
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udt+1

updt+1

urt+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¸¹¹¹¹¹¹¶
ut+1

(1)

where ut+1 is Gaussian with E (ut+1) = 03×1, E (ut+1u
′

t+1) =Σ, E (usu
′

r) = 03×3 if r ≠ s, and Σ is a

symmetric and positive semidefinite (SPD) matrix and where 0m×m̃ is a matrix of zeros of dimension

m × m̃. This system can be written as yt+1 = Φz′t + ut+1 where zt = [1,y′t] and Φ = [Φ0,Φ1]. We

define µ = (In −Φ1)−1Φ0 as the unconditional mean of the variables. More compactly, and in

general, Y = ZΦ′ +U, where T is the length of the sample, n the number of variables, and p the

number of lags in the VAR, Y = (y′1, . . . ,y′T )
′
is a T ×n matrix, Z = (z′1, . . . ,z′T )

′
is a T ×K matrix,

where K = np + 1, and U = (u′1, . . . ,u′T )
′
is a T × n matrix.

2.2 The Campbell-Shiller Restrictions

As first noted by Campbell and Shiller (1988a,b), if one assumes that the price-dividend ratio is

stationary, log-linearizing the definition of return, Rt+1 = (Pt+1 +Dt+1)/Pt, around the mean of the

log price-dividend ratio yields an approximate identity that links log returns, log dividend growth,

and changes in the log price-dividend ratio:

rt+1 ≈ κ + ρpdt+1 − pdt +∆dt+1 (2)

where κ and ρ are constants of approximation that depend on the steady-state log dividend-price

ratio.1 Being derived from a definition, the Campbell-Shiller (CS) identity holds very tightly in

the data. It holds with equality if one adds an approximation error, denoted ηt+1. In our data,

the log-linear approximation is accurate enough that ηt+1 is very small, but this term can capture

additional measurement error if, as is common in the literature, a smoothed price-dividend ratio

1We will refer to the log dividend growth, the log price-dividend ratio, and log returns as dividend growth, the
price-dividend ratio, and returns, except when strictly necessary.

5



or a price-earnings ratio is used instead. In that case, it is easy to show that the CS identity in

Equation (2) imposes the following restriction among the innovations:

urt+1 = udt+1 + ρu
pd
t+1 + ηt+1, (3)

where E (udsηr) = E (u
pd
s ηr) = 0 for all r, s. The CS identity implies restrictions among the 3-variable

VAR(1) coefficients in Equation (1). In particular, it imposes (linear) restrictions on Φ and Σ. The

restrictions for Φ are:

cr = cd + ρcpd + κ, (4)

ϕr,d = ϕd,d + ρϕpd,d, (5)

ϕr,pd = ϕd,pd + ρϕpd,pd − 1, (6)

ϕr,r = ϕd,r + ρϕpd,r, (7)

whereas the restrictions for Σ are:

Cov (urt+1, udt+1) = ρCov (u
pd
t+1, u

d
t+1) + Var (udt+1) and (8)

Cov (urt+1, u
pd
t+1) = ρVar (u

pd
t+1) + Cov (u

d
t+1, u

pd
t+1) . (9)

If we do not consider approximation error, we will have an additional restriction for Σ:

Var (urt+1) = Var (udt+1) + ρ2Var (u
pd
t+1) + 2ρCov (u

d
t+1, u

pd
t+1) . (10)

Additionally, the derivation of the CS identity in Equation (2) requires the system to be stationary,

and in particular, that the price-dividend ratio has a well-defined steady state. This is a restriction

on the eigenvalues of the matrix Φ1, which we write:

Φ1 ∈ {Z ∈ R3×3 ∶max{eig (Z)} < 1} . (11)

This generalizes Cochrane’s (2008b) requirement of an upper bound to the persistence of the

price-dividend ratio to a multivariate setting. The CS restrictions (4)-(9) and the stationarity
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restriction (11) are cross-equation restrictions on the 3-variable VAR(1) in Equation (1). Because

the former restrictions are only valid if the latter is satisfied, from this point on, when we impose

the CS restrictions (4)-(9), we impose the stationarity restriction (11) as well.

Similar log-linear identities are pervasive in the macro-finance literature, linking, e.g., bond

returns and interest rates (see Campbell et al., 1997); consumption, wealth, and returns (see

Campbell and Mankiw, 1989; Lettau and Ludvigson, 2001); interest rate differentials and the real

exchange rate (Engel and West, 2005; Froot and Ramadorai, 2005; Engel, 2016); net foreign assets,

net exports, and the return on the foreign asset portfolio (Gourinchas and Rey, 2007); or government

debt, surpluses, and interest rates (Cochrane, 2019; Jiang et al., 2024). They all imply similar

dynamic linear restrictions among endogenous variables, which can be expressed as linear restrictions

on the coefficients and the covariance matrix of a VAR.

2.3 Omitting dividend growth

Because an identity links the three variables, one of the three equations in VAR (1) is redundant, as

discussed, e.g., by Cochrane (2017), who states: “The definition of return means that only two of

the three equations are needed, and the other one follows.” This has been often interpreted in the

literature as being able to drop one of the three variables (usually dividend growth) and estimate a

2-variable VAR(1) in returns and the price-dividend ratio only.2 For instance, Engsted et al. (2012)

criticize Chen and Zhao (2009) for excluding the dividend-price ratio from the system but state

(p.1262) that “nothing is gained by modeling both returns and dividend growth in a system that

also contains the dividend–price ratio.” In fact, dropping one of the variables in a VAR(1) amounts

to imposing extra restrictions. To see this clearly, rewrite the model as

⎡⎢⎢⎢⎢⎢⎣

∆dt+1

xt+1

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

ϕd,d ϕ21

ϕ12 Φ11

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

∆dt

xt

⎤⎥⎥⎥⎥⎥⎦
+
⎡⎢⎢⎢⎢⎢⎣

udt+1

ξt+1

⎤⎥⎥⎥⎥⎥⎦
, (12)

2The common practice of dropping one of the variables (typically dividend growth) and then retrieve the omitted
variable and associated coefficients from the CS restrictions (4)-(9) is followed by almost all studies looking at the
relationship between returns, dividend growth, and the price-dividend ratio. See, for instance, Campbell and Viceira
(1999); Campbell et al. (2001); Cochrane (2008b, 2011); Avramov et al. (2018). Notable exceptions are Campbell
and Shiller (1988a), who find some weak evidence of persistence in dividend growth, and Larrain and Yogo (2008),
who use the GMM to estimate a system without omitting variables but cite the latter as an equivalent alternative.
The practice of dropping dividend growth from VAR systems featuring returns and the price-dividend ratio is also
prevalent in studies featuring additional predictors of excess returns (see, e.g., Campbell, 1991; Campbell and Ammer,
1993; Campbell et al., 2003; Campbell and Vuolteenaho, 2004; Campbell et al., 2013).
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where xt+1 = [pdt+1, rt+1]′ and the constant terms are omitted without loss of generality. Assuming

that the CS identity (2) holds without error, we can write ∆dt = −κ− ρpdt + pdt−1 + rt, which can be

replaced into (12) to obtain

xt+1 = (Φ11 +ϕ12(ι′2 − ρι′1))xt + (ϕ12ι
′

1)xt−1 + ξt+1, (13)

where ιj is a selection vector corresponding to the j-th column of the identity matrix. It is easy

to see that assuming that the true dynamics are represented by the VAR (1) (or (12)) together

with the CS identity (2), opting for the common practice of estimating a bivariate VAR(1) on xt+1,

xt+1 = A1xt + εt+1 implies the implicit imposition of the following extra restrictions on dividend

growth dynamics:

udt+1 = urt+1 − ρu
pd
t+1 (No approximation error) (14)

ϕ12 = 0 (Dividend growth not a relevant regressor) (15)

ϕd,d = 0 (Follows from ϕ12 = 0 and CS Restriction (6)) (16)

We provide a formal proof with more details and implications in Appendix A. Still, another

intuitive way to understand this result is to perform a simple parameter count: the autoregressive

matrix Φ1 of the 3-variable VAR(1) contains nine parameters. However, the three CS restrictions (5)-

(7) imply that there are only six free parameters. A 2-variable VAR(1) will feature an autoregressive

matrix with only four parameters, thus imposing two extra restrictions, namely ϕ12 = 0. Another

way of saying this is that ∆dt can be dropped from the set of regressands, but not from the set of

regressors from the system in Equation (1).3

Examining Equation (13), one might think that an alternative could be to add an extra lag and

specify a 2-variable VAR(2) in pdt+1 and rt+1. This successfully spans the information contained

3A related question is whether including the three variables in the system can lead to a collinearity problem.
Collinearity problems only appear when using more than one lag and when the CS identity holds exactly. While we
will focus our exposition on the 3-variable VAR(1) where collinearity is not a problem, collinearity is generally never
a concern when using Bayesian estimation methods (see Leamer, 1973). Therefore, we will allow for systems with
any lag length when discussing our estimation methods in Section 3.3. Avramov et al. (2018) also claim that the
3-variable VAR(1) “must be estimated with observation equations for only two of the [...] variables to ensure that
the covariance matrix Σ is nonsingular.” Yet, as highlighted by Cochrane (2008a,b), the CS identity is accurate but
only approximate. Therefore, singularity is never truly a concern. Despite that, in Section 3.3, we develop inference
methods that can also handle the possibility of a singular covariance matrix.

8



in dividend growth but features two autoregressive matrices with four parameters each, totaling

eight parameters. Therefore, this approach leads to overparametrization, not imposing all available

restrictions. As we shall see, there will be gains to be made, both in terms of economic interpretation

and forecasting performance, by modeling the three variables as a system in the VAR in Equation (1)

and imposing the CS restrictions exactly whenever dividend growth features autocorrelation after

controlling for the lagged dividend-price ratio, i.e. ϕd,d ≠ 0, a phenomenon we label “dividend

momentum”.

2.4 Relation to the Latent Variables Approach

Before moving to the empirical analysis, we reconcile the VAR approach discussed in this section

with the latent variables approach proposed by Van Binsbergen and Koijen (2010). This approach

partitions returns and dividend growth into expected and unexpected components. Specifically,

they write returns and dividend growth as:

rt+1 − µr = fr,t + er,t+1, (17)

∆dt+1 − µg = fg,t + ed,t+1, (18)

where ft+1 = [fr,t+1, fg,t+1]′ is the state vector with the following law of motion

ft+1 = F1ft + υt+1, (19)

and υt+1 = [υr,t+1, υg,t+1]′ and the price-dividend ratio is related to the state vector as follows

pdt+1 − µpd = [−1,1] (I2 − ρF1)−1 ft+1, (20)

We provide a novel proof in Appendix B that whenever the CS identity holds exactly, the

VAR system in Equation (1) admits a unique latent present value system representation with

the feedback matrix F1 and the covariance matrix of the innovations [er,t+1, ed,t+1, υr,t+1, υg,t+1]

functions of the underlying VAR parameters. There are two important caveats: first, the matrix

F1 will generally be not diagonal; second, the correlation between innovations to expected and
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unexpected dividend growth, i.e. corr(ed,t+1, υg,t+1), need not be zero.4 Both of these assumptions,

commonly employed by the literature (Van Binsbergen and Koijen, 2010; Rytchkov, 2012), are again

additional restrictions that do not come from the CS identity, and the latter in particular rules

out the phenomenon of dividend momentum which we will describe in our empirical results. We

thus provide a general proof of the claim made by Cochrane (2008a) that the commonly specified

latent present value system imposes additional restrictions on the dynamics of returns and dividends

beyond those implied solely by the CS identity.

3 Bayesian Inference under Present Value Restrictions

In this section, we describe how to perform Bayesian inference considering the CS restrictions

described above. We begin by describing why we need informative priors and how to incorporate

the CS restrictions into those. We finalize by describing an algorithm that allows us to draw from

any posterior distribution conditional on the CS restrictions.

3.1 The Need for Informative Priors

Inference under flat priors in VAR models is problematic for many reasons. Their dense parameteri-

zation leads to unstable inference and inaccurate out-of-sample forecasts, particularly for models

with many variables and lags (see, e.g., Doan et al., 1984; Giannone et al., 2015). The CS restrictions

bring VARs with many lags close to multicollinearity, complicating flat-prior estimation. Moreover,

one can show that flat priors imply a prior distribution over the one-period-ahead R2 of returns

that collapses to one (Giannone et al., 2021, 2022), whereas from an economic point of view,

parameter combinations that imply very high degrees of return predictability should be a priori

implausible (see Kandel and Stambaugh, 1996; Wachter and Warusawitharana, 2015). Thus, one

needs informative priors that represent the beliefs of conservative observers who are skeptical about

return predictability, in line with the proposal of Wachter and Warusawitharana (2009) and Pástor

and Stambaugh (2009, 2012).

4Specifically, let V denote the diagonal matrix of the eigenvalues (in descending order) and E the associated
eigenvectors of the matrix Φ1. Then, we have F1 = K−1J1VJ′1K, where J1 = [I2 02×1], and K−1 = J2EVJ′1,
with J′2 = [ι1 ι3] and ιs denoting a 3 × 1 selection vector whose only non-zero element is 1, located in position s.
Furthermore, the innovations of the system, [er,t+1, ed,t+1, υr,t+1, υg,t+1], are linear functions of the innovations of the
VAR: ed,t+1 = ud

t+1, er,t+1 = ud
t+1 + ρupd

t+1, and [υg,t+1, υr,t+1]′ =KJ1E
−1H̃[ud

t+1, u
pd
t+1]′, with H̃ = [1,0,1; 0,1, ρ]′.
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The high persistence of the price-dividend ratio is also concerning. The presence of downward

bias in OLS estimates of autoregressive parameters when these are close to unit root has been

known since Hurwicz (1950) (see also Bekaert et al., 1997). Stambaugh (1999) further notes that

when a persistent predictor features innovations that are highly correlated with the innovations

to the predicted variable, as is the case with the price-dividend ratio and returns, this translates

into OLS estimates of the regression coefficient that is biased away from zero. So not only is ϕpd,pd

biased downward, implying strong mean reversion, but ϕr,pd is also biased away from zero, meaning

too much return predictability. Flat priors put excessive weight on parameter combinations below

one for ϕpd,pd, and therefore on high amounts of predictability. The bias and excess predictability

problems will worsen as additional persistent predictors are added.5

Finally, the flat priors combined with the standard use of conditional likelihood also imply

that the initial values of the data are far away from their unconditional mean. This implies an

implausibly good forecasting power of initial conditions and determinist components (see Sims and

Uhlig, 1991; Stambaugh, 1999; Jarocinski and Marcet, 2015; Giannone et al., 2019). In practice,

VAR deterministic components over-fit the low-frequency variation in the data, which worsens as

lags or additional variables are included in the system.

To solve all these issues, one can consider informative priors. While our methods will work

with any prior the researcher chooses, we set priors which are standard and have been widely

used in macroeconomics over the last 30 years (see, e.g., Giannone et al., 2015). In particular, we

combine the “Minnesota” prior originally proposed by Doan et al. (1984) with the Single Unit

Root prior proposed by Sims (1993) and Sims and Zha (1998). These priors handle downward bias

and excess predictability. In particular p(vec(Φ1)∣Σ) ∼ N ([0 0 0 0 1 0 0 0 0]
′

,Σ⊗Ω),

where in the simplest case Ω = λ2(diag ([σ2
d, σ

2
pd, σ

2
r]))−1, with λ a positive scalar controlling the

tightness of the prior, and σ2
i an a priori estimate of the standard deviation of each variable’s

innovation. As desired, the Minnesota prior pushes ϕpd,pd toward one, and both ϕr,r and ϕd,d

toward zero. The Minnesota prior is usually specified as flat for Φ0. The prior for Σ is set to

p(Σ) ∼ IW(diag ([σ2
1, . . . , σ

2
n]) , n + 2).

The Single Unit Root prior addresses the problem of the excessive explanatory power of initial

5While, in principle, the small sample bias issue could be tackled by applying bias correction to the VAR coefficient,
doing that while simultaneously imposing the CS restrictions is not possible unless one is willing to follow the common
approach of dropping one of the variables from the system, which is not an option as we discuss in Section 2.1.
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conditions and deterministic components. Stambaugh (1999) has also emphasized the importance of

properly handling the initial observation in predictive return regressions. The Single Unit Root prior

is usually implemented by appending an artificial (“dummy”) observation for y and x: y∗1×n ≡ µ/θ

and x∗1×(n⋅p+1) ≡ [1/θ, y
∗, . . . , y∗], at the beginning of the sample. Where µ can be used to express a

prior on the unconditional mean of the variables µ = (In −Φ1)−1Φ0, and a scalar hyperparameter

θ controls the tightness of the prior. The Single Unit Root prior has the significant advantage of

being a joint prior on the entire system [rt+1, pdt+1,∆dt+1], governing the long-run behavior of the

variables in a consistent manner, influencing simultaneously the intercepts and the slope coefficients

of the VAR by imposing a prior on the steady state as well as the joint stationarity of the system.

The ability to impose Bayesian priors on the system as a whole is an additional reason to seek an

approach of estimating the system jointly without dropping any variable or equation.

3.2 Informative Priors and the CS Restrictions

General informative priors like the one above may violate the CS restrictions, even if centered

around them, since they assign positive probability to parameter values that do not satisfy the

constraints. As the prior becomes more informative, the posterior is increasingly likely to breach

the restrictions, even if the likelihood satisfies them. Figure 1 illustrates this using the data and

priors from Section 4.1. Each column corresponds to one CS restriction (4)–(9), with rows showing

draws from the likelihood, prior, and posterior, respectively. For example, the first panel plots cr

against ρcpd + cd; under the CS restrictions, all points should lie on the 45-degree line. While the

likelihood closely respects the restrictions, the prior and posterior do not. We now develop a method

to sample from any posterior while enforcing the CS restrictions on Φ and Σ.

3.3 Bayesian Estimation under CS Restrictions

This subsection presents our main methodological contribution: a Bayesian algorithm for indepen-

dently sampling from the posterior of a VAR with informative priors, while exactly imposing the CS

restrictions without dropping variables or adding extra constraints. The key challenge is drawing Φ

and Σ under these restrictions. We use the conjugate Normal-Inverse Wishart (NIW) framework

to enable independent draws. Conjugacy and independence are especially useful as they make

our approach useful for VARs with many more variables and lags, though our approach extends

12



Figure 1: CS Restrictions for Φ and Σ under informative priors
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Note: Red represents the prior, grey is the likelihood, and blue is the posterior.

beyond NIW priors. Under the CS restrictions, the posterior of Φ remains Normal, but that of Σ is

no longer Inverse Wishart. Therefore, we will propose an importance sampler to draw from the

restricted posterior. Readers less interested in the technical details of the algorithm may skip to the

empirical results in Section 4.

The conjugate prior and posterior

We will write our algorithm independently drawing from the conjugate family of NIW posterior

distributions conditional on the CS restrictions. The NIW family of distributions is the conjugate

prior for this class of models. If the prior distribution over the parameters is NIW (ν,S,α,V),

then the posterior distribution over the parameters is NIW (ν,S,α,V), where α = vec (A), V =

(V−1 +Z′Z)−1, A =V (V−1A +Z′ZÂ)−1, Â = (Z′Z)−1Z′Y, and S = Ŝ + S + Â′Z′ZÂ +A′V−1A −

A
′

V
−1
A, Ŝ = (Y −ZÂ)′ (Y −ZÂ), and ν = T + ν. The NIW posterior distributions defined above

can be factored into the following conditional and marginal posterior distributions N (α,Σ⊗V)

and IW (S, ν). This structure allows us to draw from the posterior independently.

