PhD in Mathematics, Université de Franche-Comté, Besançon, France, 2002

Research Interests

Mathematical methods in the kinetic theory of gases: Granular gases dynamics; linear and nonlinear Boltzmann equation ; Coagulation and fragmentation; neutron transport equations

Functional inequalities: Spectral gap estimates, entropy/entropy dissipation estimates.

Evolution equations: Strongly continuous semigroups of operators; Spectral theory of non self–adjoint operators.


Associate Professor in Mathematics, Università di Torino

Selected Works

  • M. Bisi, J. A. Cañizó & B. Lods, Entropy dissipation estimates for the linear Boltzmann operator, Journal of Functional Analysis, Vol. 269, 1028–1069, 2015.
  • R. J. Alonso, & B. Lods, Boltzmann model for viscoelastic particles: asymptotic behavior, pointwise lower bounds and regularity, Communications in Mathematical Physics, Vol. 331, 554–591, 2014.
  • J. A. Cañizó & B. Lods, Exponential convergence to equilibrium for the Becker-Döring equations, Journal of Differential Equations, Vol. 255, 905–950, 2013.