For the case of the NIW posterior, we want to draw from the restricted normal posterior

distribution of α conditional onΣ and from the restricted inverse-Wishart (IW) posterior distribution

of Σ. By the restricted normal posterior distribution of α conditional on Σ we mean the distribution

N (α,Σ⊗V) conditional on the CS restrictions on Φ and by the restricted IW posterior distribution

13



of Σ we mean the distribution IW (S, ν) conditional on the CS restrictions on Σ. In the same

spirit, we will call the distribution NIW (ν,S,α,V) conditional on the CS restrictions on Φ and Σ

the restricted NIW posterior of α and Σ. As we will see, an analytical expression exists for the

restricted normal posterior distribution of α conditional on Σ. This is not true for the restricted IW

posterior distribution of Σ. We will present a numerical algorithm to draw from it independently.

The Restricted Normal Posterior of α

The CS restrictions on Φ are linear restrictions on α. As with any linear restriction on α, they

can be written as RΦα = rΦ. We follow Antoĺın-Dı́az et al. (2021) and draw from the restricted

normal posterior distribution of α conditional on Σ, i.e. N (α̃, Ṽ) where α̃ = α −F (RΦα − rΦ),

Ṽ = (InK −FRΦ) (Σ⊗V) (InK −FRΦ)′, and F = (Σ⊗V)R′Φ (RΦ (Σ⊗V)R′Φ)
−1
. If UΦ denotes

the set of all α that satisfy the CS restrictions on Φ, any draw from N (α̃, Ṽ) will belong to UΦ.

As emphasized in Antoĺın-Dı́az et al. (2021), this specific way of imposing linear restrictions on the

vector of Gaussian parameters minimizes the Kullback-Leibler divergence from the unrestricted

distribution while adhering to the constraints. In other words, this approach ensures that the

restrictions are imposed while deviating minimally from the estimates obtained from an unrestricted

system. We implement restriction (11) by discarding draws of the posterior that do not satisfy the

stationary restriction. This truncates and re-normalizes the restricted normal posterior.

The Restricted IW Posterior of Σ

We rely on simulation to independently draw from the restricted IW posterior distribution of Σ. In

this section, we describe the methods that we will use to accomplish that. We will show that the CS

restrictions map to a set of orthogonality restrictions between the approximation error associated

with the restrictions and a set of the original residuals. This allows us to design a simple algorithm

that draws from the set of Σ’s that satisfy the CS restrictions. However, the resulting draws are not

from the desired restricted IW posterior distribution of Σ. Therefore, we will use an importance

sampler to accomplish our objective.

Although up to now we have considered only stock returns, with one associated CS identity, in

this section we consider the general case of k assets (as in, e.g. Campbell et al., 2003), in which case

there would be k associated CS identities. In this case, the CS restrictions on the n × 1 vector of
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innovations, ut ∼ N (0n×1,Σ), can be represented as k linear restrictions and n − k orthogonality

restrictions. The k linear restrictions are:

Lut = ηt ∼ N (0(n−k)×1,Ω) (21)

where L is a given k × n matrix. Equation (21) identifies the k × 1 vector of approximation errors

associated with the CS restrictions, ηt. For instance, for the case considered in Section 2.1, k = 1 and

the CS restriction on the innovations represented by Equation (3) can be mapped into Equation (21)

by specifying L = [−1,−ρ,1].

Moreover, there are n − k innovations that are orthogonal to the approximation errors:

E (Ξutη
′

t) = 0(n−k)×k (22)

where Ξ is a given (n − k) × n selection matrix. For the case considered in Section 2.1 we have

that Ξ = [I2,02×1]. Putting Equations (21) and (22) together, we obtain the result that the CS

restrictions on Σ can be represented as ΞE (utu
′

t)L′ = ΞΣL′ = 0(n−k)×k. Vectorizing this equation

implies the following linear restrictions:

RΣ vec(Σ) = 0(n−k)k×1 (23)

where RΣ = L⊗Ξ. Equation (23) appropriately imposes the CS restrictions on Σ. For instance, for

the case considered in Section 2.1, these are represented by Equations (8) and (9).

Define nowH = [Ξ′,L′]′, the linear transformation of the original innovationsHut ∼ N (0n×1,W ),

and the following mapping between a n × n SPD matrix W and Σ:

W =HΣH′, (24)

where:

W =
⎡⎢⎢⎢⎢⎢⎣

W11 W12

W′

12 W22

⎤⎥⎥⎥⎥⎥⎦
.

The above mapping shows that the CS restrictions on Σ hold if and only if W is block diagonal.
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To see this, notice that on the one hand, the mapping implies that W12 = ΞΣL′. Hence, if

Equation (23) holds, it is the case that W12 = 0(n−k)×k. On the other hand, the inverse mapping

implies that RΣ vec(Σ) =RΣ (H−1 ⊗H−1)vec(W). Then, one can show that:

RΣ (H−1 ⊗H−1) = [0k×(n−k) ⊗ΞH−1, Ik ⊗ΞH−1] = [0(n−k)k×(n−k)n, I(n−k)k,0(n−k)k×k2] ,

and RΣ (H−1 ⊗H−1)vec(W) = vec(W12). Thus, if W12 = 0(n−k)×k, it is the case that Equation (23)

holds. The result above is key to making independent draws from the set of all Σ satisfying the CS

restrictions using the following algorithm.

Algorithm 1. The following makes independent draws from a distribution over Σ conditional on

the CS restrictions.

1. Draw W11 independently from the IW (SW11 , νW11) distribution.

2. Draw Ω independently from the IW (SΩ, νΩ) distribution.

3. Set

W =
⎡⎢⎢⎢⎢⎢⎣

W11 0(n−k)×k

0k×(n−k) Ω

⎤⎥⎥⎥⎥⎥⎦

and define Σ =H−1W(H−1)′.

4. Return to Step 1 until the required number of draws has been obtained.

Algorithm 1 draws from a distribution over W conditional on the CS restrictions on Σ and

transforms the draws into Σ. The independent draws of Σ will not be from the desired restricted

IW posterior distribution of Σ. Because both the mapping and the CS restrictions on Σ are

linear on vec(Σ), applying the change of variable theorem outlined in Arias et al. (2018) implies

that the density implied by Algorithm 1 involves a volume element that is independent of Σ.

Hence, the volume element will be irrelevant to the importance sampler we derive. We will call

π
(SW11

,νW11
,SΩ,νΩ)

(Σ) = IW
(SW11

,νW11
)
(W11)IW(SΩ,νΩ) (Ω), where W11 = ΞΣΞ′ and Ω = LΣL′,

the density implied by Algorithm 1 and π (SW11 , νW11 ,SΩ, νΩ) its distribution. A natural choice

for SW11 and SΩ is SW11 = ΞSΞ′ and SΩ = LSL′, while one could choose νW11 = νΩ = ν.

16



It is relatively easy to adapt Algorithm 1 for the case where there is no approximation error,

and hence Σ is singular; Appendix C gives the details. This case is relevant for applications in

which the restrictions hold exactly. Examples include the decomposition of foreign currency returns,

where interest rate differentials are multiplicative (rather than additive, as in the case of dividends),

see, e.g. Engel and West (2005); Froot and Ramadorai (2005), and, similarly, the alternative

exact decomposition of stock market returns proposed by Gao and Martin (2021), which considers

log(1 + Pt/Dt) instead of log(Pt/Dt).

Since our objective is to independently draw from the IW (S, ν) conditional on the CS restrictions

on Σ, the results above justify the following importance sampler algorithm.

Algorithm 2. Let a scalar ν ≥ n and S be an n × n SPD matrix. The following algorithm

independently draws from the IW(S, ν) conditional on the CS restrictions on Σ.

1. Use Algorithm 1 to independently draw Σ from π (SW11 , νW11 ,SΩ, νΩ).

2. Set its importance weight to
IW(S,ν) (Σ)

π
(SW11

,νW11
,SΩ,νΩ)

(Σ) .

3. Return to Step 1 until the required number of draws has been obtained.

4. Re-sample with replacement using the importance weights.

Algorithm 2 shows how to independently draw from a IW(S, ν) conditional on the CS restrictions

on Σ for general (S, ν). If we want to draw from the restricted IW posterior distribution of Σ, we

need to set S = S and ν = ν. It is easy to modify the algorithm for the case of no approximation

error; we need to make independent draws of Σ from π (SW11 , νW11) in Step 1 and change the

importance weights accordingly.

3.4 Drawing Any Posterior

The results above can be used to independently draw from the restricted NIW posterior of α and

Σ. In particular, we have the following algorithm:

Algorithm 3. The following algorithm independently draws from the posterior distribution

NIW (ν,S,α,V) conditional on the CS restrictions on Φ and Σ.
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1. Use Algorithm 2 to draw Σ from IW (ν,S) conditional on the CS restrictions on Σ.

2. Draw α from N (α,V) conditional on the draw of Σ and the CS restrictions on Φ.

3. Discard the draws that do not satisfy the stationarity restriction.

4. Return to Step 1 until the required number of draws has been obtained.

3.5 An Alternative Algorithm

Algorithm 3 enables posterior sampling using informative priors while exactly imposing the Campbell-

Shiller (CS) restrictions draw by draw, without adding extra restrictions or assuming away the

measurement error. This is achieved by placing a prior on the full system and then applying the CS

restrictions. An alternative, simpler method, which works only assuming no measurement error,

would impose the CS restrictions on a reduced system (returns and price-dividend ratio, with

dividend growth as a regressor) and back out the dividend equation. However, this approach is not

equivalent: it prevents use of the Single Unit Root (SUR) prior and the stationarity restriction

in Equation (11). The SUR prior is important because, together with the CS restriction, it links

the prior on the unconditional equity premium to those of dividend growth and the price-dividend

ratio (Fama and French, 2002). We also show in Appendix D that this alternative approach implies

relatively flat priors on the dividend growth coefficients and, empirically, performs much worse in

forecasting compared to our baseline method.

4 Return Predictability and Dividend Momentum

We now present the empirical results using our methods. After analyzing the restricted posterior, we

will focus on return predictability, dividend momentum, its implications for cash flow and discount

rate news, and the variance of long-run returns. All the results in this section will be in-sample. We

will analyze out-of-sample results and implications for asset allocation in the next section.
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4.1 Data

We use annual US postwar data for the VAR(1) above, between 1947 and 2024, taking the S&P 500

index as our measure of the stock market.6 Annual returns conform closely to the homoskedastic

Gaussian assumption above. Moreover, because dividend payments are known to be highly seasonal,

the focus on annual data ensures that seasonal patterns do not simply drive any dividend growth

autocorrelation we find. In Section 6 we will examine the robustness of our results to using quarterly

or monthly data and modeling seasonality explicitly. An important issue is how to treat the

reinvestment of dividends. The annual series traditionally used in the literature implicitly measures

dividends after reinvestment in the stock market each month within the year. Van Binsbergen

and Koijen (2010) and Koijen and Nieuwerburgh (2012) convincingly argue that this assumption

induces spurious distortions that amount to mismeasurement of dividend growth and its time series

properties. Moreover, they show how a VAR(1) on reinvested dividends would be misspecified if the

cash dividends followed an autoregressive process. For this reason, we measure dividends with no

reinvestment.7

4.2 A First Look at the Data

For comparison, we give a first look at the data by specifying a flat prior without taking into

account the CS restrictions. In this case, the Bayesian posterior means are centered around the OLS

estimates, and the Bayesian high posterior density intervals coincide with the classical confidence

intervals.8 Table 1 reports the posterior of µ ≡ (In −Φ1)−1Φ0, Φ1 and Σ in Equation (1) under a

flat prior. The estimates of µ are consistent with a steady-state 5.7% log dividend growth rate, a

steady-state log dividend price ratio of 3.5, and a 9% steady state log return; all these coefficients,

however, are estimated relatively imprecisely. In line with Cochrane’s (2008b) conclusions, we

also find that the price-dividend ratio is highly persistent, ϕpd,pd = 0.906, and that ϕr,pd = −0.171,

significantly below zero, whereas ϕd,pd is approximately zero. Therefore, the price-dividend ratio

forecasts returns and does not forecast dividend growth. There is little evidence of serial correlation

6Results using CRSP market returns are very similar and available upon request.
7Results using dividends reinvested at the risk-free rate are very similar and available upon request.
8Following Uhlig (2005), the flat prior is obtained as a special case, letting ν = 0 and V−1 = 0K×K with S and α

arbitrary. All the results in this section are obtained from 5,000 draws of the posterior distribution, and we have that
n = 3, p = 1, and T = 72.
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Table 1: Posterior Distribution of µ, Φ1, and Σ under Flat Priors

µ Φ1

∆dt pdt rt
∆dt+1 0.056 0.409 0.004 0.128

[0.034,0.073] [0.310,0.510] [−0.009,0.018] [0.090,0.167]

pdt+1 3.846 −0.371 0.930 −0.190
[3.447,4.469] [−0.682,−0.058] [0.887,0.973] [−0.313,−0.069]

rt+1 0.079 0.056 −0.092 −0.055
[0.042,0.103] [−0.223,0.342] [−0.131,−0.053] [−0.169,0.057]

Σ (corr/std)

ud
t+1 upd

t+1 ur
t+1

ud
t+1 0.053

[0.049,0.058]

upd
t+1 −0.329 0.168

[−0.429,−0.227] [0.156,0.183]

ur
t+1 −0.003 0.945 0.154

[−0.114,0.110] [0.932,0.957] [0.143,0.168]

Note: The table shows the parameter estimates under a flat prior for a first-order VAR model including a constant, the
log dividend growth (∆dt+1), the price-dividend ratio (pdt+1), and the log market return (rt+1). For each coefficient,
the first line reports the posterior median value, and the second line reports the 68th posterior credible intervals in
square brackets. The table also reports the parameters of the correlation matrix of the innovations with innovation
standard deviations on the diagonal, labeled “corr/std,” instead of the parameters of the covariance matrix.

in returns after we control for dividend growth and the price-dividend ratio, as ϕr,r is centered

around zero (with a posterior mean value of 0.03). Moreover, the mean of the posterior of ϕr,d is

centered around zero (with a posterior mean value of 0.02), meaning that lagged dividends do not

directly forecast one-period-ahead returns either.

A central finding is that dividend growth is strongly predictable in ways often overlooked. The

posterior mean of ϕd,d is 0.41, with 95% of the posterior above 0.22, indicating highly significant

and economically meaningful persistence: for comparison, consider the autocorrelation in annual

US real GDP, at 0.14. Crucially, this persistence holds even after controlling for lagged returns

and valuation ratios. We also find ϕd,r = 0.14, implying returns help predict dividend growth, and

ϕpd,d < 0, so dividend growth negatively forecasts the next period’s price-dividend ratio. While

dividend growth doesn’t forecast short-term returns, it may still shape expected returns at longer

horizons.
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Figure 2: Bayesian restricted prior and posterior of Φ1

Note: Red represents the prior, grey is the likelihood, and blue is the posterior.

4.3 The Restricted Posterior

Figure 2 shows the restricted informative prior, the likelihood, and the restricted informative

posterior for Φ1.
9 The likelihood (gray p.d.f.) mean matches the flat-prior estimates from Table 1.

Posterior distributions are generally more concentrated, reflecting the combination of prior and

data. In the first column, ϕd,d falls from 0.41 to 0.3 in the posterior but remains clearly positive,

confirming persistent dividend growth. Coefficients ϕpd,d and ϕr,d shrink slightly toward zero with

tighter uncertainty. In the second column, ϕpd,pd rises and becomes tightly concentrated around

0.98, indicating slower mean reversion than the likelihood estimate of 0.91. This reflects both the

stationarity and CS restrictions, which the likelihood alone does not impose. The posterior for ϕd,pd

9The hyperparameters λ = 0.17 and θ = 0.05 are chosen to maximize the marginal likelihood (Giannone et al.,
2015). We set σ2

i to the residual variance from AR(1) models: σ2
d = 0.0034, σ

2
pd = 0.0284, σ

2
r = 0.0254. The prior mean

return µ
r
is 10.5%, consistent with a 4% risk-free rate and 6.5% equity premium; µ

d
is 5.5%, consistent with long-run

U.S. nominal GDP growth. The CS restriction (4) implies µ
pd
≈ 2.8.
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Figure 3: Bayesian restricted prior and posterior of µ

0 0.02 0.04 0.06 0.08 0.1
0

20

40

60

80

100

2 3 4 5
0

1

2

3

4

5

6

0.05 0.1 0.15
0

20

40

60

80

100

Note: Red represents the prior, grey is the likelihood, and blue is the posterior.

centers near zero, consistent with Cochrane (2008b)’s conclusion that the price-dividend ratio does

not forecast dividend growth. Given the high persistence of pdt and CS identity (9), this implies

ϕr,pd must be negative. Thus, greater persistence in pdt leads to less return predictability and slower

mean reversion. Finally, the third column shows posterior distributions more precise and shrunk

toward zero, but ϕd,r remains significantly positive, amplifying the dividend momentum channel

despite prior shrinkage.

Figure 3 looks at the same distributions for the unconditional mean of the variables, µ. The

likelihood alone is very uncertain about the value of these parameters, so, not surprisingly, we see the

restricted posterior distribution moving closely toward the restricted informative prior distribution.

The parameter µd mostly gains precision. For the case of µpd, the posterior moves closer to its initial

condition, consistent with a price-dividend ratio close to non-stationarity. For µr, the posterior is

consistent with a markedly higher and less uncertain unconditional equity return in nominal terms.

Incorporating reasonable prior distributions over the system’s steady state is a key advantage of the

Bayesian approach, given the difficulty of accurately estimating these parameters from the likelihood

alone.

Figure 4 reports the distribution of the covariance elements. The CS restrictions push the prior

covariance of urt with udt and updt away from zero. The posterior of Σpd,d is centered around negative

values, so the CS restrictions imply a downward revision of Σr,d. Instead, the posterior estimate

is associated with an upward revision of Σr,pd. This reflects the upward revision of the posterior

estimate of Σpd,pd and the tight link between Σr,pd and Σpd,pd imposed by the CS restriction.
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Figure 4: Bayesian restricted prior and posterior of Σ

Note: Red represents the prior, grey is the likelihood, and blue is the posterior.

4.4 Return Predictability

Figure 5 looks at the R2 of the return equation both at one period ahead and as a function of the

horizon. Appendix E derives how to compute R2 for multiple-period returns. Panel (a) draws the

density associated with prior, likelihood, and posterior for the one-period-ahead R2 of the return

equation. Compared with the likelihood, both the restricted informative prior and the associated

posterior offer a much more skeptical view of the one-period-ahead predictability of returns.

Panel (b) draws the median and the 68th interval associated with the restricted informative prior,

likelihood, and restricted informative posterior for the R2 of the return equation as a function of the

horizon.10 The figure clearly shows the points raised in Cochrane (2009, p.228). For the case of the

likelihood, the R2 initially increases before decaying. Instead, our restricted informative posterior

features a shift of return predictability toward longer horizons. This is seen from an R2 that increases

10We thank John H. Cochrane for suggesting Panel (b).
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Figure 5: Return Equation R-squared
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Note: Red represents the prior, grey is the likelihood, and blue is the posterior. In Panel (b), the solid line is the
median value, while the shadow area represents the 68th posterior credible intervals.

more slowly but reaches higher values for longer horizons. This is due to the combination of a lower

degree of short-term predictability and a higher persistence of the price-dividend ratio. Note that,

contrary to the concerns in Boudoukh et al. (2008), this result is not hard-wired by choosing a prior

for a highly persistent price-dividend ratio: our restricted informative prior is centered around low

values for the short-term predictive coefficients; hence, the a priori R2 is low at all horizons.

Figure 6 plots the time series of the one-period-ahead expected return implied by the likelihood

and restricted informative posterior. The figure clearly shows how the restricted informative

prior reduces the one-period-ahead return predictability, reinforcing the message from Panel (a)

of Figure 5. The restricted informative posterior also shows less uncertainty. Notably, the median

of the restricted informative posterior estimate never becomes negative, a desirable property as

emphasized by Campbell and Thompson (2008) and Pettenuzzo et al. (2014). Nevertheless, there is

still time variation in expected returns in the restricted informative posterior.

4.5 Dividend Momentum

Our empirical results show that dividend growth is positively autocorrelated after controlling for the

price-dividend ratio, i.e., ϕd,d > 0. We now highlight how this fact implies a previously overlooked
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Figure 6: One-Period-Ahead Expected Return
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Note: The solid line is the median value, while the shadow area represents the 68th posterior credible intervals.

channel of return predictability, which we call dividend momentum. We first define dividend

momentum using news about cash flows and discount rates and then show how it manifests in the

impulse response functions (IRFs) and the correlation between cash flow and discount rate news.

Cashflow and Discount Rate News

Iterating forward the CS identity, applying expectations, and imposing the transversality condition

lim
T→∞

ρTEtpdt+T = 0, the price-dividend ratio is equal to the expected discounted sum of future

dividend growth minus the expected discounted sum of future returns. Combining this result with

the CS identity, Campbell and Ammer (1993) derive a decomposition of unexpected returns:

rt+1 −Etrt+1 = (Et+1 −Et)
∞

∑
j=0

ρj ∆dt+j+1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
NCFt+1

−(Et+1 −Et)
∞

∑
j=1

ρjrt+j+1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
NDRt+1

(25)

25



An unexpected positive return must reflect either upward revisions to current and future

dividend growth (NCFt+1, cash-flow news) or downward revisions to expected future returns

(NDRt+1, discount-rate news). These components help define mean reversion and momentum: mean

reversion occurs when returns rise today but expected future returns fall, so rt+1 − Etrt+1 moves

opposite to NDRt+1; momentum arises when both move in the same direction. If both current

and expected dividend growth increase alongside expected returns, we observe dividend-induced

momentum in returns, or “dividend momentum.”11 While the literature often interprets NCFt+1

and NDRt+1 as permanent and transitory shocks to wealth, respectively, the presence of dividend

momentum implies that discount-rate news are correlated with revisions to expected dividend

growth and accumulates over time.

Dividend momentum will generally arise whenever dividends are persistent, in a way not fully

captured by the lagged price-dividend ratio (i.e., ϕd,d > 0). This follows from the restrictions implied

by the CS identity, even if the price-dividend ratio is the only variable directly predicting returns.

To see this, consider the following simplified system:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∆dt+1

pdt+1

rt+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϕd,d

ϕpd,d

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∆dt +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

ϕpd,pd

ϕr,pd

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

pdt +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

udt+1

updt+1

urt+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(26)

The zero coefficients for ϕr,d (lagged dividends do not forecast returns) and ϕd,pd (the lagged

price-dividend ratio does not forecast dividends) are approximately true in the data, as seen in

Figure 2. The omission of the third column is for expositional purposes only and does not affect

any of the economic implications.12 In this simplified setting, the CS restrictions (5) and (6) imply

ϕpd,d = −ϕd,d/ρ and ϕr,pd = ρϕpd,pd − 1. To further simplify the discussion we also assume that

Cov (updt+1, udt+1) = 0. This assumption is not required but simplifies the exposition, allowing an

interpretation of updt+1 and udt+1 as distinct shocks that we call price-dividend ratio and dividend

growth shocks. The rest of the covariances between innovations are backed out from the CS

restrictions (8) and (9), yielding Cov (urt+1, udt+1) = Var (udt+1) and Cov (urt+1, u
pd
t+1) = ρVar (u

pd
t+1).13

11Dividend momentum is a special case of return momentum, distinct from serial correlation in dividend growth. If
the price-dividend ratio captures all persistence, as in Bansal and Yaron (2004), NDRt+1 remains unaffected and no
return momentum arises.

12Our estimates show that ϕd,r > 0, strengthening the basic intuitions in this section.
13In Appendix B.4, we show that this simplified setting leads to a latent variable model along the lines of
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In this case, the decomposition in Equation (25) becomes:

rt+1 −Etrt+1 = (1 +Ψ)udt+1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

NCFt+1

−(−ρupdt+1 +Ψudt+1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

NDRt+1

,

with Ψ = ρϕd,d

1−ρϕd,d
. Notice that the two terms include Ψudt+1 with opposite sign, so they cancel out

and the expression for rt+1 − Etrt+1 = udt+1 + ρu
pd
t+1 is equal to, as per the CS identity, urt+1, which

does not depend on ϕd,d. While the sum of the two components is unaltered irrespective of ϕd,d,

when ϕd,d > 0, the NCFt+1 term is now bigger by the factor Ψ, and NDRt+1 is affected by both updt+1

and udt+1. Importantly, a positive dividend growth shock will lead to positive unexpected returns

and dividend growth today, a positive revision to the discounted sum of expected future dividend

growth, and a positive revision to the discounted sum of expected future returns (NDRt+1); this

shock generates dividend momentum, and it contributes to the (positive) correlation of NCFt+1

and NDRt+1. If instead ϕd,d = 0, the dividend growth shock does not affect NDRt+1 and, thus, it

does not generate dividend momentum.

Another method to detect dividend momentum is to look at the contribution of a dividend

growth shock to the variance of NCFt+1 and NDRt+1 and the correlation between them. In our

simplified model, the variance of the unexpected return is:

Var(urt+1) = (1 +Ψ)
2
Var(udt+1)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Var(NCFt+1)

+ρ2Var(updt+1) + (Ψ)
2
Var(udt+1)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Var(NDRt+1)

−2(1 +Ψ)ΨVar(udt+1).
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
2Cov(NCFt+1,NDRt+1)

When ϕd,d > 0, dividend momentum implies that an increase in udt+1 leads to a pos-

itive revision of current and expected future cash flows and discount rates. As a conse-

quence, Var(NCFt+1) > Var(udt+1), Var(NDRt+1) > ρ2Var(updt+1), and Corr(NCFt+1,NDRt+1) =

ρϕd,d

√
Var(NCFt+1)/Var(NDRt+1) > 0. Therefore, if dividend momentum is present in the data,

one should see an increased contribution of dividend growth shocks to the volatility of both NCFt+1

and NDRt+1 and the correlation between the two.

Van Binsbergen and Koijen (2010), where expected dividend growth and expected returns follow a VAR(1), where
revisions in expected dividend growth lead to revisions of future expected returns whenever ϕd,d ≠ 0. Additionally, we
emphasize that assuming correlation zero (rather than one) between current and expected dividend growth, as done
by Van Binsbergen and Koijen (2010), precludes the existence of dividend momentum. The latter, as discussed in
Section 4.5, is built on the premise that a shock to dividends will have a prolonged effect on future dividend growth
and, consequently, on expected future returns.
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Table 2: Shock’s Contribution to NCFt+1 and NDRt+1

Total upd
t+1 ud

t+1
V ar(NDRt+1) 0.023

[0.013, 0.035]
97.1%

[93.9%, 98.7%]
2.9%

[1.3%, 6.1%]
V ar(NCFt+1) 0.007

[0.005, 0.010]
8.5%

[0.7%, 32.5%]
91.3%

[67.3%, 99.0%]
Corr(NDRt+1, NCFt+1) 16.1%

[−25.9%, 55.1%]
−1.9%

[−43.6%, 38.9%]
15.9%

[10.5%, 22.9%]

Note: We report the posterior median and the 68th posterior credible intervals. The “Total” column reflects the
posterior of moments, while the upd

t+1 and ud
t+1 columns reflect the posterior contribution of the two shocks.

Whenever NCFt+1 and NDRt+1 are correlated, it is useful to separate the orthogonal shocks

driving both. In our simple model, these correspond to the uncorrelated innovations updt+1 and udt+1.

In more general settings, they must be orthogonalized to identify price-dividend and dividend growth

shocks. A natural approach is to identify one shock that fully explains the unexpected variance

of the price-dividend ratio on impact, and a second shock, orthogonal to the first, that leaves the

price-dividend ratio unchanged but, together with the first, explains all of the unexpected variance

in dividend growth. This can be achieved via a Cholesky decomposition with variable ordering

[pdt+1,∆dt+1, rt+1], which recovers updt+1 and udt+1 in the simple case.14

Table 2 analyzes how both price-dividend ratio and dividend growth shocks contribute to

NDRt+1 and NCFt+1 in the data using the restricted informative posterior, with the two shocks

identified in the way just described. The table shows that NDRt+1 and NCFt+1 are correlated, as

expected, whenever dividend momentum is present, and most of the correlation comes from the

dividend momentum associated with dividend growth shocks.

Impulse Response Functions

A helpful way to understand dividend momentum is to compute the IRFs for each of the two shocks.

Figure 7 plots our simple model’s discounted cumulative IRFs for returns and dividend growth. We

plot the IRFs discounting by ρh and then cumulating; so, for returns, the IRF converges to the sum

of the initial unexpected return and NDRt+1, whereas, for dividends, the IRF converges to NCFt+1.

14A third shock affecting only contemporaneous returns corresponds to the CS approximation error ηt+1, which
vanishes if the identity holds exactly. Alternative orthogonalizations exist. For instance, Campbell et al. (2013) orders
returns first and the price-earnings ratio second, so the first shock explains all unexpected return variance, and the
second affects the price-dividend ratio.
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We would observe a perfectly flat IRF beyond the initial jump if a variable were unpredictable.

After an initial positive impact, downward-sloping IRFs for returns indicate mean reversion, whereas

upward-sloping ones are a sign of momentum. We will have dividend momentum if a shock with an

initial positive impact and an upward-sloping IRF for dividend growth causes momentum.

Panel (a) of the figure plots the case ϕd,d = 0, whereas Panel (b) has ϕd,d > 0. For a price-dividend

ratio shock, the IRFs are the same in both panels: returns jump on impact but have a negative

slope after that. This is the classic mean reversion effect in returns, caused by mean reversion of the

price-dividend ratio, as documented by Fama and French (1988) and Campbell and Shiller (1988a).

On the contrary, the IRF for dividend growth is zero every period, so neither contemporaneous nor

expected future dividend growth changes.

Consider now a dividend growth shock. By the CS identity, returns and dividend growth initially

jump by the same amount regardless of the ϕd,d value. However, the value of ϕd,d is relevant

beyond impact. If ϕd,d = 0, future expected returns and dividend growth are unaffected: the slope

of both IRFs is flat, and there is no dividend momentum. If instead ϕd,d > 0, expectations of

future returns and dividend growth increase, the slope of both IRFs is positive, inducing dividend

momentum. Panel (c) plots the IRFs implied by the data as captured by the restricted informative

posterior, again identifying the shocks using the Cholesky approach described above. The downward

slope for returns in the left panel indicates mean reversion after a price-dividend shock, and the

upward-sloping IRFs of both dividends and returns in the right panel indicate dividend momentum

after a dividend growth shock.

Appendix F compares the empirical IRFs in Panel (c) with those estimated under flat priors,

which reveals how, in the latter case, return predictability is exaggerated, implying steeper slopes

for the return IRFs in response to both shocks and is estimated more imprecisely. It also discusses

how omitting dividend growth from the VAR leads to biased estimates that make detecting the

dividend momentum result impossible.

Variance of Long-Horizon Returns and Implications for Portfolio Choice

Dividend momentum affects the portfolio choice of the investor who cares about long-run returns,

rt,t+k = ∑k
j=1 rt+j . The risk for the long-run investor is a function of the unpredictable component
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Figure 7: Dividend Momentum and IRFs

(a) Simplified Model: No Dividend Momentum (ϕd,d = 0)
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(b) Simplified Model: With Dividend Momentum (ϕd,d = 0.4)
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(c) Data: Restricted Informative Posterior

Note: Panel (a): ϕd,d = 0.4. Panel (b): ϕd,d = 0. In addition, we use the following numerical values ϕpd,pd = 0.92,
Var (ud

t+1) = 0.003, and Var (upd
t+1) = 0.028. ρ = 0.971. Panel (c): The solid lines represent the median posterior

response. The darker shadow area represents the 68th posterior credible intervals, while the lighter shadow area
represents the 95th posterior credible intervals.
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for long-run returns, rt,t+k −Etrt,t+k. For the simplified model in (26), we have that

rt,t+k −Etrt,t+k =
k

∑
j=1

urt+j +
k−1

∑
j=1

[ajupdt+k−j + bju
d
t+k−j] , (27)

where aj =
1−ϕj

pd,pd

1−ϕpd,pd
(ρϕpd,pd − 1), bj = −ϕd,d

ρ

(ρϕpd,pd−1)

(ϕd,d−ϕpd,pd)
[
(1−ϕj

d,d
)

1−ϕd,d
−
(1−ϕj

pd,pd
)

1−ϕpd,pd
], and urt+1 = udt+1 + ρu

pd
t+1

as implied by the CS identity. Notice that bj = 0 if ϕd,d = 0. The unpredictable component of

long-run returns reflects the innovations to the one-period-ahead returns and the contribution of

shocks to the price-dividend ratio and dividend growth that will occur during the investment horizon

and lead to revisions in expected returns. In the presence of dividend momentum, i.e., when ϕd,d > 0,

dividend growth shocks affect the long-run investor’s risk beyond the direct impact on the innovation

on the one-period-ahead returns through its effect on expected returns.

The variance of the long-horizon returns for our simplified system can be decomposed into:15

Var (rt,t+k) = kVar (urt+1) +
k−1

∑
j=1

{a2jVar (u
pd
t+1) + b

2
jVar (udt+1)}

+ 2
k−1

∑
j=1

{ajCov (urt+1, u
pd
t+1) + bjCov (u

r
t+1, u

d
t+1)} , (28)

The first term in Equation (28) reflects the uncertainty coming from the innovations to one-period-

ahead returns, often labeled the “i.i.d.” component of uncertainty since this will be present even in

the case where stock returns are unpredictable. The second term reflects the uncertainty associated

with the effects of price-dividend ratio and dividend growth shocks on revisions to future expected

returns. The last component reflects the covariance between the one-period-ahead return innovations

and the revisions to future expected returns over the investment horizon. Investing in stocks is

perceived as less risky for the long-run investor whenever Vart (rt,t+k) < kVar (urt+1), which is only

possible if the last component is negative. If 0 < ϕpd,pd < 1 we have that aj < 0 for all j, and since

Cov (urt+1, u
pd
t+1) = ρVar (updt+1) the mean reversion effects of price-dividend ratio shocks generate

negative covariance, reducing the risk associated with long-run investment and generating a positive

hedging demand motive for holding stocks for long-run risk-averse investors (see Campbell and

15The derivations for the general VAR case are presented in Appendix G. In this section, we are neglecting the
estimation uncertainty that will be present any time one estimates a model to predict future returns (see Avramov,
2002; Pástor and Stambaugh, 2012).
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Figure 8: Variance Ratio
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Note: The blue solid line reflects the ratio when both mean reversion and dividend momentum are present. The
orange dashed line reflects the ratio when dividend momentum is excluded.

Viceira, 1999). The presence of dividend momentum generates additional sources of risk for the

long-run investor. Shocks to dividend growth increase the uncertainty of future expected returns.

Moreover, if 0 < ϕd,d < 1 we have that bj > 0 for all j, and since Cov (urt+1, udt+1) = Var (udt+1), the last

component increases the variance of long-run returns, reflecting the positive correlation between

shocks to future returns and shocks to future dividend growth.

Figure 8 reports the ratio between VarT (rT,T+k) and kVarT (rT,T+1) obtained from the data using

the restricted informative posterior, as a function of the horizon k and evaluates the contribution of

dividend momentum to its shape. The solid blue line reflects the ratio when both mean reversion

and dividend momentum are present. The orange dashed line reflects the ratio when dividend

momentum is excluded. We eliminate dividend momentum by canceling any effect of dividend

growth shocks after impact: dividend momentum increases this ratio for all reported horizons.

The presence of dividend momentum implies that dividend growth shocks increase current

and future expected returns. Therefore, these shocks increase the variance of long-run returns,

VarT (rT,T+k), by both increasing the uncertainty about future expected returns and inducing
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positive co-movement between one-period returns and future expected returns surprises; thus

dividend momentum contributes quite substantially to the risk faced by the long-run investor.

Without dividend momentum, the variance ratio would be roughly one-third smaller. Therefore,

the presence of dividend momentum generates a negative hedging demand component that partially

offsets the traditional positive hedging demand arising from the mean reversion in returns (see

Koijen et al., 2009). As we will see in the next section, this negative hedging demand is empirically

essential and affects the portfolio choice of long-horizon investors trying to time the market.

Implications for theory

From a theoretical standpoint, dividend momentum has important implications for asset pricing

theories that seek to explain fluctuations in expected returns. These models typically seek to

explain the counter-cyclical variation in expected returns relative to dividend and/or consumption

growth (see, e.g., Cochrane, 2017). The presence of dividend momentum does not challenge the

idea that such mechanisms are the primary drivers of return fluctuations. Instead, it points to an

additional channel that generates procyclical variation in expected returns, linked to the persistence

of dividend growth. This channel naturally arises in a consumption-based asset pricing model when

expectations of future dividend growth are time-varying. As emphasized in the theoretical work of

Menzly et al. (2004), in such a setting, an increase in expected dividend growth implies that the

asset delivers more of its cash flows further in the future, making its price more sensitive to shocks

in the aggregate discount rate—i.e., to fluctuations in investors’ risk preferences. To the extent

that this added volatility is—at least partially—correlated with changes in risk appetite, it must

be priced, leading to a higher risk premium. More broadly, the presence of dividend momentum

induces a richer connection between expected returns and macroeconomic dynamics: in the short

run, expected returns may exhibit procyclical behavior tied to persistent dividend growth and its

drivers, while in the long run, they remain countercyclical, reflecting the tendency of prices to revert

toward the persistent component of dividends.
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5 Out of Sample Results: Forecasting and Asset Allocation

Given the degree of return predictability found in-sample, even for the case of the restricted

informative prior, individual investors would find it optimal to time the market aggressively (Kandel

and Stambaugh, 1996). This is even more the case for long-run investors (see Barberis, 2000;

Campbell and Viceira, 1999). However, Goyal and Welch (2008), among many others, have pointed

out that in-sample return predictability often leads to disappointing results out-of-sample and that

portfolio allocation strategies attempting to take advantage of in-sample return predictability rarely

outperform simple benchmarks. In this section, we investigate the out-of-sample performance of

investment strategies where the investor chooses between investing in cash and equities using the

VAR with our restricted informative prior. For this purpose, we must consider a more general

4-variable model that includes the risk-free rate. In Appendix H, we describe this more general

model and the CS restrictions associated with it. We compare the performance of an investor who

uses our restricted informative prior with that of five other investors who use different priors. Two

of the investors use the 4-variable VAR(1) described above. Of those, one will use flat priors and

another informative priors without imposing the CS restrictions.16 To analyze the importance

of modeling dividends explicitly in the VAR, we will consider two more investors who follow the

standard approach in the literature and drop dividend growth from the VAR; they run a 3-variable

VAR(1) with the risk-free rate, the price-dividend ratio, and the excess stock return using either flat

priors or informative priors. Finally, a naive investor uses the historical average returns, computed

yearly as new data becomes available. Each year, the five investors estimate the parameters of

their models and produce forecasts using only information available at each point in time using an

expanding window. The out-of-sample period spans from 1973:Q1 to 2024:Q4.

5.1 Out-of-sample forecasting

As a first step, Table 3 evaluates out-of-sample the forecasts made by the different investors, looking

at the cumulative excess return ∑h
i=1(rt+h − r

f
t+h) at horizons h = 1, . . . ,10. The table reports the

“Out-of-Sample R2” as in Campbell and Thompson (2008), defined as the percentage improvement

in the out-of-sample fit of each investor with respect to the naive investor. A negative value implies

16Appendix I describes in detail the flat and the informative prior parameterizations used in this section.
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Table 3: Out-of-Sample Return Equation R-squared

Flat priors Informative Priors

Omitting Divs. Including Divs. Unrestricted Unrestricted Baseline
(Inc. Divs.) (Omit. Divs.)

h = 1 -9.7% -12.0% -1.1% -0.4% 5.9%
h = 2 -7.9% -10.5% 0.2% 0.8% 14.5%
h = 3 -26.9% -28.8% -0.9% 0.2% 21.5%
h = 4 -39.9% -39.1% -4.8% -3.3% 26.2%
h = 5 -44.8% -41.7% -13.6% -12.3% 28.8%
h = 6 -82.5% -76.0% -37.2% -36.2% 27.0%
h = 7 -126.3% -115.3% -60.2% -59.2% 22.3%
h = 8 -161.1% -145.9% -80.8% -79.7% 19.7%
h = 9 -210.4% -190.4% -104.6% -103.5% 15.5%
h = 10 -292.4% -264.9% -138.5% -137.0% 8.5%

Note: Percentage improvement in out-of-sample fit of each investor with respect to the naive investor. Out-of-sample
period: 1973:Q1 to 2024:Q4.

that it under-performs the naive investor. Not surprisingly, both investors with flat priors obtain

much worse out-of-sample results than the naive investor and adding dividend growth to the VAR

with flat priors leads to a moderate improvement at horizons greater than or equal to 4 years.

All investors using informative priors improve their results with respect to those of both investors

using flat priors. Thus, shrinkage can improve out-of-sample forecasting performance. Including

or omitting dividend growth from the system when introducing informative priors makes little

difference to the out-of-sample performance. Neither of the two approaches improves upon the

näıve benchmark. Only the investor using the restricted informative priors beats the naive investor

out-of-sample. This highlights that (a) there is enough persistence in dividend growth to alter

predictions for returns at multiple horizons substantially, and (b) the information encoded into the

CS restrictions is essential to leverage the information contained in the dynamics of dividends to

sustain out-of-sample forecasting gains. The gains peak at around five years but remain economically

significant up to 10 years ahead. The main conclusion of this analysis is that one critically needs to

combine Bayesian shrinkage and the CS restrictions to obtain a good out-of-sample performance.

In Appendix D, we also consider the out-of-sample forecasting performance of two alternative

methods for incorporating the information from lagged dividend growth in predicting returns. The

first strategy, discussed in Section 2.1, omits ∆dt+1 from the model but considers a 3-variable VAR(2)

having the additional lags to proxy for the dynamics of (lagged) dividend growth (see Appendix A.4
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for further details). This latter approach is correctly specified without approximation but does not

impose the CS restrictions (which would require additional restrictions in the coefficients for the

second lags of the VAR). The results for this strategy are reported in Table D.2. The informative

prior is set following the steps described in Appendix I, accommodating for the omitted variable and

the extra lag. The second option is the one detailed in Section 3.5, which essentially allows dividend

growth to act as a predictor for [rt+1, pdt+1] without directly modeling the dynamics of dt+1.

Neither of these alternatives yields positive R2 statistics in out-of-sample results, and both

produce forecasts that are systematically inferior to our preferred model. These results underscore

the main conclusion of our paper: it is crucial not only to have a correctly specified VAR but also

to combine Bayesian shrinkage and the CS restrictions to achieve good out-of-sample performance.

5.2 Asset Allocation

We now discuss optimal long-horizon allocations.17 The investors maximize the expected utility

of the terminal value of wealth under Constant Relative Risk Aversion (CRRA) preferences.18

Each investor chooses the allocation between the risk-free asset and the stock return for one year

using different forecasts. To compute the allocations, we use the solution derived by Jurek and

Viceira (2011) where the investors re-balance every year, considering how many years are left until

retirement. The investors start with a planning horizon of 45 years beginning at the end of 1973

and can invest in equity and a risk-free cash instrument. We will use the posterior mean for each

period. We consider a risk aversion coefficient of γ = 5.

Figure 9 displays the results. Panel (a) displays the wealth accumulation profiles for each of

the four investors. To facilitate comparisons across portfolios, each curve is scaled by its ex-post

volatility.19 Panel (b), in turn, presents the history of the weights for the risky asset. Two points

17In the subsequent part of this section, we drop the investor from the alternative model set who uses informative
priors but excludes dividend growth from their information set. This investor’s allocations and related performance
closely resemble those of the investor who uses informative priors and includes dividend growth in VAR but does not
impose the CS restrictions. As a result, the allocations replicate the similarities highlighted by the forecasting exercise
reported in Table 3.

18This problem resembles one of the target-date funds, whose dramatic increase in importance in the last decade
has been documented by Parker et al. (2020).

19Specifically, we compute the cumulative log excess return earned per unit of risk, where risk is measured by
the volatility of log excess returns. For each period T from 1973:Q2 to 2024:Q4, the cumulative log excess return is

calculated as ∑T
t=1973∶Q1 log (

1+rpt
1+rft
), which represents the log of the final wealth of an investor who holds a portfolio

yielding return rpt while borrowing at the risk-free rate rft . This cumulative return is then divided by the standard
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Figure 9: Asset Allocation Results: Long-Term Strategy
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(b) Portfolio Weight to Equities (%)
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are worth noticing. First, the investor using the restricted informative prior is the only one who

systematically improves upon the naive approach. This is in line with the out-of-sample performance

reported above. Second, both investors using flat priors use massive amounts of leverage (up to 800

percent), which leads to large draw-downs, particularly in the first half of the sample, i.e. when

the investment horizon is long. Both investors using informative priors have more moderate weight

profiles. Still, the restricted informative prior leads to weights leveraged only occasionally and by

marginal amounts, and the investors never take short positions. These two desirable properties

lead to the superior performance in Panel (a). Although the profile of weights of the naive investor

is the most stable, it performs worse (in terms of risk-adjusted wealth) than the profiles of both

deviation of log ( 1+rpt
1+rft
), computed over the entire sample period.
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Figure 10: Risk-Adjusted Log Wealth Breakdown
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investors using informative priors since it does not take advantage of the moderate degree of return

predictability estimated in the data.

Figure 10 illustrates how the risk-adjusted wealth gains of an investor employing restricted

informative priors can be decomposed into contributions from the imposition of the CS restrictions

on (1) Φ and (2) Σ. Approximately two-thirds of the cumulative gains are driven by the CS

restrictions on Φ, while the remaining one-third is attributable to those imposed on Σ.

Why does the model with restricted informative priors lead to less leverage and less aggressive

timing? Figure 11 plots the mean allocations as a function of investment horizon, together with

bands representing the expected standard deviation of the allocations using the posterior mean

using data until 2024. Thus, the central lines with markers represent the average allocation to

stocks that an investor would expect to hold if the variables of the VAR were at their unconditional

mean, and the width of the bands represents the amount of market timing that the investor expects

to engage in, in response to changes in investment opportunities.

The first model considered is the one with flat priors excluding dividend growth. This model
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Figure 11: steady state Allocation to Stocks under Different Models
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assumes a large degree of predictability, which has two effects. First, it implies ample amounts of

return mean reversion, which, combined with the fact that this model rules out dividend momentum,

implies a strong hedging demand for stocks (large declining slope and highly leveraged average

position). Second, it shows excellent timing around the average position (wide bands). The resulting

large and volatile allocations are in line with the classic findings of Campbell and Viceira (1999) but

have been challenged by Viceira (2008) concerning their applicability in comparison to the real-world

practices of the finance industry. The addition of dividends, while maintaining flat priors in the

second model, allows the investor to incorporate dividend momentum. This leads to a reduction in

average allocations and slope, consistent with the fact that dividend momentum makes long-term

returns riskier, as explained in Section 4.5. This model still has wide bands associated with the

large degree of return predictability implied by flat priors. The restricted informative prior, in turn,

leads to an additional decline in both the slope and the average long-term allocation by tilting the

model parameters toward values consistent with a lower degree of return predictability. This leads

to positions close to 100 percent stocks at the beginning of the planning horizon, close to 50 percent

when the investor nears retirement, and positions with a modest amount of market timing. It is

worth noting that these average allocation prescriptions resemble those of real-world target-date

funds, whereas the ones based on flat priors are unrealistic from this point of view. Viceira (2008)

notes that existing investment advice is inconsistent with the quantitative results of portfolio choice

problems. Still, we show that priors that encode shrinkage of return predictability, together with
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Figure 12: Sharpe Ratio as a function of Hyperparameters
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Note: The hyperparameter values used throughout this section are marked with a cross in the figure.

accounting for the increase in risk for the long-run investor associated with the presence of dividend

momentum, may be able to reconcile the two.

5.3 Choosing the Prior Tightness

Our restricted informative priors embody a degree of skepticism about the existence of return

predictability. This is governed by two hyperparameters that we choose to maximize the value of

the marginal likelihood, as proposed by Giannone et al. (2015), using only data up to 1973. The

previous results highlight that imposing informative priors delivers clear gains with respect to any

alternative prior when measured in terms of risk-adjusted wealth at the end of the sample. Figure

12 explores the sensitivity of the results above to the tightness of the restricted informative prior.

The figure plots the contours of the Sharpe ratio at the end of the sample under different choices

of hyperparameters. The Sharpe ratios are calculated with out-of-sample moments. The “X” in the

graph represents our baseline choice of hyperparameters, resulting from maximizing the value of the

marginal likelihood in the pre-sample up to 1973. The figure shows that the ex-ante procedure by

Giannone et al. (2015) selects hyperparameters close to those that ex-post maximize the Sharpe
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ratio. In particular, the hyperparameter λ, which governs the overall tightness of the Minnesota

prior, needs to be sufficiently tight, between a value of 0.2 and 0.05, to obtain the gains reported

above.20 Of course, if the parameter is tighter and tighter, the gains start to decline as the degree

of predictability is dogmatically driven to zero, and the model converges to the naive strategy.

The Sharpe ratio is less sensitive to the choice of the hyperparameter θ, which governs the overall

tightness of the Single Unit Root prior.

5.4 The Myopic Investor

Let us now consider the problem of myopic investors. These investors act as if they were a one-period

investor every year, not taking into account that they will continue investing for many years to

come. Figure 13 replicates Figure 9 for the case of myopic investors.

Again, two points are worth noticing. First, the investor using the restricted informative prior is

the only one who systematically improves upon the investor using the naive approach. This is in

line with the out-of-sample performance reported above. Second, the profile of weights of the naive

investor is the most stable. Both investors using flat priors take large short positions, leading to

large draw-downs, particularly in the last half of the 1990s. Both investors using informative priors

have more moderate weight profiles. However, the restricted informative prior leads to weights

short only occasionally and by marginal amounts and never require leverage. These two desirable

properties lead to superior performance. Figure 14 replicates Figure 12 for the case of myopic

investors. As before, the figure shows that to maximize the Sharpe ratios, one needs to center

the prior around non-predictability and with a sufficiently high degree of tightness for this type

of investor. Interestingly, in this case the hyperparameter θ needs to be sufficiently tight as well.

Moreover, the combination selected a priori by maximizing the marginal likelihood is once again

very close to the ex-post optimal choice.

20In the macroeconomics literature, the value of 0.2 is usually considered a benchmark.
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Figure 13: Asset Allocation Results: Myopic Strategy

(a) Risk-Adjusted Log Wealth
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Figure 14: Sharpe Ratio as a function of Hyperparameters
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Note: The hyperparameter values used throughout this section are marked with a cross in the figure.
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6 Dividend Momentum at Higher Frequency

In this section, we investigate the presence of dividend momentum using quarterly data. Specifically,

we use S&P500 data on dividends and prices for the sample period 1946:Q1 to 2024:Q4. The data

and the prior are constructed consistently as we described in Section 4.1. Working with data at

a quarterly frequency requires addressing the presence of seasonality in dividends. A common

approach to eliminate seasonality is to ”smooth” dividends using a moving average of dividends

paid over the preceding year. Taking a moving average of dividends implies that dividend growth

could exhibit some mechanical persistence. An alternative approach is to use smoothed dividends

but treat the unsmoothed quarterly growth rate in dividends as a latent factor (see Schorfheide

et al., 2018). While this approach has the appealing feature of avoiding the need to explicitly model

seasonality in the data, it does not allow for restricting that the seasonality of the price-dividend

ratio and that of dividend growth are intrinsically related, as required by the CS identity.

We assume that the price-dividend ratio and dividend growth can be decomposed into seasonal

and seasonally adjusted components, whereas returns do not exhibit any seasonality. Therefore:

∆dt+1 = ∆dst+1 +∆dsat+1 (29)

pdt+1 = pdst+1 + pdsat+1

where the superscript “s” denotes the seasonal component and “sa” denotes the seasonally adjusted

component. If returns do not exhibit any seasonal pattern, the CS identity implies that the seasonal

components of dividends and the price-dividend ratio are related, both deriving from the seasonality

in dividends:

∆dst+1 = −ρpdst+1 + pdst (30)

In line with Harvey and Todd (1983), we allow the seasonal variation in the data to change slowly

over time, using a mechanism that ensures the sum of the seasonal components over any three

consecutive quarters has an expected value of zero:

3

∑
j=0

pdst−j = σs
t e

s
t (31)
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Figure 15: Seasonally Adjusted Quarterly Dividend Growth

Note: Black broken line denotes the raw data, black continuous line denotes the data constructed using the average of
the past 4 quarters of dividends. The blue line denotes the seasonally adjusted data from our model. The darker
shadow area represents the 68th posterior credible intervals, while the lighter shadow area represents the 95th posterior
credible intervals.

where est ∼ i.i.d.N(0,1). Compared to the classic formulation of a seasonal model, we incorporate

stochastic volatility. Specifically, we assume that logσs
t = logσs

t−1 + ωt+1, where ωt ∼ i.i.d. N(0, σ2
ω).

This allows us to capture the impact of the evolution in dividend payout policies over the sample.

In the early part of the sample, dividends were often concentrated in specific months, whereas in

the later part of the sample, they became more evenly distributed. Indeed, the first two decades of

the sample exhibit significantly larger seasonality compared to the remainder of the period. Lastly,

we assume that the (partially unobserved) seasonally adjusted data (i.e., [rt,∆dsat , pdsat ]) follow a

3-variable VAR(1), with the restrictions implied by the CS identity imposed. The model can be

cast in state space, allowing recovery of the latent (seasonal and seasonally adjusted) dividends

and dividend growth. We set priors following the steps described in Section 3.1. For the stochastic

volatility, we follow Omori et al. (2007). Parameter estimates can be fully recovered using a Gibbs

sampler. For more details, see Appendix J.

Figure 15 reports the retrieved estimates of seasonally adjusted dividend growth alongside the

seasonally unadjusted data and dividend growth computed on moving average quarterly dividends

over the past year. Dividends display pronounced seasonality in the early part of the sample, which

declines rapidly starting from the 1960s.21 As expected, series constructed using smoothed dividends

21We estimate that the volatility in the early part of the sample is roughly eight times larger than the average level
observed since the mid-1960s. In fact, in the earlier part of the sample, seasonal variations are also observable in the
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Figure 16: Dividend Momentum with Quarterly Data

Note: The solid lines represent the median posterior response. The darker shadow area represents the 68th posterior
credible intervals, while the lighter shadow area represents the 95th posterior credible intervals.

tend to lag our estimates, especially around major turning points. Most importantly, dividends

exhibit pronounced cyclicality even at a quarterly frequency. Lagged dividend growth remains a

relevant predictor of both dividend growth and the price-dividend ratio, even after accounting for

the predictability of the lagged price-dividend ratio and past returns.

Figure 16 displays the response of cumulative dividends and returns following a shock to the

price-dividend ratio and a dividend growth shock, identified as discussed in Section 4.5. Dividend

momentum remains a significant feature of the data, even at a quarterly frequency. Dividend shocks

result in an immediate increase in dividends, followed by a persistent movement in expected dividend

growth and expected returns in the same direction.

One of the advantages of our quarterly specification is that we can use the identified shocks

in Local Projections (LPs, Jordà, 2005) onto macroeconomic aggregates to gain insights into the

economic interpretation of the dividend momentum channel. Figure 17 displays such LPs using the

dividend growth shocks. To deal with the fact that the shock from the VAR is a generated regressor,

we sample 1000 time series of the shock from the posterior distribution and report 68% and 90%

confidence intervals that integrate out the uncertainty around VAR coefficients. We also control for

four lags of the outcome and impulse variables in the LPs. The figure shows that such shocks are

associated with significant effects macroeconomic variables at frequencies somewhat longer than the

usual business cycles: while the response is muted on impact, it builds out over time, reaching a peak

price-dividend ratio, even when smoothed dividends are used. In the post-1960s period, the estimated time-varying
volatility of the seasonal component of the data is relatively stable.
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between three and four years after impact–somewhat later than the peak of the dividend growth IRF

seen in Figure 16. Interestingly, the responses of most variables turn negative after about five years,

with those of investment and hours worked significantly so. The responses of prices and interest

rates are not significant for most of the projection horizon. In Appendix J.4 we plot the counterpart

of this figure for the price-dividend shock. The results show that this type of shock is associated

with responses of macroeconomic variables that are in the same direction but are larger and peak

at around the one-year horizon, and with a significant increase in the federal funds rate–more

similar to the standard business cycle fluctuations. Therefore, while both shocks are associated with

similar movements in economic variables, it appears that they are capturing phenomena occurring

at different points in the frequency spectrum. While the price-dividend shock is associated with

rapid responses in macroeconomic variables, the results suggest that the dividend growth shock

leading to dividend momentum is connected to prolonged boom-bust cycles in economic activity

that materialize first in an increase in dividend growth and only later on measures of broad economic

activity. We stress that these results, which rely on a particular recursive ordering of the shocks, are

merely suggestive. As the vast literature on identification in macroeconomics has established (Arias

et al., 2018, see, e.g.) even beyond the possible orderings of the variables, there is an infinite number

of potential orthogonalizations that are equally consistent with the reduced-form covariance matrix.

Nevertheless, they are informative about an association between dividend growth and persistent

movements in economic variables at business cycle frequencies and beyond. Understanding the deep

causal drivers of these fluctuations is an important avenue for further research.

The difficulty of predicting returns out-of-sample with quarterly data is well documented (see,

e.g., Goyal and Welch, 2008). We examine whether our model can outperform the trailing mean

benchmark in this setting. Starting from 1973:Q1, we generate real-time forecasts at various

horizons using the 3-variable VAR(1) model with restricted informative priors described above.

These forecasts are then used to compute cumulative returns over the forecast window. The

model consistently outperforms the näıve benchmark across all horizons (up to five years). The

“Out-of-Sample R2” for one-quarter-ahead forecasts is 0.6%, which aligns with the economically

plausible gains according to Campbell and Thompson (2008). This metric increases to 3.1% at

the one-year horizon and reaches 17% for five-year-ahead forecasts. For comparison, note that the

“Out-of-Sample R2” values are negative for both a 2-variable VAR(1) using [rt, pdt] and a 3-variable
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Figure 17: Local Projections of Macroeconomic Variables on Dividend Growth Shock

Note: The solid lines represent the median posterior response. The darker shadow area represents the 68th posterior
credible intervals, while the lighter shadow area represents the 90th posterior credible intervals.

VAR(1) including [rt, pdt,∆dt] estimated using flat priors (in both cases using smoothed dividends).

For instance, the 3-variable VAR(1) yields “Out-of-Sample R2” values of -1%, -5.5%, and -8.7% at

the one-quarter, one-year, and five-year horizons, respectively.

In Appendix J, we report additional robustness analyses: (a) re-estimating the model while

assuming constant volatility for the seasonal component of the data and (b) estimating the quarterly

model using smoothed dividend data, as is customary in the literature. In both cases, the results

are consistent with those reported in this section, providing strong evidence supporting the presence

of dividend momentum. Lastly, we investigate the presence of dividend momentum using monthly
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data and find evidence that supports the existence of this channel even at this frequency.

7 Conclusion and Implications for Future Research

In this paper, we have proposed a Bayesian approach to VAR inference that starts from informative

priors that embody skepticism about the degree of predictability in stock returns, address the high

persistence of the price-dividend ratio, and impose the cross-equation restrictions implied by the CS

identity. Adopting a Bayesian perspective with a conservative prior belief regarding the predictability

of future returns leads to substantial gains in out-of-sample forecasting performance and asset

allocation recommendations. We highlight the importance of including dividend growth in a VAR

with the price-dividend ratio and returns and note that a common practice of omitting dividend

growth amounts to imposing the additional restriction that this variable is not persistent after

controlling for lags of the remaining variables. Using annual postwar data and relaxing this additional

restriction uncovers an additional and previously overlooked channel of return predictability, which

we label “dividend momentum.” We show how dividend momentum has non-trivial implications

for interpreting cash flow and discount rate news and the optimal asset allocation of long-horizon

investors.

These results offer valuable insights for future research areas that remain unexplored within this

paper. On the empirical front, there is burgeoning literature that uses large data sets to search for

evidence of predictability in aggregate stock returns (see Kelly and Pruitt, 2013; Rapach and Zhou,

2020). Shrinkage or regularization of a potentially large parameter and predictor space becomes

essential in this context. However, when focusing on shrinkage, it is easy to forget the lessons of the

classic papers by Campbell and Shiller (1988a,b) and Cochrane (2008b): the price-dividend ratio

and aggregate dividend growth are not any predictors: they are fundamentally linked to returns by

the CS identity. A corollary of our results in the context of larger data sets is that any predictor of

dividend growth will indirectly forecast returns through the dividend momentum channel.The logic

of the CS identity means that any predictor of dividends, other than the price-dividend ratio itself,

will either predict returns or the price-dividend ratio (with the opposite sign), therefore predicting

returns with a lag. Thus, shocks to this predictor will also induce dividend momentum. Therefore,

our approach opens the door to using large Bayesian VARs, which are highly successful in forecasting
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macroeconomic and financial variables with hundreds of predictors (see Koop, 2013; Carriero et al.,

2019), for the task of uncovering return predictability while respecting the cross-equation restrictions

implied by the CS type of identities. More broadly, as mentioned at the outset of the paper, our

methods extend to the many applications in macroeconomics and finance where identities equivalent

to the CS one emerge. In those applications, a highly persistent ratio or spread is the key long-run

predictor of an asset’s return. Exploring the implications of priors that push higher the persistence

of such predictors and shrink toward zero the coefficients related to predictability would be a fruitful

avenue of research.

From a theoretical standpoint, dividend momentum carries implications for asset pricing theories

that try to explain fluctuations in expected returns. In the habit model of Campbell and Cochrane

(1999) and the prospect theory of Barberis et al. (1999), dividend growth is modeled as independently

and identically distributed, and all of the predictability of returns comes from variation in discount

rates. In the long-run risk model of Bansal and Yaron (2004), dividend growth features a persistent,

low-frequency component but is independently and identically distributed after controlling for the

lagged price-dividend ratio. These theories are concerned with explaining the variation in expected

returns that is counter-cyclical with respect to dividend and/or consumption growth. The presence

of dividend momentum does not negate that such mechanisms are the largest driver of fluctuations

in expected returns. Instead, it points to at least one shock that generates pro-cyclical variation in

expected returns through channels that the literature has so far not explored.
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Pástor, L. and R. F. Stambaugh (2009): “Predictive Systems: Living with Imperfect Predictors,”

The Journal of Finance, 64, 1583–1628.

——— (2012): “Are Stocks Really Less Volatile in the Long Run?” The Journal of Finance, 67,

431–478.

Pettenuzzo, D., A. Timmermann, and R. Valkanov (2014): “Forecasting stock returns under

economic constraints,” Journal of Financial Economics, 114, 517–553.

Rapach, D. E. and G. Zhou (2020): “Time-series and Cross-sectional Stock Return Forecasting:

New Machine Learning Methods,” Machine Learning for Asset Management: New Developments

and Financial Applications, 1–33.

Rytchkov, O. (2012): “Filtering Out Expected Dividends and Expected Returns,” Quarterly

Journal of Finance, 2, 1–56.

Schorfheide, F., D. Song, and A. Yaron (2018): “Identifying Long-Run Risks: A Bayesian

Mixed-Frequency Approach,” Econometrica, 86, 617–654.

Sims, C. and H. Uhlig (1991): “Understanding Unit Rooters: A Helicopter Tour,” Econometrica,

59, 1591–99.

56



Sims, C. A. (1993): “A Nine-Variable Probabilistic Macroeconomic Forecasting Model,” in Business

Cycles, Indicators, and Forecasting, University of Chicago Press, 179–212.

Sims, C. A. and T. Zha (1998): “Bayesian Methods for Dynamic Multivariate Models,” Interna-

tional Economic Review, 949–968.

Stambaugh, R. F. (1999): “Predictive regressions,” Journal of Financial Economics, 54, 375–421.

Uhlig, H. (2005): “What are the Effects of Monetary Policy on Output? Results from an Agnostic

Identification Procedure,” Journal of Monetary Economics, 52, 381 – 419.

Van Binsbergen, J. H. and R. S. Koijen (2010): “Predictive Regressions: A Present-Value

Approach,” The Journal of Finance, 65, 1439–1471.

Viceira, L. (2008): Life-Cycle Funds, University of Chicago Press.

Wachter, J. A. and M. Warusawitharana (2009): “Predictable Returns and Asset Allocation:

Should a Skeptical Investor Time the Market?” Journal of Econometrics, 148, 162–178.

——— (2015): “What is the Chance that the Equity Premium Varies over Time? Evidence from

Regressions on the Dividend-Price Ratio,” Journal of Econometrics, 186, 74–93.

57



Internet Appendix to

“Dividend Momentum and Stock Return Predictability: A Bayesian Approach”

Appendix A Omitting Dividend Growth

Since returns are the ultimate variable of interest, the standard choice is to drop dividend growth

and run a 2-variable VAR(1) on x′t+1 = [pdt+1, rt+1]. Let us partition the 3-variable VAR(1) in

Equation (1), to isolate the vector xt+1:
22

⎡⎢⎢⎢⎢⎢⎣

∆dt+1

xt+1

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

ϕd,d ϕ21

ϕ12 Φ11

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

∆dt

xt

⎤⎥⎥⎥⎥⎥⎦
+
⎡⎢⎢⎢⎢⎢⎣

udt+1

ξt+1

⎤⎥⎥⎥⎥⎥⎦
, (A.1)

where:

Φ11 =
⎡⎢⎢⎢⎢⎢⎣

ϕpd,pd ϕpd,r

ϕr,pd ϕr,r

⎤⎥⎥⎥⎥⎥⎦
, ϕ12 = [ϕpd,d, ϕr,d]

′

, ϕ21 = [ϕd,pd, ϕd,r] , and ξt+1 = [updt+1, u
r
t+1]

′

.

At this stage, the 3-variable VAR(1) is unrestricted and does not impose the CS restrictions.

However, the CS identity in Equation (2) implies that ∆dt = rt − ρpdt + pdt−1 + ηt. Substituting this

into Equation (A.1) one gets the following representation for xt+1:

xt+1 =G1xt +G2xt−1 + ξt+1 −ϕ12ηt, (A.2)

where E (ξt+1ξ′t+1) = Ωξ, G1 = Φ11+ϕ12 [−ρ,1], G2 = [ϕ12,02×1]. Using the results in Appendix A.1,

Equation (A.2) implies the following VARMA(2,1) representation of xt+1:

xt+1 =G1xt +G2xt−1 + et+1 +D1et, (A.3)

Where et+1 is Gaussian with E (et+1) = 02×1, E (et+1e′t+1) = Ωe, E (ese′r) = 02×2 if r ≠ s, and Ωe is

an SPD matrix, where Ωe and D1 are nonlinear functions of the original parameters of the model,

22Without loss of generality, in this section we abstract from the constant term.
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therefore, the autoregressive parameters of the VARMA(2,1) are linearly related to the ones in the

3-variable VAR(1) in Equation (1), and the presence of the moving average component arises from

the approximation error in the CS identity.23

Let us assume that we want to follow the common practice and specify a 2-variable VAR(1) for

xt+1:

xt+1 =A1xt + εt+1, (A.4)

where εt+1 is Gaussian with E (εt+1) = 02×1, E (εt+1ε′t+1) = Ωε, E (εsε′r) = 02×2 if r ≠ s, and Ωε is an

SPD matrix. A1 satisfies the following moment condition E [(xt+1 −A1xt)x′t] = 02×2, which implies

that G1Γ0 +G2Γ
′

1 +D1Ωe −A1Γ0 = 02×2, where Γj is the j-th autocovariance of xt, hence:

A1 =G1 + (G2Γ
′

1 +D1Ωe)Γ−10 . (A.5)

Equation (A.5) highlights the link between A1 and the parameters in the 3-variable VAR(1) in

Equation (1). Whether the 2-variable VAR(1) in Equation (A.4) is a misspecified representation of

the joint dynamics of returns and the price-dividend ratio depends on the dynamics of dividend

growth. The next theorem formalizes this link.

Theorem A.1. The VARMA(2,1) in Equation (A.3) will have G1 = Φ11, G2 = 02×2, and D1 = 02×2

if and only if ϕpd,d = ϕr,d = 0, with ϕd,d = 0 following from CS restriction (5).

Proof. First, let us assume that ϕr,d = ϕpd,d = 0; then, from CS restriction (5) ϕd,d = 0. Since

ϕ12 = 02×1, G1 = Φ11 and G2 = 02×2. Moreover, since D1 solves the following moment restriction

−ϕ12E (ηtx′t) = D1Ωe, D1 = 02×2 if ϕ12 = 02×1. Second, any of the following conditions G1 = Φ11,

G2 = 02×2, or D1 = 02×2 requires that ϕ12 = 02×1 and hence ϕd,d = 0 because of CS restriction

(5).

Theorem A.1 implies that if we run the 2-variable VAR(1) in Equation (A.4), A1 =Φ11 if and

only if ϕd,d = 0. This additional restriction does not follow from the CS identity. The punchline is

clear: the CS identity does not allow one to drop one of the three variables and run the 2-variable

VAR(1) in Equation (A.4). Doing so, while assuming A1 = Φ11, amounts to imposing the additional

23In Appendix A.3 we show that a VARMA(2,1) representation for xt+1 also arises from assuming that the
price-dividend ratio is stationary and price and dividend follow a VECM with one lag specification.
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restrictions ϕd,d = ϕpd,d = ϕr,d = 0. These claims are formalized in the following corollary.

Corollary A.1. Assuming A1 = Φ11 implicitly imposes that ϕpd,d = ϕr,d = 0, with ϕd,d = 0 following

from CS restriction (5).

An implication of Equation (A.5) is that the innovations of the 2-variable VAR(1) are predictable

with lagged information. In fact, it follows from Equations (A.4) and (A.5) that:

εt+1 = −(G2Γ
′

1 +D1Ωe)Γ−10 xt +G2xt−1 + et+1 +D1et. (A.6)

Clearly, Equation (A.6) implies that Ωε ≠Ωe. With these ingredients, we can write the following

corollary:

Corollary A.2. The innovations of the 2-variable VAR(1), εt+1, equals ξt+1 if and only if ϕpd,d =

ϕr,d = 0, with ϕd,d = 0 following from CS restriction (5).

Clearly, Corollary A.2 implies that the innovations of the 2-variable VAR(1) in Equation (A.4)

are not predictable if and only if ϕpd,d = ϕr,d = 0. Interestingly, even when εt+1 = ξt+1, one cannot

recover udt+1 because of the approximation error. It is also useful to note an interesting special case

of Theorem A.1, by which it is possible to recover the return innovation, urt+1:

Corollary A.3. The innovation to the return equation in the 2-variable VAR(1), i.e., the last

element in εt+1, is equal to the return innovation urt+1 if and only if ϕr,d = 0.

Corollary A.3 implies that if there is no direct predictability from dividends to returns, both the

one-step-ahead return forecast and innovation coincide with those of the 3-variable VAR(1). Yet,

even in this case, the multi-step-ahead forecasts and innovations will not be retrieved correctly.

To sum up, we have shown that considering a 2-variable VAR(1) is not a valid way to impose

the CS restrictions. Instead, we will need to consider a 3-variable VAR(1) and explicitly impose the

restrictions. We will explain how to do this in Section 3.3. The results derived in this section carry

over to settings with multiple lags. Specifically, assuming a 3-variable VAR(p) implies that omitting

dividend growth leads to a VARMA(p+1,p) representation for xt+1, so that any finite order VAR

specification for xt+1 leads to a misspecification of the dynamics of the system.
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A.1 VARMA(2,1) Mapping

The results in the appendix are general, so they can be used to obtain the VARMA(2,1) represen-

tations in both the previous section and Appendix H. Let us consider the following model of the

nx × 1 vector xt+1:

xt+1 =G1xt +G2xt−1 + ξt+1 +M0ηt. (A.7)

where ξt+1 is a Gaussian distributed nx × 1 vector, ηt+1 is a Gaussian distributed nη × 1 vector,

E (ξt+1ξ′t+1) = Ωξ, E (ηt+1η
′

t+1) = Ωη E (ξt+1η′t+1) = Ωξη, E (ξsξ′r) = 0nx×nx , E (ηsη
′

r) = 0nη×nη , and

E (ξsη′r) = 0nx×nη for all s ≠ r, where E (ξt+1η′t+1) = Ωξη reflects the fact that the approximation

error ηt+1 may be contemporaneously correlated with ξt+1.
24

We can then compute the autocovariance of the model in Equation (A.7). Define with Γj =

Γ′
−j = E (xt+1x

′

t+1−j), post multiplying Equation (A.7) by xt+1−j and taking expectations gives:

Γ0 = G1Γ−1 +G2Γ−2 +Ψ0, (A.8)

Γ1 = G1Γ0 +G2Γ−1 +Ψ1, and (A.9)

Γj = G1Γj−1 +G2Γj−2 for j > 1, (A.10)

where

Ψ0 = E (ξt+1x′t+1) +M0E (ηtx
′

t+1) , (A.11)

= E (ξt+1ξ′t+1) +M0E (ηtx
′

t)G′1 +M0E (ηtη
′

t)M′

0,

= E (ξt+1ξ′t+1) +M0E (ηtξ
′

t)G′1 +M0E (ηtη
′

t)M′

0,

= Ωξ +M0ΩξηG
′

1 +M0ΩηM
′

0,

Ψ1 = M0E (ηtx
′

t) , (A.12)

= M0Ωξη,

Given the shape of the autocovariance function in Equations (A.8)-(A.10), it is possible to show that

a VARMA(2,1) can replicate the statistical properties of the model in Equation (A.7). Specifically,

24Equation (A.7) boils down to Equation (A.3) by defining ηt+1 = ηt+1, Ωη = σ2
η, M0 = −ϕ12, and Ωξη = [0 σ2

η]
′
.
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the VARMA(2,1) representation of xt is:

xt+1 =G1xt +G2xt−1 + et+1 +D1et, (A.13)

where E (et+1e′t+1) = Ωe, E (ese′r) = 0nx×nx for all s ≠ r, and D1 and Ωe are chosen so that the

autocovariance associated with the moving average component of Equation (A.13):

Ψ̃0 = Ωe +D1ΩeG
′

1 +D1ΩeD
′

1 (A.14)

Ψ̃1 = D1Ωe. (A.15)

matches the ones in Equations (A.11)-(A.12). Therefore D1 and Ωe are functions of G1, M0, Ωξ,

Ωη, and Ωξη. Imposing Ψ̃1 =Ψ1, from Equation (A.15) we have that Ωe =D−11 Ψ1. Substituting

this expression into Equation (A.14) and imposing that Ψ̃0 =Ψ0 we get that:

Ψ0 =D−11 Ψ1 +D1D
−1
1 Ψ1G

′

1 +D1D
−1
1 Ψ1D

′

1 =D−11 Ψ1 +Ψ1 (G′1 +D′1) ,

which implies that D1 needs to solve the following quadratic matrix equation:

D1Ψ1D
′

1 +D1(Ψ1G
′

1 −Ψ0) +Ψ1 = 0. (A.16)

The solution to Equation (A.16) can be easily found numerically. Starting with a guess for D1 (e.g.,

D0
1 = 0), one can find the solution iterating over Dk+1

1 =Ψ1 (Ψ0 −Ψ1 (G′1 + (Dk
1)′))

−1
.

A.2 No Approximation Error

It is important to also notice that neither Theorem A.1 nor Corollary A.2 depends on the existence

of approximation error. The VARMA(2,1) representation of xt becomes a 2-variable VAR(2) and

equals xt+1 =G1xt +G2xt−1 + ξt+1, while Equations (A.5) and (A.6) become A1 =G1 +G2Γ
′

1Γ
−1
0

and εt+1 = −G2Γ
′

1Γ
−1
0 xt +G2xt−1 + ξt+1; hence Ωε ≠ Ωξ. Again, G1 = Φ11 + ϕ12 [−ρ,1], and

G2 = [ϕ12,02×1]. Therefore, a 2-variable VAR(1) on xt+1 will be misspecified even in the absence of

approximation error unless the conditions of Theorem A.1 are satisfied, i.e., ϕd,d = 0.
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A.3 A VECM Approach

In this appendix, we show that assuming that the price-dividend ratio is stationary and that the

dynamics of prices and dividends can be characterized as a VECM as in Campbell and Shiller (1988)

implies a VARMA(2,1) model for xt+1 = [pdt+1, rt+1]′, which simplifies to a restricted VAR(2) in

the absence of an approximation error in the CS identity. Therefore, the conclusions of Section A

extend to this alternative setting.

Let us consider the following VECM with one lag:

⎡⎢⎢⎢⎢⎢⎣

∆dt+1

∆pt+1

⎤⎥⎥⎥⎥⎥⎦
= λpdt +B

⎡⎢⎢⎢⎢⎢⎣

∆dt

∆pt

⎤⎥⎥⎥⎥⎥⎦
+ υt+1, (A.17)

where B is an unrestricted 2 × 2 matrix and λ is an unrestricted 2 × 1 vector. where E (υt+1) = 02×1,

E (υt+1υ
′

t+1) = Ωυ, E (υsυ
′

r) = 02×2 if r ≠ s, and Ωυ is an SPD. Since ∆(pdt) = ∆pt −∆dt, the model

in Equation (A.17) can always be rewritten as a restricted 2-variable VAR(2) for [pdt+1,∆pt+1].

Specifically, define:

M =
⎡⎢⎢⎢⎢⎢⎣

1 −1

1 0

⎤⎥⎥⎥⎥⎥⎦
,

then
⎡⎢⎢⎢⎢⎢⎣

∆(pdt+1)

∆pt+1

⎤⎥⎥⎥⎥⎥⎦
=Mλpdt +MBM−1

⎡⎢⎢⎢⎢⎢⎣

∆(pdt)

∆pt

⎤⎥⎥⎥⎥⎥⎦
+Mυt+1.

Therefore
⎡⎢⎢⎢⎢⎢⎣

pdt+1

∆pt+1

⎤⎥⎥⎥⎥⎥⎦
= Λ1

⎡⎢⎢⎢⎢⎢⎣

pdt

∆pt

⎤⎥⎥⎥⎥⎥⎦
+Λ2

⎡⎢⎢⎢⎢⎢⎣

pdt−1

∆pt−1

⎤⎥⎥⎥⎥⎥⎦
+Mυt+1, (A.18)

where Λ1 = MBM−1 + [ι1 +Mλ,02×1], Λ2 = [−MBM−1ι1,02×1], and ι1= [1,0]′. Therefore the

coefficient matrix on the second lag, Λ2, is restricted so that it is only the column associated with

the price-dividend that features non-zero coefficients.

To map the dynamics of this system to the one of xt+1 we can use the the CS identity in

6



Equation (2); this implies that rt+1 = (ρ − 1)pdt+1 +∆pt+1 + ηt+1. Therefore defining:

W=
⎡⎢⎢⎢⎢⎢⎣

1 0

ρ − 1 1

⎤⎥⎥⎥⎥⎥⎦
,

one has that

xt+1 = G̃1xt + G̃2xt−1 + ũt+1 +M0ηt+1 +M1ηt +M2ηt−1, (A.19)

where ũt+1 =WMυt+1, G̃1 =WΛ1W
−1, and G̃2 =WΛ2W

−1. Also M0 = −ι2, M1 = G̃1ι2 and

M2 = G̃2ι2, with ι2 = [0,1]′. Since Λ2ι2 = 02×1, it is easy to show that G̃2ι2 = 02×1. Therefore, G̃2

is a restricted matrix with non-zero elements associated only with the column of the price-dividend

ratio. Moreover, M2 = 02×1. So that Equation (A.19) becomes:

xt+1 = G̃1xt + G̃2xt−1 + ũt+1 +M0ηt+1 +M1ηt. (A.20)

Looking at the autocovariance function implied by (A.20) one can see that this takes the same

structure as the one in Equations (A.8)-(A.10). Therefore the system (A.20) implies a VARMA(2,1)

representation:

xt+1 = G̃1xt + G̃2xt−1 + ẽt+1 + D̃1ẽt, (A.21)

where E (ẽt+1ẽ′t+1) = Ωẽ, E (ẽsẽ′r) = 02×2 for all s ≠ r and where D̃1 and Ωẽ can be derived following

the same steps detailed in Appendix A.1.

The moving average term in Equation (A.21) arises from the presence of an approximation

error in Equation (A.20) (i.e., D̃1 = 0 if σ2
η = 0). Therefore, assuming there is no approximation

error associated with the CS identity, a VECM with one lag representation for price and dividends

with the price-dividend ratio being stationary implies a restricted 2-variable VAR(2) representation

for xt+1, with the coefficients associated with the second lag of returns being zero as discussed in

Section A.2.

A.4 Adding Lags

If one insists on omitting dividend growth from the system, after reading the previous subsection it

might be tempting to ignore the approximation error and run an unrestricted 2-variable VAR(2) on
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xt+1.
25 While this VAR would be correctly specified in the absence of approximation or measurement

error, this approach does not automatically impose the CS restrictions any more than considering a

3-variable VAR(1). To gain understanding, one can again resort to a simple parameter count. As

discussed, the autoregressive matrix Φ1 of the 3-variable VAR(1) contains nine parameters whereas

the CS restrictions imply that only six of them are free parameters. The autoregressive matrices

of a 2-variable VAR(2) have eight free parameters. Hence, this model, while correctly specified, is

overparametrized. In particular, the restrictions on G2 derived above are not explicitly imposed.

While one will always be able to recover the true parameter asymptotically, in small samples,

not imposing these restrictions can lead to inefficient estimates and, as a result, a deteriorated

performance of the model, as we will show in the empirical application.

This result will also carry over to a setting in which the data-generating process features more lags.

Specifically, assuming that the model in Equation (1) is a 3-variable VAR(p) implies that omitting

dividends and assuming no measurement error leads to a 2-variable VAR(p+1) representation

for xt+1, where the coefficient matrix associated with the last lag is restricted so that only the

price-dividend ratio takes non-zero coefficients.

A.5 Omitting Other Variables

Our results so far indicate that the CS identity does not justify dropping dividend growth from the

VAR unless the conditions from Theorem A.1 are satisfied, namely, that the column corresponding

to dividend growth is entirely composed of zeros. This result would apply symmetrically to omitting

stock returns from the system. This would be a valid strategy if ϕd,r = ϕpd,r = 0, with ϕr,r = 0

following from CS restriction (7). It is immediately obvious that dropping the price-dividend ratio

is never acceptable, as the three coefficients cannot all be zero without violating CS restriction (5).

Thus, Engsted et al. (2012)’s criticism of Chen and Zhao (2009) for excluding the price-dividend

ratio is justified. In any case Engsted et al. (2012) still claim that one can drop either returns or

dividend growth from the system as long as we include “additional state variables that capture

part of the predictive variability of [the omitted variable] not captured by the dividend–price ratio”

(p.1262). Our analysis shows that this is not enough: the additional state variables need to perfectly

25VARs with more than a single lag are very seldomly considered in the empirical literature. Moreover, many of
the papers surveyed used a smoothed price-to-earnings ratio rather than the price-dividend ratio, which introduces
additional measurement error.
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span the omitted variable. In such a case, it seems reasonable to include the omitted variable

directly. Otherwise, the CS restriction corresponding to the column of the omitted variable would

apply to a linear combination of the additional state variables.

A.6 Implications for the Calculation of NCFt+1 and NDRt+1

Chen and Zhao (2009) and Engsted et al. (2012) consider the question of whether omitting either

returns or dividend growth affects the computation of the news terms. Our basic VAR in Equation (1)

implies that NDRt+1 = e′3,3Λu′t+1 and NCFt+1 = e′1,3Λu′t+1 + e′1,3u′t+1, where Λ = ρΦ1(I3 − ρΦ1)−1

and ej,n is the jth column of the matrix In. If dividend growth is omitted, and one runs a 2-variable

VAR(1) on [pdt+1, rt+1], NCFt+1 cannot be calculated directly, but using the CS identity one can

obtain it residually from NCFt+1 = NDRt+1 + ũrt+1 instead. In this case NDRt+1 = e′2,2Λ̃ε̃′t+1 and

ũrt+1 = e′2,2ε̃
′

t+1, where Λ̃ = ρÃ1(I2 − ρÃ1)−1 and Ã1 and ε̃t+1 are the autoregressive coefficient

matrix and residuals of the 2-variable VAR(1) on [pdt+1, rt+1] derived in Equations (A.5) and (A.6),

respectively. Analogously, if one omits returns and runs a 2-variable VAR(1) on [∆dt+1, pdt+1],

NDRt+1 has to be calculated as a residual using the following formula NDRt+1 = NCFt+1 + ûrt+1.

In this case NCFt+1 = e′1,2Λ̂ε̂′t+1 + e′1,2ε̂′t+1 and ûrt+1 = ûdt+1 + ρû
pd
t+1 = e′1,2ε̂

′

t+1 + ρe′2,2ε̂′t+1, where

Λ̂ = ρÂ1(I2 − ρÂ1)−1 and Â1 and ε̂t+1 are the autoregressive coefficient matrix and residuals of the

2-variable VAR(1) on [∆dt+1, pdt+1], respectively.26

What our results from the previous section highlight is that, unless the conditions of Theorem A.1

are satisfied, Λ̂ ≠ Λ̃ ≠ Λ and ε̂t+1 ≠ ε̃t+1 ≠ ut+1. Therefore, omitting either returns or dividend

growth from the VAR and backing up either NDRt+1 or NCFt+1 indirectly will affect the results.

This is true for the cases with and without approximation error and even in the special cases where

urt+1 is retrieved correctly, (see Corollary A.3, for example), as Λ̂ ≠ Λ̃ ≠ Λ. In Appendix A.7 we show

how omitting dividend growth leads to underestimation of the variance of NCFt+1, overestimation

of the variance of NDRt+1, and underestimation of the correlation between the two. Omitting

returns instead in this case leads to correct calculations, as the column of returns in the simplified

model is assumed to be zeros. If the matrix Φ1 is such that neither column is zero, which we shall

see in the next sections is the case for US postwar data, omitting either returns or dividend growth

will lead to different, and incorrect, results.

26Omitting returns assumes that there is no approximation error.
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A.7 Estimation of NDR and NCF with Omitted Variables

Chen and Zhao (2009) and Engsted et al. (2012) consider the question of whether the computation

of NDRt+1 and NCFt+1 in a VAR is affected by whether either of them is treated as a residual in

the decomposition in Equation (25), repeated here for convenience:

rt+1 −Etrt+1 = (Et+1 −Et)
∞

∑
j=0

ρj ∆dt+j+1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
NCFt+1

−(Et+1 −Et)
∞

∑
j=1

ρjrt+j+1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
NDRt+1

(A.22)

Recall that rt+1 −Etrt+1 ≡ urt+1. Our basic VAR in Equation (1) implies that:

NDRt+1 = e′3,3Λu′t+1 (A.23)

NCFt+1 = e′2,3Λu′t+1 + e′2,3u′t+1 (A.24)

where Λ = ρΦ1(I3 − ρΦ1) and ej,n is the j-th column of the matrix In. Equation (A.22) also implies

that:

NCFt+1 = NDRt+1 + urt+1 = (e′3 + e′3Λ)u′t+1 (A.25)

Does it matter whether we compute NDRt+1 and NCFt+1 directly from (A.23) and (A.24), or

whether we compute one of them directly and the other as a residual from (A.25)? Engsted et al.

(2012) claim that for the estimation of NDRt+1 and NCFt+1, “nothing is gained by modeling both

returns and dividend growth in a system that also contains the dividend–price ratio.”

If dividend growth is omitted, and one runs a 2-variable VAR(1) on [pdt+1, rt+1], NCFt+1 cannot

be calculated directly, but using the CS identity one can obtain it residually fromNCFt+1 = NDRt+1+

ũrt+1 instead. In this case NDRt+1 = e′2,2Λ̃ε̃′t+1 and ũrt+1 = e′2,2ε̃′t+1, where Λ̃ = ρÃ1(I2 − ρÃ1)−1 and

Ã1 and ε̃t+1 are the autoregressive coefficient matrix and residuals of the 2-variable VAR(1)on

[pdt+1, rt+1] derived in Equations (A.5) and (A.6), respectively. Analogously, if one omits returns

and runs a 2-variable VAR(1) on [∆dt+1, pdt+1], NDRt+1 has to be calculated as a residual using

the following formula: NDRt+1 = NCFt+1 + ûrt+1. In this case NCFt+1 = e′1,2Λ̂ε̂′t+1 + e′1,2ε̂′t+1
and ûrt+1 = ûdt+1 + ρû

pd
t+1 = e′1,2ε̂′t+1 + ρe′2,2ε̂′t+1, where Λ̂ = ρÂ1(I2 − ρÂ1)−1 and Â1 and ε̂t+1 are the

autoregressive coefficient matrix and residuals of the 2-variable VAR(1)on [∆dt+1, pdt+1], respectively.
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Omitting returns assumes that there is no approximation error.

More importantly, the results will generally differ if either returns or dividend growth is omitted

from the system and the conditions of Theorem A.1 are not satisfied. Using a simple framework we

now show how the claims in Engsted et al. (2012) do not hold. The simplified VAR is:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∆dt+1

pdt+1

rt+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϕd,d

ϕpd,d

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∆dt +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

ϕpd,pd

ϕr,pd

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

pdt +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϕd,r

ϕpd,r

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

rt +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

udt+1

updt+1

urt+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Notice that the column of Φ1 corresponding to dividend growth is not composed entirely of zeros

but the one for returns is; so according to Theorem A.1, a 2-variable VAR(1) on [pdt+1, rt+1] would

be misspecified. Let us consider first a case where the ϕd,r = ϕpd,r = 0. As explained a 2-variable

VAR(1) on [pdt+1,∆dt+1] would be correctly specified because the column of Φ1 corresponding to

returns is composed entirely of zeros.

Assume the following numerical values ϕpd,pd = 0.92, Var (udt+1) = 0.003, Var (updt+1) = 0.028,

Cov (updt+1,dt+1 ) = 0 and ρ = 0.971. We will consider values for ϕd,d ∈ {0,0.4,0.8}. The rest of the

parameters are backed out from the CS restrictions (4)-(10), since we assume that there is no

approximation error. Panel A of Table A.1 reports the variances of NDRt+1 and NCFt+1, as well

as twice the covariance between the two news components, all divided by the variance of the return

innovation. The sum of the first two rows minus the third adds up to one due to the CS restrictions.

We report these numbers for the 3-variable VAR(1)and the two 2-variable VAR(1) for the three

values of ϕd,d we consider. We observe the following results:

1. As ϕd,d becomes larger, the variance of both news components in the true model increases,

but the variance of NCFt+1 increases by more. Moreover, the correlation between the two

components increases.

2. The 2-variable VAR(1)model omitting ∆dt+1 is misspecified according to Theorem A.1 whenever

ϕd,d > 0. We can see how, as ϕd,d increases, this VAR tends to overestimate the variance of

NDRt+1, underestimate the variance of NCFt+1, and underestimate the covariance between

the two.

3. The 2-variable VAR(1)model omitting rt+1 is correctly specified independently of the value of
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ϕd,d. As we can see, this VAR correctly estimates all the moments of interest.

Let us now consider a case where the column on the effects of rt is not zero. Panel B of Table

A.1 shows results when we choose the same values as before but ϕd,d = 0.4 and ϕd,r = 0.14. The rest

of the parameters are backed out from the CS restrictions (4)-(10), since we assume that there is no

approximation error. In this case both 2-variable VAR(1) on [pdt+1, rt+1] and [pdt+1,∆dt+1] would

be misspecified. We observe the following results:

1. Both 2-variable VARs provide different and incorrect results.

2. The 2-variable VAR(1)omitting dividend growth tends to slightly overestimate the variance of

NCFt+1 and underestimate the variance of NDRt+1, whereas the 2-variable VAR(1)omitting

returns underestimates both variances.

3. Both 2-variable VARs underestimate the covariance between NDRt+1 and NCFt+1.

4. This is even though in the true model, the price-dividend ratio is the only relevant predictor

of returns (hence, ϕr,d = ϕr,r = 0), and therefore, the return innovation, urt+1, and its variance

are estimated correctly.

As Panel C of Table A.1 shows results based on a more realistic calibration, related to the Φ1

estimated in Section 4. The results are almost identical to the ones in Panel B. For this last case we

used ϕd,d = 0.29 and ϕd,r = 0.1.
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Table A.1: Results

Panel A: Based on Φ1 from Simplified Model with Column of rt equal to Zero.

True model 2-variable VAR(1)omitting ∆dt+1 2-variable VAR(1)omitting rt+1

Value of ϕd,d 0 0.4 0.8 0 0.4 0.8 0 0.4 0.8

Var(NDR)
Var(ur) 0.888 0.933 2.240 0.888 0.985 2.826 0.888 0.932 2.240

Var(NCF )
Var(ur) 0.112 0.299 2.242 0.112 0.147 1.004 0.112 0.299 2.242

2Cov(NDR,NCF )
Var(ur) 0.000 0.233 3.483 0.000 0.132 2.848 0.000 0.232 3.502

Panel A: Based on Φ1 from Simplified Model with Column of rt not equal to Zero.

True model 2-variable VAR(1)omitting ∆dt+1 2-variable VAR(1)omitting rt+1

Var(NDR)
Var(ur) 1.024 1.031 0.816

Var(NCF )
Var(ur) 0.495 0.213 0.430

2Cov(NDR,NCF )
Var(ur) 0.519 0.244 0.245

Panel C: Based on Φ1 estimated in Section 4

True model 2-variable VAR(1)omitting ∆dt+1 2-variable VAR(1)omitting rt+1

Var(NDR)
Var(ur) 0.930 0.932 0.953

Var(NCF )
Var(ur) 0.290 0.162 0.297

2Cov(NDR,NCF )
Var(ur) 0.220 0.095 0.250

Appendix B Latent Present Value System

In this section, we show results that relate our VAR(1) to the Latent Present Value System

popularized by Van Binsbergen and Koijen (2010).

B.1 Mapping of VAR(1) to a Latent Present Value System

Let us define the variables as deviations from their unconditional mean as ỹt = yt − µ, where

µ ≡ (In −Φ1)−1Φ0. Working with a demeaned system simplifies the derivations without any loss of

generality. The VAR(1) in Equation (1) can be rewritten as:

ỹt+1 =Φ1ỹt + ut+1. (B.1)
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When the CS identity holds exactly, Φ1 and Σ are rank deficient. Therefore ut+1 = H̃ũt+1, where

ũt+1 = [udt+1, u
pd
t+1] and H̃ is a 3 × 2 matrix, imposing restrictions (8)-(10),

H̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0

0 1

1 ρ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and ũt+1 ∼ N (0,W) with W a 2×2 full rank covariance matrix. Let the eigenvalue decomposition of

Φ1= EVE−1, where V and E denote the diagonal matrix with the eigenvalues (ordered in decreasing

values) and the associated matrix of eigenvectors. Rank deficiency implies that the last element of

V is a zero.27

Therefore, introducing the selection matrix J1 = [I2 02×1], the system in Equation (B.1) implies

that the dynamics of the expected values of the vector of observables, Et (ỹt+1), is only function of

a two-dimensional state vector, x̃t = J1E
−1yt:

Et (ỹt+1) =Φ1ỹt = EVE−1ỹt = EVJ′1J1E
−1ỹt = EVJ′1x̃t (B.2)

since V =VJ′1J1. Moreover, each element of the follows an AR(1) process:

x̃t+1 = J1VJ′1x̃t + υ̃t (B.3)

with correlated innovations, υ̃t = J1E
−1H̃ũt+1. To see that note that starting from Equation (B.1)

and using the eigenvalue decomposition of the matrix of coefficients Φ1= EVE−1, and noting that

V =VJ′1J1, we get that

J1E
−1ỹt+1 = J1E

−1Φ1ỹt + J1E
−1H̃ũt+1 = J1VJ′1J1E

−1
ỹt + J1E

−1H̃ũt+1

x̃t+1 = J1VJ′1x̃t + υ̃t (B.4)

The state vector can be rotated so that one can interpret the rotated latent state vector as

27The CS identity implies that only one of the eigenvalues is zero. Imposing additional restrictions, e.g. that the
price dividend ratio is the only predictor in the system (as in, e.g., Cochrane, 2008b) implies that two eigenvalues are
zero. In that case, all derivations below are still valid redefining the selection matrix J1 = [1 0 0].
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(demeaned) expected dividend growth and expected returns. Specifically, defining the selection

matrix

J2 =
⎡⎢⎢⎢⎢⎢⎣

1 0 0

0 0 1

⎤⎥⎥⎥⎥⎥⎦

defining the rotation matrix K = J2EVJ′1, we get ft =Kx̃t, and Equation (B.2) implies that

J2Et (ỹt+1) = J2EVJ′1x̃t = J2EVJ′1K
−1Kx̃t = ft

Therefore,

∆dt+1 − µg = fg,t + ed,t+1, (B.5)

rt+1 − µr = fr,t + er,t+1, (B.6)

where ft = [fg,t, fr,t]′ and

[ed,t+1, er,t+1]
′ = J2H̃ũt+1 =

⎡⎢⎢⎢⎢⎢⎣

udt+1

udt+1 + ρu
pd
t+1

⎤⎥⎥⎥⎥⎥⎦
(B.7)

As for the latent state dynamics, Equation (B.4) implies that

ft+1 = F1ft + υt (B.8)

where F1 =KJ1VJ′1K
−1 and

υt = [υg,t+1, υr,t+1]′ =KJ1E
−1H̃ũt+1. (B.9)

To see this, note that pre-multiplying Equation (B.4) by K we have that Kx̃t+1 =KJ1VJ′1K
−1Kx̃t+

Kυ̃t.

Last, the CS restrictions guarantee that the (demeaned) price dividend ratio reflects the difference

between future cash flows and discount rates (in deviations from their mean). Given the dynamics
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of the latent state variables in Equation (B.8), this implies that:

pdt+1 − µpd = [−1,1] (I2 − ρF1)−1 ft+1. (B.10)

These results echo and qualify some of the comments made by Cochrane (2008a) about latent

present value systems. Specifically, he notes (p.10) that “there is no reason that expected returns

and expected dividend growth should evolve [...] in AR(1) fashion. [...] And, while tempting, there

is no economic reason to impose a particular correlation structure on the shocks”. He goes on to

highlight (p.32) that “we have no economic reason to impose the particular structure of [the expected

returns and dividend growth] rather than the time-series structure of expected returns and dividend

growth that results from an arbitrary VAR”.

The VAR(1) in Equation (1) always admits a state space representation where the dynamics of

the observable vector, yt+1, reflect time variation in expected returns and dividend growth, ft+1,

whose dynamics follow the VAR(1) process in Equation (B.8). The feedback matrix of the states, F1,

is generally not diagonal unless K is diagonal. So imposing ad-hoc restrictions on F1, e.g. assuming

that this matrix is diagonal as is commonly done in the literature (see, e.g., Van Binsbergen and

Koijen, 2010; Rytchkov, 2012), imposes additional restrictions, beyond the ones deriving from the

CS identity. Moreover, the innovations of the system are all linear functions of the innovations in

dividend growth and the price dividend (see Equation (B.7) and Equation (B.9)). The shocks to

dividends and expected dividends are generally correlated. So restricting that shocks to dividends

and expected dividends are uncorrelated (see, e.g., Van Binsbergen and Koijen, 2010) again implies

imposing additional restrictions, beyond those deriving from the CS identity.

B.2 Covariance Identification

The last section has derived the latent state space model implied by the VAR(1) used in this paper.

Van Binsbergen and Koijen (2010) directly describe such a system without deriving from a VAR(1)

plus the CS identity. In their description, they highlight that one needs to model the full covariance
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of the following set of shocks:

et+1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ed,t+1

υg,t+1

υr,t+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∆dt+1 −Et (∆dt+1)

fg,t+1 −Et (fg,t+1)

fr,t+1 −Et (fr,t+1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(B.11)

because not all elements of the covariance can be identified. Therefore they impose the restriction

E (ed,t+1υg,t+1) = 0. As mentioned above, if one derives the latent state space system from the

VAR(1) plus the CS identity all elements of the covariance can be identified and one does not need

to impose any additional restriction.

This restriction rules out, by definition dividend momentum as we have defined in the paper.

This is one of many alternative possible identifications. To see that, note that, in general, one can

specify the innovation to dividends as follows

ed,t+1 = λgυg,t+1 + λrυr,t+1 + ẽd,t+1 (B.12)

where ẽd,t+1 ∼ N (0, σ2
d) denotes the surprise in dividends that is orthogonal to the update of the

expected dividend and expected return component. Only 2 of the 3 parameters (λg, λr, σ
2
d) can be

identified. Van Binsbergen and Koijen (2010) set λg = 0 and focus on (λr, σ
2
d).

The VAR model implicitly sets the identification restriction σ2
d = 0, so that effectively there

are only two shocks in the model. This implies that ed,t+1 can always be recovered as a linear

combination of the other shocks, and all of the shocks are nothing more than a linear combination

to the independent innovations of the VAR, ũt+1 = [udt+1, u
pd
t+1]′. Therefore the VAR restricts the

surprise to dividend to be a linear function of the remaining shocks of the latent state space model,

with exact restrictions pinned down by the VAR estimates. Specifically, from Equation (B.9) we

have that [λg, λr] = [1,0](KJ1E
−1H̃)−1.

Van Binsbergen and Koijen (2010) emphasizes that the fit of the model is invariant to the

identification restriction. Therefore, alternative identification assumptions produce the same

prediction errors. Yet other transformations and statistics, such as filtering and smoothing of the

state vector as well as the forecasts produced, are not invariant to these alternative identifications

(see, e.g., Harvey, 1990). As such, those are not innocuous.
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B.3 VAR(1), VAR(∞) and VARMA

Van Binsbergen and Koijen (2010) show that their model that returns and price dividend depends

on an infinite lag of price dividend and dividend growth. Similarly Rytchkov (2012) shows that

the model implies a VAR(∞) representation for returns and dividend growth or equivalently a

VARMA(1,1). So in general it has been shown that any pair of variables admits a dynamic

representation that requires an infinite amount of lags. This is not incompatible with our starting

point a VAR(1) for the 3 variables implies that any two variables can be written as a VARMA system

(see, e.g., Zellner and Palm, 1974). Therefore a (rank deficient) VAR(1) for the three variables maps

into a dynamic representation with only two variables that require an infinite amount of lags.

In fact, should one specify two univariate processes (with correlated innovations) for expected

dividend growth and expected returns? The VAR(1) process in Equation (B.8), with a full feedback

matrix of coefficients, F1, can always be rewritten as two separate ARMA processes with correlated

innovations (see, e.g., Zellner and Palm, 1974).

B.4 Example in Section 4.5

We consider the simplified setting in Section 4.5 and derive the latent present value system

representation of that model. Recall that in this specific case:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∆̃dt+1

p̃dt+1

r̃t+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϕd,d 0 0

ϕpd,d ϕpd,pd 0

0 ϕr,pd 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∆̃dt

p̃dt

r̃t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0

0 1

1 ρ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

udt+1

updt+1

⎤⎥⎥⎥⎥⎥⎦
. (B.13)

Therefore expected dividends Et (∆dt+1) = fg,t = ϕd,d∆dt follow an AR(1) process:

fg,t = ϕd,dfg,t−1 + ϕd,du
d
t , (B.14)

whereas the last equation of the VAR implies that Et (rt+1) = fr,t = ϕr,pdpdt, therefore, it is easy to

show that expected returns is predicted by its lag as well as a lag in expected dividend:

fr,t = (
1

ρ
− ϕpd,pd) fg,t−1 + ϕpd,pdfr,t−1 + (ρϕpd,pd − 1)updt (B.15)
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since ϕpd,d = −ϕd,d/ρ and ϕr,pd = ρϕpd,pd − 1. Therefore the VAR(1) in Equation (B.13) admits a

VAR(1) representation for expected dividends and expected returns:

⎡⎢⎢⎢⎢⎢⎣

fg,t

fr,t

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

ϕd,d 0

(1ρ − ϕpd,pd) ϕpd,pd

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

fg,t−1

fr,t−1

⎤⎥⎥⎥⎥⎥⎦
+
⎡⎢⎢⎢⎢⎢⎣

ugt

uµt

⎤⎥⎥⎥⎥⎥⎦
(B.16)

where ugt = ϕd,du
d
t and uµt = (ρϕpd,pd − 1)updt . Therefore, for this specific case, the matrix of

the feedback coefficients, F1, is lower triangular as a result of the restrictions to the VAR im-

posed in Equation (B.13). Moreover, the VAR(1) in Equation (B.13) imposes the restriction that

Corr (ugt , udt ) = 1.

Last, it is worth noticing that Equation (B.16) implies that expected returns, fr,t, follows an

ARMA(2,1) specification:

(1 − ϕpd,pdL) (1 − ϕd,dL) fr,t = (
1

ρ
− ϕpd,pd)ϕd,du

d
t−1 + (1 − ϕd,dL) (ρϕpd,pd − 1)updt (B.17)

as opposed to a more restrictive AR(1) specification (as in, e.g., Van Binsbergen and Koijen, 2010).

Appendix C No Approximation Error

There is no approximation error when Ω = 0k×k in Equation (21). This restriction implies that

LE (utu
′

t)L′ = LΣL′ = Ω = 0k×k, which, because the covariance matrix is symmetric, leads to
(k+1)k

2

additional restrictions:

R̃Σ vec(Σ) = 0 (k+1)k
2

(C.1)

where R̃Σ =D+k (L⊗L) and D+k is a
(k+1)k

2 ×k2 selection matrix, defined as the Moore-Penrose inverse

of the duplication matrix, Dk, so that for any k-dimensional symmetric matrix A, D+k vec(A) =

vech(A) (see Abadir and Magnus, 2005, Ch. 11). Using the mapping described in Equation (24),

one can show that the CS restrictions on Σ hold if and only if W has the following form:

W =
⎡⎢⎢⎢⎢⎢⎣

ΞΣΞ′ 0(n−k)×k

0k×(n−k) 0k×k

⎤⎥⎥⎥⎥⎥⎦
.
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when the CS restrictions on Σ hold. To see this, notice that on the one hand, the mapping

implies that W12 = ΞΣL′ and W22 = LΣL′. Hence, if Equations (23) and (C.1) hold, it is the

case that W12 = 0(n−k)×k and W22 = 0k×k. On the other hand, the inverse mapping implies that

[R′Σ, R̃′Σ]
′

vec(Σ) = [R′Σ, R̃′Σ]
′ (H−1 ⊗H−1)vec(W). It is easy to show that:

R̃Σ (H−1 ⊗H−1) =D+k (L⊗L) (H−1 ⊗H−1) =D+k (LH−1 ⊗LH−1) = [0 (k+1)k
2
×(n2−k2)

,D+k],

therefore [R′Σ, R̃′Σ]
′ (H−1 ⊗H−1)vec(W) = [vec(W12)′,vech(W22)′]′. Thus, if W12 = 0(n−k)×k and

W22 = 0k×k, it is the case that Equations (23) and (C.1) hold.

This result highlights that one can easily modify Algorithm 1 for the case of no approxima-

tion error. In this case one simply skips Step 2 and fixes Ω = 0k×k. In this case, we will call

π
(SW11

,νW11
)
(Σ) = IW

(SW11
,νW11

)
(W11), where W11 = ΞΣΞ′ is the density implied by the algo-

rithm and π (SW11 , νW11) its distribution. As before, a natural choice for SW11 is SW11 = ΞSΞ′,

while one could choose νW11 = ν.

Appendix D Results for Alternative Approaches

In this appendix, we report the out-of-sample forecasting performance of both: the strategy discussed

in Section 2.1 that omits ∆dt+1 from the model but considers a 3-variable VAR(2) having the

additional lags to proxy for the dynamics of (lagged) dividend growth and the simpler alternative

procedures discussed in Section 3.5. In both cases, we compare the performance to our baseline

results.

Table D.1 reports the out-of-sample forecasting performance of the alternative 3-variable VAR(2)

and compare it with the rest of the models considered in Section 5.

In the case of the simpler strategy discussed in Section 3.5, starting with a prior on the entire

system and imposing the linear restrictions is not equivalent to imposing a marginalized prior on

the lower two rows and retrieving the first row of the parameters from the restrictions, and it has

implications for out-of-sample forecasting performance. In Figure D.1, we compare the implied prior

on the VAR coefficients for the two procedures starting from the (same) standard Minnesota prior.

The red lines represent the priors implied by our procedure, while the blue dashed lines represent
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Table D.1: Out-of-Sample Return Equation R-squared: VAR(2)

Flat priors Informative Priors

Unrestricted Unrestricted Unrestricted Unrestricted Unrestricted Restricted
(Ex. Divs;
Two lags)

(Ex. Divs;
One lag)

(Inc. Divs.,
One lag)

(Inc. Divs.,
One lag)

(Ex. Divs;
Two lags)

(Inc. Divs.,
One lag)

h = 1 -0.4% -9.7% -12.0% -1.1% -0.4% 5.9%
h = 2 1.6% -7.9% -10.5% 0.2% 0.8% 14.5%
h = 3 0.0% -26.9% -28.8% -0.9% 0.2% 21.5%
h = 4 -3.2% -39.9% -39.1% -4.8% -3.3% 26.2%
h = 5 -12.3% -44.8% -41.7% -13.6% -12.3% 28.8%
h = 6 -37.6% -82.5% -76.0% -37.2% -36.2% 27.0%
h = 7 -61.5% -126.3% -115.3% -60.2% -59.2% 22.3%
h = 8 -82.3% -161.1% -145.9% -80.8% -79.7% 19.7%
h = 9 -107.3% -210.4% -190.4% -104.6% -103.5% 15.5%
h = 10 -142.2% -292.4% -264.9% -138.5% -137.0% 8.5%

Note: Percentage improvement in out-of-sample fit of each investor with respect to the naive investor.

the prior implied by the simpler alternative. In the simpler alternative, the prior for the bottom two

rows is set to the standard Minnesota prior, and the top row is recovered from the Campbell-Shiller

restrictions. As can be seen, the prior implied by the simpler alternative is generally much flatter,

particularly for the dividend growth equation. Due to the differences in priors, the posteriors will

also differ, thus affecting the out-of-sample forecasting performance. In the first column of Table

D.2, show that indeed the prior implied by the ”simpler” alternative leads to worse out-of-sample

forecasting performance. Therefore, using our procedure pays off. After observing Figure D.1, one

could argue that the problem is the prior over the bottom two rows being ”too” flat, resulting in

the prior over the top row always being ”too” flat. To address this issue, one could tighten the

Minnesota prior in the case of the ”simpler” alternative to make the bottom two rows as similar

as possible. The results can be seen in Figure D.2. However, the prior for the coefficients of the

dividend growth equation implied by this alternative procedure are still much flatter than our

baseline joint procedure. In the second column of Table D.2, we show that indeed this ”matched

variance” prior also leads to worse out-of-sample forecasting performance than the joint procedure.
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Figure D.1: Bayesian restricted prior and posterior of Φ1: Baseline joint prior vs
simple alternative procedure

Note: Red represents the baseline prior and blue the prior implied by the simple procedure discussed in Section 3.5.
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Figure D.2: Bayesian restricted prior and posterior of Φ1: Baseline joint prior vs
simple alternative procedure (with Matched Variance)

Note: Red represents the baseline prior and blue the prior implied by the simple procedure discussed in Section 3.5.
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Table D.2: Out-of-Sample Return Equation R-squared: “Simpler” procedure that drops ∆dt+1
equation

Informative Priors

“Simpler” “Simpler”
Alternative Alternative Baseline
(Standard) (Matched

Variance)

h = 1 -1.9% 1.2% 5.9%
h = 2 -1.2% 2.8% 14.5%
h = 3 -13.0% -4.7% 21.5%
h = 4 -17.0% -6.4% 26.2%
h = 5 -14.3% -3.0% 28.8%
h = 6 -28.7% -11.3% 27.0%
h = 7 -43.9% -20.7% 22.3%
h = 8 -52.1% -25.7% 19.7%
h = 9 -64.8% -34.0% 15.5%
h = 10 -86.6% -48.5% 8.5%

Note: Percentage improvement in out-of-sample fit of each investor with respect to the naive investor.
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Appendix E Derivations of the R2 for Multiple-Period Returns

Consider the VAR in Equation (1) and let Γ̃j = Et (yt+1y
′

t+1+j). The R2 associated with next-period

returns can be computed as:

R2 (1) = Var [Et (rt+1)]
Var (rt+1)

= srΦ1Γ̃0Φ
′

1s
′

r

srΓ̃0s′r
.

For multiple-period returns, we have that:

R2 (k) =
Var [Et (rt,t+k)]
Var (rt,t+k)

=
sr (∑k

j=1Φ
j
1) Γ̃0 (∑k

j=1Φ
j
1)
′

s′r

sr [kΓ̃0 +∑k−1
j=1 (k − j) (Γ̃j + Γ̃′j)] s′r

.

Appendix F Omitting Dividend Growth under Flat Priors

Panel (a) of Figure F.3 reproduces the IRFs in Panel (a) of Figure 7 for flat priors. Because the

mean posterior correlation between updt+1 and udt+1 is -0.32, we obtain the price-dividend ratio and

the dividend growth shocks by orthogonalizing the innovations using a Cholesky decomposition in

which variables are ordered [pdt+1,∆dt+1, rt+1]. Panel (a) shows that the price-dividend ratio shock

displays the traditional mean reversion channel. Following a positive price-dividend ratio shock

returns jump, but the IRF falls over the subsequent 10 years, converging to zero. Since the IRF

for cumulative discounted returns converges to the sum of impact effects on returns and NDRt+1,

the fact that the IRF converges to zero implies that the impact effect on NDRt+1 is strong and

negative. Dividend growth is essentially unaffected by the price-dividend ratio shock, implying that

the impact effect of NCFt+1 is negligible. For a dividend growth shock, we observe the dividend

momentum effect: after an initial identical jump in returns and dividend growth, both IRFs show a

positive slope, with returns lagging and only catching up gradually.

What are the economic consequences if we had followed the common practice of dropping

dividend growth from the VAR and backed out the remaining coefficients from the CS restrictions?

Panel (b) of Figure F.3 displays the results. The price-dividend ratio shock looks very similar to

the one in the 3-variable VAR. As for the dividend growth shock, the IRFs of both returns and

dividends are almost perfectly flat after the initial positive jump; estimating the 2-variable VAR(1)
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Figure F.3: Impulse Response Functions Under Flat Priors

(a) 3-variable VAR

(b) 2-variable VAR(1) omitting dividend growth

Note: The solid lines represent the median posterior response. The darker shadow area represents the 68th posterior
credible intervals, while the lighter shadow area represents the 95th posterior credible intervals.

will not find dividend momentum and leads to similar results as in Panel (b) of Figure 7. This

result highlights that dropping dividend growth effectively imposes ϕd,d = 0 and arbitrarily rules out

dividend momentum. Table F.3 analyzes the contribution of the two shocks to the variances and

correlation of NCFt+1 and NDRt+1. Because dividend growth shocks lead to positive revisions to

current and future cash flows in the 3-variable VAR, the contribution of this shock to the variance

of both NCFt+1 and NDRt+1, and their correlation is meaningfully larger.
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Table F.3: Shock Contribution to NCFt+1 and NDRt+1 under Flat Priors

2-variable VAR(1) omitting dividend growth 3-variable VAR

Total upd
t+1 ud

t+1 Total upd
t+1 ud

t+1
V ar(NDRt+1) 0.032

[0.022, 0.052]
99.7%

[99.4%, 99.9%]
0.3%

[0.1%, 0.6%]
0.030

[0.018, 0.059]
89.8%

[78.6%, 95.3%]
10.2%

[4.7%, 21.4%]
V ar(NCFt+1) 0.006

[0.004, 0.013]
26.1%

[4.3%, 60.7%]
73.9%

[39.3%, 95.7%]
0.013

[0.008, 0.029]
7.9%

[0.7%, 34.2%]
92.0%

[65.7%, 99.2%]
Corr(NDRt+1, NCFt+1) 55.4%

[20.3%, 81.0%]
50.3%

[14.9%, 77.5%]
4.4%

[2.4%, 6.7%]
51.7%

[17.4%, 79.9%]
16.9%

[−16.2%, 51.6%]
29.3%

[19.0%, 43.1%]

Note: We report the posterior median and the 68th posterior credible intervals. For each model, the “Total” column
reflects the posterior of moments, while the upd

t+1 and ud
t+1 columns reflect the posterior contribution of the two shocks.

Appendix G Variance of Long-Horizon Returns

In this section, we derive the variance of long-horizon returns for a system such as the one described

in Equation (1), although the calculation is also valid for more general models. Defining the multiple-

period returns as rT,T+k = ∑k
j=1 rT+j , the variance of long-horizon returns can be decomposed

as:

VarT (rT,T+k) = ET [VarT (rT,T+k∣Θ)]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

expected variance of long-horizon returns

+VarT [ET (rT,T+k∣Θ)]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

estimation risk

(G.1)

where Θ = {Φ,Σ} denotes the parameters in the VAR. The first term in Equation (G.1) corresponds

to the expected variance of long-horizon returns, and since we have assumed constant volatility in

the VAR, VarT (rT,T+k∣Θ) = Var (rT,T+k∣Θ). The estimation risk component instead reflects the

parameter uncertainty.

Let us compute the estimation risk component. Let sr be a 1 × n vector with 1 corresponding to

the position of the returns within the vector of state variables yt+1 (and 0 otherwise), then rt+k can

be written as:

rt+k = sr
⎡⎢⎢⎢⎢⎣
(In −Φ1)−1 (In −Φk

1)Φ0 +Φk
1yt + ut+k +

k−1

∑
j=1

Φj
1ut+k−j

⎤⎥⎥⎥⎥⎦

Therefore, the expected long-run return can be re-written as:

ET (rT,T+k∣Θ) = sr (In −Φ1)−1 {[kIn − (In −Φ1)−1Φ1 (In −Φk
1)]Φ0 +Φ1 (In −Φk

1)yT} .
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This implies that the estimation risk component can be computed as:

VarT [ET (rT,T+k∣Θ)] = VarT [sr (In −Φ1)−1 {[kIn − (In −Φ1)−1Φ1 (In −Φk
1)]Φ0 +Φ1 (In −Φk

1)yT}] .

Let us now calculate the expected variance of long-horizon returns. The unpredictable component

of the t + k returns is:

rt+k −Et (rt+k∣Θ) = srut+k + sr
k−1

∑
j=1

Φj
1ut+k−j .

and for multiple-period returns:

rt,t+k −Et (rt,t+k∣Θ) = sr
k

∑
j=1

ut+j + sr
k−1

∑
j=1

Φ1 (In −Φ1)−1 (In −Φj
1)ut+k−j

Therefore the variance of long-horizon returns consists of three sources of uncertainty: the i.i.d.

uncertainty reflecting the accumulated uncertainty of the one-period returns, the future expected

return uncertainty, and a component reflecting the covariance between the one-period return

uncertainty and the revisions to the future expected returns:

Var (rT,T+k∣Θ) = ksrΣs′r
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

iid uncertainty

+2srΦ1∑k−1

j=1
(In −Φ1)−1 (In −Φj

1)Σs′r
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

covariance component

+ (G.2)

+∑k−1

j=1
[srΦ1 (In −Φ1)−1 (In −Φj

1)]Σ [srΦ1 (In −Φ1)−1 (In −Φj
1)]
′

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
future expected return uncertainty

The expected variance of long-horizon returns is the expectation of Equation (G.2). The covariance

component is generally labeled as “mean reversion.” This is because, in the absence of dividend

momentum, this covariance term tends to be dominated by the negative co-movement arising

between next-period futures and multiple-period returns following a shock to the price-dividend

ratio.

G.1 Shock Decomposition of the Variance of Long-Horizon Returns

More generally, one can decompose the expected variance of long-horizon returns into the contribution

of each of the structural shocks. Specifically, let Σ = BB′ where B corresponds to the matrix

capturing the IRF coefficients associated with the structural shocks on impact. We have that
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Σ = ∑n
i=1B(∶,i)B

′

(∶,i) where B(∶,i) denotes the i-th column of the matrix B. This means that we

can retrieve the contribution of the i-th structural shocks to the three sources of uncertainty

in Equation (G.2) substituting B(∶,i)B
′

(∶,i) for Σ for each i. Dividend momentum will affect the

expected variance of long-horizon returns as long as dividend growth shocks affect the covariance

component and future expected uncertainty about returns. To compute the variance of long-horizon

returns without dividend momentum, we substitute B(∶,1)B
′

(∶,1) +B(∶,3)B
′

(∶,3) for Σ in the covariance

component and future expected return uncertainty terms of Equation (G.2), since the dividend

growth shock is the second shock in our simplified model.

Appendix H Results for a More General Model

The basic macro-finance VAR of Sections 2.1 and A is useful to analyze the basic insights of

dropping dividend growth in VAR(1) but one may consider more general models. To do so

we expand the model in Equation (1) with the risk-free rate rft+1 and a vector of dimension

nw × 1 of additional external predictors wt+1. Thus, consider the vector of endogenous variables

y′t = [∆dt+1,w
′

t+1, r
f
t+1, pdt+1, rt+1 − r

f
t+1] of dimension (nw + 4) × 1 and assume it follows a VAR(1)

structure:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∆dt+1

wt+1

rft+1

pdt+1

rt+1 − rft+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

yt+1

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cd

cw

cr
f

cpd

cr

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
²

Φ0

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϕd,d ϕd,w ϕd,rf ϕd,pd ϕd,r

ϕw,d ϕw,w ϕw,rf ϕw,pd ϕw,r

ϕrf ,d ϕrf ,w ϕrf ,rf ϕrf ,pd ϕrf ,r

ϕpd,d ϕpd,w ϕpd,rf ϕpd,pd ϕpd,r

ϕr,d ϕr,w ϕr,rf ϕr,pd ϕr,r

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Φ1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∆dt

wt

rft

pdt

rt − rft

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

yt

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

udt+1

uw
t+1

ur
f

t+1

updt+1

urt+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¸¹¹¹¹¹¹¶
ut+1

. (H.1)

As before, this system can be written compactly as yt+1 = Φz′t + ut+1 where zt = [1,y′t] and

Φ = [Φ0,Φ1].

In this case, the CS identity implies a relationship between excess returns, dividend growth,

changes in the log price-dividend ratio, and the risk-free rate:

rt+1 − rft+1 ≈ κ + ρpdt+1 − pdt +∆dt+1 − rft+1. (H.2)
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Equation (H.2) imposes the following restrictions among the innovations:

urt+1 = udt+1 − ur
f

t+1 + ρu
pd
t+1 + ηt+1,

the following restrictions on Φ:

cr = cd − crf + ρcpd + κ, (H.3)

ϕr,d = ϕd,d − ϕrf ,d + ρϕpd,d, (H.4)

ϕ′r,w = ϕ′d,w −ϕ′rf ,w + ρϕ
′

pd,w, (H.5)

ϕr,rf = ϕd,rf − ϕrf ,rf + ρϕpd,rf , (H.6)

ϕr,pd = ϕd,pd − ϕrf ,pd + ρϕpd,pd − 1, and (H.7)

ϕr,r = ϕd,r − ϕrf ,r + ρϕpd,r (H.8)

and the following restrictions on Σ:

Cov (udt+1, urt+1) = ρCov (udt+1, u
pd
t+1) + Var (u

d
t+1) − Cov (udt+1, ur

f

t+1) ,

Cov (uw
t+1, u

r
t+1) = ρCov (uw

t+1, u
pd
t+1) + Cov (u

w
t+1, u

d
t+1) − Cov (uw

t+1, u
rf

t+1) ,

Cov (urft+1, urt+1) = ρCov (ur
f

t+1, u
pd
t+1) + Cov (u

rf

t , udt+1) − Var (ur
f

t+1) , and

Cov (updt+1, u
r
t+1) = ρVar (u

pd
t+1) + Cov (u

pd
t+1, u

d
t+1) − Cov (u

pd
t+1, u

rf

t+1)

respectively. The only difference in the absence of approximation error is that an additional

restriction in the covariance matrix Σ linking the variance of urt+1 with variances and covariances of

udt+1, u
rf

t+1, and updt+1 is needed. In particular, we would have the extra restriction:

Var (urt+1) = Var (udt+1) + Var (ur
f

t+1) + ρ2Var (u
pd
t+1) +

2ρCov (updt+1, u
d
t+1) − 2ρCov (u

pd
t+1, u

rf

t+1) − 2Cov (udt+1, ur
f

t+1) .

The stationarity restriction is now Φ1 ∈ {Z ∈ R(nw+4)×(nw+4) ∶max{eig (Z)} < 1}.

Using the results in Appendix A.1, it can be shown that if we drop dividend growth and run a
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VAR(1) on x′t+1 = [w′t+1, r
f
t+1, pdt+1, rt+1 − r

f
t+1] we can obtain the same VARMA(2,1) representation

of xt+1:

xt+1 =G1xt +G2xt−1 + et+1 +D1et, (H.9)

where

Φ11 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϕw,w ϕw,rf ϕw,pd ϕw,r

ϕrf ,w ϕrf ,rf ϕrf ,pd ϕrf ,r

ϕdp,w ϕdp,rf ϕdp,pd ϕdp,r

ϕr,w ϕr,rf ϕr,pd ϕr,r

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, ϕ12 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϕw,d

ϕrf ,d

ϕpd,d

ϕr,d

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, ϕ′21 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϕ′d,w

ϕd,rf

ϕd,pd

ϕd,r

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, and ξt+1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

uz
t+1

ur
f

t+1

updt+1

urt+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

As before, without loss of generality, we abstract from the constant term. Consider now specifying

a VAR(1) for xt+1:

xt+1 =A1xt + εt+1. (H.10)

The matrixA1 follows the expression in Equation (A.5); thus the link betweenA1 and the parameters

in the VAR(1) in Equation (H.1) highlighted in Section A also exists here. The next theorem

replicates Theorem A.1 in this more general set up.

Theorem H.1. The VARMA(2,1) in Equation (H.9) will have G1 =Φ11, G2 = 0(n+3)×(n+3), and

D1 = 0(n+3)×(n+3) if and only if ϕw,d = 0n and ϕrf ,d = ϕpd,d = ϕr,d = 0, with ϕd,d = 0 following from

Equation (H.4).

Proof. The proof of the theorem follows easily using the same steps as in the proof of Theorem

A.1.

Of course, Theorem H.1 implies that Corollary A.1 also holds for the more general model

described in this section. The innovations in the VAR(1) specified in Equation (H.10) also follow

the expression in Equation (A.6) and as a consequence Ωε ≠ Ωe. As expected, it is also the case

that Corollary A.2 holds here and the results in Section A.2 when the approximation error is not

present also hold in this more general case.
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Appendix I Priors for Section 5

In this section we describe the prior parameterizations used in Section 5.

I.1 The Flat Prior

We follow Uhlig (2005) and set ν = 0 and V−1 = 05×5 and let S and α be arbitrary. This means that

the posterior means are centered around the OLS estimates and the Bayesian high posterior density

intervals coincide with the classical confidence intervals.

I.2 The Informative Prior

The Minnesota priors in this section can be written:

p(vec(Φ1)∣Σ) ∼ N

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

vec

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,Σ⊗Ω

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

where in the simplest case Ω = λ2(diag ([σ2
d, σ

2
rf
, σ2

pd, σ
2
r]))−1, with λ = 0.185. We follow the common

practice of setting σ2
i to the residual variance of an AR(1) model. For Φ0, the Minnesota prior is

usually specified as flat.

We choose a value of θ = 0.05, which controls the tightness of the Single Unit Root prior. As

before, we follow Giannone et al. (2015) when choosing λ and θ. In particular, we use the starting

sample finishing in 1973 to choose them. For the mean of the excess return, µ
r
we chose a value of

6.5 percent; the mean of the risk-free rate µ
rf

is chosen to be 4 percent; and for the mean nominal

dividend growth, µ
d
we chose a value of 5.5 percent, consistent with long-run nominal GDP growth

in the United States. Given these values we can back out the implied µ
pd

from CS restriction (4)

to be about 2.8, which is close to the value of the log price-dividend ratio at the beginning of the

postwar sample. The hyperparameters λ and θ are chosen to maximize the value of the marginal

likelihood, as proposed by Giannone et al. (2015).
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Appendix J Additional Details on the Analysis of Data at Higher

Frequency

In this appendix, we provide the state-space representation of the model with seasonality in dividends

introduced in Section 6, along with additional details on its estimation and robustness results.

J.1 State-Space Representation of the Model

The model has the following state-space representation:

yt = Hxt

xt = a +Fxt−1 +Gtet

where yt = [∆dt, pdt, rt] is the vector of observed data, and xt is a vector of partially unobserved

state variables. Specifically, we let xt = [∆dsat , pdsat , rt, pd
s
t , pd

s
t−1, pd

s
t−2], thus:

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 −ρ 1 0

0 1 0 1 0 0

0 0 1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(J.1)

The vector a = [Φ′0,01×3]
′
,

F =
⎡⎢⎢⎢⎢⎢⎣

Φ1 03×3

03×3 Φs

⎤⎥⎥⎥⎥⎥⎦
, Φs =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 −1 −1

1 0 0

0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(J.2)

while:

Gt =
⎡⎢⎢⎢⎢⎢⎣

I3 03×1

01×3 σs
t

⎤⎥⎥⎥⎥⎥⎦
(J.3)

and et = [ε′t, est ]
′
, where εt ∼ i.i.d. N(0,Σ) and est ∼ i.i.d. N(0,1).
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J.2 Gibbs Sampler Algorithm

Posterior estimates are obtained using the following Gibbs sampler algorithm:

• Step 0: Initialize the parameters of the model (Φ0,Φ1,Σ,{σs
t }

T
t=0 , σ

2
ω).

• Step 1: Conditional on (Φ0,Φ1,Σ,{σs
t }

T
t=0), draw xt from p (xt∣Φ0,Φ1,Σ,{σs

t }
T
t=0) using the

Kalman filter and simulation smoother (see Durbin and Koopman, 2001).

• Step 2: Conditional on xt, follow the algorithm in Section 3 to draw (Φ0,Φ1,Σ) using the

seasonally adjusted data defined as ỹt = [I3,03×3]xt = [∆dsat , pdsat , rt].

• Step 3: Conditional on xt, define ut = ∑3
j=0 pd

s
t−j , where pdst = [01×3,1,01×2]xt. Obtain

a draw of the stochastic volatilities of the innovations to the seasonal component, {σs
t }

T
t=0,

from p ({logσs
t }

T
t=0 ∣ {ut}

T
t=0 , σ

2
ω) using the algorithm of Omori et al. (2007), which employs a

mixture of normal random variables to approximate the elements of the log-variance.

• Step 4: Conditional on {logσs
t }

T
t=0, draw σ2

ω from an inverse gamma distribution, assuming

an inverse-gamma prior p(σ2
ω) ∼ IG(Sω, vω), such that the conditional posterior of σ2

ω is also

drawn from an inverse-gamma distribution. We choose the scale Sω = 10−4 and degrees of

freedom vω = 1.

• Repeat from Step 1 until convergence is achieved.

In practice, retain 5,000 draws from the posterior distribution after discarding the first 1,000 as

burn-in.

J.3 Additional Results and Robustness

Figure J.4 presents additional results for the baseline model using quarterly data. Specifically, the

upper panel of Figure J.4 compares pdst with the original data, where the price-dividend ratio is

constructed without any transformation of the original dividend data. It also includes the (log)

price-dividend ratio constructed using the sum of dividends over the past year as a method to

address the seasonality in the dividend data. The lower panel displays the posterior estimates of

logσs
t .
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Figure J.4: Additional Results from Quarterly Model with Seasonality

Note: The upper panel plots the (log) price-dividend ratio. The black broken line represents the raw data, while
the black continuous line corresponds to the data constructed using a moving average of the past four quarters of
dividends. The blue line shows the seasonally adjusted data from our model. The lower panel displays the posterior
estimates of σs

t . The darker shaded area represents the 68th posterior credible interval, while the lighter shaded area
represents the 95th posterior credible interval.

Finally, we report the impulse responses associated with orthogonalized shocks to upd and ud for

two alternative versions of the model. The upper panel of Figure J.5 shows the results for a version

of the model that includes seasonality but assumes constant volatility for the seasonal component.

The lower panel of Figure J.5 displays the corresponding results for a VAR(1) model estimated on

data where quarterly dividends are measured as the sum of the past four quarters of dividends. In

both cases, the impulse response functions (IRFs) provide clear evidence of dividend momentum,

with results closely resembling those presented in Section 6.
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Figure J.5: Dividend Momentum with Quarterly Data – Alternative Specifications

(a) No stochastic volatility in seasonal component

(b) Model estimated using smoothed dividends

Note: The solid lines represent the median posterior response. The darker shadow area represents the 68th posterior
credible intervals, while the lighter shadow area represents the 95th posterior credible intervals.

J.4 Local Projections of price-dividend shock on Macroeconomic Aggregates

In Figure J.6, we present the local projections showing the responses of key macroeconomic indicators

to a price-dividend (PD) shock. A brief summary of the results is provided in Section 6.

J.5 Analysis of Monthly Data

In this final section, we investigate the presence of dividend momentum at monthly frequency.

Dividends are backed out from S&P’s daily series of total returns and returns excluding dividends,

available since January 1988. These inferred dividends are aggregated to a monthly frequency,

producing a series of non-reinvested cash dividends.
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Figure J.6: Local Projections of Macroeconomic Aggregates on PD Shock

Note: The solid lines represent the median posterior response. The darker shadow area represents the 68th posterior
credible intervals, while the lighter shadow area represents the 90th posterior credible intervals.

We adopt the same model described in Section 6. As before, both dividend growth and the (log)

price-dividend ratio exhibit seasonal variation, modeled as the sum of seasonal and non-seasonal

components (see Eq. 29). For consistency with the lower-frequency specifications, we continue to

assume that the dynamics of the non-seasonal component are captured by a VAR(1).28 Assuming

no seasonal variation in returns, the CS restriction implies that any seasonality in dividend growth

must be mirrored in the seasonality of the (log) price-dividend ratio (see Eq. 30).

We allow the seasonal pattern in the data to evolve slowly over time, using a mechanism that

28Note that with monthly data, one would naturally favor a VAR specification with more than a single lag.
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ensures the expected value of the seasonal component over any twelve consecutive months is zero:

11

∑
j=0

pdst−j = σs
t e

s
t (J.4)

where est ∼ i.i.d. N(0,1) and logσs
t = logσs

t−1 + ωt+1, with ωt ∼ i.i.d. N(0, σ2
ω).

The model is estimated following the procedure described in the previous section. Figure J.7

presents results from the baseline monthly-frequency model. The top panel compares pdst with

the raw (log) price-dividend ratio and a smoothed version constructed using trailing twelve-month

dividends to mitigate seasonality. The middle panel shows the same comparison for dividend

growth. The range is truncated to prevent the seasonal component from overwhelming the cyclical

variability in dividend growth. The seasonally adjusted dividend growth aligns more closely with

the business cycle, exhibiting clearer reversion around turning points—most notably during the

Great Recession and again in 2020–2021. In contrast, the smoothed series mechanically lags. The

bottom panel displays the posterior estimates of logσs
t , reflecting the time-varying nature of the

seasonal component’s volatility—clearly visible, for example, in the upper panel of Figure J.7.

Figure J.8 shows the responses of cumulative dividends and returns following shocks to the

price-dividend ratio and dividend growth, identified as in Section 4.5. Even at monthly frequency,

dividend momentum emerges as a prominent feature. Dividend shocks lead to an immediate rise in

dividends, followed by a persistent increase in expected dividend growth and expected returns.
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Figure J.7: Additional Results from Monthly Model with Seasonality

Note: The upper and middle panels display the (log) price-dividend ratio and dividend growth, respectively. The
dashed black line represents the raw data; the solid black line shows the smoothed data based on a moving average
of the past four quarters; and the blue line displays the seasonally adjusted data from our model. The lower panel
presents the posterior estimates of σs

t . The darker shaded area denotes the 68% credible interval, while the lighter
shaded area shows the 95% credible interval.
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Figure J.8: Dividend Momentum with Monthly Data

Note: Solid lines show median posterior responses. The darker shaded region represents the 68% credible interval, and
the lighter shaded area denotes the 95% credible interval.
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